
Accepted Manuscript

Workflow scheduling applying adaptable and dynamic fragmentation
(WSADF) based on runtime conditions in cloud computing

Zahra Momenzadeh, Faramarz Safi-Esfahani

PII: S0167-739X(18)30590-9
DOI: https://doi.org/10.1016/j.future.2018.07.041
Reference: FUTURE 4359

To appear in: Future Generation Computer Systems

Received date : 18 March 2018
Revised date : 16 May 2018
Accepted date : 17 July 2018

Please cite this article as:, Workflow scheduling applying adaptable and dynamic fragmentation
(WSADF) based on runtime conditions in cloud computing, Future Generation Computer Systems
(2018), https://doi.org/10.1016/j.future.2018.07.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2018.07.041

1

Workflow Scheduling Applying Adaptable and Dynamic Fragmentation (WSADF)

Based on Runtime Conditions in Cloud Computing

Zahra Momenzadeh1, Faramarz Safi-Esfahani2 (Corresponding Author)

1Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Abstract- Workflows are a set of tasks and the dependency among them, which are divided into scientific

and business categories. To avoid problems of centralized execution of workflows, they are broken into

segments that is known as fragmentation. To fragment the workflow, it is highly important to consider the

dependency among tasks and runtime conditions. The cooperation between the scheduler and fragmentor

must be such that the latter generates appropriate tasks with optimized communication cost, delay time,

response time, and throughput. To this end, in the present study, a framework is proposed for scheduling

and fragmentation of tasks in scientific workflows that are conducted in fragmentation and scheduling

phases. In the fragmentation phase, the fragments are generated with regard to the number of virtual

machines available during runtime. In the scheduling phase, the virtual machines are selected with the aim

of reducing bandwidth usage. The experiments are performed with three Configurations during both

phases of fragmentation and scheduling. Response time, throughput, and cost (BW and RAM) were

improved compared to the baseline studies on Sipht, Inspiral, Epigenomics, Montage, and CyberShake

workflows as datasets.

Key words: Scientific workflow, Scheduling, Dynamic and Adaptive Fragmentation, Adaptive Scheduling

1- Introduction
Scientific workflows might be very large, carrying a vast number of tasks and calculations, manipulate

a huge amount of data and they will eventually be realized as thousands of concurrent process instances.

Hence, the implementation of workflows in the cloud matters [1, 2]. The centralized execution of

workflows increases response time and missing the deadline of a workflows, either. As a solution,

distributed workflow engines come to action; therefore, workflows are fragmented into sub-workflows

(fragments) so that they can be executed using distributed resources by a cloud scheduler. Fragmentation

of workflows enhances scalability and reusability, as well.

Fragmentation is performed in dynamic and static modes. In the former, fragments are generated during

the runtime, while in the latter, fragmentation occurs before the runtime. In static fragmentation,

workflow is fragmented before the runtime and is then executed during the runtime by determining the

resource. Although this method is simple, fragments are not compatible with the runtime conditions.

Dynamic fragmentation decides on the generation and execution of fragments during the runtime.

However, adaptable and dynamic fragmentation generates and executes the fragments based on the

feedbacks from runtime environment in order to balance the scalability and efficiency of workflows. This

approach is recommended when workflow engine acts as a cloud service to execute a huge number of

workflow instances and/or when workflows include a large number of tasks [3].

So far, numerous studies have examined the fragmentation and scheduling of workflows. The FPD model

[4] is a frequently used method in fragmentation, in which workflows are divided into single-task

fragments, thereby increasing communication messages, delay time, and response time, and decreasing

throughput. As a result, it is highly important to consider a method for reducing the number of fragments

generated from a workflow. In the method proposed in [5], a method known as ATSDS was expressed

for workflow fragmentation, which is a two-phase adaptive method for the fragmentation and scheduling

of workflows during the runtime. The phases utilized in this method are fragmentation and resource

allocation. Fragmentation is conducted based on the hierarchical process decentralization (HPD)

algorithm that focuses on business processes and has no idea on scientific processes.

2

Scheduling is an important issue in workflow execution and many algorithms have been introduced for

it. By far, the proposed scheduling methods consider limiting factors, e.g. task runtime and remaining

time. The CTC [6], SLV [7], and QDA [8] algorithms are proposed for scheduling. These algorithms

schedule and execute workflows based on deadline and with the aim of decreasing execution costs. The

major problems with these algorithms include: 1) the method of mapping tasks to resource without

considering the limiting factors such as runtime and deadline; 2) QDA, CTC, FPD, and SLV algorithms

generate a large number of fragments; 3) communication messages among the generated fragments are

increased that results in increasing bandwidth usage; 4) delay time is increased because the number of

communication messages is increased, thereby increasing response time and decreasing throughput,

either; 5) increasing the delay time results in missing the deadline before running all the fragments.

As a result, the main problem is adaptable and dynamic fragmentation and execution of scientific

workflows based on the feedbacks from runtime environment. The first hypothesis states applying the

number of virtual machines, and available bandwidth in dynamic fragmentation results in creating

adaptive fragments that improve response time and throughput of a workflow engine at runtime. The

second hypothesis says that the scheduler is able to reduce the cost of bandwidth usage, and memory

usage of virtual machines, and satisfy the deadline of workflows by applying the parameter virtual

machine cost along with the adaptive fragments. The main objective is to balance the scalability and

efficiency of workflow engines as a service to execute scientific workflows. This research highlights the

fragmentation and execution of scientific workflows in that 1) it does not provide a large number of

fragments that is equal to high communication cost and delay; however, applies adaptive fragmentation

based on runtime feedback; 2) it does not separate fragmentation from scheduling; however, schedules

adaptive fragments based on the feedbacks from runtime environment. As the methodology of this

research, in order execute scientific workflows adaptively, WSADF framework is presented that includes

two phases of fragmentation and scheduling along with algorithms to support them. In the fragmentation

phase, appropriate fragments are generated considering runtime conditions (i.e. the number of virtual

machines, and available bandwidth among them). In the scheduling phase, the scheduler selects virtual

machines for each fragment in order to reduce the cost of bandwidth usage, memory usage, and satisfying

the deadline of workflows. Scientific workflows [9] including CyberShake, Sipht, Montage,

Epigenomics, and Inspiral are used as datasets for evaluating the proposed framework and comparing it

with other basic approaches.

The WorkflowSim [10] simulator is incorporated for the realization of idea. Various algorithms can be

used for scheduling, but round-robin scheduling algorithm is used to start with. This algorithm does not

require additional information on tasks (e.g. runtime and/or number of task instructions) and executes

the tasks equally. Experiments were conducted in three configurations along with both phases of

fragmentation and scheduling. Results were improved compared to the baseline studies. For instance,

compared to Montage workflow in Configuration-1 and the fragmentation phase, there was 84.75%

improvement in mean response time and 87.68% improvement in throughput. In Configuration-2 and the

fragmentation phase, 84.64% improvement in mean response time and 83.46% improvement in

throughput were observed. In Configuration-1 and the scheduler phase, it demonstrated 83.94%, 69.56%,

and 96.91% improvement in mean response time, throughput, and bandwidth usage cost, respectively.

