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Abstract- Workflows are a set of tasks and the dependency among them, which are divided into scientific 

and business categories. To avoid problems of centralized execution of workflows, they are broken into 

segments that is known as fragmentation. To fragment the workflow, it is highly important to consider the 

dependency among tasks and runtime conditions. The cooperation between the scheduler and fragmentor 

must be such that the latter generates appropriate tasks with optimized communication cost, delay time, 

response time, and throughput. To this end, in the present study, a framework is proposed for scheduling 

and fragmentation of tasks in scientific workflows that are conducted in fragmentation and scheduling 

phases. In the fragmentation phase, the fragments are generated with regard to the number of virtual 

machines available during runtime. In the scheduling phase, the virtual machines are selected with the aim 

of reducing bandwidth usage. The experiments are performed with three Configurations during both 

phases of fragmentation and scheduling. Response time, throughput, and cost (BW and RAM) were 

improved compared to the baseline studies on Sipht, Inspiral, Epigenomics, Montage, and CyberShake 

workflows as datasets. 
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1- Introduction 
Scientific workflows might be very large, carrying a vast number of tasks and calculations, manipulate 

a huge amount of data and they will eventually be realized as thousands of concurrent process instances. 

Hence, the implementation of workflows in the cloud matters [1, 2]. The centralized execution of 

workflows increases response time and missing the deadline of a workflows, either. As a solution, 

distributed workflow engines come to action; therefore, workflows are fragmented into sub-workflows 

(fragments) so that they can be executed using distributed resources by a cloud scheduler. Fragmentation 

of workflows enhances scalability and reusability, as well.  

Fragmentation is performed in dynamic and static modes. In the former, fragments are generated during 

the runtime, while in the latter, fragmentation occurs before the runtime. In static fragmentation, 

workflow is fragmented before the runtime and is then executed during the runtime by determining the 

resource. Although this method is simple, fragments are not compatible with the runtime conditions. 

Dynamic fragmentation decides on the generation and execution of fragments during the runtime. 

However, adaptable and dynamic fragmentation generates and executes the fragments based on the 

feedbacks from runtime environment in order to balance the scalability and efficiency of workflows. This 

approach is recommended when workflow engine acts as a cloud service to execute a huge number of 

workflow instances and/or when workflows include a large number of tasks [3]. 

So far, numerous studies have examined the fragmentation and scheduling of workflows. The FPD model 

[4] is a frequently used method in fragmentation, in which workflows are divided into single-task 

fragments, thereby increasing communication messages, delay time, and response time, and decreasing 

throughput. As a result, it is highly important to consider a method for reducing the number of fragments 

generated from a workflow. In the method proposed in [5], a method known as ATSDS was expressed 

for workflow fragmentation, which is a two-phase adaptive method for the fragmentation and scheduling 

of workflows during the runtime. The phases utilized in this method are fragmentation and resource 

allocation. Fragmentation is conducted based on the hierarchical process decentralization (HPD) 

algorithm that focuses on business processes and has no idea on scientific processes.  
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Scheduling is an important issue in workflow execution and many algorithms have been introduced for 

it. By far, the proposed scheduling methods consider limiting factors, e.g. task runtime and remaining 

time. The CTC [6], SLV [7], and QDA [8] algorithms are proposed for scheduling. These algorithms 

schedule and execute workflows based on deadline and with the aim of decreasing execution costs. The 

major problems with these algorithms include: 1) the method of mapping tasks to resource without 

considering the limiting factors such as runtime and deadline; 2) QDA, CTC, FPD, and SLV algorithms 

generate a large number of fragments; 3) communication messages among the generated fragments are 

increased that results in increasing bandwidth usage; 4) delay time is increased because the number of 

communication messages is increased, thereby increasing response time and decreasing throughput, 

either; 5) increasing the delay time results in missing the deadline before running all the fragments.  

As a result, the main problem is adaptable and dynamic fragmentation and execution of scientific 

workflows based on the feedbacks from runtime environment. The first hypothesis states applying the 

number of virtual machines, and available bandwidth in dynamic fragmentation results in creating 

adaptive fragments that improve response time and throughput of a workflow engine at runtime. The 

second hypothesis says that the scheduler is able to reduce the cost of bandwidth usage, and memory 

usage of virtual machines, and satisfy the deadline of workflows by applying the parameter virtual 

machine cost along with the adaptive fragments. The main objective is to balance the scalability and 

efficiency of workflow engines as a service to execute scientific workflows. This research highlights the 

fragmentation and execution of scientific workflows in that 1) it does not provide a large number of 

fragments that is equal to high communication cost and delay; however, applies adaptive fragmentation 

based on runtime feedback; 2) it does not separate fragmentation from scheduling; however, schedules 

adaptive fragments based on the feedbacks from runtime environment. As the methodology of this 

research, in order execute scientific workflows adaptively, WSADF framework is presented that includes 

two phases of fragmentation and scheduling along with algorithms to support them. In the fragmentation 

phase, appropriate fragments are generated considering runtime conditions (i.e. the number of virtual 

machines, and available bandwidth among them). In the scheduling phase, the scheduler selects virtual 

machines for each fragment in order to reduce the cost of bandwidth usage, memory usage, and satisfying 

the deadline of workflows. Scientific workflows [9] including CyberShake, Sipht, Montage, 

Epigenomics, and Inspiral are used as datasets for evaluating the proposed framework and comparing it 

with other basic approaches. 

The WorkflowSim [10] simulator is incorporated for the realization of idea. Various algorithms can be 

used for scheduling, but round-robin scheduling algorithm is used to start with. This algorithm does not 

require additional information on tasks (e.g. runtime and/or number of task instructions) and executes 

the tasks equally. Experiments were conducted in three configurations along with both phases of 

fragmentation and scheduling. Results were improved compared to the baseline studies. For instance, 

compared to Montage workflow in Configuration-1 and the fragmentation phase, there was 84.75% 

improvement in mean response time and 87.68% improvement in throughput. In Configuration-2 and the 

fragmentation phase, 84.64% improvement in mean response time and 83.46% improvement in 

throughput were observed. In Configuration-1 and the scheduler phase, it demonstrated 83.94%, 69.56%, 

and 96.91% improvement in mean response time, throughput, and bandwidth usage cost, respectively. 

