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Abstract

Aviation is a key industrial sector for global development. Safety is essential for

its healthy growth. However its management is pervaded by simplistic methods

based on risk matrices. We provide here a framework for risk management

decisions in aviation safety at state level. This helps us in identifying the best

portfolio that a state agency may implement to improve aviation safety in a

country. We illustrate our proposal with a case study.
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1. Introduction

Organizations involved in aviation have been dealing with the prevention of

accidents from the early days of this industry. Since the first aviation accident

with casualties in 1908, many efforts have been spent in improving safety in the

sector. After its creation in 1945, the International Civil Aviation Organization

(ICAO) has focused interests in trying to make aviation the safest transportation

mode. Statistics released by ICAO based on fatal accident rates support such
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efforts, with year 1968 marking a substantial improvement, see [1] for details.

Since 2004, the accident rate has been relatively steady, with no significant

improvement, averaging between 4 and 5 fatal accidents per 10 million flights.

This could be due to the fact that aviation safety (AS) has reached a point

in which safety benefits balance its costs, see [2] who consider that such point

might have been reached in the late 1980s. However, an increasing deregulation

and competition, as well as the expected increase in air traffic over the next

decades, may put current safety levels into jeopardy.

The total elimination of aviation accidents and serious incidents is a desir-

able goal, but clearly unachievable. The idea of risk-free systems has evolved in

recent years towards a perspective centered around safety management, aimed

at supporting resource allocation processes in which a balance between “pro-

duction” and “protection” is attained. In this context, [3] defines safety as the

state in which the risk of harm to persons or property damage is reduced to,

and maintained at or below, an acceptable level through a continuing process

of hazard identification and risk management. AS management is articulated

according to different levels and affects both the aviation service providers (air-

lines, airport operators,. . . ) and the regulators of aeronautical services. This

point of view is supported by ICAO through the regulatory framework of Safety

Management Systems (SMS).

In this regard, it is worth noting that one of the most widespread methods

for risk management in AS is based on risk matrices. A risk matrix is a tool for

risk assessment and management that graphically represents the severity and

likelihood of different risk factors [4], in our case called AS occurrences. Indeed,

the most important regulatory organizations, such as ICAO, EASA, FAA or

Eurocontrol, support and promote their use in all aviation sub-sectors, from

airports to air traffic control, going through air navigation. Frequently, discrete

scales of severity and probability values are used, whereby a table with cells

associated with discrete levels in both magnitudes is defined, see [5]. The risk

level of cells is represented with different colors (typically, red, yellow and green,

which would suggest high, medium or low risk levels, respectively) facilitating
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risk visualisation. As an example, Table 1 represents the matrix recommended

by ICAO [3].

Risk probability Risk severity

Catastrophic

A

Hazardous

B

Major

C

Minor

D

Negligible

E

Occasional 4 4A 4B 4C 4D 4E

Remote 3 3A 3B 3C 3D 3E

Improbable 2 2A 2B 2C 2D 2E

Extremely improbable 1 1A 1B 1C 1D 1E

Table 1: Risk matrix recommended by the ICAO

We might think that this almost ubiquitous presence of risk matrices makes

them a de facto standard. However, this methodology is criticized in the AS

community, see, e.g. [6, 7]. A complete analysis of their weaknesses is available

in [8], who considers that the use of low resolution (5x5, for example) risk

matrices with non-coherent colour schemes and subjective inputs can easily

lead to erroneous risk management decisions. Such limitations suggest that risk

matrices should be used with caution and only when careful explanations of

the involved judgements can be provided. This is worsened by the fact that, as

with our state level AS management problems, one needs to compare numerous

occurrences of very different nature.

[9] provide pointers to other approaches to risk and safety modelling in civil

aviation including fault tree analysis, common cause analysis, event-tree analy-

sis, bow-tie analysis and belief networks. In particular, [10] build a belief net-

work to describe and predict causes of nine major occurrences. However none

of the previous approaches properly integrate occurrence forecasting, however

sophisticated their approaches are, with safety resource allocation.

In this paper, we propose a novel and systematic methodology for risk man-

agement in AS, based on the principles of decision and risk analysis. We begin

by briefly introducing the proposed methodology. In Section 3, we detail its

main steps: models to predict the occurrences and their severity classes; models
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to predict and assess occurrence consequences; risk maps to screen occurrences;

and, finally, a procedure for safety management resource allocation. Section 4

illustrates the methodology with a case study, with masked data for confiden-

tiality reasons. We conclude with a brief discussion.

2. Framework

2.1. Introduction

This section provides a framework to support a state in the identification of

AS risks and the resource allocation to mitigate them. Despite the high safety

level in the aviation industry, occurrences1 continue to emerge. Specifically,

in our case, 88 different occurrence types will be considered, ranging from bird

strike to runway excursion going through engine failure. Five occurrence classes

are proposed by [3] depending on their severity: Accident (1); Serious Incident

(2); Major Incident (3); Significant Incident (4); and Occurrence without safety

effect (5). Thus, we may talk, for example, about an engine failure occurrence

of class 3.