In Configuration-2 and the scheduler phase, it demonstrated 94.49%, 47.82%, and 96.1% improvement

in mean response time, throughput, and bandwidth usage cost, respectively. In Configuration-3 the results

of experiments on datasets with variable deadline (625, 5000, 20,000 and 25,000) indicate that the

success rate of the proposed framework was 100% than the base models.

This paper is organized as follows: Section 2 reviews the related studies. Section 3 presents the proposed

method and Section 4 contains the evaluations. Finally, Section 5 includes the conclusions and

suggestions for the future research.

3

2- Background and concepts
2-1- Workflow
Workflow means a group of tasks and their dependency. Workflows are divided into business and

scientific categories: the former is a group of operations for performing a task, including two or more

human factors, and the latter is discussed in medicine, meteorology, etc. Workflows differ based on their

type (business or scientific) and type of dependencies among their tasks. If they are scientific, the

dependency is data-driven, i.e. the next task uses the output data of the previous one. If they are business,

the dependency is control-driven, i.e. the next task can be run only when the execution of the previous

task is complete [11-18]. Workflows are among software applications utilized in cloud computing.

Resource provision and task scheduling are required for running workflows in clouds. In the resource

provision, the resource is of pay-per-use type, separated from task scheduling. In the task scheduling, the

tasks are scheduled for utilizing the resources [3, 11-15, 19]. Scheduling, mapping task to resources, and

running them are done based on priorities. Workflow scheduling is the allocation of tasks to resources,

which may be distributed in numerous ranges. Scheduling is categorized into dynamic, static, and

combined types [20].
2-2- Types of workflow fragmentation
Based on Fig 3, fragmentation is divided into two main groups: static and dynamic. If fragmentation is

performed before runtime, it is called static. However, if it predicts which task must be placed in a

fragment during runtime, it is called dynamic.

2-2-1. Horizontal, vertical, and diagonal fragmentation
The dependency among tasks in a workflow is one of the most important issues in fragmentation.

Numerous reasons exist for the fragmentation of workflows. Reducing the cost and time of

communication by adapting fragmentation to data distribution, adapting fragments to organizational

structures and resources, resolving hardware limitations, and regulating efficiency by workflow

distribution are the motivations for workflow fragmentation. Workflow fragmentation is divided into

horizontal, vertical, diagonal, and combined categories. A workflow is decomposed into two horizontal

fragments if they are not dependent on each other. Alternative or concurrent processes can be fragmented

horizontally (Fig 1 (a, b)). A workflow is decomposed into two vertical fragments if one fragment

depends on the other and there is no dependency in the opposite direction. If a fragment includes exactly

one proposition, it is called orthogonal, which is a type of vertical fragmentation. Fig 2(a) and (b)

illustrates vertical and orthogonal fragmentations, respectively [21].

Fig 1: Horizontal process patterns [21]

4

Fig 2: Vertical Process patterns [21]

If the tasks in a workflow have circular dependency, they are fragmented diagonally. Fig 1(c) presents

diagonal fragmentation. When a combination of the noted methods is used for the fragmentation of a

workflow, it is called combined fragmentation [21].

3- Related Works
In this section, we review the previous studies on scheduling and fragmentation; although several

research papers [22-28] study different aspects of cloud computing. The studies are compared with the

proposed method in terms of fragmentation and scheduling based on their objectives.

According to Fig 3, workflow fragmentation is performed in static and dynamic forms, each with various

categorizations. The general static and dynamic states are divided into horizontal, vertical, diagonal, and

combined categories. While, in the present study, combined dynamic fragmentation and dynamic

scheduling were incorporated. Fig 4 illustrates important workflow problems from a different points of

view.

Fig 3: Mind Map of workflow fragmentation

5

3-1- Workflow Fragmentation Studies
In this section, we review previous studies on workflow fragmentation. Afterwards, each study is

compared with the proposed WSADF framework according to Table 1. Wei Tan et al. [29] employed a

centralized workflow known as CWF-net for workflow fragmentation. In this method, tasks or operations

are considered as the transition and the dependency among them is regarded as the place. Also, the

fragmentation method is static. The disadvantages of this method include fragmentation before

execution, which reduces efficiency and flexibility. This method differs from the present framework in

terms of the selection of tasks and the selected fragmentation method. Wei Tan et al. [30] proposed a

method for dynamic workflow fragmentation in distributed environments. By partitioning centralized

workflow into segments, each segment can be transferred to other servers to be executed. The advantage

of dynamic fragmentation is in enhancing the flexibility and efficiency of systems and preventing the

transfer of duplicate information. The difference between this study and our proposed framework is in

the selection of tasks to be placed as one segment. Guoli Li et al. [4] proposed the FPD method for

workflow fragmentation, in which a workflow was completely divided into single-task fragments. Then,

each fragment was given to the scheduler to receive resources and the fragmentation method is static.

The mentioned method differs from the present framework in terms of fragmentation method. The

disadvantages of this study include the static nature of work, which reduces efficiency and flexibility in

resource selection as well as the task selection method. Peter Muth et al. [31] proposed the centralized

method for workflow fragmentation. In the centralized fragmentation, each workflow is given to the

scheduler for resource mapping and execution in a centralized manner, without being divided into small

fragments. In the centralized state, the number of generated fragments equals 1. For centralized

workflows, there is a standard known as Workflow Management Coalition. It differs from the present

framework in terms of fragmentation and execution of fragments as well as dynamic execution and

fragmentation. Khorsand et al. [5] introduced a method known as ATSDS which was a two-phase

adaptive method for workflow fragmentation and scheduling during runtime. The phases utilized in this

method are fragmentation and resource allocation. In the fragmentation phase, the fragmentor divides

Fig 4: Mind Map of Workflows in terms of Scheduling and Fragmentation

6

business workflows into appropriate fragments using three algorithms and considering the parameters of

the number of virtual machines and mean bandwidth. In the first algorithm, appropriate fragments are

generated considering the number of virtual machines and using HPD. Then, a suitable level of

granularity is achieved considering bandwidth and using fuzzy logic. This method differs from the

present framework in terms of workflow type, fragmentation method, selection of fragments, considering

fuzzy logic, and resource allocation to each fragment. Khaled Almi Ani et al. [32] introduced a model

entitled PBWS for partitioning business workflows. This method consists of three major steps:

partitioning, partition regulation, and resource allocation and is different from the present framework in

terms of fragmentation and scheduling methods. Sherry X Sun et al. [33] proposed a framework based

on process extraction for business workflow fragmentation. This framework consists of four phases. The

first phase is saving the logs. When a workflow is running, the log of each task is stored in a database.

The second phase is the extraction model for centralized workflows. In this phase, when the workflow

enters, the process extraction algorithm attempts to discover the model describing the sequences of tasks.

