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ABSTRACT

BACKGROUND: Alterations in the dynamic coordination of widespread brain networks are proposed to underlie
cognitive symptoms of schizophrenia. However, there is limited understanding of the temporal evolution of these
networks and how they relate to cognitive impairment. The current study was designed to explore dynamic patterns
of network connectivity underlying cognitive features of schizophrenia.

METHODS: In total, 21 inpatients with schizophrenia and 28 healthy control participants completed a cognitive task
while electroencephalography data were simultaneously acquired. For each participant, Pearson cross-correlation
was applied to electroencephalography data to construct correlation matrices that represent the static network
(averaged over 1200 ms) and dynamic network (1200 ms divided into four windows of 300 ms) in response to
cognitive stimuli. Global and regional network measures were extracted for comparison between groups.
RESULTS: Dynamic network analysis identified increased global efficiency; decreased clustering (globally and
locally); reduced strength (weighted connectivity) around the frontal, parietal, and sensory-motor areas; and increased
strength around the occipital lobes (a peripheral hub) in patients with schizophrenia. Regional network measures also
correlated with clinical features of schizophrenia. Network differences were prominent 900 ms following the cognitive
stimuli before returning to levels comparable to those of healthy control participants.

CONCLUSIONS: Patients with schizophrenia exhibited altered dynamic patterns of network connectivity across both
global and regional measures. These network differences were time sensitive and may reflect abnormalities in the
flexibility of the network that underlies aspects of cognitive function. Further research into network dynamics is critical
to better understanding cognitive features of schizophrenia and identification of network biomarkers to improve

diagnosis and treatment models.
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Schizophrenia (SCH) is a complex and devastating psychi-
atric disorder whose underlying neurobiological mechanisms
are still unknown. Cognitive dysfunction is a multifaceted and
complex feature of SCH and is commonly associated with
poor treatment outcomes (1). Many of these cognitive pro-
cesses rely on brain circuitry such as the frontal and parietal
regions (2), the same regions altered in SCH (3,4). Therefore,
there appears to be an intricate relationship between
cognitive impairment and the pathophysiology of SCH. The
current study was designed to examine altered network
connectivity patterns underlying various cognitive features of
SCH and to explore the dynamic nature of these network
anomalies.

Recently, topological measures that apply network analysis
based on graph theory to neuroimaging data have been used
to characterize global network properties of the brain (5-7).
This approach is particularly pertinent to the study of SCH,
which is described as the prototypical disease of brain dys-
connectivity (8,9). Indeed, a growing number of studies have

revealed network abnormalities in patients with SCH such as
altered network measures of connectivity, efficiency, and
integration (10). While these network findings are largely based
on a static network representation of the SCH brain, there is a
growing interest in the dynamic changes of network connec-
tivity (11-13). Static network representations are derived from a
network constructed by encapsulating neuroimaging data from
an entire scan session (resting state or task activated). How-
ever, higher-order brain functions, such as executive function,
require dynamic brain coordination that can occur on the order
of milliseconds (14). To examine the dynamic connectivity
changes that underlie specific features of cognition, recent
studies in healthy control (HC) participants have applied
network analysis to shorter time intervals and constructed
functional networks for each of these time intervals to quantify
how these networks change over time (15,16). Using this
approach, recent functional magnetic resonance imaging
studies have demonstrated dynamic reconfiguration of
network connectivity patterns following administration of
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cognitive stimuli (13,17,18), while transient changes (on the
order of seconds and milliseconds) in network states have
been detected by magnetoencephalography (19) and electro-
encephalography (EEG) (14,20,21). Although network analysis
traditionally has been performed on functional magnetic
resonance imaging data, these EEG and magnetoencepha-
lography studies highlight the temporal benefits of using
physiological techniques to explore the rapid reconfiguration of
functional brain networks underlying various aspects of
cognition (20).

Given that impaired cognition is a key feature of SCH (1), the
quantification of altered patterns of network connectivity
underlying these deficits will help to identify aberrant global
network properties of SCH (22-24). Preliminary EEG network
(static) studies have demonstrated various network connec-
tivity alterations across working memory (25-28) and auditory
oddball (29) tasks in patients with SCH. The current study was
designed to expand on these static network studies by
applying dynamic network methodology and using the tem-
poral advantages of EEG to explore the functional dynamic
network organization underlying specific cognitive impair-
ments associated with SCH.

To achieve this, we administered a robust and sensitive
cognitive task called the Sustained Attention to Response
Task (SART) (30). The SART provides a measure of response
inhibition and sustained attention (31) and has been applied to
identify clinically relevant cognitive impairments in patients
with SCH (32-34). Successful performance on the SART
requires activation of a number of widespread and spatially
distributed brain regions in selecting and integrating those
cognitive stimuli that are considered task relevant while sup-
pressing irrelevant stimuli (35,36). In the current study, cogni-
tive stimuli from the SART were used as a perturbation tool to
elicit a transient change within the network organization while
EEG measured the functional dynamics of the network
response to the cognitive stimuli, thereby enabling us to
quantify how these connectivity patterns differ in patients
with SCH.