Safety occurrences entail consequences. Each organization must examine

those of interest to them for risk management purposes. In our case, after a

brainstorming process and a literature review, see in particular [11], the in-

cumbent organization (Spanish Aviation Safety and Security Agency, AESA)

decided to focus on the following eight consequences identified as most relevant

in AS management at state level2:

1. Fatalities associated with the functioning of the aviation system.

2. Minor wounded persons associated with the functioning of the system.

3. Severe wounded persons.

1ICAO defines “occurrence” to indicate an accident or an incident.
2For non-state actors in the aviation system, these could change and focus more on conse-

quences related to profit and loss of the involved company. Similarly, for other countries, the

selected consequences could be different.
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4. Delays caused by safety occurrences.

5. Cancellations caused by safety occurrences.

6. Maintenance and repair operations produced by safety occurrences.

7. Destroyed aircrafts.

8. Image loss due to negative perception of occurrences.

All of the above consequences have natural attributes except the eighth one for

which we used as proxy the number of accidents, as they are the occurrences

that would tend to appear in the news.

As required by ICAO, each state must elaborate an AS plan which should

lead to a resource allocation mechanism aimed at improving AS in the incumbent

country. As usual in public policy, resources are limited and one must determine

the best allocation taking into account various relevant constraints (economic,

technical, logistic, legal, political,. . . ). Thus, our aim is to establish a state-

wide AS plan to minimise fatalities, injuries, induced delays and cancellations,

the number of destroyed aircrafts, repair costs and, finally, the entailed image

impact.

Given the current configuration of the aviation system, and taking into ac-

count the current AS state, a change in the resources allocated to different types

of occurrences may have a global impact over such state and, therefore, possibly

on the distribution of: the occurrence rates, hoping to make them smaller and,

therefore, make occurrences less frequent; and/or the proportions of occurrence

classes, in an attempt to make the more severe occurrences less likely; and/or the

consequences, reducing the associated impacts, if these were to occur. These are

evaluated with the loss associated with that AS performance and, overall, with

the expected loss of the corresponding safety policy. We shall try to minimise

such expected loss, see [12].

2.2. Model

The problem we face is illustrated with the generic influence diagram in

Figure 1, where as usual, see [13], rectangular nodes represent decisions; the
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hexagonal node is a value node; circle nodes represent uncertainties; and, finally,

doubly circular nodes represent deterministic nodes.

Portfolio n

λ1 λ2 λk

p1 x1 p2 x2 pk xk

s1 s2 sk

l1 l2 lk

loss

Figure 1: Influence Diagram for risk management in AS.

Here, n designates the number of operations over the incumbent planning period

and k is the number of occurrences considered; λj represents the rate of the j-

th occurrence; xj , is the number of j-th occurrences; pj = (p1j , . . . , p
5
j) and

sj = (s1j , . . . , s
5
j) represent vectors that designate, respectively, the proportions

and numbers of j-th occurrences at each severity class; lj designates the loss

associated with the j-th occurrence; and, finally, loss represents the global loss.

We associate with each safety policy a portfolio of countermeasures z =

(z1, z2, . . . , zk), where zj will represent the proportion of resources (inspection

time, personnel, investment,. . . ) allocated to the j-th type of occurrence. To

simplify the discussion we shall assume that there is a single type of resource.

Then, the rate λj of the j-th occurrence will follow a distribution f(λj |z) =
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f(λj |zj); and the split into the five occurrence classes pj = (p1j , . . . , p
5
j) will

follow a distribution f(pj |z) = f(pj |zj). Note that the quantity zj could have

influence over λi, i 6= j, when the i-th and j-th occurrences are correlated, either

due to a common antecesor, or because one of the occurrences typically precedes

the other. However, we shall ignore such common effects here.

Once the plan z is implemented, and given the number n of operations:

• xj occurrences of the j-th type will emerge, split into (s1j , s
2
j , s

3
j , s

4
j , s

5
j)

occurrences in the five classes, with xj =
∑5

i=1 s
i
j .

• The g-th occurrence of type j, designated gj, results in: n
gj
F fatalities,

with distribution f(nF |j, zj); n
1gj
H and n

2gj
H minor and serious injured,

with distribution f(n1
H , n

2
H |j, zj); t

gj
D accumulated delay, with distribution

f(tD|j, zj); n
gj
C cancellations, with distribution f(nC |j, zj); and, finally,

n
2gj
RM , n

3gj
RM destructions or repairs, with distribution f(n2

RM , n
3
RM |j, zj).

• Overall, these lead to: nF =
∑k

j=1

∑xj

g=1 n
gj
F fatalities; nHi =

∑k

j=1
∑xj

g=1 n
igj
H , i = 1, 2, minor and serious injured, respectively; tD =

∑k

j=1

∑xj

g=1 t
gj
D ,

accumulated delay; nC =
∑k

j=1

∑xj

g=1 n
gj
C , cancellations; nD =

∑k

j=1

∑xj

g=1 n
2gj
RM ,

destructions; nR =
∑k

j=1

∑xj

g=1 n
3gj
RM , repairs; and, finally, s1 =

∑k

j=1 s
1
j ,

accidents.

• We would then evaluate these consequences with the loss function l(nF ,

(nH1, nH2), tD, nC , (nR, nD), s1).

