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Abstract

One of the main questions in cloud computing environments is how to efficiently

distribute user requests or Virtual Machines (VMs) based on their resource needs

over time. This question is also an important one when dealing with a cloud

federation environment where rational cloud service providers are collaborating

together by sharing customer requests. By considering intrinsic aspects of the

cloud computing model one can propose request distribution methods that play

on the strengths of this computing paradigm. In this paper we look at sta-

tistical multiplexing and server consolidation as such a strength and examine

the use of the coefficient of variation and other related statistical metrics as

objective functions which can be used in deciding on the request distribution

mechanism. The complexity of using these objective functions is analyzed and

heuristic methods which enable efficient request partitioning in a feasible time

are presented & compared.
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1. Introduction

Federated cloud computing environments have recently emerged as a trend-

ing topic in cloud computing. Here Cloud Service Providers (CSPs) collaborate

by delegating some (or all) of their customers’ requests to other CSPs. This

is done due to various reasons, be it overloaded servers in the federating CSP5

(i.e. the CSP that delegates parts of its request load to the federated CSP), the

need to adhere to customer Service Level Agreements (SLAs) in special circum-

stances where the cloud provider cannot guarantee quality attributes, etc. Out

of the decisions that must be taken in order to operate in such a federated envi-

ronment, one of the most crucial is which requests to federate and how should10

this federation take place keeping in mind the CSPs currently participating in

the federation. The answer to this question must be one which is efficient and

fair for all participating CSPs and incentivizes them to partake in the federa-

tion mechanism. How we model and evaluate this based on various objective

functions is an important consideration in this area.15

In this paper we emphasize a request distribution mechanism that focuses

on multitenancy as a key factor that enables the cloud computing paradigm,

providing many of the benefits of this paradigm from a cloud service provider

perspective. The federation structure used here can be seen in Figure 1. Cus-

tomer requests are given to a Federation Broker who distributes them between20

CSPs which are cooperating in a cloud federation. Such a broker must consider

multiple criteria when distribution occurs, including those relating to perfor-

mance, pricing, quality of service, etc. The criteria (and its related objective

functions) which we examine is to ensure request partitioning is efficient with

regards to utilizing multitenancy. To this end, different objective functions will25

be considered, including those that impact statistical multiplexing, as we will

show throughout the rest of this section.

1.1. Problem Setting

The resource needs of each customer request submitted to the federation

broker is modeled as a random variable Xi with mean µi and standard deviation30
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Figure 1: Sample view of a cloud federation setting. In our paper the distribution of customer

requests by the federation broker between participating CSPs is done in such a way so as to

utilize the multitenancy property of cloud computing. This is done by considering different

objective functions, specially those that are related to statistical multiplexing.

σi. We must decide on how to partition the complete set of customer requests

(random variablesX1, X2, ..., Xn) present in the federation environment between

the various CSPs in an efficient way based on various objective functions. One

such objective function is the mean (µ) of each subset of requests federated to

a single CSP. By ensuring that each of these subsets have comparable means,35

we can ensure that a larger than normal request load is not suddenly given to

a cloud provider, keeping the partitioning mechanism fair. Another important

objective function is the standard deviation (σ) of the partitions. If this is

too high for a subset of requests federated to a CSP, that CSP will have very

contrasting maximum and minimum resource usage, and therefore efficiency40

decreases as at many times server utilization is low (because of the increased

minimum resources required to handle peak usage). This problem becomes more

relevant when the mean of a set of requests is small compared to their standard

deviation. If a CSP is serving requests that have a large mean value, then

small amounts of change in resource usage (based on the standard deviation) is45

negligible, whilst at the same time requests with a low mean and high standard

deviation can incur huge costs on the CSP’s data center needs (see Figure 2).
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Figure 2: Here we can see the effect that the mean and variance of resource usage has on CSPs.

In (a), the mean of resource usage is small compared to its standard deviation, and therefore

allocating the needed hardware to handle peak demand is very costly and wasteful. In (b),

the mean is large compared to the standard deviation and therefore only a small amount of

over-provisioning is needed, making this scenario more efficient with less resource waste.

Therefore another important objective function here is the ratio of the request

partition’s standard deviation to its mean, as will be introduced in the next

Subsection.50

1.2. The Coefficient of Variation Objective Function

One important objective function which we consider here is σ/µ. This ratio

corresponds to a measure in statistics called the coefficient of variation (cv or

CoV), which in line with the findings of Weinman [1], can be an important mea-

sure of how to efficiently partition requests in a cloud computing environment.55

To look at this more broadly, using the coefficient of variation (also known as

Relative Standard Deviation) we can play on one of the main strengths of the

cloud computing paradigm, more specifically economical benefits of server con-

solidation. Due to economics of scale, CSPs reduce their operating costs by

using large data centers and utilizing common infrastructure to consolidate cus-60

tomer requests using VM technology. This is an important method of reducing
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the total number of needed hardware, minimizing server sprawl & total data

center space requirements and also, by increasing resource utilization, reducing

power consumption [2].