The current study had two major objectives: 1) characterize
global properties of network connectivity (elicited by cognitive
stimuli from the SART) underlying specific cognitive impair-
ment in patients with SCH compared with HC participants and
2) apply dynamic network analysis to explore whether these
patterns of network connectivity evolve over time and differ in
patients with SCH.

METHODS AND MATERIALS

The current study was approved by the Shaar Menashe Mental
Health Center institutional ethics review committee. Partici-
pants received the equivalent of $25 (U.S.) reimbursement for
participation.

Subjects

A total of 25 in-unit patients with SCH at Shaar Menashe
Mental Health Center meeting the criteria for DSM-IV-TR
schizophrenia (37) were recruited. Patients with SCH with a
history of neurology disorders, comorbidity, and drug abuse
were excluded from the study. Of the sample, 2 SCH data-
sets were excluded due to the participants’ inability to
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understand the task requirements, and another 2 datasets
were excluded due to excessive head movement. As such,
21 SCH datasets were analyzed. A trained psychiatrist
administered the Scale for the Assessment of Positive
Symptoms (38) and the Scale for the Assessment of Negative
Symptoms (39) to assess clinical symptoms of SCH and
administered the Neurological Evaluation Scale (40) to index
soft neurological signs.

A total of 30 HC participants without any previous or current
history of psychiatric illness, or alcohol/drug dependence or
abuse or head injury, were recruited through local advertise-
ments. Of the sample, 2 HC datasets were excluded due to
preexisting psychiatric conditions. As such, 28 HC datasets
were analyzed.

All participants completed a general demographic ques-
tionnaire (Table 1).

Experimental Design

Participants had the BioSemi head-cap (BioSemi, Amsterdam,
The Netherlands) consisting of 64 EEG sensors (10/20 inter-
national system) placed on their head. EEG signals were
recorded by the BioSemi ActiveTwo EEG measurement sys-
tem using Ag-AgCl active electrodes. EEG signals were digi-
tized online at a sampling rate of 1024 Hz. Once the EEG was
set up, participants completed the computerized SART (see
the Supplement) (30) using E-Prime version 2 technology
(Psychology Software Tools, Pittsburgh, PA), which sent trig-
gers to the BioSemi system via a USB relay (KMTronic USB

Table 1. Demographic, Clinical, and Behavioral Data
(Performance on the SART) for Patients With Schizophrenia
and Healthy Control Participants

Patients With

Healthy Control

Schizophrenia® Participants
(n=21) (n=28) p Value
Age, Years 38 + 12 34 =10 244
Gender (Male:Female) 14:7 18:10 .862
Education, Years 13 =1 15 1 .001°
Handedness (Right:Left) 20:1 271 .835
Duration of lliness, Years 12+7 NA NA
Hospitalizations 9+9 NA NA
SAPS Total 35 = 16 NA NA
SANS Total 82 =18 NA NA
SANS Attention Subscale 82 NA NA
NES Total 2=*1 NA NA
SART RT 475 + 74 379 * 44 < .001°
SART Intravariability 0.26 + 0.07 0.18 = 0.05 < .001°
SART Omission Errors 16 = 18 0x2 .001°
SART Commission Errors 9+8 6+4 < .001°
Data are mean = SD or n.
NA, not applicable; NES, Neurological Evaluation Scale;

RT, reaction time; SANS, Scale for the Assessment of Negative
Symptoms; SAPS, Scale for the Assessment of Positive Symptoms;
SART, Sustained Attention to Response Task.

#Medication: in patients with schizophrenia, 38% received atypical
antipsychotics (olanzapine or risperidone) and 62% received
typical antipsychotics (zuclopenthixol depot injections, haloperidol,
perphenazine, or levomepromazine).

bp < .01.
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Relay; KMTronic, Veliko Turnovo, Bulgaria) to provide a time-
stamp of the stimuli presentation in the EEG recording.

EEG Processing

EEG recordings were processed offline using the EEGLAB
open source toolbox (41), in-house MATLAB scripts (The
MathWorks, Inc., Natick, MA), and the Brain Connectivity
Toolbox (42). EEG preprocessing stages are described in the
Supplement. For the static network analysis, epoch duration
was 0 to 1200 ms following stimuli presentation and averaged
over trials. For the dynamic network analysis, each epoch was
divided into five equal-length time windows of 300-ms duration
following stimuli presentation and averaged over trials: window
1 (=350 to —50 ms), window 2 (0 to 300 ms), window 3 (300 to
600 ms), window 4 (600 to 900 ms), and window 5 (900 to 1200
ms) (illustrated in Supplemental Figure S1).