The third phase is the time analysis of centralized workload properties. The fourth phase is workflow

fragmentation and distribution. In this phase, the tasks are selected for fragments in order to achieve

minimum time. This framework is different from the present framework in terms of task selection and

fragment generation method. The type of the selected workflow differs as well. Previous algorithms are

compared with the proposed framework in terms of fragmentation with various factors in Table 1.

Table 1: Comparison of fragmentation algorithms with the proposed WSADF framework

Algorithm or

method

Fragmentation

method

Reducing

runtime

Reducing

response

time

Guaranteed

execution of

the fragment

Optimizing

the use of

resources

Compatibility

with runtime

conditions

Improved

throughput

Reduce

bandwidth

cost

Wei tan et al[30] Dynamic - -

Wei tan et al[29] static -

Guoli Li et

al[4](FPD)
static -

Peter Muth et

al[31](Centralized)
- -

Khorsand et

al[5](ATSDS)
Dynamic - - - -

Khaled Almi et

al[32] (PBWS)
Dynamic - - - - -

Sherry X,sun et

al[33]
static - - - - - -

WSADF

(Presented

Framework)

Dynamic -

3-2- Workflow Scheduling Approaches based on Fragmentation
In this section, we review the previous studies on business workflow scheduling. Afterwards, each study

is compared with the proposed WSADF framework according to Table 2. Faisstnauer et al. [34]

introduced a technique for enhancing the round-robin scheduling. By adding priorities to tasks, this

technique prevents starvation and enhances efficiency. The prioritizing level of each task is based on the

error factors determined by the user. Tasks with larger error factors must be executed first. In the

proposed framework, workflow is fragmented dynamically, ignores runtime conditions, and is finally

7

executed. Oprescu et al. [35] proposed a scheduling algorithm. Scheduling is performed based on budget

limits. Based on the BaTs method, tasks are categorized into Bag of tasks and are then scheduled and

executed using the round-robin algorithm. This technique differs from the present framework in terms of

categorizing tasks and scheduling methods. In the fragmentation method introduced by Muthusamy et

al. [7], workflow is completely fragmented such that there exits one task per fragment. The major

objective of this model is scheduling with the lowest cost (SLV). In this paper, fragmentation was

performed statically, while scheduling was done dynamically. The difference is in terms of workflow

fragmentation and scheduling method. Bansal et al. [36] proposed a heuristic scheduling algorithm which

can dynamically adapt and schedule tasks without a priori information. Two queues exist in this method,

one for tasks waiting to be executed and the other for tasks which are being executed in at least one

machine. Tasks waiting to be executed are prioritized and executed using the round-robin algorithm

based on the costs of task execution. This method and the present method differ in terms of task

fragmentation and prioritizing methods. Abrishami et al. [37] proposed an algorithm based on service

quality according to minor critical path. The aim of this algorithm was to minimize workflow execution

costs before reaching the deadline. The difference between this algorithm and the present framework lies

in the fact that the latter uses robin-round algorithm for task scheduling and dynamically performs

workflow fragmentation considering runtime conditions, leading to higher adaptability with resources

and optimal resource use. Abba et al. [38] proposed three scheduling algorithms. In the first algorithm,

EPFRR, the task governing the deadline has the highest priority for scheduling and erection. Here, tasks

are prioritized in an ascending order based on the deadline. In the second algorithm, LSTRR, tasks are

ordered based on the shortest remaining time until the completion of execution, identified using round-

robin algorithm in quantum, and exclusively executed. In the third algorithm, SPTFRR, the tasks are

ordered based on the shortest process time to the system, exclusively identified using round-robin

algorithm in quantum, and executed by the system. Donyadari et al. [11] introduced a method for

scheduling based on round-robin algorithm. In this method, the tasks in workflow are first ordered in

queue using the parallel depth search algorithm. Afterwards, the degree of dependency and deadline of

each task is determined and they are prioritized in an ascending order based on the deadline. Then,

scheduling and execution are performed based on the closest deadline. The major difference between this

method and the present framework is that the workflow fragmentation model is dynamic and scheduling

of tasks is performed considering bandwidth usage cost reduction. Ke Liu et al. [6] introduced a method

for business workflow scheduling called CTC. In this method, the workflow is first divided into single-

member fragments and each fragment receives a deadline. Later, runtime is estimated, costs are

calculated, and each fragment is allocated the services it demands. Here, the aim of scheduling is to

reduce resource use costs and achieve the shortest runtime. This method and the present method differ in

terms of fragmentation and scheduling methods. Huifang Li et al. [8] introduced a method for business

workflow fragmentation known as QDA. Similar to CTC, this method completely fragments the

workflow. A deadline is considered for each fragment. Subsequently, low-cost services are selected for

scheduling and execution. During execution, if cheaper services are found, they are used. The difference

between this method and the present framework is similar to the difference mentioned for CTC. Previous

algorithms are compared with the proposed framework in terms of scheduling with various factors in

Table 2.

Table 2: Scheduling algorithms compared with the WSADF

Algorithm or method Reducing runtime

Optimizing

the use of

resources

Compatibility

with runtime

conditions

Improved

throughput
Reduce cost

Faisstnauer et al[34]

Oprescu et al[35]

8

Bansal et al[36]

Abrishami et al[37]

Abba et al[38]

Donyadari et al[11]

Muthusamy et al

[7](SLV)

Ke et al [6](CTC)

Li et al[8](QDA)

WSADF

(Presented Framework)
-

3-3- The comparison of WSADF with the baseline studies
Table 3 shows the features of the proposed framework and some of the baseline studies.

Table 3:Specifications of proposed framework and some of the compared algorithms

Title Fragmentation Algorithm Scheduling Algorithm Evaluation Criteria Environment

FPD[4] FPD Round-Robin
Throughput, Average

Execution Time
Cloud

SLV[7] FPD Round-Robin Cost Cloud

CTC[6] FPD FCFS Execution Cost Cloud

QDA[8] FPD MAX-MIN Cost Cloud

WSADF
(Presented Framework)

WSADF-Fragmentation

Algorithm

WSADF-Scheduling

Algorithm

Bandwidth

Response Time,

Throughput

Cloud

4- WSADF: Workflow Scheduling Applying Adaptable and Dynamic Fragmentation
The task selection method for generating fragments is very important for the fragmentation of workflows.

In the FPD [4] fragmentation algorithm, communication messages among fragments are increased

because as many fragments as tasks are generated in a workflow. This issue increases delay time, thereby

increasing response time and reducing throughput. In the method proposed in [5], ATSDS is expressed

for workflow fragmentation. This method is a two-phase adaptive method for the fragmentation and

scheduling of workflows during runtime. The phases utilized in this method are fragmentation and

resource allocation. Fragmentation is conducted based on the HPD algorithm this method is proposed for

the fragmentation of business workflows. Also, methods are introduced for scheduling in CTC [6], SLV

[7], and QDA [8] algorithms. In these methods, the reduction of bandwidth cost and used memory is

taken into account. In the present study, WSADF framework is presented which resolves the problems

of these algorithms. WSADF framework comprises a fragmentation algorithm, a scheduling algorithm,

a fragment repository, and a scheduler as illustrated in Fig 5. The input of fragmentation algorithm is a

workflow and its output is the fragments generated from the workflow. Fragment repository is a

repository for storing workflow and its’ fragments. The next phase is the scheduling algorithm that takes

tasks from the fragment repository and schedule them. Based on the least bandwidth usage cost, the

scheduler allocates virtual machines to each fragment. The fragments are then executed. There is also

another repository for the runtime data, as shown in Fig 5.