An important factor in fully exploiting consolidation is statistical multiplex-65

ing among request demand characteristics, i.e. the fact that the peaks and

valleys in the resource demands of one customer’s requests do not necessarily

coincide with other customers [3]. Therefore when one VM is using its peak

resource requirements, other VMs on the same hardware may not have much

traffic, allowing more efficient resource allocation whilst at the same time ad-70

hering to customer SLAs. Here is where the coefficient of variation comes into

play as a measure of smoothness or flatness of a set of requests, modeling the ef-

ficiency of collocating them on common infrastructure. The correlation between

any two of these requests (i.e. two random variables) is the relation between

resource usage peaks and valleys when processing the requests together in a75

specific time frame. When this correlation is high, the two requests need their

maximum and minimum resources at around the same time and therefore server

consolidation requires more resources. Therefore it is desirable for requests with

smaller correlation to be processed on the same hardware.

80

Taking this into account and using the above mentioned objective functions,

we explore how to distribute a set of customer requests between a set of cloud

providers in such a way that is efficient, the k-FEOptRP problem. The rest

of the paper is organized as follows. We first present some relevant work done

in the field of cloud federation and efficient request collocation & distribution.85

Next our theoretical framework is introduced alongside relevant notations. We

then explore the complexity of optimized request partitioning based on the

defined objective functions. Heuristics for optimizing the cv objective function

in a federation environment alongside related algorithms are then analyzed and

simulation results presented. Finally the paper’s findings alongside thoughts on90

the future direction of work based on these results is showcased.
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2. Real World Example

Here we provide an example of how the Coefficient of Variation can be used

as a metric to decide on process or task partitioning in a real world setting. For

this we ran simulations on a server where a real world web application1 that uses95

the ubiquitous LAMP2 stack is run alongside other applications. CPU usage

was decided upon as the resource under consideration for this example. Our

goal was to have both processes whose CPU usage is dependent on others and

processes in which this was not true. By dependent we mean that an increase in

CPU use of one such process has a direct correlation with an increase of CPU100

load in some other processes. This behavior is similar to our context in that we

want to partition tasks or processes in clouds in such a way as to have overall

minimum CoV for all clouds, i.e. the k-FEOptRP problem, detailed in the

next section. The monitored processes were:

• httpd.exe: the Apache2 web server hosting the web application105

• mysqld.exe: the MySql database to which the web app connects to

• explorer.exe: the process responsible for the Windows Explorer

• chrome.exe: Google’s widely used web browser

• opsrv.exe: a process of the Acunetix3 web vulnerability scanner

• wvsc.exe: a process of the Acunetix web vulnerability scanner110

The CPU usage of the above processes was sampled every 2 seconds, 5000

times. To obtain the CPU usage, the cross-platform psutil4 module for python

was used. Different workloads were run on the above processes during this time

in a way that corresponds to their real world usage scenarios. Based on the

1The Motoshub social network engine, available at http://shub.ir
2Linux-Apache-MySQL-PHP
3https://www.acunetix.com
4https://pypi.python.org/pypi/psutil
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(c) Efficient CoV based partitioning of processes with four CSPs.

Figure 3: The results of partitioning processes between CSPs in a real world example based

on minimizing overall CoV. The results are in line with expectations, as processes whose

CPU usage patterns have the most positive correlation are partitioned to different CSPs when

possible in each scenario, i.e. (a), (b) and (c).

results obtained from the samples, we can compute the mean and standard115

deviation for each process and also the covariance between each two processes.

The results of the simulation can be seen in Figure 3. Here based on different

scenarios where different number of CSPs are available, the efficient distribution

of processes in order to minimize CoV was obtained. This was done using

a simple brute-force algorithm which checked all partitioning states. As we120

will later see, running such an algorithm on larger datasets (more CSPs and

processes) is infeasible.

The results show that the mysql.exe and httpd.exe processes are partitioned

on different CSPs in all scenarios. This is in line with intuition as any heavy

workload on the apache server means more database access, therefore they125

should not be placed together to fully exploit the benefits of statistical mul-
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tiplexing. This is also in line with web server and database deployment best

practices, where amongst other things performance is one of the reasons that

database servers and application/web servers are usually deployed on separate

machines. The same is true for the opsrv.exe and wvsc.exe processes of the130

Acunetix software. There is also a weaker correlation between these two pro-

cesses and the web application being scanned, and we can see that when there

are enough CSPs available, opsrv.exe and wvsc.exe are partitioned indepen-

dently from mysql.exe and httpd.exe. The CPU usage of the chrome.exe and

explorer.exe processes is independent from the other applications sampled and135

therefore collocation with other processes does not provide a high CoV mea-

surement.

3. Related Work

Research on multicloud environments has increased in recent years with re-

searchers each tackling some aspect of this multifaceted concept [4]. Amongst140

other things, a subset of this research focuses on mechanisms to distribute cus-

tomer requests between the CSPs involved in the federation environment, be

it based on SLA considerations, profit motives or to establish consistent and

stable federation structures amongst the various CSPs. Chang et al. [5] present

a mathematical model for cloud federation where client requests can be deter-145

ministic or random and use this model to show that federation optimizes the

number of servers that are needed to service all client requests in comparison

to CSPs acting individually.