In Configuration-2 and the scheduler phase, it demonstrated 94.49%, 47.82%, and 96.1% improvement 

in mean response time, throughput, and bandwidth usage cost, respectively. In Configuration-3 the results 

of experiments on datasets with variable deadline (625, 5000, 20,000 and 25,000) indicate that the 

success rate of the proposed framework was 100% than the base models. 

This paper is organized as follows: Section 2 reviews the related studies. Section 3 presents the proposed 

method and Section 4 contains the evaluations. Finally, Section 5 includes the conclusions and 

suggestions for the future research. 
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2- Background and concepts 
2-1- Workflow 
Workflow means a group of tasks and their dependency. Workflows are divided into business and 

scientific categories: the former is a group of operations for performing a task, including two or more 

human factors, and the latter is discussed in medicine, meteorology, etc. Workflows differ based on their 

type (business or scientific) and type of dependencies among their tasks. If they are scientific, the 

dependency is data-driven, i.e. the next task uses the output data of the previous one. If they are business, 

the dependency is control-driven, i.e. the next task can be run only when the execution of the previous 

task is complete [11-18]. Workflows are among software applications utilized in cloud computing. 

Resource provision and task scheduling are required for running workflows in clouds. In the resource 

provision, the resource is of pay-per-use type, separated from task scheduling. In the task scheduling, the 

tasks are scheduled for utilizing the resources [3, 11-15, 19]. Scheduling, mapping task to resources, and 

running them are done based on priorities. Workflow scheduling is the allocation of tasks to resources, 

which may be distributed in numerous ranges. Scheduling is categorized into dynamic, static, and 

combined types [20]. 
2-2- Types of workflow fragmentation 
Based on Fig 3, fragmentation is divided into two main groups: static and dynamic. If fragmentation is 

performed before runtime, it is called static. However, if it predicts which task must be placed in a 

fragment during runtime, it is called dynamic.  

2-2-1. Horizontal, vertical, and diagonal fragmentation 
The dependency among tasks in a workflow is one of the most important issues in fragmentation. 

Numerous reasons exist for the fragmentation of workflows. Reducing the cost and time of 

communication by adapting fragmentation to data distribution, adapting fragments to organizational 

structures and resources, resolving hardware limitations, and regulating efficiency by workflow 

distribution are the motivations for workflow fragmentation. Workflow fragmentation is divided into 

horizontal, vertical, diagonal, and combined categories. A workflow is decomposed into two horizontal 

fragments if they are not dependent on each other. Alternative or concurrent processes can be fragmented 

horizontally (Fig 1 (a, b)). A workflow is decomposed into two vertical fragments if one fragment 

depends on the other and there is no dependency in the opposite direction. If a fragment includes exactly 

one proposition, it is called orthogonal, which is a type of vertical fragmentation. Fig 2(a) and (b) 

illustrates vertical and orthogonal fragmentations, respectively [21]. 
 

 

 

 

Fig 1: Horizontal process patterns [21] 
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Fig 2: Vertical Process patterns [21]

If the tasks in a workflow have circular dependency, they are fragmented diagonally. Fig 1(c) presents 

diagonal fragmentation. When a combination of the noted methods is used for the fragmentation of a 

workflow, it is called combined fragmentation [21]. 

 

3- Related Works 
In this section, we review the previous studies on scheduling and fragmentation; although several 

research papers [22-28] study different aspects of cloud computing. The studies are compared with the 

proposed method in terms of fragmentation and scheduling based on their objectives. 

According to Fig 3, workflow fragmentation is performed in static and dynamic forms, each with various 

categorizations. The general static and dynamic states are divided into horizontal, vertical, diagonal, and 

combined categories. While, in the present study, combined dynamic fragmentation and dynamic 

scheduling were incorporated. Fig 4 illustrates important workflow problems from a different points of 

view. 

 

 
Fig 3: Mind Map of workflow fragmentation 
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3-1- Workflow Fragmentation Studies 
In this section, we review previous studies on workflow fragmentation. Afterwards, each study is 

compared with the proposed WSADF framework according to Table 1. Wei Tan et al. [29] employed a 

centralized workflow known as CWF-net for workflow fragmentation. In this method, tasks or operations 

are considered as the transition and the dependency among them is regarded as the place. Also, the 

fragmentation method is static. The disadvantages of this method include fragmentation before 

execution, which reduces efficiency and flexibility. This method differs from the present framework in 

terms of the selection of tasks and the selected fragmentation method. Wei Tan et al. [30] proposed a 

method for dynamic workflow fragmentation in distributed environments. By partitioning centralized 

workflow into segments, each segment can be transferred to other servers to be executed. The advantage 

of dynamic fragmentation is in enhancing the flexibility and efficiency of systems and preventing the 

transfer of duplicate information. The difference between this study and our proposed framework is in 

the selection of tasks to be placed as one segment. Guoli Li et al. [4] proposed the FPD method for 

workflow fragmentation, in which a workflow was completely divided into single-task fragments. Then, 

each fragment was given to the scheduler to receive resources and the fragmentation method is static. 