9

 Fig 5:Framework of Workflow Scheduling Applying Adaptable and Dynamic Fragmentation (WSADF)

4-1- Relationship of WSADF components:
This section describes the relationship of WSADF framework components as shown in Fig 6.

Accordingly, the fragmentation phase receives a workflow and a number of virtual machines. Then, the

fragmentor generates a fragment based on the current conditions and sends it to the scheduling phase.

The scheduler selects a virtual machine for each fragment so that reduces costs and the fragment is

executed, subsequently. This cycle is repeated until no task remains in the workflow for fragment

generation.

10

 Fig 6: Relationship of WSADF framework components

4-2- Algorithms of WSADF framework
This section illustrates flowchart and algorithms of WSADF framework. Fig 7 demonstrates the

flowchart of the fragmentor phase. This flowchart is started when a workflow enters. After examining

runtime conditions, the workflow is fragmented in terms of the number of virtual machines. The resulting

value (cluster) denotes the number of tasks, which can be placed in one fragment. Afterwards, by

examining the cluster>0 condition, a task is selected to be placed in one fragment. When this cycle is

over, each generated fragment is sent to the scheduler to receive a resource to be executed. This cycle

continues as long as there are tasks for fragmentation in the workflow. At the end of the execution, a list

of scheduled and executed tasks is printed. Fig 8 shows the flowchart of the scheduling phase of WSADF.

After receiving a fragment, the scheduler selects one virtual machine from the list of virtual machines

and allocates it to the fragment. Then, it checks whether another (free) resource with less cost is available

on the list. If there is a resource with less cost, the current resource is replaced with the new one.

11

Otherwise, the task will continue using the current resource. To clarify this issue, pseudo-codes of the

fragmentation and scheduling algorithms are presented in Fig 9 and Fig 10, respectively.

Fig 7: fragmentation flowchart

12

Fig 8: scheduling flowchart

Fig 9: Pseudo-code fragmentation algorithm in WSADF framework

13

Fig 10: Pseudo-code of scheduling algorithm in WSADF framework

4-3- Case study: An example of the fragmentation and scheduling algorithms in
WSADF

This section presents an example to examine WSADF framework. The Montage workflow [9] is a

scientific workflow created in the astronomy field with the aim of creating mosaics from Sky. This

workflow is generated by processing, small images of sky, and its size depends on the number of

processed images. It is assumed that Montage workflow with 25 tasks is the input of the fragmentation

phase, and five virtual machines are considered as resources. Based on Equation 1, the number of tasks

placed in one fragment is calculated based on the number of available virtual machines. In this example,

the value calculated using Equation 1 equals 5. Therefore, 5 tasks can be allocated to each fragment based

on the number of resources (t0, t1, t2, t3, t4). Afterwards, tasks are selected based on the parent-child

dependency and the calculated value. The first fragment is selected along with 5 tasks to be submitted to

the scheduling phase, and then a virtual machine is allocated to it. Subsequently, it checks whether this

virtual machine has the lowest bandwidth usage cost. According to Fig 12, the virtual machine VM0 is

allocated and executed. The next fragment is generated with 5 tasks by the fragmentation phase based on

the conditions used for the generation of the first fragment (t5, t6, t7, t8, t9). Afterwards, in the scheduling

phase, a virtual machine is allocated to it. The second fragment receives virtual machine VM3 for

execution. Based on the number of allowable tasks (i.e. 5) and the available parent-child dependencies,

the third fragment cannot accept more than 4 tasks (t10, t11, t12, t13). Subsequently, it is sent to the

scheduling phase to receive a virtual machine. First, virtual machine VM1 is allocated to it. Then, the

bandwidth cost is examined that reveals there is a virtual machine with less cost. Therefore, instead of

VM1, VM2 is allocated to the third fragment. The generation and scheduling of all the fragments continue

in this way until the workflow has no task left for fragmentation and scheduling. Figs 11 and 12 depict

the performance of this framework.

14

Fig11: Montage workflow with 25 tasks on the left -Workflow after fragmentation on the right

(Sample fragmentation with WSADF)

Fig 12: Schedule, workflow montage with 25 tasks and 5 virtual machines (sample scheduling with WSADF)

15

5- Evaluation
The proposed idea is evaluated in both scheduler and fragmentor phases. Five experiments are designed

with three Configurations that are shown in Table 4. The WSDAF framework is compared with the FPD

algorithm in the fragmentation phase, and with the FPD [4], SLV [7], Centralized [31], CTC [6], and

QDA [8] algorithms in the scheduling phase. Five standard scientific workflows including Epigenomics,

Montage, Sipht, CyberShake, and Inspiral are used as datasets in the experiments [9]. Fig 13 illustrates

the relationship between WSADF framework and WorkflowSim [10]. By presenting a higher level of

workflow management, WorkflowSim is introduced by expanding the CloudSim simulator [39]. The

framework of WorkflowSim has been expanded from the core of CloudSim and its supporting

programming language is Java. WorkflowSim can be used in programming environments which support

Java [10]. We only show the experiments related to Montage for the sake of brevity.

Fig13: the relationship of WSADF framework and Workflowsim

16

Table 4: Specifications of experiments (MS: Message size, VM: virtual machine, DL: deadline)

Experiment phase
Configuration1 Configuration2 Configuration3

MS VM DL MS VM DL MS VM DL

Experiment1 Fragmentation Static Variable … … … … … … …

Experiment2 Fragmentation … … … Static Variable … … … …

Experiment3 Scheduling Static Variable … … … … … … …

Experiment4 Scheduling … … … Static Variable … … … …

Experiment5 Fragmentation/ Scheduling … … … … … … Static Static Variable

5-1- Evaluation criteria
The proposed framework focuses on undirected acyclic graphs that are scientific workflows. These

workflows include tasks and the relationships among them. The present study incorporated virtual

machines as the resource that are different in terms of bandwidth and memory costs. Table 5 shows the

equations employed in this study. Equations 1, 2, and 3 are used to calculate the number of tasks in each

fragment, response time, and mean response time, respectively. Equation 4 is utilized to evaluate

throughput percentage. Equation 5 is incorporated to calculate bandwidth costs. Equation 6 is used to

calculate the cost of the used memory (MB). To calculate mean response time improvement and

throughput improvement, Equations 7 and 8 are used.