Then, for portfolio z, the corresponding expected loss ψ(z) associated with the

influence diagram in Figure 1, would have the form

ψ(z) = E(l(nF , (nH1, nH2), tD, nC , (nR, nD), s1)|z), (1)

with the expectation defined with respect to the probability model in Figure 1.

Similarly, we could evaluate the expected loss contribution of the j-th occurrence

type by limiting the consequences to just such occurrence.
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2.3. Risk maps for screening occurrences

A first use of the above model allows us to screen the occurrences on which

to focus the greatest AS risk management efforts. To avoid the problems as-

sociated with risk matrices mentioned above, we use risk maps in which the

(continuous) X axis refers to the likelihood of aviation occurrences and the

(continuous) Y axis conveys the severity of consequences associated with such

occurrences. Specifically, here we shall represent the expected number of occur-

rences per 100,000 annual operations (X) and the expected loss associated with

such occurrence (Y ).

The idea of Pareto dominance is relevant here. Given a certain occurrence

with associated coordinates (x0, y0), Figure 2 shows the (x, y) locations of the

better and worse occurrences with respect to such reference.

Figure 2: Dominance in risk maps

To wit, occurrences in the area (x1, y1) are worse than the reference, since they

tend to be more frequent and costly; occurrences (x2, y2) are better, since they

tend to be less frequent and costly; and, finally, occurrences (x3, y3) and (x4, y4)

are incomparable with respect to (x0, y0), since the first ones are more frequent

but less costly, while the second ones are less frequent but more expensive.

Then, occurrences on the “anti Pareto” frontier of the risk map would require

special attention, since there are no worse occurrences in the two relevant risk

management dimensions. Similarly, occurrences with higher expected losses or
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occurrence rates may seem worthy of attention since they are more costly and

frequent, respectively.

In addition, risk maps from consecutive years are useful to identify occur-

rences that have worsened their risk level. For an occurrence characterized by

(xt, yt) in the t-th year map, such that xt ≤ xt+1, yt ≤ yt+1, it would seem

to have worsened, as it tends to be more frequent and costly; if xt ≥ xt+1,

yt ≥ yt+1, the occurrence seems to have improved since it tends to be less

frequent and costly; whereas, finally, if xt ≥ xt+1, yt ≤ yt+1, or xt ≤ xt+1,

yt ≥ yt+1, it would depend on how both criteria are aggregated.

Then, to screen AS occurrences on which to focus risk management, once

the risk maps for years (t-1) and t are produced, respectively called mapt−1 and

mapt, we propose to: 1) Identify the occurrences in the anti-Pareto frontier of

mapt; 2) Add some of the occurrences in mapt that might produce higher losses;

3) Add also some of the occurrences in mapt that might be more frequent; 4)

Add those occurrences that worsened from mapt−1 to mapt; 5) Finally, include

also novel occurrences emerging that year.

As mentioned, risk matrices are somewhat of a standard in AS. Therefore,

we require a method to transform a risk map into a risk matrix for communica-

tion purposes with other aviation agencies. Based on the map, we draw cells to

separate the occurrences using cutoff points for losses and frequencies proposed

by the problem owner. We later adjust the levels so that they are equidistant,

according to the definition of risk matrices, achieved through simple affine trans-

formations. Finally, we specify the colours of cells, using the standard proposed

by ICAO. We illustrate this in Section 4.5.

2.4. AS resource allocation. Stochastic version

More importantly, we may provide a coherent safety resource allocation pro-

cedure based on the above elements. For simplicity, assume that only one type

of resource is included, for example, based on inspection time, which is indeed

the main resource available to the organization at hand. Consider that a fraction

zj of inspection time is allocated to address the j-th occurrence, with zj ≥ 0,
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j = 1, . . . , k and
∑k

j=1 zj = 1. There may be additional constraints such as:

• Minimum inspection level for each occurrence. The organisation might

require the inspection of at least a fraction zmin ≥ 0 to address each

occurrence. This would be formulated

zj ≥ zmin, j = 1, . . . , k.

• Maximum inspection level for each occurrence. The organisation could

also establish a maximum level zmax ≥ 0 to address each occurrence.

Formally, we represent this constraint through

zj ≤ zmax, j = 1, . . . , k.

Then, we associate with each policy z its expected loss ψ(z) as in (1) and aim

at solving

min ψ(z)

s.t.

k∑

j=1

zj = 1,

zj ≥ zmin, j = 1, . . . , k,

zj ≤ zmax, j = 1, . . . , k.

The optimal solution would be (z∗1 , . . . , z
∗

k), where z
∗

j would be the inspection

time fraction allocated to address the j-th occurrence, j = 1, . . . , k. In order to

compute the expected loss for a given policy, we would typically use a Monte

Carlo approximation to (1) at a few portfolios and approximate its surface

with a regression meta-model [14], optimising then ψ̂(z) subject to the above

constraints.

2.5. Resource allocation. Deterministic version

The solution proposed in Section 2.4 may be expensive from a computational

point of view. A more affordable approach would use a deterministic version of

the risk management problem based on, for example, the expected values of the

relevant random variables. To do this, given the inspection plan z, we define
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• E(λj |z) = λjz , the expected rate of the j-th occurrence.