The mentioned method differs from the present framework in terms of fragmentation method. The 

disadvantages of this study include the static nature of work, which reduces efficiency and flexibility in 

resource selection as well as the task selection method. Peter Muth et al. [31] proposed the centralized 

method for workflow fragmentation. In the centralized fragmentation, each workflow is given to the 

scheduler for resource mapping and execution in a centralized manner, without being divided into small 

fragments. In the centralized state, the number of generated fragments equals 1. For centralized 

workflows, there is a standard known as Workflow Management Coalition. It differs from the present 

framework in terms of fragmentation and execution of fragments as well as dynamic execution and 

fragmentation. Khorsand et al. [5] introduced a method known as ATSDS which was a two-phase 

adaptive method for workflow fragmentation and scheduling during runtime. The phases utilized in this 

method are fragmentation and resource allocation. In the fragmentation phase, the fragmentor divides 

 

Fig 4: Mind Map of Workflows in terms of Scheduling and Fragmentation 
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business workflows into appropriate fragments using three algorithms and considering the parameters of 

the number of virtual machines and mean bandwidth. In the first algorithm, appropriate fragments are 

generated considering the number of virtual machines and using HPD. Then, a suitable level of 

granularity is achieved considering bandwidth and using fuzzy logic. This method differs from the 

present framework in terms of workflow type, fragmentation method, selection of fragments, considering 

fuzzy logic, and resource allocation to each fragment. Khaled Almi Ani et al. [32] introduced a model 

entitled PBWS for partitioning business workflows. This method consists of three major steps: 

partitioning, partition regulation, and resource allocation and is different from the present framework in 

terms of fragmentation and scheduling methods. Sherry X Sun et al. [33] proposed a framework based 

on process extraction for business workflow fragmentation. This framework consists of four phases. The 

first phase is saving the logs. When a workflow is running, the log of each task is stored in a database.  

The second phase is the extraction model for centralized workflows. In this phase, when the workflow 

enters, the process extraction algorithm attempts to discover the model describing the sequences of tasks. 

The third phase is the time analysis of centralized workload properties. The fourth phase is workflow 

fragmentation and distribution. In this phase, the tasks are selected for fragments in order to achieve 

minimum time. This framework is different from the present framework in terms of task selection and 

fragment generation method. The type of the selected workflow differs as well. Previous algorithms are 

compared with the proposed framework in terms of fragmentation with various factors in Table 1. 

 
Table 1: Comparison of fragmentation algorithms with the proposed WSADF framework 

Algorithm or 

method 

Fragmentation 

method 

Reducing 

runtime 

Reducing 

response 

time 

Guaranteed 

execution of 

the fragment 

Optimizing 

the use of 

resources 

Compatibility 

with runtime 

conditions 

Improved 

throughput 

Reduce 

bandwidth 

cost 

Wei tan et al[30] Dynamic -  -     

Wei tan et al[29] static -       

Guoli Li et 

al[4](FPD) 
static   -     

Peter Muth et 

al[31](Centralized) 
- -       

Khorsand et 

al[5](ATSDS) 
Dynamic - - -   -  

Khaled Almi et 

al[32] (PBWS) 
Dynamic  - -  - - - 

Sherry X,sun et 

al[33] 
static  - - - - - - 

WSADF 

(Presented 

Framework) 

Dynamic -       

3-2- Workflow Scheduling Approaches based on Fragmentation 
In this section, we review the previous studies on business workflow scheduling. Afterwards, each study 

is compared with the proposed WSADF framework according to Table 2. Faisstnauer et al. [34] 

introduced a technique for enhancing the round-robin scheduling. By adding priorities to tasks, this 

technique prevents starvation and enhances efficiency. The prioritizing level of each task is based on the 

error factors determined by the user. Tasks with larger error factors must be executed first. In the 

proposed framework, workflow is fragmented dynamically, ignores runtime conditions, and is finally 
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executed. Oprescu et al. [35] proposed a scheduling algorithm. Scheduling is performed based on budget 

limits. Based on the BaTs method, tasks are categorized into Bag of tasks and are then scheduled and 

executed using the round-robin algorithm. This technique differs from the present framework in terms of 

categorizing tasks and scheduling methods. In the fragmentation method introduced by Muthusamy et 

al. [7], workflow is completely fragmented such that there exits one task per fragment. The major 

objective of this model is scheduling with the lowest cost (SLV). In this paper, fragmentation was 

performed statically, while scheduling was done dynamically. The difference is in terms of workflow 

fragmentation and scheduling method. Bansal et al. [36] proposed a heuristic scheduling algorithm which 

can dynamically adapt and schedule tasks without a priori information. Two queues exist in this method, 

one for tasks waiting to be executed and the other for tasks which are being executed in at least one 

machine. Tasks waiting to be executed are prioritized and executed using the round-robin algorithm 

based on the costs of task execution. This method and the present method differ in terms of task 

fragmentation and prioritizing methods. Abrishami et al. [37] proposed an algorithm based on service 

quality according to minor critical path. The aim of this algorithm was to minimize workflow execution 

costs before reaching the deadline. The difference between this algorithm and the present framework lies 

in the fact that the latter uses robin-round algorithm for task scheduling and dynamically performs 

workflow fragmentation considering runtime conditions, leading to higher adaptability with resources 

and optimal resource use. Abba et al. [38] proposed three scheduling algorithms. In the first algorithm, 

EPFRR, the task governing the deadline has the highest priority for scheduling and erection. Here, tasks 

are prioritized in an ascending order based on the deadline. In the second algorithm, LSTRR, tasks are 

ordered based on the shortest remaining time until the completion of execution, identified using round-

robin algorithm in quantum, and exclusively executed. In the third algorithm, SPTFRR, the tasks are 

ordered based on the shortest process time to the system, exclusively identified using round-robin 

algorithm in quantum, and executed by the system. Donyadari et al. [11] introduced a method for 

scheduling based on round-robin algorithm. In this method, the tasks in workflow are first ordered in 

queue using the parallel depth search algorithm. Afterwards, the degree of dependency and deadline of 

each task is determined and they are prioritized in an ascending order based on the deadline. Then, 

scheduling and execution are performed based on the closest deadline. The major difference between this 

method and the present framework is that the workflow fragmentation model is dynamic and scheduling 

of tasks is performed considering bandwidth usage cost reduction. Ke Liu et al. [6] introduced a method 

for business workflow scheduling called CTC. In this method, the workflow is first divided into single-

member fragments and each fragment receives a deadline. Later, runtime is estimated, costs are 

calculated, and each fragment is allocated the services it demands. Here, the aim of scheduling is to 

reduce resource use costs and achieve the shortest runtime. This method and the present method differ in 

terms of fragmentation and scheduling methods. Huifang Li et al. [8] introduced a method for business 

workflow fragmentation known as QDA. Similar to CTC, this method completely fragments the 

workflow. A deadline is considered for each fragment. Subsequently, low-cost services are selected for 

scheduling and execution. During execution, if cheaper services are found, they are used. The difference 

between this method and the present framework is similar to the difference mentioned for CTC. Previous 

algorithms are compared with the proposed framework in terms of scheduling with various factors in 

Table 2.  
 

