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a b s t r a c t

This paper proposes a sliding mode investment policy design for nonlinear stochastic
financial systems which can be represented by the well-known Takagi–Sugeno fuzzy
model. When modeling the financial systems, it is more important to consider the unpre-
dictable investment changes and worldwide unpredictable events which can be regarded
as external disturbances. The equivalent-input-disturbance (EID) approach combinedwith
sliding mode investment policy design is implemented to reject the unpredictable invest-
ment changes for having better investment. Moreover, the Luenberger state observer is
constructed for the addressed financial system to estimate the unpredictable investment
changes and worldwide unpredictable events. More precisely, a sliding mode investment
policy design is developed by solving the obtained linear matrix inequality (LMI)-based
constrained algorithm. Finally, the obtained results of the addressed fuzzy stochastic finan-
cial system are verified through numerical simulation to show efficiency of the proposed
sliding mode investment policy design.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In our day-to-day life, financial market is more important in which individuals exchange money related securities
and commodities at low exchanges costs [1,2]. In order to stabilize the real economy of the companies, investors and
governments, it is much essential to analyze the dynamical behavior between the financial market and the real economy.
In general, the main objective of the companies, investors and governments are to increase the profit and reduce the risk.
Recently, significant attention has been paid by the research communities on studies of financial systems due to complex
process of business operations. In general, financial systems are influenced by a several economic factors, such as national
and international situation changes, the variable interest rate, wrong economy policy, oil price change and unpredictable
investment-environmental changes [3]. Moreover, in practice, many economic factors are not always be deterministic due
to unpredictable sudden investments, wars and natural disorder. Therefore, in the dynamics of financial control systems
these kind of unknown disturbance factors should be taken into consideration. On the other hand, the disturbance rejections
in dynamical control systems can be handled by various design methodologies [4–9]. In particular, the sliding mode control
(SMC) is one of the most recognized controller to reject the effects of matched disturbances and the modeling error in the
dynamical control system [10–15]. Generally, slidingmode control contains two steps; one is to design the sliding surface in
which the system has desired properties such as stability, disturbance rejection capability and tracking ability and the next
is to design the discontinuous controller such that the system state reach the sliding surface in the finite time [16–19].
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On the other hand, state observer-based disturbance estimation is a successful approach to deal with both matched
and unmatched disturbances by means of equivalent-input-disturbance (EID) approach [20]. EID is the input signal that
is produced by inner feedback control loop with utilization of internal model principle and that compensates the effect of
external disturbance on the controlled output. The disturbance rejection performance of the EID approach is determined by
the frequency of the low-pass filter in the EID estimator [21]. Furthermore, EID input does not affect the performance of the
sliding mode controller. According to the above discussion, the EID-based SMC approach improves the control performance
of both tracking and disturbance rejection. The EID input based slidingmode control acts as two safety layers of protection of
the control system from bothmatched and unmatched external disturbances. On the other hand, T–S fuzzy system approach
is widely used to approximate the complex nonlinear systems (see [22–29] and the reference therein). Specifically, it is used
to represent nonlinear system as a weighted sum of some simple linear subsystems and then can be stabilized by a model-
based fuzzy control. Motivated by the above discussions, in this paper, an EID-based sliding mode investment policy design
is developed for a nonlinear stochastic financial system represented by T–S fuzzy model [30–32]. The main contributions of
this paper are highlighted as follows:

(1) A novel sliding mode investment policy design is proposed for a nonlinear fuzzy stochastic financial system based on
the EID approach, which can effectively attenuate unpredictable investment changes and worldwide unpredictable
events.

(2) The system understudy in this paper contains the Poisson jump process to represent the financial random fluctuations
such as war, natural disaster, epidemic disease so that the considered model is more comprehensive and realistic.

(3) The proposed control scheme guarantees the achievement of desired target by actively eliminating the effects of
unpredictable sudden investments, wars and natural disorder.