Table 5:The formulas used in this study

Formula Reference Number

𝒄𝒍𝒖𝒔𝒕𝒆𝒓 =
𝑾𝒐𝒓𝒌𝒇𝒍𝒐𝒘 𝒔𝒊𝒛𝒆

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑽𝑴𝒔
 This Paper 1

𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑻𝒊𝒎𝒆 = ∑ 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏_𝑺𝒕𝒂𝒓𝒕𝑻𝒊𝒎𝒆

𝒏

𝒊=𝟎

 [1] 2

𝑨𝑽𝑮 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑻𝒊𝒎𝒆 =
𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑻𝒊𝒎𝒆

 𝒏𝒖𝒎𝑻𝒂𝒔𝒌
 [1] 3

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑹𝒆𝒒𝒖𝒆𝒔𝒕𝑵𝑼𝑴

𝑭𝒊𝒏𝒊𝒔𝒉𝑻𝒊𝒎𝒆
∗ 𝟏𝟎𝟎 [1] 4

𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑩𝑾 = ∑(𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑩𝑾 𝒐𝒇 𝑽𝑴 ∗ 𝒂𝒎𝒐𝒖𝒏𝒕 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝑩𝑾)

𝒏

𝒊=𝟎

 [7] 5

𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑹𝒂𝒎 = ∑(𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑹𝒂𝒎 𝒐𝒇 𝑽𝑴 ∗ 𝒂𝒎𝒐𝒖𝒏𝒕 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝑹𝒂𝒎)

𝒏

𝒊=𝟎

 [7] 6

𝑰𝒎𝒑𝒓𝒐𝒗𝒎𝒆𝒏𝒕𝑹𝑻 =
𝑨𝑽𝑮𝑹𝑻𝒐𝒕𝒉𝒆𝒓𝒎𝒆𝒕𝒉𝒐𝒅 − 𝑨𝑽𝑮𝑹𝑻𝑾𝑺𝑨𝑫𝑭

𝑨𝑽𝑮𝑹𝑻𝒐𝒕𝒉𝒆𝒓𝒎𝒆𝒕𝒉𝒐𝒅
 [1] 7

𝑰𝒎𝒑𝒓𝒐𝒗𝒎𝒆𝒏𝒕𝑻𝑷 = 𝑻𝑷𝑾𝑺𝑨𝑫𝑭 − 𝑻𝑷𝒐𝒕𝒉𝒆𝒓𝒎𝒆𝒕𝒉𝒐𝒅 [1] 8

5-2- Configuration of experiments
Here, evaluation is performed in three Configuration. The features of these Configuration are depicted

in Table 6. These tables show the Configuration of the simulator for executing WSADF framework and

baseline studies. In Configuration-1, the number of virtual machines is considered variable, while the

size of messages is considered constant. In Configuration-2, the number of virtual machines is considered

17

constant, while the size of messages is considered variable. In Configuration-3, the number of virtual

machines is considered constant, the message size is considered constant, and the deadline is considered

variable.
Table 6: Three Configuration Of the experiments

 Settings1 Settings2 Settings3

Number of Datacenter 1 1 1

Number of Virtual

Machine
5 15 20 25 20 20

Message Size 500 0 100 250 500 500

Bandwidth 1024 1024 1024

Number of Task
30 or

25

50 or

60
100

1000

or

997

30

or

25

50 or

60
100

1000

or

997

30 or

25

50 or

60
100

1000 or

997

Deadline ----- ----- 625 5000 10000 25000

5-3- Evaluation of fragmentation phase
5-3-1. Experiment-1: Fragmentation using Configuration-1 (variable number of virtual

machines; constant message size)
The fragmentation phase with Configuration-1 decreases mean runtime and increases throughput, while

message size is assumed constant and the number of virtual machines is assumed variable. The following

Fig14 shows the results of Experiment 1 on the proposed framework and FPD [4] algorithm with

Montage dataset in four groups of task numbers (25, 50, 100, and 1000) for mean response time. Based

on Fig 14, by increasing the number of tasks in the workflow, WSADF framework has much better results

than FPD algorithm in terms of mean response time.

A B

C D
Fig 14: (A-D)The results of the mean response time from the experiment 1

18

The following Fig15 shows the results of Experiment 1 on the proposed framework and the FPD [4]

algorithm with Montage dataset in four groups of task numbers (25, 50, 100, and 1000) for mean

Throughput. Based on Fig 15, by increasing the number of tasks in the workflow, the WSADF framework

has much better results than the FPD algorithm in terms of mean Throughput.

A B

C D
Fig 15 :(A-D) the results of the mean Throughput from the Experiment-1

Experiment 1 examines the fragmentation phase with Configuration-1 and Montage (Mon), Epigenomics

(EPI), Inspiral (INS), CyberShake (CYB), and Sipht (SIP) scientific workflows as datasets. Results of

the improvement of the proposed framework are compared with those of FPD [4] algorithm in Table 7.

Results show the improved performance of the proposed framework compared to FPD algorithm since

the former controls fragment generation by considering the number of virtual machines variable and

message size constant.

Table 7: Results of the improvement of WSADF framework than the FPD (Fragmentation-Configuration-1)

Fragmentation – Configuration 1

Throughput Response Time

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF

6.03 52.18 7.15 1.16 87.68 91.45 82 84.74 94.39 84.75 FPD

5-3-2. Experiment-2: Fragmentation using Configuration-2 (constant number of virtual
machines; variable message size)

Fragmentation phase with Configuration-2 reduces mean runtime and increases throughput, while

message size is assumed variable and the number of virtual machines is assumed constant. The following

Fig16 shows the results of Experiment 2 on the proposed framework and the FPD [4] algorithm with

19

Montage dataset in four groups of task numbers (25, 50, 100, and 1000) for mean response time. Based

on Fig 16, by increasing the number of tasks in the workflow, the WSADF framework has much better

results than the FPD algorithm in terms of mean response time.

A B

C D
Fig 16: (A-D) the results of the mean response time from the experiment-2

The following Fig17 shows the results of Experiment 2 on the proposed framework and the FPD [4]

algorithm with Montage dataset in four groups of task numbers (25, 50, 100, and 1000) for mean

Throughput. Based on Fig 17, by increasing the number of tasks in the workflow, the WSADF framework

has much better results than the FPD algorithm in terms of mean Throughput.

A B

20

C D
Fig 17 :(A-D) the results of the mean Throughput from the Experiment-2

Experiment-2 examines the fragmentation phase with Configuration-2 and Montage (Mon), Epigenomics

(EPI), Inspiral (INS), CyberShake (CYB), and Sipht (SIP) scientific workflows as datasets. Results of

the improvement of the proposed framework are compared with those of the FPD [4] algorithm in Table

8. Results show the improved performance of the proposed framework compared to the FPD algorithm

since the former controls fragment generation by considering the number of virtual machines constant

and message size variable.

Table 8: Results of the improvement of WSADF framework than the FPD (Fragmentation-Configuration-2)

Fragmentation – Configuration 2

Throughput Response Time

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF

4.94 35.47 4.71 0.49 83.46 92.02 77.63 83.01 94.92 84.64 FPD

5-4- Evaluation of scheduling phase
5-4-1. Experiment-3: Scheduling using Configuration-1 (variable number of virtual

machines; constant message size)
Scheduling phase with Configuration-1 reduces mean runtime and increases throughput, while message

size is assumed constant and the number of virtual machines is assumed variable. The following Fig18

shows the results of Experiment 3 on the proposed framework and the FPD [4], SLV [7], Centralized

[31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of task numbers (25, 50,

100, and 1000) for mean response time. Based on Fig 18, by increasing the number of tasks in the

workflow, the WSADF framework has much better results than the SLV, FPD, CTC, Centralized, and

QDA algorithms in terms of mean response time.