• E(Xj |z, n) = nλjz, the expected number of j-th occurrences given n oper-

ations.

• E(pij |z) = pijz , the expected probability of occurrence severity class i of

the j-th occurrence, with

5∑

i=1

pijz = 1, pijz ≥ 0, i = 1, . . . , 5.

• E(sij |p
ij , z) = nλjzp

ij
z , the expected number of j-th occurrences of severity

class i given n operations.

• E(rijh |z) = mij
zh, the expected value in the h-th consequence for a j-th

occurrence of severity class i, h = 1, . . . , 8.

Then, mz
h =

∑

j

∑

i

nλjzp
ij
z m

ij
hz is the approximation of the expected value in

the h-th consequence associated with inspection plan z. An approximation to

the expected loss would be

̂̂
ψ(z) = l(mz

1, . . . ,m
z
8).

The next step would be to solve the optimisation problem

min
̂̂
ψ(z)

s.t.

k∑

j=1

zj = 1,

zj ≥ zmin, ∀j ∈ {1, . . . , k},

zj ≤ zmax, ∀j ∈ {1, . . . , k}.

The optimal solution (z∗1 , . . . , z
∗

k) would indicate the fraction of inspection time

z∗j devoted to address the j-th occurrence, j = 1, . . . , k.

We discuss now how to model the influence of the inspection plan z in the

occurrence rates. To do this, we adopt the functional form

λjz = δj + exp(−κjzj),
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where δj , κj, are constants determined by solving the system

δj + exp
(
−κjzj

)
= λj ,

δj + exp(−κj) = λj
∗

. (2)

Here, λj designates the occurrence rate when the current resource level zj is

invested and λj
∗

is the AS experts’ estimation of the occurrence rate when the

entire inspection resources are allocated to deal with the j-th occurrence, zj = 1,

j = 1, . . . , k.

3. Implementation

We present some ideas about modelling the required elements in the nodes

of the influence diagram in Figure 1. For the implementation we have accessed

numerous flight safety databases, mainly ECCAIRS3; but also ASN4 and US

DoT5, among others.

3.1. Predicting the number of occurrences

We outline the class of models used to predict the number of occurrences

of each type in a given period, typically, a year or a month. Note that AS

planning is performed annually, but monitoring is monthly and some of the

occurrences present a seasonal (monthly) pattern. We focus on the case in which

the occurrence rate is given as number of occurrences per 100,000 operations.

We use a model in which both the number of operations and the occur-

rence rate evolve dynamically, as in Figure 3. For such purpose, we combine

in a novel way several standard models. Specifically, we use a Dynamic Linear

Model (DLM), see [15], to predict the number of operations (upper block); a

Poisson model to predict the number of occurrences given the rate and number

3ECCAIRS is a software to support organizations in collecting, sharing, and analyzing

their safety aviation information (http://eccairsportal.jrc.ec.europa.eu/)
4http://aviation-safety.net/
5http://www.transtats.bts.gov/HomeDrillChart.asp
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of operations (midblock); and, finally, a DLM to predict the evolution of the

occurrence rate (lower block). With this class of models, we are able to deal

with the effects we have found in the evolution of rates for all occurrence types,

mainly the possible presence of seasonal and trend components.

ϑt ϑt+1

nt nt+1

xt xt+1

ut ut+1

θt θt+1

Figure 3: Model to predict the number of occurrences

The model in Figure 3 is described through












nt = Htϑt + zt, zt ∼ N(0,Σt)

ϑt = Jtϑt−1 + ξt, ξt ∼ N(0, St)

ϑ0 ∼ N(η0, S0)

xt|λt, nt ∼ Po(λtnt)

λt = exp(ut)






ut = Ftθt + vt, vt ∼ N(0, Vt)

θt = Gtθt−1 + wt, wt ∼ N(0,Wt)

θ0 ∼ N(µ0,W0),

(3)

where, at month t,
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• nt, is the number of operations, and depends on a state variable ϑt.

• xt, is the number of occurrences of the relevant type, which depends on

λt and nt through a Poisson model.

• λt, defines the occurrence rate (number of occurrences per number of

operations). For technical reasons, we define λt = exp(ut), and ut evolves

depending on a state variable θt.

• Ft, Gt, Ht, Jt, would be matrices of a DLM, see [16].

• vt, wt, zt, ξt would be independent sequences of normal variables with

zero mean and variance matrices Vt, Wt, Σt, St.

We provide an example in Section 4.1. To learn from data and predict with

these models we apply a particle filter, see [17]. Further details of these models

may be seen in [18].

3.2. Prediction of occurrence classes

Conditional on the monthly number xt of occurrences, we must predict the

corresponding numbers in occurrence classes which, as mentioned in Section 2,

are five. Let p = (p1, p2, p3, p4, p5) be a vector designating the proportion of

occurrences of each class with pi ≥ 0,
∑5

i=1 p
i = 1. Let st = (s1t , s

2
t , s

3
t , s

4
t , s

5
t )

be a vector with the number of occurrences of each class with sit ≥ 0 and
∑5

i=1 s
i
t = xt. Then, we use the multinomial-Dirichlet model.

st|p, xt ∼ M(xt; p
1, p2, p3, p4, p5),

p ∼ Dir(α1, α2, α3, α4, α5).