Finally, effectiveness of the proposed EID-based slidingmode investment policy scheme is demonstrated through numerical
simulation for the nonlinear stochastic financial systems.

2. Problem formulation and preliminaries

In this section, first a linear model of the nonlinear stochastic jump financial system (SJFS) is approximately presented by
using the fuzzy approach and then, an EID-based sliding mode investment policy is introduced for the SJFS. For this purpose,
consider a nonlinear SJFS and its dynamics can be represented by the following differential equations [33]:⎧⎨⎩

dx1(t) = (x3(t) + (x2(t) − α)x1(t))dt + f1(x(t))dW(t) + g1(x(t))dN (t, ηk),
dx2(t) = (1 − βx2(t) − (x1(t))2)dt + f2(x(t))dW(t) + g2(x(t))dN (t, ηk),
dx3(t) = (−x1(t) − γ x3(t))dt + f3(x(t))dW(t) + g3(x(t))dN (t, ηk),

(1)

where x1(t), x2(t) and x3(t) are the interest rate, investment demand and price index, respectively; the positive constants
α, β and γ are the saving amount, per-investment cost and elasticity of demands of commercials, respectively; x(t) =

[x1(t) x2(t) x3(t)]T ; fi : R3
→ R, and gi : R3

→ R, (i = 1, 2, 3) are nonlinear Borel measurable continuous functions and
they satisfy the Lipschitz condition; the stochastic functions W(t) and N (t, ηk) represent the one-dimensional standard
Wiener process and marked Poisson jump process, respectively in which ηk denotes a financial emergencial incident;
Moreover, it is well-known that the SJFS (1) is affected by several factors, such as unpredictable investment changes,
worldwide unpredictable events and international situation like war or natural disaster, which can be regarded as a
stochastic external disturbance, namely w(t).

According to this fact, the controlled system corresponding to the SJFS (1) can be expressed as follows:

dx(t) = (h(x(t)) + Bu(t) + w(t))dt + f (x(t))dW(t) + g(x(t))dN (t, ηk), (2)

where h(x(t)) =

⎡⎣x3(t) + (x2(t) − α)x1(t)
1 − βx2(t) − (x1(t))2

−x1(t) − γ x3(t)

⎤⎦ and u(t) is the appropriate investment policy to regulate the financial system

(1) and B is a constant matrix. For more details about the formulation of stochastic nonlinear jump financial system (2), one
can refer the paper [33].

Further, by incorporating the fuzzymodel approach, the ith fuzzy rule of the nonlinear stochastic jump diffusion financial
system (2) can be expressed by

System rule i: if z1 is Gi1 and · · · and zg is Gig then

dx(t) = [Aix(t) + Bu(t) + w(t)]dt + Dix(t)dW(t) +

m∑
k=1

Ei(ηk)x(t)dN (t, ηk),

y(t) = Cix(t), i = 1, 2, . . . , l,
(3)

where l is the number of fuzzy rules; y(t) is the output vector; Gij (j = 1, 2, . . . , g) are the fuzzy sets; Ai, B, Ci, Di and Ei(ηk)
are constant matrices for k = 1, 2, . . . ,m; and z(t) = [z1(t), . . . , zg (t)] represents the premise variable of Gij.
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The overall inferred fuzzy stochastic jump system can be formulated as

dx(t) =

l∑
i=1

hi(z(t))

(
[Aix(t) + Bu(t) + w(t)]dt + Dix(t)dW(t) +

m∑
k=1

Ei(ηk)x(t)dN (t, ηk)

)
,

y(t) =

l∑
i=1

hi(z(t))Cix(t),

(4)

where hi(z(t)) =
wi(z(t))∑l
i=1 wi(z(t))

with wi(z(t)) =
∏g

j=1 G
ij(z(t)). In order to estimate the state and disturbance of the system (4),

we construct the following Luenberger state observer:

dx̂(t) =

l∑
i=1

hi(z(t))
(
Aix̂(t) + Bud(t) + Li(y(t) − ŷ(t))