21

A B

C D
Fig18 :(A-D) the results of the mean response time from the Experiment-3

The following Fig19 shows the results of Experiment 3 on the proposed framework and the FPD [4],

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of

task numbers (25, 50, 100, and 1000) for mean Throughput. Based on Fig 19, by increasing the number

of tasks in the workflow, the WSADF framework has much better results than the SLV, FPD, CTC,

Centralized, and QDA algorithms in terms of mean Throughput.

A B

C D
Fig19 :(A-D) the results of the mean Throughput from the Experiment-3

The following Fig20 shows the results of Experiment-3 on the proposed framework and the FPD [4],

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of

task numbers (25, 50, 100, and 1000) for mean used bandwidth cost (MB). Based on Fig 20, by increasing

the number of tasks in the workflow, the WSADF framework has much better results than the SLV, FPD,

CTC, Centralized, and QDA algorithms in terms of mean used bandwidth cost (MB).

22

A B

C D
Fig20 :(A-D) the results of the mean used bandwidth cost (MB) from the Experiment-3

The following Fig21 shows the results of Experiment-3 on the proposed framework and the FPD [4],

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of

task numbers (25, 50, 100, and 1000) for mean Memory used for any virtual machine (MB). Based on

Fig 21, by increasing the number of tasks in the workflow, the WSADF framework has much better

results than the SLV, FPD, CTC, Centralized, and QDA algorithms in terms of mean Memory used for

any virtual machine (MB).

A B

23

C D

Fig21 :(A-D) the results of the mean Memory used for any virtual machine (MB) from the experiment3

 Experiment-3 examines the scheduling phase with Configuration-1 and Montage (Mon), Epigenomics

(EPI), Inspiral (INS), CyberShake (CYB), and Sipht (SIP) scientific workflows as datasets. Results of

the improvement of the proposed framework are compared with those of the other models in Tables 9

and 10. Compared to FPD [4], SLV [7], QDA [8], Centralized [31], and CTC [6] algorithms, the WSADF

framework has improved performance by considering the number of virtual machines variable and

message size constant, while controlling fragment generation and selecting a low-cost resource during

runtime.

Table 9: Results of the improvement of the proposed framework than other Algorithm for the response time and throughput factors

(Configuration-1)

Scheduling- Configuration 1- Table1

Throughput Response Time

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF

6.45 40.9 5.7 0.37 69.57 88.57 81.19 82.78 91.01 83.94 FPD

7.16 41.67 5.82 0.58 70.15 92.71 85.1 88.77 94.77 85.68 SLV

6.63 38.7 5.99 0.52 64.17 87.7 70.43 82.04 91.35 72.83 Centralized

7.14 41.65 5.81 0.59 70.15 94.04 85.47 93.62 98.22 85.69 QDA

7.18 41.69 5.81 0.25 70.15 93.05 63.32 88.95 73.26 85.68 CTC

Table 10: Results of the improvement of the proposed framework than other Algorithm for the cost factors (Configuration-1)

Scheduling- Configuration 1- Table2

CostPerRam CostPerBW

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF

97.27 95.31 94.74 98.08 95.48 98.08 96.69 96.26 98.63 96.91 FPD

95.92 93.01 92.26 97.21 93.34 95.92 93.01 92.26 97.21 93.6 SLV

97.01 94.69 94.19 97.85 95.08 97.77 95.94 95.59 98.33 96.44 Centralized

95.92 93.01 92.26 97.21 93.34 95.92 87.58 92.26 97.21 93.6 QDA

96.6 71.84 93.55 97.67 94.45 95.11 91.61 90.71 96.65 92.32 CTC

24

5-4-2. Experiment-4: Scheduling using Configuration-2 (constant number of virtual
machines; variable message size)

Scheduling phase with Configuration-2 reduces mean runtime and increases throughput, while message

size is assumed variable and the number of virtual machines is assumed constant. The following Figs22

show the results of Experiment 4 on the proposed framework and the FPD [4], SLV [7], Centralized [31],

CTC [6], and QDA [8] algorithms with Montage dataset in four groups of task numbers (25, 50, 100, and

1000) for mean response time. Based on Fig 22, by increasing the number of tasks in the workflow, the

WSADF framework has much better results than the SLV, FPD, CTC, Centralized, and QDA algorithms

in terms of mean response time.

A B

C D

Fig 22 :(A-D) the results of the mean response time from the Experiment-4

The following Figs23 show the results of Experiment 4 on the proposed framework and the FPD [4],

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of

task numbers (25, 50, 100, and 1000) for mean Throughput. Based on Fig 23, by increasing the number

of tasks in the workflow, the WSADF framework has much better results than the SLV, FPD, CTC,

Centralized, and QDA algorithms in terms of mean Throughput.

25

A B

C D
Fig23 :(A-D) the results of the mean Throughput from the Experiment-4

The following Figs24 show the results of Experiment-4 on the proposed framework and the FPD [4],

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of

task numbers (25, 50, 100, and 1000) for mean used bandwidth cost (MB). Based on Fig 24, by increasing

the number of tasks in the workflow, the WSADF framework has much better results than the SLV, FPD,

CTC, Centralized, and QDA algorithms in terms of mean used bandwidth cost (MB).

A B

26

C D
Fig24 :(A-D) the results of the mean used bandwidth cost (MB) from the Experiment-4

The following Figs25 show the results of Experiment-4 on the proposed framework and the FPD [4],

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of

task numbers (25, 50, 100, and 1000) for mean Memory used for any virtual machine (MB). Based on

Fig 25, by increasing the number of tasks in the workflow, the WSADF framework has much better

results than the SLV, FPD, CTC, Centralized, and QDA algorithms in terms of mean Memory used for

any virtual machine (MB).

A B

C D
Fig25 :(A-D) the results of the mean Memory used for any virtual machine (MB) from the Experiment-4

Experiment-4 examines the scheduling phase with Configuration-2 and Montage (Mon), Epigenomics

(EPI), Inspiral (INS), CyberShake (CYB), and Sipht (SIP) scientific workflows as datasets. Results of

the improvement of the proposed framework are compared with those of the other models in Tables 11

and 12. Compared to FPD [4], SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms, the WSADF

framework has improved performance by considering the number of virtual machines constant and

27

message size variable, while controlling fragment generation and selecting a low-cost resource during

runtime.