Network Construction

EEG data traces are used to generate connectivity graphs that
provide a simplified representation of brain network activity
during a fixed time span. We define such a time span, which
consists of discrete time points, as all sample points of the
gradient montage signals Vj[t] (i =1, ..., 139) with t between
0 and a given duration T. The gradient montage is similar to the
bipolar, sequential, and Laplacian montages yet gives more
local information while reducing artifacts induced by global
long-range correlations. The reference choice is detailed in the
Supplement. The graph (also called network) that we construct
consists of a set of vertices (or nodes) V and a set of edge
weights (or connections) E between any two vertices in the
graph. The nodes represent signals for the defined time span,
which we therefore also denote by V. To define the edge e;
between two nodes V; and node V;, we compute the normal-
ized pairwise Pearson cross-correlation coefficient over the
given time span for a given time delay r,

1 SVl =V)- (vlt=-V))]
C(’C) = (ﬁ) — VAL
Y i=w) 5 (vie=-v)

where V; is the time average of V. The delay t was chosen to
range between 0 and 150 ms to account for cross-cortical
conduction times and for known neurophysiological pro-
cesses (43). Considering the maximal delay t (up to 150 ms)
allowed us to construct a directed network. An edge g;; is then
defined as the maximum of c(r) over all 1. If ; > e;;, we keep
only e; and set g;; to zero. The g;; defined in this way reflects a
statistical dependence of the signals between the nodes
during the fixed time span. The resulting graph is both
directed (i.e., all edges are directed from one vertex to
another) and weighted (the edges retain their correlation
coefficient index). Individual networks were constructed for
the static network and for each of the five time windows
comprising the dynamic network of each participant. For
each of these networks, a proportional threshold was applied
to remove weak or artifactual statistical correlations (i.e.,
edge weights close to 0) (see the Supplement). In the Results
section, we present the network data extracted when the
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proportional density threshold is set at 30% for all graphs
(mean degree = 76) (22).

Network Analysis

Degree (k). The degree k of a node refers to the number of
edges connecting to or from the node. Nodes with a high
degree have increased connectivity with the other vertices and
can be considered as representing hubs in the network (see
the Supplement). In a directed network, the degree is the sum
of inward links (in-degree) and outward links (out-degree).

Strength (Measure of Node Influence). The strength (or
weight) of a node is defined as the sum of all edge weights
(i.e., strength of the links) connected to the node. The directed
in-strength and out-strength of node V; are defined as
kP =3 e and kot = 7. ey, respectively.

Clustering Coefficient (Measure of Segregation). The
clustering coefficient (CC) C; quantifies how likely it is for two
neighbors of the same node V; to be connected, producing a
triangle in the graph. C; provides information about the local
connectivity and structure within a network (44). If t; is the
number of triangles that node V; participates in, then
Ci = 2t;/kj(ki—1), where k; is the degree of node V. The global
CC of a graph is calculated as the average CC of all nodes.

Path Length and Global Efficiency (Measure of Inte-
gration). The path length L; is defined as the minimum
number of edges needed to pass from node V; to node V. We
set Lj = « for any disconnected node pairs V; and V. The
global efficiency GE is defined as the average inverse path
length distance in the network GE = =L | where
|V| denotes the number of vertices in V. GE measures the
overall capacity for integrated processing of the network.

Statistical Analysis

Comparability of patients with SCH and HC participants basic
demographics were assessed using chi-square tests for cate-
gorical variables and t tests for continuous variables (Table 1).
Given the need for rigorous appraisal of our novel approach and
to address cases of violations of unequal variance, we applied a
conservative alpha level of p < .01 for all statistical tests. All
data analyses were performed using SPSS for Windows,
version 15 (SPSS Inc., Chicago, IL). For all behavioral and
network metrics, analysis of variance was applied to measure
group differences. After careful inspection of the scatterplots,
we used the nonparametric Spearman rank-order correlation to
avoid excessive influence of outliers when examining the rela-
tionship between these variables. The receiver operating char-
acteristic (ROC) curve analysis was implemented to examine
the ability for the network metrics to discriminate between
patients with SCH and HC participants (see Supplement).

RESULTS

Behavioral Results

As expected, the SCH group made significantly more errors
of omission (GO: not pressing when required to press) and
commission (NOGO: pressing when required to withhold) than
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the HC group (F1 2039 = 215.05, p = .001, and Fy 4¢ = 36.43,
p = .005, respectively). Patients with SCH presented with
increased reaction time (Fq 47 = 32.13, p = .005, and perfor-
mance variability, F1 47 = 21.46, p =< .005), compared with HC
participants (Table 1).