Chen et al. [6] provide scalable algorithms for optimal partner selection &

workload outsourcing in cloud federation networks. In order to model both the150

cooperation & competition that exists among various CSPs, game theory models

are used to obtain stable coalitions of cloud service providers. Next mechanisms

for optimal workload factoring and resource sharing in these coalitions are in-

troduced. In [7], Mashayekhy et al. the partitioning of client requests between

cloud providers is studied and a coalitional cloud federation game is used to155
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decide on how to distribute client request amongst various CSPs. The main

objective function here is the total profit obtained by all CSPs involved in the

federation mechanism. A cloud federation formation algorithm is also defined

which provides an approximate solution to the problem of deciding which subset

of CSPs should receive the current client request.160

Niyato et al. [8] also use coalitional game theory to tackle the challenges that

arise in federated cloud computing, mainly how the resources and revenue can

be shared by the coalition and also which coalitional structure is desirable, i.e.

incentivizes subsets of CSPs to collaborate. Cooperative games are used to de-

cide on the resource and revenue sharing mechanism. Ray et al. [9] consider the165

scenario where CSPs have preference on which federation to join based on their

individual satisfaction level defined by two criteria, the profit and availability

achieved in the federation. Therefore a hedonic coalition game is formulated

whose objective is to maximize these criteria when forming a federation. Here

the quality and trust of each CSP is estimated using a beta-mixture model, with170

results being used to prevent untrustworthy CSPs from joining the federation.

Panda et al. [10], present online & offline task scheduling algorithms for het-

erogeneous multicloud environments, which are simulated and compared using

various synthetic datasets. Their novel idea is two consider both preprocess-

ing time needed for initializing a VM as well as its processing time in order to175

maximize resource utilization.

In [11], Breitgand et al. focus on ways to distribute client requests between

various CSPs in a federated model so as to maximize CSP profit and also com-

ply with service level agreements. For this an integer linear programming model

alongside a greedy algorithm is presented which results in a decrease of power180

consumption in data centers whilst at the same time load balancing requests

between different CSPs. Hassan et al. [12] also provide a method for distributed

resource allocation in a federated environment based on cooperative game the-

ory. Here centralized and distributed algorithms are presented where each CSP’s

goal is to increase its individual profit.185

Das et al. [13] present a quality of service and profit aware cloud confed-
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eration model based on different VM allocation policies. A Cloud Federation

algorithm is used to decide on federation strategies which maximize the total

obtained profit of the CSP requesting federation in such a way as to not reduce

Quality of Service (QoS) for local client requests of collaborating CSPs. The190

partitioning of customer requests to CSPs is used by El Zant et al. [14] to

decide on fair methods of distributing the revenue obtained from cloud federa-

tion. Similarly Li et al. [15] present a SLA aware model for pricing in federated

clouds that make use of a centralized cloud exchange. Thomas et al. [16] focus

on the question of partner selection when requests need to be federated between195

CSPs. Here Analytic Hierarchy Process and the Technique for Order Prefer-

ence by Similarity to Ideal Solutions is used to rank and select an appropriate

federation partner based on QoS parameters. Ray et al. [17] also utilize QoS

alongside price & trust parameters to conduct a multi-criteria decision analysis

that selects the best cloud federation in a specific time period in accordance to200

user preferences for each parameter.

Work on efficient methods of distributing customer requests in a single cloud

environment is more numerous, where most proposed mechanisms are either cost

based, SLA based, deadline based or profit based [18]. Hao et al. [19] consider

the resource allocation problem in the context of distributed clouds, i.e. CSPs205

that operate multiple datacenters at different geographical locations. To this

end they propose a generalized methodology for online resource allocation where

users specify their resource placement constraints and approximation algorithms

are used for joint allocation of these resource in order to instantiate requested

VMs.210

Phyo et al. [2] emphasize the important role of server consolidation in cloud

environments, and try to exploit VM multiplexing by proposing a correlation

based VM placement approach in cloud data centers which considers the CPU

usage of customer requests. In [3], Meng et al. also try to place on the concept

of economics of scale in cloud data centers by proposing a joint VM provisioning215

method based on multiplexing which considers consolidating multiple VMs in-

stead of dealing with each individual one, dealing with the peaks and valleys in
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the user request workloads. This is done using three design modules, specifically

an SLA model, a joint VM sizing technique and a VM selection algorithm.

Moreno et al. [20] turn their attention to proposing a dynamic resource220

provisioning mechanism that deals with another important concept in cloud

computing, power efficiency. This mechanism makes use of neural networks

to perform resource over allocation with the goal of reducing resource waste in

cloud data centers and therefore increasing the efficiency of energy consumption.

Power efficiency is also the goal of Portaluri et al. [21], where they make use of225

genetic algorithms for resource allocation to user requests in cloud data centers.

Resource scheduling, which deals with allocating resources to cloud appli-

cations, is also another important related research area whose body of work

can be of use for request distribution in various multicloud environments [22].

Sotiriadis et al. [23] propose the concept of VM scheduling based on resource230

monitoring data extracted from past resource utilizations. Their proposed VM

placement algorithm, which uses machine learning models to predict VM re-

source usage per server, applies to both normal cloud computing settings as

well as intercloud (or federated) environments.