Assuming that the data Dt available until the beginning of the t-th period

are ((s11, s
2
1, ..., s

5
1),. . .,(s

1
t−1, s

2
t−1,...,s

5
t−1)), where s

i
j represents the number of

occurrences of class i, i ∈ {1, 2, 3, 4, 5}, in period j, j ∈ {1, . . . , t−1}, it is easily

verified that, a posteriori, the distribution is Dirichlet with parameters

p|Dt ∼ Dir

(
α1 +

t−1∑

i=1

s1i , . . . , α5 +

t−1∑

i=1

s5i

)
.
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3.3. Prediction of consequences

We must predict also the eight consequences for the different types of oc-

currences and five severity classes. The kind of issues we need to address is, for

example, assuming that there has been a bird strike occurrence of severity 2,

forecast the number of minor injuries produced. In some cases, we shall need to

make a distinction between the type of aircraft involved, for example, to predict

more adequately, the number of fatalities. We use the following classification:

T1, general aviation, aerial works, or business aviation, with less than 19 pas-

sengers; T2, regional flights (< 100 seats); T3, continental flights (< 200 seats);

T4, intercontinental flights (> 200 seats). As an example, we sketch here the

prediction of fatalities. For a full description for all relevant consequences, see

[19].

3.3.1. Prediction of fatalities

Our aim is to build models to predict the number of fatalities for an AS

occurrence for various types. From these models, by aggregation, we would

obtain the distribution of the number of fatalities associated with a suggested

AS management plan, including its segmentation according to occurrence type

or aircraft type.

Several facts facilitate the construction of the model. First, there are only

fatalities in occurrence class 1, based on ICAO definition of accident. Further-

more, in an accident, there does not necessarily have to be fatalities, neither do

all passengers and cabin crew have to die. Finally, the proportion of fatalities

will typically depend on the type of aircraft and the type of occurrence.

The number nF of fatalities for an accident is predicted with a model

nF = pF · q ·M,

where pF designates the proportion of fatalities; q, the aircraft occupancy de-

gree; and M , its maximum occupancy. The first two parameters depend on the

types of aircraft and occurrence. The third one just on the type of aircraft.
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For the proportion pF , we consider a mixture model

pF ∼ τ1I0 + τ2Be(a, b) + τ3I1, (4)

where τ1 designates the proportion of accidents with no fatalities; τ2, the pro-

portion of accidents in which there are both fatalities and survivors; and, finally,

τ3, the proportion of accidents with no survivors. We have τ1+τ2+τ3 = 1, τi ≥

0, i = 1, 2, 3. I0 is the degenerate distribution at 0 (no passenger dies); Be(a, b)

models the distribution of the proportion of fatalities in accidents when there

are fatalities and survivors; and finally, I1 is the degenerate distribution at 1

(all passengers die).

To make inferences about weights τi, we use a Dirichlet-multinominal model

with posterior estimators τ̂i =
ai+s′

1

i∑
3

i=1
ai+s′1i

, where ai is the prior Dirichlet pa-

rameter and s′
1
i is the number of accidents in the i-th category for model (4),

i = 1, 2, 3. To perform inference over pF , when 0 < pF < 1, we use a beta-

binomial model with posterior estimators p̂F =
a+

∑g
i=1

nF
′

i

a+b+
∑g

i=1
oi
, where a, b are

the prior beta parameters and oi, nF
′

i are, respectively, the number of pas-

sengers and deaths in the g accidents that led to some fatalities. For the occu-

pancy proportion q, again, we use a beta-binomial model with posterior estimate

q̂ =
c+

∑f
i=1

pOi

c+d+f
, where c and d are prior beta parameters; f is the number of

flights for the period in question; and, finally, pOi is the occupancy proportion

of the i-th flight.

To estimate the cost associated with a fatality, we use the concept of value

of statistical life (VSL), for example, presented in [20]. We use the reference

value in [11] for Spain, which is 1.65 Meand designate it cF . Other estimations

could be used, see [21] or [22] for details.

3.4. Loss function

We now describe the loss function used to assess an AS plan. We use the con-

cepts of measurable multi-attribute value function [23] and relative risk aversion

[24] to obtain a utility function. First, we aggregate the consequences through
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a measurable value function as

v(nF , nH1, nH2, tD, nC , nR, nD, s
1) =

− cFnF −

2∑

i=1

cHinHi − cDtD − cCnC − c2RMnD − c3RMnR − cIs
1,

where cF = 1.65 Me is the cost associated with the loss of a human life;

cH1 = 0.43 Me and cH2 = 1.26 Me, estimated as proportions of the VSL, are

the costs associated with minor and serious injuries, respectively; cD is the cost

per minute of delay, approximated using a triangular distribution extracted from

[11] (e.g, for a delay with network effect, it would be cD ∼ T (14.9, 52.9, 78.6)

in e); cC is the cost associated with the cancellation of a flight, depending on

the aircraft type (e.g, for a type T4 aircraft, cC = 81000e); c2RM represents the

cost associated with an aircraft destruction, which will depend on its type (e.g,

for type T2, c2RM = 80Me); c3RM designates the cost associated with an aircraft

reparation, estimated from [8] using a triangular distribution for each aircraft

type (e.g, for type T3, c3RM ∼ T (306, 671, 1149) in e); and, lastly, cI = 0.69

Me is the image cost of each accident, elicited through expert judgement. Full

details may be seen in [19]. The negative signs in the value function are due to

the fact that we deal with costs to be minimized and value functions should be

maximized, see [12].