Network Results

Global Measures: Clustering Coefficient. At baseline,
there were no significant differences between groups (Table 2).
For the static network (0-1200 ms), the SCH group exhibited
significantly reduced CC relative to the HC group in both the
GO and NOGO conditions. In the dynamic network, the SCH
group presented with reduced CC in windows 2, 3, and 4
during the GO condition and in windows 2 and 3 during the
NOGO condition. By window 5, there were no significant dif-
ferences between the groups (Figure 1).

Global Measures: Global Efficiency. At baseline, we
observed no significant differences between groups. For the
static network (0-1200 ms), there were no significant differ-
ences in global efficiency (GE) between groups across the GO

and NOGO conditions. In contrast, the dynamic network
analysis uncovered a clear difference in network response
between the groups, with the SCH group presenting with
significantly increased GE at windows 2 and 3 for both the GO
and NOGO conditions. By windows 4 and 5, there were no
significant differences between the groups (Figure 1).

Regional Measures: Clustering Coefficient. In the GO
condition, at baseline the SCH group presented with a
reduced CC in the frontal regions. For the static network,
patients with SCH had a reduced CC around the frontal and
parietal regions. In the dynamic network, patients with SCH
presented with reduced CC around the frontal, temporal,
sensory-motor, and parietal regions at window 2 and with
reduced CC in the frontal and sensory-motor regions at
window 3. No significant differences between groups were
observed at windows 4 and 5.

In the NOGO condition, at baseline there were no significant
differences between groups. In the static network, the SCH
group demonstrated reduced CC around the frontal, temporal,
sensory-motor, parietal, and occipital regions. In the dynamic
network, patients with SCH showed reduced CC around the

Table 2. Global Connectivity Measures: Global Efficiency and Clustering Coefficient Network Metrics Across the GO and
NOGO Conditions in Patients With Schizophrenia and Healthy Control Participants

Patients With Schizophrenia Healthy Control Participants F Value,
n=21) (n =28) df = (1,47) p Value
Global Efficiency GO
Baseline 0.47 * 0.06 0.47 = 0.04 0.001 976
Static window (0-1200 ms) 0.44 + 0.04 0.43 * 0.06 0.26 613
Window 2 (0-300 ms) 0.40 * 0.06 0.34 * 0.04 16.02 < .001¢
Window 3 (300-600 ms) 0.39 * 0.06 0.34 * 0.04 13.03 < .001¢
Window 4 (600-900 ms) 0.40 * 0.06 0.37 = 0.05 2.58 115
Window 5 (900-1200 ms) 0.43 + 0.06 0.44 * 0.04 0.50 482
Global Efficiency NOGO
Baseline 0.47 = 0.05 0.47 = 0.04 0.04 .839
Static window (0-1200 ms) 0.46 + 0.03 0.43 = 0.06 4.95 .03
Window 2 (0-300 ms) 0.46 * 0.05 0.40 = 0.04 27.18 < .001¢
Window 3 (300-600 ms) 0.40 * 0.05 0.32 = 0.04 41.68 <.001¢
Window 4 (600-900 ms) 0.43 + 0.06 0.42 * 0.05 0.39 537
Window 5 (900-1200 ms) 0.47 * 0.05 0.47 * 0.05 0.21 .648
Clustering Coefficient GO
Baseline 0.20 * 0.04 0.20 = 0.02 0.14 .698
Static window (0-1200 ms) 0.21 + 0.03 0.24 * 0.03 11.79 .0017
Window 2 (0-300 ms) 0.24 + 0.03 0.28 * 0.02 24.10 < .001%
Window 3 (300-600 ms) 0.25 * 0.03 0.28 * 0.01 20.13 < .001¢
Window 4 (600-900 ms) 0.24 * 0.03 0.26 = 0.02 9.59 .003"
Window 5 (900-1200 ms) 0.22 + 0.04 0.22 * 0.03 0.05 .822
Clustering Coefficient NOGO
Baseline 0.20 = 0.03 0.20 = 0.03 0.14 713
Static window (0-1200 ms) 0.18 = 0.02 0.21 + 0.02 26.16 < .0017
Window 2 (0-300 ms) 0.21 + 0.03 0.24 = 0.02 20.17 <.001¢
Window 3 (300-600 ms) 0.23 + 0.03 0.27 * 0.01 39.45 <.001¢
Window 4 (600-900 ms) 0.21 + 0.04 0.23 * 0.02 1.89 176
Window 5 (900-1200 ms) 0.20 + 0.03 0.20 = 0.03 1.66 .204
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Data are mean = SD.
4p < .01.
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Figure 1. Global network connectivity. Shown are group means and standard errors across the global network metrics for patients with schizophrenia (SCH)
and healthy control (HC) subjects. Presented are the dynamic network (left) and static network (right) responses to the cognitive perturbation (Sustained
Attention to Response Task) according to the following global metrics: (A) global efficiency: GO; (B) global efficiency: NOGO; (C) global clustering coefficient
(CC): GO; and (D) global CC: NOGO. These network metrics are monitored across baseline and dynamic and static time windows: baseline (—350 to —50 ms),
window 2 (0 to 300 ms), window 3 (300 to 600 ms), window 4 (600 to 900 ms), window 5 (900 to 1200 ms), and the static window (0 to 1200 ms). *p < .01.