Table 2: Scheduling algorithms compared with the WSADF 

Algorithm or method Reducing runtime 

Optimizing 

the use of 

resources 

Compatibility 

with runtime 

conditions 

Improved 

throughput 
Reduce cost 

Faisstnauer et al[34]      

Oprescu et al[35]      
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Bansal et al[36]      

Abrishami et al[37]      

Abba et al[38]      

Donyadari et al[11]      

Muthusamy et al 

[7](SLV) 
     

Ke et al [6](CTC)      

Li et al[8](QDA)      

WSADF 

(Presented Framework) 
-     

 

3-3- The comparison of WSADF with the baseline studies 
Table 3 shows the features of the proposed framework and some of the baseline studies.  

Table 3:Specifications of proposed framework and some of the compared algorithms

Title Fragmentation Algorithm Scheduling Algorithm Evaluation Criteria Environment 

FPD[4] FPD Round-Robin 
Throughput, Average 

Execution Time 
Cloud 

SLV[7] FPD Round-Robin Cost Cloud 

CTC[6] FPD FCFS Execution Cost Cloud 

QDA[8] FPD MAX-MIN Cost Cloud 

WSADF 
(Presented Framework) 

WSADF-Fragmentation 

Algorithm 

WSADF-Scheduling 

Algorithm 

Bandwidth 

Response Time, 

Throughput 

Cloud 

4- WSADF: Workflow Scheduling Applying Adaptable and Dynamic Fragmentation 
The task selection method for generating fragments is very important for the fragmentation of workflows. 

In the FPD [4] fragmentation algorithm, communication messages among fragments are increased 

because as many fragments as tasks are generated in a workflow. This issue increases delay time, thereby 

increasing response time and reducing throughput. In the method proposed in [5], ATSDS is expressed 

for workflow fragmentation. This method is a two-phase adaptive method for the fragmentation and 

scheduling of workflows during runtime. The phases utilized in this method are fragmentation and 

resource allocation. Fragmentation is conducted based on the HPD algorithm this method is proposed for 

the fragmentation of business workflows. Also, methods are introduced for scheduling in CTC [6], SLV 

[7], and QDA [8] algorithms. In these methods, the reduction of bandwidth cost and used memory is 

taken into account. In the present study, WSADF framework is presented which resolves the problems 

of these algorithms. WSADF framework comprises a fragmentation algorithm, a scheduling algorithm, 

a fragment repository, and a scheduler as illustrated in Fig 5. The input of fragmentation algorithm is a 

workflow and its output is the fragments generated from the workflow. Fragment repository is a 

repository for storing workflow and its’ fragments. The next phase is the scheduling algorithm that takes 

tasks from the fragment repository and schedule them. Based on the least bandwidth usage cost, the 

scheduler allocates virtual machines to each fragment. The fragments are then executed. There is also 

another repository for the runtime data, as shown in Fig 5. 
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  Fig 5:Framework of Workflow Scheduling Applying Adaptable and Dynamic Fragmentation (WSADF) 

 

4-1- Relationship of WSADF components: 
This section describes the relationship of WSADF framework components as shown in Fig 6. 

Accordingly, the fragmentation phase receives a workflow and a number of virtual machines. Then, the 

fragmentor generates a fragment based on the current conditions and sends it to the scheduling phase. 

The scheduler selects a virtual machine for each fragment so that reduces costs and the fragment is 

executed, subsequently. This cycle is repeated until no task remains in the workflow for fragment 

generation. 
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  Fig 6: Relationship of WSADF framework components

4-2- Algorithms of WSADF framework 
This section illustrates flowchart and algorithms of WSADF framework. Fig 7 demonstrates the 

flowchart of the fragmentor phase. This flowchart is started when a workflow enters. After examining 

runtime conditions, the workflow is fragmented in terms of the number of virtual machines. The resulting 

value (cluster) denotes the number of tasks, which can be placed in one fragment. Afterwards, by 

examining the cluster>0 condition, a task is selected to be placed in one fragment. When this cycle is 

over, each generated fragment is sent to the scheduler to receive a resource to be executed. This cycle 

continues as long as there are tasks for fragmentation in the workflow. At the end of the execution, a list 

of scheduled and executed tasks is printed. Fig 8 shows the flowchart of the scheduling phase of WSADF. 

After receiving a fragment, the scheduler selects one virtual machine from the list of virtual machines 

and allocates it to the fragment. Then, it checks whether another (free) resource with less cost is available 

on the list. If there is a resource with less cost, the current resource is replaced with the new one. 



11 
 

Otherwise, the task will continue using the current resource. To clarify this issue, pseudo-codes of the 

fragmentation and scheduling algorithms are presented in Fig 9 and Fig 10, respectively. 