Table 11: Results of the improvement of the proposed framework than other Algorithm for the response time and throughput factors

(Configuration-2)

Scheduling- Configuration 2- Table1

Throughput Response Time

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF

1.92 31.27 3.65 -0.04 47.82 87.88 75.81 81.16 90.72 81.47 FPD

3.19 33.73 3.78 0.21 57.86 88.24 83.15 88.49 94.6 85.72 SLV

2.91 30.17 4.15 0.15 48.56 87.49 66.31 81.5 91.17 73.62 Centralized

3.09 33.84 3.93 0.22 57.95 90.39 83.76 93.71 98.19 85.74 QDA

3.16 34.04 4.09 0.2 57.84 93.21 83.06 88.84 96.32 85.72 CTC

Table 12: Results of the improvement of the proposed framework than other Algorithm for the cost factors (Configuration-2)

Scheduling- Configuration 2- Table2

CostPerRam CostPerBW

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF

96.71 94.17 93.67 98.05 94.49 97.68 95.87 95.56 98.62 96.1 FPD

95.1 91.22 90.48 97.1 91.86 95.1 92.89 90.48 97.1 91.86 SLV

96.45 93.37 92.9 97.79 94.02 97.38 94.94 94.63 98.3 95.53 Centralized

95.1 91.22 90.48 97.1 91.86 95.1 91.22 90.48 97.08 91.86 QDA

95.92 92.68 92.07 97.58 93.21 94.12 55.92 88.58 96.52 90.23 CTC

5-4-3. Experiment-5: Scheduling using Configuration-3 (constant number of virtual
machines; constant message size; variable deadline)

This experiment investigates the Montage, Sipht, Inspiral, and CyberShake scientific workflows as

datasets considering Configuration-3 in the deadlines of 625, 5000, 10000, and 25000 ms. Results are

presented in Fig 26, indicating the percentage of success of the WSADF framework in different deadlines

compared with the baseline studies.

A B

28

C D

Fig 26: (A-D) results of the configuration3

6- Conclusions and Future Studies
Workflow fragmentation and scheduling are significant problems in workflow management. Based on

the definition by Wei Tan et al., fragmentation is a partition of workflow model. Models proposed for

fragmentation have disadvantages such as increased number of generated fragments after fragmentation,

which increases communication messages, time delay, and mean response time, thereby reducing

throughput. Other disadvantages include static fragment generation which decreases flexibility and

efficiency. Thus, the present study proposed a model for fragmentation which dynamically fragmented

scientific workflows, considering runtime conditions. Moreover, it resolved the noted problems by

controlling fragment generation. In WSADF framework, the number of tasks in each fragment was

calculated based on the number of virtual machines. Fragments were generated during the execution,

reducing communication messages among the fragments. In this study, WSADF framework was

compared with the FPD algorithm in the fragmentation phase, and with FPD, CTC, Centralized, SLV,

and QDA algorithms in the scheduling phase. According to the results of the experiments, response time

and throughput were improved compared to the baseline studies. As the result of decreasing the number

of generated fragments compared to the baseline studies, the number of communication messages among

the fragments as well as delay time was reduced in this study, thereby decreasing response time and

enhancing throughput. Furthermore, the results of the experiments for bandwidth usage cost and memory

cost revealed the improved performance of the proposed framework compared to the baseline studies

because the former controlled the number of generated fragments and selected appropriate virtual

machines with less cost during runtime. Experiments were conducted in three Configuration and in both

phases of fragmentor and scheduler. Results were improved compared to the baseline studies. For

instance, compared to Montage workflow in Configuration-1 and the fragmentor phase, it showed

84.75% improvement in mean response time and 87.68% improvement in throughput. In Configuration-

2 and the fragmentor phase, it showed 84.64% improvement in mean response time and 83.46%

improvement in throughput. In Configuration-1 and the scheduler phase, it demonstrated 83.94%,

69.56%, and 96.91% improvement in mean response time, throughput, and bandwidth usage cost,

respectively. In Configuration-2 and the scheduler phase, it demonstrated 94.49%, 47.82%, and 96.1%

improvement in mean response time, throughput, and bandwidth usage cost, respectively. In

Configuration-3 the results of experiments on datasets with variable deadline (625, 5000, 20,000 and

25,000) indicate that the success rate of the proposed framework was 100% than the base models.

Based on the wide range of scientific workflows, numerous problems can be studied. Limiting factors

can be used to generate fragments from a workflow. In this way, there should be methods to balance

different aspects of workflow execution such as scalability, distribution, bandwidth usage, budget etc.

Furthermore, considering various and unequal resources is a major problem in workflow fragmentation

and scheduling.

29

7- Resources
[1] F. Safi Esfahani, M. Masrah Azrifah Azmi, Md. Nasir Sulaiman, N. Izura Udzir, Adaptable

decentralized service oriented, The Journal of Systems and Software 84 (10) (2011) 1591-1617.

[2] E. F. Duipmans, L F Pires, L.O.B. da Silva Santos. A Transformation-Based Approach to Business

Process Management in the Cloud, Grid Computing (2013) 217–228.

[3] F. Wu, Q. Wu, Y. Tan, Workflow scheduling in cloud: a survey, Springer Science Business Media

New York 71 (9) (2015) 3373-3418.

[4] G. LI, V. Muthusamy, H. Jacobsen, A Distributed Service Oriented Architecture for Business Process

Execution, In Proc. of ACM Transactions on the Web 4 (1) (TWEB) (2010) 2.

[5] R. Khorsand, F. Safi Esfahani, N. Nematbakhsh, M Mohsenzade, ATSDS: adaptive two-stage

deadline-constrained workflow scheduling considering runtime circumstances in cloud computing

environments, The Journal of Supercomputing 73 (6) (2017) 2430-2455.

[6] L. Ke, J. Hai, C. Jinjun, L. Xiao, Y. Dong, Y. Yun, A Compromised-Time-Cost Scheduling Algorithm

in SwinDeW-C for Instance-Intensive Cost-Constrained Workflows on a Cloud Computing Platform,

International Journal of High Performance Computing Applications 24 (4) (2010) 445-456.

[7] V. Muthusamy, H. Jacobsen, T. Chau, A. Chan, P. Coulthard, SLA-Driven Business Process

Management in SOA, Proceedings of the 2009 Conference of the Center for Advanced Studies on

Collaborative Research (2009) 86-100.

[8] H Li, S Ge, Lu Zhang, A QoS-based Scheduling Algorithm for Instance-intensive Workflows in

Cloud Environment, The 26th Chinese Control and Decision Conference (2014) 4094-4099.

[Dataset] [9] G. Juve, A. Chervenak, E. Deelman, SH. Bharathi, G. Mehta, K. Vahi, Characterizing and

profiling scientific workflows, Future Generation Computer Systems 29 (3) (2013) 682-692.

[10] W. Chen, E. Deelman, WorkflowSim: A Toolkit for Simulating Scientific Workflows in Distributed

Environments, E-Science (e-Science), 2012 IEEE 8th International Conference on (2012) 1-8.

[11] E. Donyadari, F Safi Esfahani, N. Nourafza, Scientific Workflow Scheduling Based on Deadline

Constraints in Cloud Environment, International Journal of Mechatronics Electrical and Computer

Technology (IJMEC) 5 (16) (2015).