frontal, temporal, sensory-motor, and parietal regions at win-
dow 2 and showed reduced CC of the frontal, sensory-motor,
parietal, and occipital regions at window 3. No significant dif-
ferences between groups were found at windows 4 and 5 (see
Figure 2 and Table 3).

Regional Measures: Strength. In the GO condition, at
baseline the SCH group demonstrated increased strength in
the sensory-motor region. In the static network, the SCH group
presented with reduced strength in the frontal regions. In the
dynamic network, the SCH group showed decreased strength
in the occipital region at window 2, reduced strength in the
frontal, sensory-motor, and parietal regions, and increased
strength in the occipital region at window 3, and reduced
strength in the frontal regions at window 4. By window 5, the
SCH group showed increased strength of the sensory-motor
region (similar to baseline).

In the NOGO condition, at baseline there were no significant
differences between groups. In the static network, the SCH
group presented with reduced strength in the frontal, parietal,

and occipital regions. In the dynamic network, the SCH group
exhibited reduced strength at window 3 in the frontal, sensory-
motor, parietal, and occipital regions (mid) while presenting
with increased strength in the occipital region (left). There were
no significant differences between groups at windows 2, 4, and
5 (see Figure 2 and Table 4).

Clinical Relevance of Network Measures

In terms of clinical measures, strength of the frontal region at
window 4 positively related to Scale for the Assessment of
Negative Symptoms total (r = .590, n = 21, p = .005), whereas
strength of the sensory-motor region at window 5 was nega-
tively associated with Scale for the Assessment of Positive
Symptoms total (r = —.620, n = 21, p = .003). In the static
network, strength of the parietal region positively correlated with
Scale for the Assessment of Negative Symptoms total (r = .567,
n=21,p=.007). With regard to neurological measures, strength
of the sensory-motor regions at windows 3 and 4 correlated
positively with Neurological Evaluation Scale symptoms
(r=.576,n = 21, p = .006, and r = .623, n = 21, p = .003,
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Figure 2. Regional network connectivity. Shown
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are significant differences in regional network met-
rics (local strength and clustering coefficient [CC]) for
patients with schizophrenia (SCH) and healthy con-
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represent areas in which the local network metrics of
SCH patients are significantly lower than in the HC
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described in Supplemental Figure S6.
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respectively). For cognitive symptoms, we found that CC of
the right sensory-motor and parietal regions at baseline posi-
tively correlated with increased attentional symptoms (r = .643,
n=21,p =.002, and r = .602, n = 21, p = .004, respectively).
No further significant correlations were observed.

ROC curve analysis also demonstrated that approximately
95% of test variables (network metrics), which differed signif-
icantly between the groups, were capable of discriminating
between the SCH group and the HC group (see the
Supplement).

DISCUSSION

The current study characterized anomalies in dynamic network
connectivity underlying specific cognitive features of SCH. The
dynamic approach enabled us to reveal a broad range of time-
sensitive network connectivity alterations in the SCH group.
For the SCH group, the cognitive stimuli elicited widespread
decreased segregation and increased global integration while
also activating peripheral hub regions in place of task-relevant
regions. Network differences were temporally sensitive, and
the network configuration returned to comparable levels with
HC participants at 900 ms following the cognitive perturbation
(similar to baseline). Therefore, our study emphasizes the
importance of characterizing the dynamic nature of these
network anomalies when studying cognition in SCH.

Cognition and Dynamic Networks in SCH

As expected, the SART identified impaired inhibition and
sustained attention in the SCH group (32,34,45,46). In the
current study, however, stimuli from the SART were applied as
a cognitive method to perturb (induce a transient change
within) the network organization while EEG quantified the
functional dynamics of the network response. We found that
SART stimuli were capable of successfully perturbing the brain
network and eliciting a measurable dynamic change in the

Static Network
Response

M SCH > HC
SCH < HC

network. These effects resemble the transient changes in SCH
networks elicited by transcranial magnetic stimulation pertur-
bations in our previous study (47). In the current study, patients
with SCH showed altered patterns of network organization in
response to the cognitive stimuli (perturbations) across both
global and regional connectivity measures.