4. The Framework & Theoretical Results235

As previously described, we want to decide on how to distribute a set of

n customer requests between k cloud providers in a federated environment,

optimizing the federation’s efficiency based on the definition presented in Section

4. Each customer request is defined as a normally distributed random variable

Xi with mean µXi
and standard deviation σXi

. The correlation between every240

two random variable Xi and Xj is defined by their covariance rXi,Xj
denoting

the overlap that the two requests’ demand needs have with each other (the

alignment in the peaks and valleys of their resource consumption in time). We

define a request graph G as a weighted complete graph whose vertices are the

given customer requests (Xis) and the weight of the edge between Xi and Xj is245

rXi,Xj . Hence the problem of distributing request among k cloud providers is
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equivalent to the problem of partitioning the request graph into k components.

The efficiency of these partitioned subsets, each denoted by S ⊆ {X1, X2, · · · , Xn},
is measured by an objective function f(S). Therefore the efficiency of a set of

requests S, can be computed by only the objective function values correspond-250

ing to the vertices and edges in the partition of the request graph induced by

the vertices in S. For XS =
∑
Xi∈S Xi different objective functions, denoted by

f(S), will be considered:

• µS : The mean of XS

• σS : The standard deviation of XS255

• σ2
S : The variance of XS

• cv = σS/µS =

√∑
Xi∈S σ

2
Xi

+
∑

Xi,Xj∈S rXi,Xj∑
Xi∈S µXi

: The ratio of the standard

deviation of XS to its mean, also known as the coefficient of variation

• σ2
S/µS : The ratio of the variance of XS to its mean. This objective

function can be used as an approximation for cv as it is more tractable260

The problem of maximizing efficiency in the request partitioning mechanism

when k cloud service providers exist is defined as follows (we call this problem

the k-FEOptRP problem):

Minimize
k∑

i=1

f(Si)

subject to
k⋃

i=1

Si = {X1, X2, · · · , Xn}

Si ∩ Sj = ∅ , 1 ≤ i 6= j ≤ k

Based on the various objective functions, different problems of interest can

be defined. In Table 1, we briefly document the theoretical results of this paper

pertaining to the k-FEOptRP problem. An important part of these theoretical

results is the NP-Hardness of k-FEOptRP for the objective function σ2
S/µS ,

being the best approximation for the smoothness (cv) of a set of customer re-265

quests federated to some CSP.
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Table 1: Theoretical results for the k-FEOptRP problem for each objective function.

Objective Function k-FEOptRP

µS Trivial

σ2
S NP-Hard

σ2
S/µS NP-Hard

σS Open Problem

σS/µS Open problem

We follow this section by providing details for these theoretical results.

Theorem 1. The k-FEOptRP problem for every k > 1 and for the objective

function f(S) = σ2
S is NP-Hard.

Proof. We reduce this to the Max k-Cut problem where we want to partition270

a given graph into k partitions such that the number of edges residing between

different partitions is maximized. It is known that this problem is NP-Hard for

each k ≥ 2 [24]. We prove the reduction for k = 2. For k > 2 the justification is

the same. To reduce the Max 2-Cut problem to 2-FEOptRP, assume that a

graph G = (V,E) with n nodes {v1, v2, · · · , vn} is given and we want to find its275

maximum cut. To this end, we consider a set of requests X = {X1, X2, · · · , Xn}
with the following specifications:

• µXi
= 1 for each Xi ∈ X,

• σXi
= 0 for each Xi ∈ X,

• rXi,Xj = 1 for each Xi, Xj ∈ X and (vi, vj) ∈ E and280

• rXi,Xj = 0 for each Xi, Xj ∈ X and (vi, vj) /∈ E.

Partitioning the request graph of this instance into two sets S and T = X \ S

13



and minimizing

σ2
S + σ2

T =
∑

Xi,Xj∈S
rXi,Xj

+
∑

Xi∈S
σ2
Xi

+
∑

Xi,Xj∈T
rXi,Xj

+
∑

Xi∈T
σ2
Xi

=
∑

Xi,Xj∈X
rXi,Xj

−
∑

Xi∈S,Xj∈T
rXi,Xj

is equivalent to maximizing
∑
Xi∈S,Xj∈T rXi,Xj

which is equal to the number of

edges between the two partitions in G, concluding the proof.

Theorem 2. The k-FEOptRP problem for every k > 1 and for the objective

function f(S) = σ2
S/µS is NP-Hard.285

Proof. First we prove the theorem for k = 2. To do this we reduce the Max

2-Cut problem to the 2-FEOptRP problem with objective function σ2
S/µS .

Assume that a graph G = (V,E) is given where V = {v1, v2, ..., vn} and E ⊂
V × V is the set of G’s edges. Our goal is to find its maximum cut by solving

2-FEOptRP for an input instance I constructed from G. In I, the set of290

requests is Z = X ∪ Y where X = {X1, X2, · · · , Xn} and Y = {Y1, Y2, · · · , Yn}.
More than that I has the following specifications:

• For all 1 ≤ i ≤ n, we set µXi
= µYi

= 1.

• For all 1 ≤ i ≤ n, we set σXi
= σYi

= 0.