We then assume that the regulator has constant absolute risk aversion with

respect to v, see [25] for further details. Since this one is increasing, the utility

function will be strategically equivalent to

u(v) = − exp(ωv),

with ω < 0 designating the risk aversion coefficient, see [26] for further details.

However, we prefer to adapt to the jargon in AS, and use loss functions (negative

of utility functions) which, in our case, will be l1(v) = exp(ωv) as well as

standardise it, giving a 0 loss to the best outcome and 1 to the worst one. We,
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then, formulate the system

1− α = ρ+ ̺ exp(ωv1)

0 = ρ+ ̺ exp(ωv∗)

1 = ρ+ ̺ exp(ωv∗), (5)

where ρ, ̺ and ω are constants to be determined; v∗ and v∗ are the worst and

best values attained, respectively; v1 is an intermediate value between the worst

and best consequences; and, finally, α is a value such that the lottery giving

v∗ with probability α and v∗ with probability (1 − α) leaves the AS manager

indifferent with respect to obtaining v1 with security.

4. Case study

We provide now an illustration of the proposed methodology. It is simplified

because we consider only 24 of the total occurrences managed by the incumbent

organisation and we consider only inspection resources.

4.1. Prediction of the number of occurrences

To illustrate the prediction of the number of occurrences, we consider the

case of forecasting bird strikes using the model in Section 3.1. We have the

monthly number of occurrences and operations from 2010 until 2014. An ex-

ploratory analysis suggests that its occurrence rate (number of bird strikes per

100,000 operations) shows seasonal (monthly) and linear growth effects. In this

case, two state variables take care of the linear effect and eleven state variables

refer to the monthly effect. Then, the Fi vector is ((1, 0),(1, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0)) and the Gi matrix is



1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0




Table 2 shows the prior estimates of the parameters in natural units, based

on expert judgement [27], where θL0 refers to the prior expected level, set at

5 occurrences; θL1 refers to the expected growth, set at 10
12

(≈ 0.8) since we

expect a growth of about 10 occurrences over a year (12 months). Finally, θSi

describes the i-th seasonal component, i = 1, 2, . . . , (12 − 1). Due to lack of

information, we set them a priori to 0. After applying a particle filter, see [17],

the predictive mean and standard deviation (for the next month) werem′ = 84.7

and σ′ = 29.3. We proceed similarly for the other 23 occurrences.

θL0 θL1 θS1 θS2 θS3 θS4 θS5 θS6 θS7 θS8 θS9 θS10 θS11

5 0.8 0 0 0 0 0 0 0 0 0 0 0

Table 2: Priors parameters to predict the number of occurrences caused by bird strike.

4.2. Prediction of occurrence classes

We use expert judgement to obtain the prior parameters for a default prior

for the split in occurrence classes in Section 3.2. The corresponding Dirich-

let parameters were set at 1, 2, 3, 5 and 7 to indicate the greater probabil-

ity of occurrence of classes 5, 4, 3, 2, 1, respectively, but facilitating learn-

ing, by not adopting very high prior values. After processing the available
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data, the posterior parameters of the Dirichlet distribution for bird strike were

Dir(1, 3, 77, 3043, 2998). As a consequence, for example, an estimate for the

probability of a severity 3 bird strike would be 77/6132.

We proceeded similarly for the 23 other occurrences.

4.3. Prediction of number of deaths due to bird strike

For fitting, we used data available from the Aviation Safety Network6 which

contains information of accidents worldwide since 1919. We web scrapped this

information considering only data from 1968, the year in which a substantial

improvement was achieved in AS, see [1], and included only civil aircraft ac-

cidents. In addition, we segmented the information depending on the type of

aircraft involved, according to the T1-T4 classification suggested above.

Table 3 summarises posterior model parameters for bird strikes depending

on aircraft type, stemming from non-informative priors, following the notation

in Section 3.3.1.

s′
1

1 s′
1

2 s′
1

3 τ̂1 τ̂2 τ̂3 a b c d q̂

T1 18 2 4 0.70 0.11 0.19 8 5 10.52 15.48 0.40

T2 17 3 1 0.75 0.17 0.08 45 27 9.32 13.68 0.41

T3 7 2 0 0.67 0.25 0.08 37 184 7.88 3.12 0.72

T4 6 0 1 0.7 0.1 0.2 1 1 2.7 6.3 0.34

Table 3: Posterior model parameters to forecast deaths due to bird strike accidents.

We proceeded analogously for the other 23 types of occurrences and the

other 7 types of consequences, as described in Section 3.3.1.