Fig 7: fragmentation flowchart 
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Fig 8: scheduling flowchart 

 

    
Fig 9: Pseudo-code fragmentation algorithm in WSADF framework 
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Fig 10: Pseudo-code of scheduling algorithm in WSADF framework

4-3- Case study: An example of the fragmentation and scheduling algorithms in 
WSADF  

This section presents an example to examine WSADF framework. The Montage workflow [9] is a 

scientific workflow created in the astronomy field with the aim of creating mosaics from Sky. This 

workflow is generated by processing, small images of sky, and its size depends on the number of 

processed images. It is assumed that Montage workflow with 25 tasks is the input of the fragmentation 

phase, and five virtual machines are considered as resources. Based on Equation 1, the number of tasks 

placed in one fragment is calculated based on the number of available virtual machines. In this example, 

the value calculated using Equation 1 equals 5. Therefore, 5 tasks can be allocated to each fragment based 

on the number of resources (t0, t1, t2, t3, t4). Afterwards, tasks are selected based on the parent-child 

dependency and the calculated value. The first fragment is selected along with 5 tasks to be submitted to 

the scheduling phase, and then a virtual machine is allocated to it. Subsequently, it checks whether this 

virtual machine has the lowest bandwidth usage cost. According to Fig 12, the virtual machine VM0 is 

allocated and executed. The next fragment is generated with 5 tasks by the fragmentation phase based on 

the conditions used for the generation of the first fragment (t5, t6, t7, t8, t9). Afterwards, in the scheduling 

phase, a virtual machine is allocated to it. The second fragment receives virtual machine VM3 for 

execution. Based on the number of allowable tasks (i.e. 5) and the available parent-child dependencies, 

the third fragment cannot accept more than 4 tasks (t10, t11, t12, t13). Subsequently, it is sent to the 

scheduling phase to receive a virtual machine. First, virtual machine VM1 is allocated to it. Then, the 

bandwidth cost is examined that reveals there is a virtual machine with less cost. Therefore, instead of 

VM1, VM2 is allocated to the third fragment. The generation and scheduling of all the fragments continue 

in this way until the workflow has no task left for fragmentation and scheduling. Figs 11 and 12 depict 

the performance of this framework. 
 



14 
 

 

 
Fig11: Montage workflow with 25 tasks on the left -Workflow after fragmentation on the right 

(Sample fragmentation with WSADF)

Fig 12: Schedule, workflow montage with 25 tasks and 5 virtual machines (sample scheduling with WSADF) 
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5- Evaluation 
The proposed idea is evaluated in both scheduler and fragmentor phases. Five experiments are designed 

with three Configurations that are shown in Table 4. The WSDAF framework is compared with the FPD 

algorithm in the fragmentation phase, and with the FPD [4], SLV [7], Centralized [31], CTC [6], and 

QDA [8] algorithms in the scheduling phase. Five standard scientific workflows including Epigenomics, 

Montage, Sipht, CyberShake, and Inspiral are used as datasets in the experiments [9]. Fig 13 illustrates 

the relationship between WSADF framework and WorkflowSim [10]. By presenting a higher level of 

workflow management, WorkflowSim is introduced by expanding the CloudSim simulator [39]. The 

framework of WorkflowSim has been expanded from the core of CloudSim and its supporting 

programming language is Java. WorkflowSim can be used in programming environments which support 

Java [10]. We only show the experiments related to Montage for the sake of brevity. 

 

Fig13: the relationship of WSADF framework and Workflowsim 
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Table 4: Specifications of experiments (MS: Message size, VM: virtual machine, DL: deadline) 

Experiment phase 
Configuration1 Configuration2 Configuration3 

MS VM DL MS VM DL MS VM DL 

Experiment1 Fragmentation Static Variable … … … … … … … 

Experiment2 Fragmentation … … … Static Variable … … … … 

Experiment3 Scheduling Static Variable … … … … … … … 

Experiment4 Scheduling … … … Static Variable … … … … 

Experiment5 Fragmentation/ Scheduling … … … … … … Static Static Variable 

5-1- Evaluation criteria 
The proposed framework focuses on undirected acyclic graphs that are scientific workflows. These 

workflows include tasks and the relationships among them. The present study incorporated virtual 

machines as the resource that are different in terms of bandwidth and memory costs. Table 5 shows the 

equations employed in this study. Equations 1, 2, and 3 are used to calculate the number of tasks in each 

fragment, response time, and mean response time, respectively. Equation 4 is utilized to evaluate 

throughput percentage. Equation 5 is incorporated to calculate bandwidth costs. Equation 6 is used to 

calculate the cost of the used memory (MB). To calculate mean response time improvement and 

throughput improvement, Equations 7 and 8 are used.  

 

 

Table 5:The formulas used in this study

Formula Reference Number 

𝒄𝒍𝒖𝒔𝒕𝒆𝒓 =
𝑾𝒐𝒓𝒌𝒇𝒍𝒐𝒘 𝒔𝒊𝒛𝒆

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑽𝑴𝒔
 This Paper 1 

𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑻𝒊𝒎𝒆 = ∑ 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏_𝑺𝒕𝒂𝒓𝒕𝑻𝒊𝒎𝒆

𝒏

𝒊=𝟎

 [1] 2 

𝑨𝑽𝑮 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑻𝒊𝒎𝒆 =
𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑻𝒊𝒎𝒆

  𝒏𝒖𝒎𝑻𝒂𝒔𝒌
 [1] 3 

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑹𝒆𝒒𝒖𝒆𝒔𝒕𝑵𝑼𝑴

𝑭𝒊𝒏𝒊𝒔𝒉𝑻𝒊𝒎𝒆
∗ 𝟏𝟎𝟎 [1] 4 

𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑩𝑾 = ∑(𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑩𝑾 𝒐𝒇  𝑽𝑴 ∗ 𝒂𝒎𝒐𝒖𝒏𝒕 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝑩𝑾)

𝒏

𝒊=𝟎

 [7] 5 

𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑹𝒂𝒎 = ∑(𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑹𝒂𝒎 𝒐𝒇  𝑽𝑴 ∗ 𝒂𝒎𝒐𝒖𝒏𝒕 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝑹𝒂𝒎)