[12] R. Khorsand, F. Safi Esfahani, N. Nematbakhsh, M Mohsenzade, Taxonomy of Workflow

Partitioning Problems and Methods in Distributed Environments, The Journal of Supercomputing 132

(2017) 253-271

[13] M. Naghibzadeh, Modeling and scheduling hybrid workflows of tasks and task interaction graphs

on the cloud, Future Generation Computer Systems 65 (2016) 33-45.

[14] V Arabnejad, K Bubendorfer, B Ng, Scheduling Deadline Constrained Scientific Workflows on

Dynamically Provisioned Cloud Resources, Future Generation Computer Systems 75 (2017)348-364.

[15] M. Atkinson, S. Gesing, J. Montagnat, I. Taylor, Scientific workflows: Past, present and future,

Future Generation Computer Systems (2017)216 - 227.

[16] F. Safi Esfahani, M. Masrah Azrifah Azmi, Md. Nasir Sulaiman, N. Izura Udzir, SLA-Driven

Business Process Distribution, Information Process and Knowledge Management 2009 EKNOW’09

International Conference on (2009) 14-21.

[17] F. Safi Esfahani, M. Masrah Azrifah Azmi, Md. Nasir Sulaiman, N. Izura Udzir, Using Process

Mining to Business Process Distribution, Proceedings of the 2009 ACM symposium on Applied

Computing (2009) 2140-2145.

[18] F. Safi Esfahani, M. Masrah Azrifah Azmi, Md. Nasir Sulaiman, N. Izura Udzir, Run-time adaptable

business process decentralization, The Third International Conference on Information, Process, and

Knowledge Management (2011) 76-82

30

[19] S. Abrishami, M. Naghibzadeh, D. H. J. Epema, Deadline-constrained workflow scheduling

algorithms for Infrastructure as a Service Clouds, Future Generation Computer Systems 29 (1) (2013)

158-169.

[20] Dr. D.I. George Amalarethinam1, P. Muthulakshmi, An Overview of the Scheduling Policies and

Algorithms in Grid Computing, International Journal of Research and Reviews in Computer Science

(IJRRCS) 2 (2011)280-294.

[21] V. Guth, K. Lenz, A. Oberweis, Distributed Workflow Execution Based On Fragmentation Of Petri

Nets, Journal of Intelligent Information Systems 10 (2) (1998) 159–184.

[22] S. Torabi, F. Safi Esfahani, A Dynamic Task Scheduling Framework based on Chicken Swarm and

Improved Raven Roosting Optimization methods in Cloud Computing, Springer Journal of

Supercomputing (2018)1-46.

[23] N. Alaei, F. Safi Esfahani, RePro-Active: A Reactive-Proactive Scheduling Method Based on Pre-

simulation in Cloud Computing, Springer Journal of Supercomputing 74 (2) (2018) 801-829.

[24] F. Motavaselalhagh, F. Safi Esfahani, H. R. Arabnia, Knowledge-based adaptable scheduler for

SaaS providers in cloud computing, Springer Journal of Human-centric Computing and Information

Sciences 5 (1) (2015) 16.

[25] P. Haratian, F. Safi Esfahani, L. Salimian, A. Nabiollahi, An adaptive and fuzzy resource

management approach in cloud computing, E-Science (e-Science), IEEE Transactions on Cloud

Computing (2017).

[26] M. Mozakka, F. Safi Esfahani, M. H. Nadimi, Survey on adaptive job schedulers in mapreduce,

Journal of Theoretical & Applied Information Technology 66 (3) (2014).

[27] L. Salimian, F. Safi Esfahani, M. H. Nadimi, An adaptive fuzzy threshold-based approach for energy

and performance efficient consolidation of virtual machines, Computing 10 (10) (2016) 641-660.

[28] L. Salimian, F. Safi Esfahani, Survey of energy efficient data centers in cloud computing,

Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing

(2013) 369-374.

[29] W. Tan. Y. Fan, Model Fragmentation for Distributed Workflow Execution: A Petri Net Approach,

Springer-Verlag Berlin Heidelberg (2005) 207–214.

[30] W. Tan, Y. Fan, Dynamic workflow model fragmentation for distributed execution, Comput. Ind 58

(5) (2007) 381-391.

[31] P. Muth, D. Wodtke, J. Weissenfels, AK. Dittrich,V. Gerhard, From Centralized Workflow

Specification to Distributed Workflow Execution, Journal of Intelligent Information Systems 10 (2)

(1998)159–184.

[32] K. Almi’Ani, Y C. LEE, Partitioning-Based Workflow Scheduling in Clouds, Advanced Information

Networking and Applications (AINA), 2016 IEEE 30th International Conference on (2016) 645-652.

[33] SH. Sun, Q. Zeng, H. Wang, Process-mining-based workflow model fragmentation for distributed

execution, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 41 (2)

(2011) 294-310

[34] C. Faisstnauer, D. Schmalstieg, and W. Purgathofer, Priority round-robin scheduling for very large

virtual environments, Virtual Reality Conference (2000) 135-142.

[35] A. Oprescu and T. Kielmann, Bag-of-tasks scheduling under budget constraints, Cloud Computing

Technology and Science (CloudCom), IEEE Second International Conference (2010) 351-359.

[36] S. Bansal, B. Kothari, and C. Hota, Dynamic Task-Scheduling in Grid Computing using Prioritized

Round Robin Algorithm, International Journal of Computer Science 8 (2011) 472-477.

[37] S. Abrishami, M. Naghibzadeh, Deadline-constrained workflow scheduling in software as a service

Cloud, Scientia Iranica 19 (2012) 680-689.

31

[38] H. A. Abba, N. B. Zakaria, A. J. Pal, and K. Naono, Performance Comparison of Some Hybrid

Deadline Based Scheduling Algorithms for Computational Grid, International Conference on Advances

in Information Technology (2012) 19-30.

[39] R. N. Calheiros1, R. Ranjan2, A. Beloglazov1, C´esar A. F. De Rose3and R. Buyya, CloudSim: a

toolkit for modeling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms, The Software: Practice and experience 41 (1) (2011) 23–50.

Zahra Momenzadeh has received her master degree in software engineering from

Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University,

Najafabad, Iran. Her current research interests include cloud computing, scheduling

and fragmentation algorithms, and Workflow Scientific.

Faramarz Safi-Esfahani received his Ph.D. in Intelligent Computing from University

of Putra Malaysia in 2011. He is currently on faculty at Department of Computer

Engineering, Islamic Azad University, Najafabad Branch, Iran. His research

interests are intelligent computing, Big Data and Cloud Computing, Autonomic

Computing, and Bio-inspired Computing

This paper represents a workflow execution approach in cloud computing and includes:

1) WSADF framework with two phases of workflow fragmentation and scheduling.
2) The fragmentation phase generates appropriate fragments considering runtime conditions.
3) The scheduling phase schedule fragments in order to reduce runtime costs.
4) CyberShake, Sipht, Montage, Epigenomics, and Inspitral are used for the evaluations.