6http://aviation-safety.net/
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4.4. Loss Function

To build the loss function, we consulted with several experts from the organ-

isation to obtain the values for each of the variables in (5), leading to system

0.2 = ρ+ ̺ exp(ω · (−771.52))

0 = ρ+ ̺ exp(ω · 0)

1 = ρ+ ̺ exp(ω · (−1644.94)). (6)

Here, v∗ = 0 refers to the best possible situation with no occurrences (and,

therefore, no deaths, no injured persons,..., no image loss); v∗ = −1644.94, to

the worst possible situation taking as reference the worst values for each of

the eight relevant consequences identified from the available data (nF = 163,

nH2 = 31,. . . , s1 = 44); and v1 = −771.52 refers to the value of an intermediate

situation (nF = 16, nH2 = 8,. . . , s1 = 29). An α value of 0.8 is elicited from AS

experts. Solving system (6), we obtain ρ̂ = −0.09, ˆ̺ = 0.09 and ω̂ = −0.00151.

Figure 4 represents the loss function.

Figure 4: Loss function.

4.5. Risk maps and matrices

We present in Figure 5 the 2015 risk map for AS in Spain with the 24 in-

cumbent occurrences. In parallel, we also provide the corresponding risk matrix.

The context we consider is predictive, that is, we use data until 2014 to predict

the 2015 map (and matrix).
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(a)

(b)

Figure 5: (a) Risk map and (b) risk matrix for 2015.

To build the risk matrix we used (10, 20, 40, 60) as cutoff levels for the expected

number of occurrences and (0.005, 0.01, 0.035, 0.055) for the expected loss.

4.6. Screening occurrences

Table 4 shows the list of occurrences over which to concentrate AS man-

agement efforts, if we apply the screening approach proposed in Section 2.3 for

year 2015. Note that a same occurrence may appear in several of the categories.

For example, ATC appears both in the Anti-Pareto frontier and because of its

higher predicted frequency.
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Anti-Pareto High loss High frequency Worse Emerge

ECO (13)
ECO (13)

ATC (15)

TWS (4)

TWS (4)RE (6) RE (6)

LAO (12) TWS (4) CFIT

ATC (15)
LAO (12) LAO (12)

CFIT (11)CFIT (11) ECO (13)

RE (6) FE (22) FE (22)

Table 4: Screened occurrences for 2015.

4.7. Resource allocation

We provide an illustration of the resource allocation process described in

Section 2.5, in which we assume that we include the k = 7 occurrences in

Table 4. The assumed context is that we are finishing 2014 and must determine

an inspection plan for 2015. Assume that, currently, we are inspecting the 7

occurrences equally intensely, that is zj = 1
7
, j = 1, . . . , 7. We want to study

whether there is a better inspection plan. We show the required data for the

seven involved occurrences.

We first indicate in Table 5 the expected proportions for each severity class

and type of occurrence, under the model in Section 4.2. Note that CFIT and

LAO seem more prone to leading to accidents, whereas ECO and ATC seem the

least dangerous occurrences.

E(p1j) E(p2j) E(p3j) E(p4j) E(p5j)

1 ECO 0.07 0.04 0.11 0.4 0.38

2 ATC 0.007 0.003 0.01 0.78 0.2

3 TWS 0.09 0.12 0.28 0.32 0.19

4 RE 0.09 0.27 0.22 0.33 0.09

5 CFIT 0.43 0.17 0.1 0.07 0.23

6 LAO 0.37 0.12 0.24 0.15 0.12

7 FE 0.19 0.09 0.31 0.19 0.22

Table 5: Expected probabilities for occurrences
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We then display in Tables 6 (fatalities, injuries) and 7 (delays, cancellations,

repairs, destructions) the expected consequences for each occurrence class and

type of occurrence. Recall that a generic model to forecasting fatalities was

described in Section 3.3.1. CFIT and LAO accidents seem to lead to more

fatalities.

Fatalities Minor Inj. Serious Inj.

Occur. Class 1 1-4 1-4

1 ECO 2.94 0.002 0.0006

2 ATC 0.0001 0.003 0.0007

3 TWS 0.0002 0.0003 0.0008

4 RWE 5.89 0.001 0.0004

5 CFIT 24.5 0.00008 0.00004

6 LAO 11.47 0.002 0.0005

7 FE 7.12 0.000002 0.000001

Table 6: Expected forecasted fatalities (only relevant if severity is 1; in other cases it is 0);

injuries (minor and serious) per occurrence.

CFIT and FE lead to bigger delays. CFIT, LAO and FE have a much higher

expected probability of destruction. FE has a much higher expected probability

of repair.

Delay Cancell. Repair Destruc.

Occurr. Class 2-3 4-5 1 2-5 2-5 1

1 ECO 10.29 0.29 1 0.02 0.14 0.17

2 ATC 0.59 0.005 1 0.02 0.13 0.0002

3 TWS 8.08 5.71 1 0.02 0.0001 0.0001

4 RE 4.29 2.37 1 0.02 0.08 0.1

5 CFIT 37.59 18.06 1 0.02 0.0001 0.42

6 LAO 17.12 6.5 1 0.02 0.0002 0.37

7 FE 38.71 20.21 1 0.02 0.32 0.36

Table 7: Delay associated (for accident 1, cancellation); expected probabilities of cancellation,

repair and destruction (only relevant in accidents) per occurrence.
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Finally, Table 8 shows the current expected rates
(
zj =

1
7

)
and the minimum

achievable, when all inspection resources are dedicated to the corresponding

occurrence (i.e., zj = 1), as assessed by an expert.