𝒏

𝒊=𝟎

 [7] 6 

𝑰𝒎𝒑𝒓𝒐𝒗𝒎𝒆𝒏𝒕𝑹𝑻 =
𝑨𝑽𝑮𝑹𝑻𝒐𝒕𝒉𝒆𝒓𝒎𝒆𝒕𝒉𝒐𝒅 − 𝑨𝑽𝑮𝑹𝑻𝑾𝑺𝑨𝑫𝑭

𝑨𝑽𝑮𝑹𝑻𝒐𝒕𝒉𝒆𝒓𝒎𝒆𝒕𝒉𝒐𝒅
 [1] 7 

𝑰𝒎𝒑𝒓𝒐𝒗𝒎𝒆𝒏𝒕𝑻𝑷 = 𝑻𝑷𝑾𝑺𝑨𝑫𝑭 − 𝑻𝑷𝒐𝒕𝒉𝒆𝒓𝒎𝒆𝒕𝒉𝒐𝒅 [1] 8 

5-2- Configuration of experiments 
Here, evaluation is performed in three Configuration. The features of these Configuration are depicted 

in Table 6. These tables show the Configuration of the simulator for executing WSADF framework and 

baseline studies. In Configuration-1, the number of virtual machines is considered variable, while the 

size of messages is considered constant. In Configuration-2, the number of virtual machines is considered 
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constant, while the size of messages is considered variable. In Configuration-3, the number of virtual 

machines is considered constant, the message size is considered constant, and the deadline is considered 

variable. 
Table 6: Three Configuration Of the experiments

 

 Settings1 Settings2 Settings3 

Number of Datacenter 1 1 1 

Number of Virtual 

Machine 
5 15 20 25 20 20 

Message Size 500 0 100 250 500 500 

Bandwidth 1024 1024 1024 

Number of Task 
30 or 

25 

50 or 

60 
100 

1000 

or 

997 

30 

or 

25 

50 or 

60 
100 

1000 

or 

997 

30 or 

25 

50 or 

60 
100 

1000 or 

997 

Deadline ----- ----- 625 5000 10000 25000 

 

5-3- Evaluation of fragmentation phase 
5-3-1. Experiment-1: Fragmentation using Configuration-1 (variable number of virtual 

machines; constant message size) 
The fragmentation phase with Configuration-1 decreases mean runtime and increases throughput, while 

message size is assumed constant and the number of virtual machines is assumed variable. The following 

Fig14 shows the results of Experiment 1 on the proposed framework and FPD [4] algorithm with 

Montage dataset in four groups of task numbers (25, 50, 100, and 1000) for mean response time. Based 

on Fig 14, by increasing the number of tasks in the workflow, WSADF framework has much better results 

than FPD algorithm in terms of mean response time. 
 

    

A B 

    

C D 
Fig 14: (A-D)The results of the mean response time from the experiment 1 
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The following Fig15 shows the results of Experiment 1 on the proposed framework and the FPD [4] 

algorithm with Montage dataset in four groups of task numbers (25, 50, 100, and 1000) for mean 

Throughput. Based on Fig 15, by increasing the number of tasks in the workflow, the WSADF framework 

has much better results than the FPD algorithm in terms of mean Throughput. 

    

A B 

    

C D 
Fig 15 :( A-D) the results of the mean Throughput from the Experiment-1 

Experiment 1 examines the fragmentation phase with Configuration-1 and Montage (Mon), Epigenomics 

(EPI), Inspiral (INS), CyberShake (CYB), and Sipht (SIP) scientific workflows as datasets. Results of 

the improvement of the proposed framework are compared with those of FPD [4] algorithm in Table 7. 

Results show the improved performance of the proposed framework compared to FPD algorithm since 

the former controls fragment generation by considering the number of virtual machines variable and 

message size constant. 

Table 7: Results of the improvement of WSADF framework than the FPD (Fragmentation-Configuration-1) 

 

Fragmentation – Configuration 1 

Throughput Response Time  

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF 

6.03 52.18 7.15 1.16 87.68 91.45 82 84.74 94.39 84.75 FPD 

5-3-2. Experiment-2: Fragmentation using Configuration-2 (constant number of virtual 
machines; variable message size) 

Fragmentation phase with Configuration-2 reduces mean runtime and increases throughput, while 

message size is assumed variable and the number of virtual machines is assumed constant. The following 

Fig16 shows the results of Experiment 2 on the proposed framework and the FPD [4] algorithm with 
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Montage dataset in four groups of task numbers (25, 50, 100, and 1000) for mean response time. Based 

on Fig 16, by increasing the number of tasks in the workflow, the WSADF framework has much better 

results than the FPD algorithm in terms of mean response time. 
 

      

A B 

    

C D 
Fig 16: (A-D) the results of the mean response time from the experiment-2 

The following Fig17 shows the results of Experiment 2 on the proposed framework and the FPD [4] 

algorithm with Montage dataset in four groups of task numbers (25, 50, 100, and 1000) for mean 

Throughput. Based on Fig 17, by increasing the number of tasks in the workflow, the WSADF framework 

has much better results than the FPD algorithm in terms of mean Throughput. 
 

     

A B 
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C D 
Fig 17 :( A-D) the results of the mean Throughput from the Experiment-2 

Experiment-2 examines the fragmentation phase with Configuration-2 and Montage (Mon), Epigenomics 

(EPI), Inspiral (INS), CyberShake (CYB), and Sipht (SIP) scientific workflows as datasets. Results of 

the improvement of the proposed framework are compared with those of the FPD [4] algorithm in Table 

8. Results show the improved performance of the proposed framework compared to the FPD algorithm 

since the former controls fragment generation by considering the number of virtual machines constant 

and message size variable. 
 

 
Table 8: Results of the improvement of WSADF framework than the FPD (Fragmentation-Configuration-2)

Fragmentation – Configuration 2 

Throughput Response Time  

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF 

4.94 35.47 4.71 0.49 83.46 92.02 77.63 83.01 94.92 84.64 FPD 

5-4- Evaluation of scheduling phase 
5-4-1. Experiment-3: Scheduling using Configuration-1 (variable number of virtual 

machines; constant message size) 
Scheduling phase with Configuration-1 reduces mean runtime and increases throughput, while message 

size is assumed constant and the number of virtual machines is assumed variable. The following Fig18 

shows the results of Experiment 3 on the proposed framework and the FPD [4], SLV [7], Centralized 

[31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of task numbers (25, 50, 

100, and 1000) for mean response time. Based on Fig 18, by increasing the number of tasks in the 

workflow, the WSADF framework has much better results than the SLV, FPD, CTC, Centralized, and 

QDA algorithms in terms of mean response time. 
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A B 

    

C D 
Fig18 :( A-D) the results of the mean response time from the Experiment-3 

The following Fig19 shows the results of Experiment 3 on the proposed framework and the FPD [4], 

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of 

task numbers (25, 50, 100, and 1000) for mean Throughput. Based on Fig 19, by increasing the number 

of tasks in the workflow, the WSADF framework has much better results than the SLV, FPD, CTC, 

Centralized, and QDA algorithms in terms of mean Throughput. 
   