Global Connectivity

Static network analysis revealed that the SCH group exhibited
reduced global segregation (CC) in response to the cognitive
stimuli, whereas no difference was observed in global inte-
gration (GE). Reduced CC is consistently observed in the
literature (22,26,27,29), whereas findings regarding GE are
often mixed (22,27,29). In the past, characterization of these
global measures relied on static representations of the con-
nectivity patterns. However, given that cognition relies on
dynamic coordination of widely distributed brain regions, it is
critical to examine the dynamic nature of these networks to
advance our understanding of network connectivity underlying
cognitive features of SCH.

We examined this concept by applying dynamic network
analysis to characterize how network connectivity patterns
evolve over time. Using this dynamic network approach, our
study uncovered that the SCH group presented with signifi-
cantly reduced global segregation (CC) (27,48) and increased
integration (GE) (26,48) relative to the HC group. These
network differences were pronounced within the first 900 ms
following the cognitive perturbation before returning to com-
parable levels with HC participants. Importantly, SCH patients
exhibited a similar trajectory of global network response to that
of HC participants, but this response occurred at significantly
lower amplitude. Optimal network structure underlying
adequate cognitive function relies on the delicate balance
between segregation and integration of specialized brain re-
gions (22,49,50). Therefore, an intriguing possibility is that
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Table 3. Regional Connectivity Measures: Local Clustering Coefficient Indices That Were Significantly Different Across the
GO and NOGO Conditions in Patients With Schizophrenia and Healthy Control Participants

Patients With Schizophrenia Healthy Control Participants F Value,
(n=21) (n=28) df = (1,47) p Value
Local Clustering GO
Baseline
Right prefrontal cortex 0.16 = 0.04 0.19 = 0.03 8.18 .0067
Static window (0-1200 ms)
Left prefrontal cortex 0.20 = 0.03 0.23 + 0.03 11.10 .0027
Left parietal 0.21 + 0.03 0.24 + 0.03 11.76 .001°
Right parietal 0.21 + 0.03 0.24 + 0.04 8.05 .007¢
Window 2 (0-300 ms)
Left prefrontal cortex 0.21 = 0.04 0.25 = 0.05 8.26 .0067
Right prefrontal cortex 0.22 = 0.05 0.26 = 0.05 11.26 .002°
Mid prefrontal cortex 0.24 = 0.06 0.29 = 0.06 8.05 .007¢
Right temporal 0.23 + 0.05 0.29 + 0.04 15.56 <.001%
Left sensory-motor 0.24 = 0.04 0.29 = 0.04 17.66 <.001%
Right sensory-motor 0.24 = 0.04 0.30 = 0.04 23.73 < .001
Mid sensory-motor 0.24 = 0.04 0.28 = 0.05 12.03 .001°
Right parietal 0.26 + 0.04 0.29 + 0.04 8.10 .007¢
Mid parietal 0.24 + 0.03 0.28 + 0.04 15.02 <.001%
Window 3 (300-600 ms)
Right prefrontal cortex 0.21 = 0.05 0.27 = 0.04 20.32 <.001%
Mid prefrontal cortex 0.27 = 0.08 0.33 = 0.04 12.41 < .0017
Mid sensory-motor 0.28 = 0.06 0.32 = 0.05 10.47 .0027
Local Clustering NOGO
Static window (0-1200 ms)
Left prefrontal cortex 0.18 = 0.03 0.22 = 0.03 22.23 <.001?
Right prefrontal cortex 0.17 = 0.03 0.21 = 0.04 18.86 < .0017
Mid prefrontal cortex 0.18 = 0.04 0.23 = 0.05 14.86 < .001%
Right temporal 0.18 = 0.04 0.21 = 0.04 7.82 .007¢
Right sensory-motor 0.17 = 0.03 0.21 = 0.04 14.98 <.001?
Left parietal 0.19 = 0.03 0.22 = 0.03 15.99 <.0017
Right parietal 0.18 + 0.03 0.22 + 0.03 18.68 <.001%
Mid occipital 0.19 + 0.05 0.24 + 0.06 8.01 .007¢
Window 2 (0-300 ms)
Left prefrontal cortex 0.18 = 0.04 0.22 = 0.04 17.39 <.0017
Right prefrontal cortex 0.18 = 0.04 0.22 = 0.04 13.59 < .0017
Mid prefrontal cortex 0.21 = 0.04 0.27 = 0.03 26.14 < .001%
Right temporal 0.19 + 0.04 0.22 + 0.05 7.70 .007¢
Left sensory-motor 0.22 = 0.04 0.26 = 0.03 11.72 .0017
Right sensory-motor 0.22 = 0.05 0.25 = 0.03 8.00 .006°
Left parietal 0.23 + 0.04 0.26 + 0.03 11.49 .001°
Window 3 (300-600 ms)
Left prefrontal cortex 0.22 = 0.05 0.26 = 0.04 11.39 .0017
Right prefrontal cortex 0.20 = 0.04 0.26 = 0.05 20.93 <.001?
Mid prefrontal cortex 0.25 = 0.07 0.31 = 0.05 13.09 < .001?
Left sensory-motor 0.25 = 0.05 0.30 = 0.06 8.98 .0047
Right sensory-motor 0.26 = 0.06 0.32 = 0.05 15.71 < .001%
Mid sensory-motor 0.26 = 0.04 0.33 = 0.05 35.91 < .001%
Left parietal 0.25 + 0.04 0.29 + 0.04 17.06 <.0017
Right parietal 0.24 + 0.05 0.29 * 0.04 14.55 <.001?
Mid parietal 0.26 + 0.04 0.33 + 0.06 25.91 <.001?
Mid occipital 0.24 + 0.06 0.34 + 0.06 30.54 <.001%
Data are mean = SD.
%p < .01.
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Table 4. Regional Connectivity Measures: Local Strength Indices That Were Significantly Different Across the GO and NOGO
Conditions in Patients With Schizophrenia and Healthy Control Participants