Current rate Min. rate δj κj % Inspec.

ECO 0.37 0.02 0.02 7.29 15

ATC 11.57 0.21 5.48 2.27 5

TWS 0.27 0.01 0.01 9.5 5

RE 0.52 0.03 0.02 4.8 5

CFIT 0.13 0.007 0.007 14.67 21

LAO 0.44 0.02 0.019 6.07 30

FE 0.15 0.008 0.008 13.66 19

Table 8: Expected and parameter rates. Optimal inspection percentage for each occurrence.

We adjust the rates of different occurrences to the inspection level. We fit the

model as described in Section 2.5. For example, for the ECO occurrence (to

which we allocate z1) we have

δ1 + exp

(
−κ1

1

7

)
= 0.37,

δ1 + exp(−κ1) = 0.02.

This system leads to δ1 = 0.02 and κ1 = 7.29. Table 8 summarises the param-

eters for various occurrences.

We describe now how to estimate the associated consequences to the inspec-

tion plan z = (z1, z2, z3, z4, z5, z6, z7), focusing on the ECO occurrence:

• The rate is δ1+exp(−κ1z1) = λ(z1). The number of expected occurrences

is nλ(z1), which we designate x(z1). Additionally, the expected number of

occurrences in the five classes is (0.07x(z1), 0.04x(z1), 0.11x(z1), 0.4x(z1),

0.38x(z1)) = (s1(z1), s
2(z1), s

3(z1), s
4(z1), s

5(z1)).

• The expected number of fatalities is m1(z1) = 2.94s1(z1).

• The expected number of minor injuries is m2(z1) = 0.002
∑4

i=1 s
i(z1).

• The expected number of serious injuries, m3(z1) = 0.0006
∑4

i=1 s
i(z1).
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• The induced expected time delay will be m4(z1) = 10.29(s2(z1)+s
3(z1))+

0.29(s4(z1) + s5(z1)).

• The number of expected cancellations would bem5(z1) = s1(z1)+0.02(s2(z1)+

s3(z1) + s4(z1) + s5(z1)).

• The expected number of damaged aircrafts would bem6(z1) = 0.14(s2(z1)+

s3(z1) + s4(z1) + s5(z1)).

• The expected number of destroyed aircrafts is m7(z1) = 0.17s1(z1).

• The expected number of accidents is m8(z1) = 0.07s1(z1).

This would be carried out for the other types of occurrences similarly, resulting

in the following overall consequences associated with plan z

mh(z) =

7∑

j=1

mh(zj), h = 1, . . . , 8.

Then, the value associated with the inspection plan z would be

v(z) = −cFm1(z)− cH1m2(z)− cH2m3(z)− cDm4(z)− cCm5(z)

− c2RMm6(z)− c3RMm7(z)− cIm8(z).

Since u is an increasing monotonic function, optimizing u(v(z)) is equivalent

to optimizing v(z). Then, if we want to, for example, ensure a minimum in-

spection level per occurrence, say 0.05, and a maximum level, say 0.3, we would

solve the problem

max v(z)

s.t.

7∑

j=1

zj = 1,

0.05 ≤ zj ≤ 0.3, i = 1, . . . , 7.

The optimal solution is z∗1 = 0.15, z∗2 = 0.05, z∗3 = 0.05, z∗4 = 0.05, z∗5 = 0.21,

z∗6 = 0.3, z∗7 = 0.19, displayed as percentages in the last column of Table 8.
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5. Discussion

In striking contrast with the technological sophistication achieved in the

aviation system from the aeronautical engineering perspective, risk management

in AS is pervaded by unsophisticated methods evolving around the concept of

risk matrix see [28] and [29], with its potential pitfalls.

We have proposed a methodology for risk management in AS based on sound

principles of risk and decision analysis [30]. Its main advantages are providing an

integrated coherent framework for safety resource allocation taking advantage of

all available information, both from data and expert judgment. We also support

risk monitoring, reporting and screening. We present two versions of the general

model, stochastic and deterministic, to be implemented depending on the level of

accuracy required and the available computational resources. The methodology

is useful in defining the countermeasures that allow us to manage the resources

referred to in [31], minimizing the risks associated with AS, taking into account

various constraints (economic, technical, logistic,. . . ) over such resources. We

have illustrated the methodology with a simplified example.

On the other hand, the approach is much more technical and sophisticated

than the above mentioned risk matrix based methods. We have countered this

partly by training engineers in charge of implementing in practice the methodol-

ogy, partly by developing RIMAS, a decision support system implementation of

the proposed methodology. Beyond these, future work includes improving the

occurrence forecasting methodology with the aid of SGDLMs from [32]; moni-

toring the implementation of the methodology to evaluate its actual impact in

AS and eventually improve it and RIMAS; and, finally, extending it to include

data from Flight Data Monitoring systems to improve occurrence predictions.

Moreover, for the most worrisome occurrences we should undertake detailed

studies, possibly through causal networks as in [10].
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