    

A B 

    

C D 
Fig19 :( A-D) the results of the mean Throughput from the Experiment-3 

The following Fig20 shows the results of Experiment-3 on the proposed framework and the FPD [4], 

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of 

task numbers (25, 50, 100, and 1000) for mean used bandwidth cost (MB). Based on Fig 20, by increasing 

the number of tasks in the workflow, the WSADF framework has much better results than the SLV, FPD, 

CTC, Centralized, and QDA algorithms in terms of mean used bandwidth cost (MB). 



22 
 

 

      

A B 

     

C D 
Fig20 :( A-D) the results of the mean used bandwidth cost (MB) from the Experiment-3 

The following Fig21 shows the results of Experiment-3 on the proposed framework and the FPD [4], 

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of 

task numbers (25, 50, 100, and 1000) for mean Memory used for any virtual machine (MB). Based on 

Fig 21, by increasing the number of tasks in the workflow, the WSADF framework has much better 

results than the SLV, FPD, CTC, Centralized, and QDA algorithms in terms of mean Memory used for 

any virtual machine (MB). 
 

      

A B 
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C D 

Fig21 :( A-D) the results of the mean Memory used for any virtual machine (MB) from the experiment3 

 

 Experiment-3 examines the scheduling phase with Configuration-1 and Montage (Mon), Epigenomics 

(EPI), Inspiral (INS), CyberShake (CYB), and Sipht (SIP) scientific workflows as datasets. Results of 

the improvement of the proposed framework are compared with those of the other models in Tables 9 

and 10. Compared to FPD [4], SLV [7], QDA [8], Centralized [31], and CTC [6] algorithms, the WSADF 

framework has improved performance by considering the number of virtual machines variable and 

message size constant, while controlling fragment generation and selecting a low-cost resource during 

runtime. 

Table 9: Results of the improvement of the proposed framework than other Algorithm for the response time and throughput factors 

(Configuration-1) 

Scheduling- Configuration 1- Table1 

Throughput Response Time  

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF 

6.45 40.9 5.7 0.37 69.57 88.57 81.19 82.78 91.01 83.94 FPD 

7.16 41.67 5.82 0.58 70.15 92.71 85.1 88.77 94.77 85.68 SLV 

6.63 38.7 5.99 0.52 64.17 87.7 70.43 82.04 91.35 72.83 Centralized 

7.14 41.65 5.81 0.59 70.15 94.04 85.47 93.62 98.22 85.69 QDA 

7.18 41.69 5.81 0.25 70.15 93.05 63.32 88.95 73.26 85.68 CTC 
 

Table 10: Results of the improvement of the proposed framework than other Algorithm for the cost factors (Configuration-1) 

Scheduling- Configuration 1- Table2 

CostPerRam CostPerBW  

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF 

97.27 95.31 94.74 98.08 95.48 98.08 96.69 96.26 98.63 96.91 FPD 

95.92 93.01 92.26 97.21 93.34 95.92 93.01 92.26 97.21 93.6 SLV 

97.01 94.69 94.19 97.85 95.08 97.77 95.94 95.59 98.33 96.44 Centralized 

95.92 93.01 92.26 97.21 93.34 95.92 87.58 92.26 97.21 93.6 QDA 

96.6 71.84 93.55 97.67 94.45 95.11 91.61 90.71 96.65 92.32 CTC 
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5-4-2. Experiment-4: Scheduling using Configuration-2 (constant number of virtual 
machines; variable message size) 

Scheduling phase with Configuration-2 reduces mean runtime and increases throughput, while message 

size is assumed variable and the number of virtual machines is assumed constant. The following Figs22 

show the results of Experiment 4 on the proposed framework and the FPD [4], SLV [7], Centralized [31], 

CTC [6], and QDA [8] algorithms with Montage dataset in four groups of task numbers (25, 50, 100, and 

1000) for mean response time. Based on Fig 22, by increasing the number of tasks in the workflow, the 

WSADF framework has much better results than the SLV, FPD, CTC, Centralized, and QDA algorithms 

in terms of mean response time. 

    

A B 

    

C D 

Fig 22 :( A-D) the results of the mean response time from the Experiment-4 

The following Figs23 show the results of Experiment 4 on the proposed framework and the FPD [4], 

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of 

task numbers (25, 50, 100, and 1000) for mean Throughput. Based on Fig 23, by increasing the number 

of tasks in the workflow, the WSADF framework has much better results than the SLV, FPD, CTC, 

Centralized, and QDA algorithms in terms of mean Throughput. 
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A B 

    

C D 
Fig23 :( A-D) the results of the mean Throughput from the Experiment-4 

The following Figs24 show the results of Experiment-4 on the proposed framework and the FPD [4], 

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of 

task numbers (25, 50, 100, and 1000) for mean used bandwidth cost (MB). Based on Fig 24, by increasing 

the number of tasks in the workflow, the WSADF framework has much better results than the SLV, FPD, 

CTC, Centralized, and QDA algorithms in terms of mean used bandwidth cost (MB). 

 

    

A B 
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C D 
Fig24 :( A-D) the results of the mean used bandwidth cost (MB) from the Experiment-4 

The following Figs25 show the results of Experiment-4 on the proposed framework and the FPD [4], 

SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms with Montage dataset in four groups of 

task numbers (25, 50, 100, and 1000) for mean Memory used for any virtual machine (MB). Based on 

Fig 25, by increasing the number of tasks in the workflow, the WSADF framework has much better 

results than the SLV, FPD, CTC, Centralized, and QDA algorithms in terms of mean Memory used for 

any virtual machine (MB). 
 