• For all (vi, vj) ∈ E, we set rXi,Xj and rYi,Yj equal to 1. For all 1 ≤ i ≤ n,295

we set rXi,Yi = L (where L is a large number) and for all the other cases

we set rP,Q = 0 (P,Q ∈ Z).

Since for each 1 ≤ i ≤ n, µXi
= µYi

= 1, for each S ⊆ Z, we have µS = |S|.
Assume that H is the request graph of this instance. For each subset S ⊆ Z,

we have:

σ2
S =

∑

P∈S
σ2
P +

∑

P,Q∈S
rP,Q = 0 + EH(S),

14



where EH(S) is the sum of the weights of H’s edges between S′s members. Thus

for each S ⊆ X, σ2
S is equal to the number of edges between S’s corresponding

nodes in G. We have the same equation for each T ⊆ Y .300

An optimal solution of 2-FEOptRP to this instance gives us two sets S and

T for which

f(S) + f(T ) = σ2
S/µS + σ2

T /µT =
EH(S)

|S| +
EH(T )

|T |

is minimized. Assume that S = S1 ∪ S2 and T = T1 ∪ T2 such that S1, T1 ⊆ X,

S2, T2 ⊆ Y , S1 ∩ S2 = ∅ and T1 ∩ T2 = ∅. Since L is a large number, neither S

nor T include both Xi and Yi for each 1 ≤ i ≤ n, therefore if S has m members

of X, T must have exactly m members of Y and vice versa. Thus S and T

have the same cardinality; more precisely |S1| = |T2| and |S2| = |T1|. Thus,305

|S| = |S1|+ |S2| = |T1|+ |T2| = |T |. Thus, minimizing f(S) + f(T ) is the same

as minimizing EH(S) + EH(T ) which is equal to maximizing the weight of edges

between S and T . For maximum weight of edges between S and T is achieved

by n edges with weight L plus the maximum number of edges with weight 1

between S1 − S2, and T1 − T2 which can both be the max-cut of G.310

For k > 2, we reduce the 2-FEOptRP problem (which we know its NP-

Hardness) to the k-FEOptRP problem. To this end, we add k − 2 requests

with mean equal to 1 and variance equal to zero. We also set their covariance

to every other request equal to a very large number. It is easy to see that

solving k-FEOptRP for this instance puts each of these newly added requests315

in a separate partition and solves the 2-FEOptRP problem for the set of input

requests.

Analyzing the efficiency problem with the CoV set as the objective function

is difficult, but by considering the complexity of the above related metrics, we

can conjure that it is also NP-Hard. The proof of this is left as an open problem320

for future work.

Conjecture 1. The k-FEOptRP problem for every k > 1 and for the objective

function f(S) = σS is NP-Hard.

15



Conjecture 2. The k-FEOptRP problem for every k > 1 and for the objective

function f(S) = cv = σS/µS is NP-Hard.325

In the next section we concentrate on heuristic algorithms for the k-FEOptRP

problem when using cv (CoV) as the objective function. This objective function

is chosen as it is the one that measures the smoothness of resource consumption

for a sub partition of requests, which, as we saw in the Section 1, shows how

much we can utilize statistical multiplexing to the benefit of the CSPs.330

5. Simulation

To be able to solve the k-FEOptRP problem with the objective function

set to the Coefficient of Variation in a feasible time and with results as close

to optimal as possible, different heuristics can be considered. In this section

we will look at various optimization algorithms and heuristics and explain the335

simulation environment in which they will be run and which provides the basis

for our comparison of these methods. One of the first things we need to do is

data generation, so that we have a large enough dataset on which the heuristics

can be tested on. This generation must be done in such a way so as to closely

replicated the behavior of real world customer requests that are run on today’s340

cloud computing environments. For this we use the results of Morena et al.

[25] who by sampling publicly released Google Cloud tracelog data 5, show that

CPU usage requests of cloud based tasks follow a lognormal distribution.

We consider the autoregressive order-1 model or AR(1)[26], a time series

input model which is used to create identically distributed, dependent and

covariance-stationary random variables in the following way:

Xt = µ+ φ(Xt−1 − µ) + εt, t > 1

where εt are independent and normally distributed with mean 0 and variance σ2
ε

and −1 < φ < 1. Also X1 is generated from the normal distribution with mean

5https://github.com/google/cluster-data
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Figure 4: Here we can see an instance of sample CPU usage data generated for five tasks

using the lognormal-AR(1) method as described in the text. In this example 1 < µ < 2 and

0.1 < σ2 < 0.5.

µ and variance σ2
ε/(1 − φ2). As the AR(1) model creates normally distributed

random variables instead of lognormally distributed ones, we use X ′t where:

X ′t = eXt

In this paper we call the above random variable generation method the lognormal-

AR(1) method. Figure 4 shows generated CPU usage using the lognormal-AR(1)345

method for 5 requests with 500 samples taken for each one (t = 500).

We ran various optimization algorithms on the generated data so as to com-

pare the performance of different heuristics in solving the k-FEOptRP problem.