Patients With Schizophrenia Healthy Control Participants F Value,
n=21) (n = 28) df = (1,47) p Value
Local Strength GO
Baseline
Left sensory-motor 73.97 = 16.39 61.42 = 12.99 8.95 .0047
Static window (0-1200 ms)
Left prefrontal cortex 41.96 = 11.02 52.22 + 11.35 10.07 .003°
Mid prefrontal cortex 56.63 + 18.01 81.75 + 24.08 16.06 < .007
Window 2 (0-300 ms)
Right occipital 63.29 * 22.09 88.89 + 23.21 15.20 < .007
Window 3 (300-600 ms)
Left prefrontal cortex 42.80 £ 15.22 63.61 = 20.82 14.95 < .001¢
Right prefrontal cortex 45.08 = 17.20 65.74 = 19.69 14.69 < .0017
Mid prefrontal cortex 75.19 + 25.23 103.53 + 28.14 13.28 < .001¢
Right sensory-motor 80.20 + 19.08 103.10 + 19.36 17.00 < .0017
Mid sensory-motor 90.26 + 28.92 115.30 + 26.09 10.07 .004%
Mid parietal 88.93 + 23.79 115.75 + 34.77 9.23 .0047
Right occipital 77.95 + 20.02 58.43 + 26.47 7.57 .008"
Window 4 (600-900 ms)
Mid prefrontal cortex 67.83 = 31.08 91.39 + 29.26 7.38 .0097
Window 5 (900-1200 ms)
Left sensory-motor 80.20 = 12.45 67.55 = 17.36 8.03 .0067
Local Strength NOGO
Static window (0-1200 ms)
Left prefrontal cortex 41.22 £ 10.48 54.16 + 10.75 17.76 < .0017
Right prefrontal cortex 39.47 = 12.19 55.49 + 14.36 16.94 < .0017
Mid prefrontal cortex 62.94 *+ 17.63 87.20 + 22.42 16.77 < .001¢
Right parietal 48.29 * 10.07 57.23 * 8.56 11.24 .002°
Mid occipital 59.81 = 19.41 77.96 + 22.23 8.90 .0057
Window 3 (300-600 ms)
Right prefrontal cortex 42.29 = 10.69 69.99 + 16.87 43.45 < .001¢
Mid prefrontal cortex 69.21 + 28.76 123.68 + 16.58 69.85 < .0017
Right sensory-motor 77.73 = 15.23 91.37 + 16.64 8.66 .005%
Mid parietal 84.90 * 25.06 108.26 + 28.24 9.03 .004%
Mid occipital 71.32 + 32.98 99.61 * 33.62 8.63 .005%
Left occipital 72.53 + 22.50 52.29 + 20.06 11.01 .002°

Data are mean = SD.
%p < .01.

patients with SCH compensate for a less globally segregated
(reduced CC) network by recruiting a larger number of pe-
ripheral brain regions concurrently (shorter path lengths) to
achieve successful performance on the SART.

Moreover, the reduced trajectory of network response in the
SCH group may reflect impaired network flexibility in response
to a cognitive perturbation (12,13,18). Previous studies
demonstrated that increased flexibility of network response
was predictive of increased learning (12) and adaptability to
cognitive demands (13). If we apply this notion to our study,
then the increased range of segregation and integration in the
HC network may allow HC participants to more flexibly meet
cognitive demands by delicately balancing these global mea-
sures. The SCH group, on the other hand, presented with a
reduced range of segregation and integration, and it is possible

that an altered balance between these global measures may
represent a less flexible state.