    

A B 

    

C D 
Fig25 :( A-D) the results of the mean Memory used for any virtual machine (MB) from the Experiment-4

Experiment-4 examines the scheduling phase with Configuration-2 and Montage (Mon), Epigenomics 

(EPI), Inspiral (INS), CyberShake (CYB), and Sipht (SIP) scientific workflows as datasets. Results of 

the improvement of the proposed framework are compared with those of the other models in Tables 11 

and 12. Compared to FPD [4], SLV [7], Centralized [31], CTC [6], and QDA [8] algorithms, the WSADF 

framework has improved performance by considering the number of virtual machines constant and 
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message size variable, while controlling fragment generation and selecting a low-cost resource during 

runtime. 
 

Table 11: Results of the improvement of the proposed framework than other Algorithm for the response time and throughput factors 

(Configuration-2) 

 

Scheduling- Configuration 2- Table1 

Throughput Response Time  

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF 

1.92 31.27 3.65 -0.04 47.82 87.88 75.81 81.16 90.72 81.47 FPD 

3.19 33.73 3.78 0.21 57.86 88.24 83.15 88.49 94.6 85.72 SLV 

2.91 30.17 4.15 0.15 48.56 87.49 66.31 81.5 91.17 73.62 Centralized 

3.09 33.84 3.93 0.22 57.95 90.39 83.76 93.71 98.19 85.74 QDA 

3.16 34.04 4.09 0.2 57.84 93.21 83.06 88.84 96.32 85.72 CTC 
 

Table 12: Results of the improvement of the proposed framework than other Algorithm for the cost factors (Configuration-2) 

Scheduling- Configuration 2- Table2 

CostPerRam CostPerBW  

INS CYB SIP EPI Mon INS CYB SIP EPI Mon WF 

96.71 94.17 93.67 98.05 94.49 97.68 95.87 95.56 98.62 96.1 FPD 

95.1 91.22 90.48 97.1 91.86 95.1 92.89 90.48 97.1 91.86 SLV 

96.45 93.37 92.9 97.79 94.02 97.38 94.94 94.63 98.3 95.53 Centralized 

95.1 91.22 90.48 97.1 91.86 95.1 91.22 90.48 97.08 91.86 QDA 

95.92 92.68 92.07 97.58 93.21 94.12 55.92 88.58 96.52 90.23 CTC 

5-4-3. Experiment-5: Scheduling using Configuration-3 (constant number of virtual 
machines; constant message size; variable deadline) 

This experiment investigates the Montage, Sipht, Inspiral, and CyberShake scientific workflows as 

datasets considering Configuration-3 in the deadlines of 625, 5000, 10000, and 25000 ms. Results are 

presented in Fig 26, indicating the percentage of success of the WSADF framework in different deadlines 

compared with the baseline studies. 

       

A B 
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C  D 

Fig 26: (A-D) results of the configuration3 

6- Conclusions and Future Studies 
Workflow fragmentation and scheduling are significant problems in workflow management. Based on 

the definition by Wei Tan et al., fragmentation is a partition of workflow model.  Models proposed for 

fragmentation have disadvantages such as increased number of generated fragments after fragmentation, 

which increases communication messages, time delay, and mean response time, thereby reducing 

throughput. Other disadvantages include static fragment generation which decreases flexibility and 

efficiency. Thus, the present study proposed a model for fragmentation which dynamically fragmented 

scientific workflows, considering runtime conditions. Moreover, it resolved the noted problems by 

controlling fragment generation. In WSADF framework, the number of tasks in each fragment was 

calculated based on the number of virtual machines. Fragments were generated during the execution, 

reducing communication messages among the fragments. In this study, WSADF framework was 

compared with the FPD algorithm in the fragmentation phase, and with FPD, CTC, Centralized, SLV, 

and QDA algorithms in the scheduling phase. According to the results of the experiments, response time 

and throughput were improved compared to the baseline studies. As the result of decreasing the number 

of generated fragments compared to the baseline studies, the number of communication messages among 

the fragments as well as delay time was reduced in this study, thereby decreasing response time and 

enhancing throughput. Furthermore, the results of the experiments for bandwidth usage cost and memory 

cost revealed the improved performance of the proposed framework compared to the baseline studies 

because the former controlled the number of generated fragments and selected appropriate virtual 

machines with less cost during runtime. Experiments were conducted in three Configuration and in both 

phases of fragmentor and scheduler. Results were improved compared to the baseline studies. For 

instance, compared to Montage workflow in Configuration-1 and the fragmentor phase, it showed 

84.75% improvement in mean response time and 87.68% improvement in throughput. In Configuration-

2 and the fragmentor phase, it showed 84.64% improvement in mean response time and 83.46% 

improvement in throughput. In Configuration-1 and the scheduler phase, it demonstrated 83.94%, 

69.56%, and 96.91% improvement in mean response time, throughput, and bandwidth usage cost, 

respectively. In Configuration-2 and the scheduler phase, it demonstrated 94.49%, 47.82%, and 96.1% 

improvement in mean response time, throughput, and bandwidth usage cost, respectively. In 

Configuration-3 the results of experiments on datasets with variable deadline (625, 5000, 20,000 and 

25,000) indicate that the success rate of the proposed framework was 100% than the base models. 

Based on the wide range of scientific workflows, numerous problems can be studied. Limiting factors 

can be used to generate fragments from a workflow. In this way, there should be methods to balance 

different aspects of workflow execution such as scalability, distribution, bandwidth usage, budget etc. 

Furthermore, considering various and unequal resources is a major problem in workflow fragmentation 

and scheduling. 
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This paper represents a workflow execution approach in cloud computing and includes: 

1) WSADF framework with two phases of workflow fragmentation and scheduling. 
2) The fragmentation phase generates appropriate fragments considering runtime conditions. 
3) The scheduling phase schedule fragments in order to reduce runtime costs. 
4) CyberShake, Sipht, Montage, Epigenomics, and Inspitral are used for the evaluations. 

 