Here we are dealing with a search space whose points are a partitioning of re-

quests to CSPs. Also the set of neighbors of a point p are points similar to p,

but in which one task is located on a different CSP than in p. For example the

two below points are neighbors in a space comprised of two CSPs and five tasks:

p1 = CSP1{Proc1, P roc2, P roc3}, CSP2{Proc4, P roc5}

p2 = CSP1{Proc1, P roc2}, CSP2{Proc3, P roc4, P roc5}

5.1. Algorithms

In this section each algorithm used in our simulations is described in sum-

mary:
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• Alg1: Here the tasks are randomly partitioned between the CSPs. This350

process is repeated 2000 times and the best state found among them is

chosen. This is used for comparison purposes with other algorithms.

• Alg2: This algorithm is based on the hill climbing search method. Starting

from a random initial state, at each step a random neighbor of the current

state with a lower cost function (in this context meaning lower CoV sum355

i.e. higher efficiency) is chosen as the new state. This is done for a number

of iterations (2000). This process is repeated 10 times from a new random

initial state and the best overall state found is chosen.

• Alg3: This algorithm differs from Alg2 in that at each step, all neighboring

states are checked and we move to the neighbor state with the lowest cost360

function. This is sometimes called Steepest Ascend hill climbing. The

stopping condition for this algorithm is that there are no more neighboring

states with a better cost function than the current one. Alg3 is also

repeated 10 times from random starting points and the best found state

is chosen.365

• Alg4: This algorithm is based on the family of Simulated Annealing ex-

ploratory methods where a temperature variable, T , is used that decreases

as time passes. Initially when the temperature is high both neighbors

with higher and lower cost functions can be chosen, but the probability of

choosing a worst neighbor decreases as the algorithm progresses (i.e. the370

temperature decreases). This probability is usually based on the expres-

sion e∆C/T where ∆C is the difference in cost function between the current

state and one of its neighbors. In our simulation, the initial temperature is

set as T0 = 1 and for each step Ti = Ti−1 ∗0.999 until a stopping condition

is met (T < 0.00001).375

• Alg5: This algorithm is based on the Late Acceptance hill climbing method,

a scale independent search method in which a list of fixed length Lh of

previous values of the current cost function is used for comparison when
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choosing candidate neighbors [27]. In our implementation we start from

a randomly generated point and set Lh to 100. At each step i a random380

candidate neighboring solution is analyzed. If its cost is lower than the

current point we add the cost to the beginning of Lh, removing the list’s

last value when necessary. If the candidate neighbor has a higher cost

value then it is accepted only if its cost is lower than imodLh in step i.

We also keep track of idle steps, those in which the candidate solution did385

not meet any of the above criteria, using it as a stopping condition. When

the total number of consecutive idle steps reaches 2000 the algorithm re-

turns the best point (i.e. partition of requests) found so far.

• Alg6: For our last algorithm we follow a different strategy. Instead of try-

ing to search the CoV space for an optimal solution, we consider σ2 as an390

approximation of this value. This is in line with the fact that cv = σS/µS ,

and therefore we want the vertices with the smallest covariance between

them to be partitioned to a single CSP in order to obtain a lower σS

value. σ2 can be computed for each partition using the covariance matrix

CovMatrix, showing the covariance between any two processes (i.e. re-395

quests). As we showed in 1, this problem can be reduced to the MaxCut

problem, where the processes are the graph’s nodes which must be parti-

tioned into k partitions. Here k is the number of CSPs that participate in

the federation mechanism. As the MaxCut problem is NP-Complete we

utilize the multiple search operator heuristic proposed by Ma et al. [28].400

Here to escape local maximums five different search operators are used,

Oi. The O1 search operator applies single transfer move operations to the

best neighbor of the current point. O2 differs in that it applies double

transfer move operations, selecting the one with highest move gain. O3

is again a single transfer operator which also considers a tabu list [29] in405

its search approach. O4 is similar to O2 but selects the target partitions

for transfer at random. Finally O5 applies completely random moves from

the current state in order to diversify the search space. We applying all 5
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Figure 5: Simulation results for the k-FEOptRP problem with 10 CSPs when the number of

tasks varies between 50 and 150. A lower CoV number indicates higher efficiency i.e. higher

utilization of statistical multiplexing.

operators using the method implied by [28].

5.2. Simulation Results410

To evaluate the performance of our proposed optimization algorithms, we

ran various simulations. The simulation uses input process data obtained from

the lognormal-AR(1) method as was described in Section 5 and was run on a

typical workstation with a core i7 processor & 16 GBs of ram. In one setup the

number of cloud service providers was fixed and we examined the results when415

varying the number of tasks (user requests) between 50 and 150. In another

setup we kept the number of tasks constant whilst the number of CSPs ranged

from 5 to 15. The simulation results can be seen in Figures 5 and 6 where the

shown cost is the sum of CoV values, i.e. f(Si) in the definition of k-FEOptRP.

Keep in mind that due to the stochastic nature of our heuristic algorithms each420

simulation scenario was run 100 times, with each data point shown being the

average of these runs.

As can be seen from these figures, all examined algorithms outperformed

Alg1, as was to be expected. The results of the simulation can be summarized

as below:425
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Figure 6: Simulation results for the k-FEOptRP problem with 70 tasks when the number of

CSPs varies between 5 and 15. A lower CoV number indicates higher efficiency i.e. higher

utilization of statistical multiplexing.