Regional Connectivity

In terms of regional connectivity, static network analysis
revealed that the SCH group recruited a less frontal and
centralized network (strength) and demonstrated evidence of
widespread reduced segregation (local CC) compared with the
HC group. Evidence of the emergence of nonfrontal hubs in
SCH have been demonstrated across static functional mag-
netic resonance imaging (51-55), diffusion tensor imaging
studies (56-58), and transcranial magnetic stimulation studies
(47). Only a small number of EEG studies have explored
regional connectivity alterations in SCH (22,29) given that the
focus is usually on global measures of connectivity.
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When we applied dynamic network analysis, we found that
dynamic patterns of network organization correlated with
clinical symptoms of the SCH group. Moreover, the dynamic
network approach increased the sensitivity of our analysis and
led to the identification of a broader number of regional dif-
ferences in SCH. SCH presented with reduced strength and
decreased local CC (segregation around specific nodes)
around the frontal, parietal, and sensory-motor areas while
showing increased strength around the occipital lobes
(a peripheral hub). These network differences were prominent
within the first 900 ms following the cognitive perturbation
before returning to comparable levels as in the HC group.
Patients with SCH also demonstrated significantly increased
sensory-motor strength at baseline (and at 900-1200 ms), and
these increases in strength were capable of discriminating
between patients with SCH and HC participants (ROC anal-
ysis). Moreover, increased CC of the sensory-motor and pari-
etal regions at baseline was related to increased symptoms of
attentional deficits in SCH. While these findings are not
conclusive yet, when combined they provide initial support for
the use of regional network measures as potential biomarkers
of SCH.

Successful performance on the SART relies on the integrity
of frontal and parietal regions for executive control (2,35,59),
whereas the sensory-motor region has a pivotal role in the
functional integration between these cognitive networks and
the execution of voluntary movements (60). These brain
regions are considered highly interconnected and functionally
integrated with many regions of the brain. Therefore, it is logical
that these regions relate to clinical (frontal and parietal regions)
and neurological (sensory-motor) symptoms of SCH as well as
being predictive of the disease state. For the HC group, suc-
cessful task performance relies on increased integration of
these task-relevant regions and decreased integration of the
peripheral regions (18). Therefore, our opposite finding of
reduced integration of these major task-relevant regions and
the recruitment of peripheral regions by the SCH group (even
when successfully completing the task) provide strong empir-
ical support for the presence of altered dynamic network
organization underlying day-to-day features of cognition.

Limitations

Although these findings provide compelling evidence of
network anomalies underlying cognition in the SCH group,
several methodological issues should be considered. First,
given that all SCH participants were undergoing antipsychotic
drug treatment, we are unable to separate the potential effects
of antipsychotic medications from our results. We did examine
the effect of medication type (atypical vs. typical antipsychotic
medication) on network metrics and observed no significant
changes in the current findings. Therefore, our results should
be considered as representative of an inpatient and medicated
SCH population. Second, while HC participants and SCH
patients were matched for age, gender, and handedness, they
differed in years of education. To address this limitation, we
examined the analysis of variance across all variables with
years of education as a covariate and found that all reported
significant differences remained relevant. Third, across the
network studies, there are a vast number of methods for
network construction, thresholding, and reference choice

Network Dynamics and Cognition in Schizophrenia

when applying graph theory to neuroimaging data. We applied
a standard network construction technique (Pearson correla-
tion) that is based on the cross-correlation between EEG sig-
nals (5). Notably, we do not directly measure anatomical
connectivity; rather, network connectivity is inferred from cor-
relations between EEG traces. Fourth, further studies are
required to discern whether these network effects are specific
to SCH or represent a more general indicator of cognitive
impairment. Given the multifaceted nature of cognition, it
would be worthwhile to examine whether these cognitive re-
sults are specific to the SART or vary according to the
cognitive construct being examined. Fifth, the study sample
was limited in size, and multiple comparisons were conducted
for the regional network and correlation values. To address
this, a conservative alpha value of significance (p < .01) was
implemented, and the utility of the test measures was exam-
ined via the ROC curve analysis (to evaluate their ability to
discriminate between SCH patients and HC participants).
Therefore, results from the current study should be considered
as indicative rather than conclusive, and further studies are
required to fully validate our findings.

Conclusions

Our study provided quantitative measures of the dynamic
network anomalies underlying specific cognitive features of
SCH. The SCH group demonstrated temporally sensitive
network alterations across both the global and regional con-
nectivity measures in response to the cognitive stimuli. More
specifically, SCH patients exhibited decreased CC (segrega-
tion), increased efficiency (integration), and reduced integration
of major task-relevant regions (and increased recruitment of
peripheral hub regions). These network aberrations may indi-
cate the presence of altered integration and segregation
processes underlying specific cognitive features of SCH.
Therefore, our study highlights the importance of examining
dynamic patterns of network connectivity in better under-
standing cognitive features of SCH. It is hoped that identifi-
cation of the network anomalies underlying key symptoms of
SCH will improve our understanding of SCH and lead to the
development of network biomarkers to improve current diag-
nosis and treatment models.
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