• The best overall efficiency was obtained using Alg5 which is based on the

Late Acceptance Simulated Annealing method, with second best being

Alg4 which is more closely related to the classic Simulated Annealing

heuristic.

• Alg2 outperformed Alg3. This is interesting as the main difference be-430

tween these two algorithms is the fact that Alg3 always chooses its best

neighbor (lowest CoV sum) as the next state whereas Alg2 randomly se-

lects a neighbor with lower cost than the current step. Alg3’s choosing of

the steepest slopes to traverse lead it local maximums in which it is stuck.

• The above statement has us believe that our search space is one which435

includes many local maximums. This can also be seen from the fact that

algorithms which diversify their moves and include traversing both better

& worse neighbor states outperform others (i.e. Alg4 & Alg5).

• For Alg6 we can see that at some data points this algorithm outperforms

most others whilst at the same time there are data points in which its440

results are lacking. Keeping in mind the fact that Alg6 uses σ2 as an

indirect measure for optimizing cv, we can see that its output is highly
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Figure 7: Box plot diagram showing the results of running all six algorithms 100 times on a

data point where the number of cloud service providers is 8 and the number of processes is

70.

dependent on the input data (CovMatrix of processes) and therefore using

such indirect measures may not always lead to acceptable results. This

can further be seen from the fact that in Figure 6 in which the processes445

are kept constant, the result of Alg6 is consistent for different number of

CSPs, mainly between the results for Alg5 & Alg4.

The box plot for a single data point of our obtained simulation results (based on

100 runs) is presented in Figure 7. Here we can see that the variance of Alg2’s

results is large as the stochastic nature of this algorithm in choosing its next450

neighbor can lead to different outcomes. For Alg3 the results show less variety,

which is the case when the value for the local maximums reachable by traversing

the steepest slopes are in the same range. The outlier here, which is close to the

mean of Alg2, shows that it is possible to reach the same efficiency that Alg2

can reach, but on the whole Alg2 is more efficient. For Alg4 we can see that455

more results are in the range between the third quartile and the maximum cost

obtained by this algorithm. The situation for Alg5 is the reverse of this, with

more results near the minimum cost, showing the fact that on the whole Alg5

is more efficient than Alg4. Also for Alg6 we can see less variety in the results

compared to the others, apart from Alg3.460
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Table 2: Theoretical results for the k-FFOptRP problem for each objective function.

Objective Function k-FFOptRP

µS NP-Hard

σ2
S NP-Hard

σ2
S/µS NP-Hard

σS Open problem

σS/µS Open problem

6. The Question of Fairness

Taking in mind the selfish behavior of cloud providers in real world settings,

the fairness of the request partitioning mechanism between them is another

important factor that future work can address in order to make sure CSPs

have an incentive to continue their collaboration in a federated environment.465

Here we will analyze the theoretical framework for such a mechanism. For

this we introduce the k-FFOptRP problem, which attempts to find a request

distribution scenario where the worst case efficiency based on the objective

function for each CSP is minimized:

Minimize max{f(Si)}i=1···k

subject to
k⋃

i=1

Si = {X1, X2, · · · , Xn}

Si ∩ Sj = ∅ , 1 ≤ i 6= j ≤ k

Like the efficiency problem, different objective functions were considered.470

The theoretical results can be seen in Table 2, with details provided below.

Theorem 3. The k-FFOptRP problem for every k > 1 and for the objective

function f(S) = µS is NP-Hard.

Proof. Assume that we are given a set T = {a1, a2, · · · , an} and we are asked

to partition this set into k sets T1, T2, · · · , Tk such that for each 1 ≤ i < j ≤ n,475
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Ti∩Tj = ∅ and
⋃
i Ti = T and also for each 1 ≤ i ≤ k,

∑
ap∈Ti

ap = 1
k

∑
aq∈T aq.

This problem is called the k-Partition problem and we know that it is NP-Hard

[30]. Consider an instance of the k-FFOptRP in which we have n customer

requests X = {X1, X2, · · · , Xn} with µXi
= ai for all 1 ≤ i ≤ n. It can be easily

seen that the partitioning of the set T into k equal sum subsets is possible if480

and only if the minimum of the maximum µSi
in the k-FFOptRP problem is

exactly equal to 1
kµX .

Theorem 4. The k-FFOptRP problem for every k > 1 and for the objective

function f(S) = σ2
S is NP-Hard.

Proof. The proof is similar to the proof of theorem 3 with some minor modi-485

fications. We reduce the k-Partition problem to this problem. We are given

a set T = {a1, a2, · · · , an} and we are asked to partition this set into k sets

T1, T2, · · · , Tk such that for each 1 ≤ i < j ≤ n, Ti ∩ Tj = ∅, ⋃i Ti = T and

also for each 1 ≤ i ≤ k,
∑
ap∈Ti

ap = 1
k

∑
aq∈T aq. We consider an instance

of the k-FFOptRP problem with the request set X = {X1, X2, · · · , Xn} with490

σ2
Xi

= ai for each Xi ∈ X and rXi,Xj
= 0 for each Xi, Xj ∈ X. X can be

partitioned into k sets S1, S2, · · · , Sk such that min(max(σ2
Sk

)) =
σ2
X

k if and

only if the answer to the defined k-Partition problem is true.

Theorem 5. The k-FFOptRP problem for every k > 1 and for the objective

function f(S) = σ2
S/µS is NP-Hard.495

Proof. The proof is very similar to the proof of Theorem 2 and Theorem 4.

We first prove the theorem for k = 2 by reducing the 2-Partition problem to

2-FFOptRP and then for every k > 2, we reduce the 2-FFOptRP problem to

k-FFOptRP which concludes the proof.

For the first part of the proof, assume that we are given a setA = {a1, a2, · · · , an}500

and are asked to partition this set into 2 sets A1 and A2 such that A1 ∩A2 = ∅,
A1 ∪ A2 = A and

∑
ap∈Ai

ap = 1
2

∑
aq∈A aq for each i = 1 and i = 2. We

construct an instance I of the 2-FFOptRP problem with the following speci-

fications:
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• the set of requests is Z = X ∪ Y such that X = {X1, X2, · · · , Xn} and505

Y = {Y1, Y2, · · · , Yn}

• For all 1 ≤ i ≤ n, we set µXi = µYi = 1.

• For all 1 ≤ i ≤ n, we set σ2
Xi

= ai and σ2
Yi

= 0.

• For all 1 ≤ i ≤ n, we set rXi,Yi
= L (where L is a large number) and for

all other cases we set rP,Q = 0 (P,Q ∈ Z).510

Assume that the answer to the 2-Partition problem is yes. We prove that

solving the 2-FFOptRP problem for I gives us two sets S, T ⊆ Z such that

σ2
S

µS
=

σ2
T

µT
. As we saw in the proof of theorem 2, since L is a large number,

neither S nor T include both Xi and Yi for each 1 ≤ i ≤ n, therefore if S has m

members of X, T must have exactly m members of Y and vice-versa. Therefore515

S and T have the same cardinality and thus µS = µT .

So the only thing remaining is to prove that σ2
S = σ2

T . Assume that S1 is the

maximal subset of S which is not a subset of Y . Since for each Q ∈ Y , σ2
Q = 0,

then σ2
S = σ2

S1
. Define T1 ⊆ T in the same way such that σ2

T = σ2
T1

. Since A

can be partitioned into two equal sum sets A1 and A2, in the optimal solution520

for the 2-FFOptRP problem which minimizes the maximum of σ2
S and σ2

T , X

can be partitioned into two sets S1 and T1 with σ2
S1

= σ2
T1

and thus σ2
S = σ2

T

With the same justification, we can prove that if the answer to the 2-

Partition is no, then we have
σ2
S

µS
6= σ2

T

µT
in the optimal solution of the 2-

FFOptRP problem.525

Now, we prove the theorem for k > 2. We reduce the 2-FFOptRP problem

to the k-FFOptRP problem. To do this we add k−2 requests with their mean

equal to 1 and variance equal to zero. We also set their covariance to every other

request equal to a very large number. It is easy to see that solving k-FFOptRP

for this instance puts each of these newly added requests in a separate partition530

and solves the 2-FFOptRP problem for the set of input requests.

Also, we anticipate the below conjectures although their proof is left as an

open problem for future work.
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Conjecture 3. The k-FFOptRP problem for every k > 1 and for the objective

function f(S) = σS is NP-Hard.535

Conjecture 4. The k-FFOptRP problem for every k > 1 and for the objective

function f(S) = cv = σS/µS is NP-Hard.

7. Conclusion & Future Works

In this paper we looked at an efficient method of distributing customer re-

quests among cloud service providers in a federated cloud environment, with540

the goal of utilizing statistical multiplexing. We showed how the coefficient

of variation can be considered as an important objective function in this re-

gard, showing the smoothness of a collection of requests. We described the

k-FEOptRP problem for efficient request distribution and examined the com-

plexity of various statistical functions being set as its objective function, with545

most of them being NP-Hard. Finally we looked at various heuristic algorithms

for the k-FEOptRP problem with CoV being set as its objective function and

compared them in various simulations scenarios. Our results show that our

algorithm based on the Late Acceptance Hill Climbing method outperformed

others.550

In our work we looked at the behavior of each request in a single time frame,

distributing them to various CSPs in one go. In reality each customer request

or process will show much varying resource needs and correlation with other

requests in its lifetime and therefore we can look at its behavior dynamically,

changing the CSP to which it is partitioned to multiple times. Hallac et al. [31]555

use a similar concept in looking at covariance-based clustering of multivariate

time series data which can be of use in this regard. This is an important

direction our future work can take. We would like to also test out CoV based

request partitioning on larger data sets in real world scenarios in which large

scale enterprise grade processes are at play.560

Fairness is also another import direction that future work can take on,

focusing on examining heuristics & approximation algorithms to solve the k-
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FFOptRP problem in a feasible way. Lastly, the different cloud technologies

& architecture used by a CSP can affect performance & resource consumption

patterns[32], which when considered can help us obtain a more robust request565

distribution model for real world usage. One direction for future work we are

working on is to obtain a mathematical model which captures the effect that

these difference environments have on resource usage of requests in clouds, i.e.

their effect on metrics such as the mean and variance of resource consumption.
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