)
dt,

ŷ(t) =

l∑
i=1

hi(z(t))Cix̂(t),

(5)

where x̂(t), ŷ(t) and Li are the state, output and gain matrices of the observer, respectively.
Now, the fuzzy investment policy design can be described by

ud(t) =

l∑
i=1

hi(z(t))Ki(x̂(t) − xd(t)), (6)

where xd(t) represents the desired reference state and Ki (i = 1, 2, . . . , l) are the feedback control gain matrices to be
determined.

Also, we consider the integral sliding mode surface for fuzzy system (4) in the following form

s(t) = G(x̂(t) − x̂(0)) − G
∫ t

0

(
l∑

i=1

hi(z(s))
(
Aix̂(s) + BKi(x̂(s) − xd(s))

))
ds, (7)

where G is the real constant matrix. In particular, G is chosen such that the matrix GB is non-singular such that system (4)
in the sliding mode is stochastically stable. Taking the time derivative on (7), we have

ṡ(t) = G( ˙̂x(t)) − G
l∑

i=1

hi(z(t))
(
Aix̂(t) + BKi(x̂(t) − xd(t))

)
, (8)

Moreover, based on the sliding mode control theory, the equivalent control is obtained when s(t) = 0 and ṡ(t) = 0. Then,
the equivalent investment policy design for nonlinear stochastic fuzzy financial system can be described by

ueq(t) = (GB)−1G
l∑

i=1

hi(z(t))
(
BKi(x̂(t) − xd(t)) − LiCi(x(t) − x̂(t))

)
. (9)

Substituting (9) into (5), the observer dynamics under the sliding mode surface (7) can be written as

dx̂(t) =

l∑
i=1

hi(z(t))
(
Aix̂(t) + Ki(x̂(t) − xd(t)) + (I − (GB)−1G)LiCi(x(t) − x̂(t))

)
dt,

ŷ(t) =

l∑
i=1

hi(z(t))Cix̂(t).

(10)

The estimated disturbance can be expressed as in [21] by ŵ(t) =
∑l

i=1 hi(x(t))B+LiCi(x(t) − x̂(t)) + ud(t) − u(t). In order to
select the angular frequency band for the EID estimation, we consider the low-pass filter F (s) such that |F (jω)| ≈ 1, for all
ω ∈ [0, ωr ], where ωr is the highest angular frequency. The state-space equation of the low-pass filter F (s) is chosen as

dxF (t) = (AFxF (t) + BF ŵ(t))dt,
w̃(t) = CFxF (t).

(11)

Incorporating EID disturbance estimation output w̃(t) with the sliding mode fuzzy investment policy, we can have the
following improved investment policy u(t) = ud(t) − w̃(t). Take the signals xd(t) and w(t) as zeros and denote xδ(t) =

x(t) − x̂(t). Further, by considering augmented state ψ(t) = [x̂(t) xδ(t) xF (t)]T and from (4), (10) and (11), the augmented
nonlinear stochastic financial system can be expressed as follows:

dψ(t) =

l∑
i=1

hi(z(t))

[
Aiψ(t)dt + Diψ(t)dW(t) +

m∑
k=1

Ei(ηk)ψ(t)dN (t, ηk)

]
, (12)
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Ai =

⎡⎣Ai + Ki (I − (GB)−1G)LiCi 0
Ai − LiCi −BCF

0 BFB+LiCi AF + BFCF

⎤⎦ , Di =

[ 0 0 0
Di Di 0
0 0 0

]
,

Ei(ηk) =

[ 0 0 0
Ei(ηk) Ei(ηk) 0
0 0 0

]
.

In order to prove the main result, the following lemma is required.

Lemma 2.1 ([9]). For any given matrix Ci = UMiV ∈ Rq×n (q < n) with full row rank – that is, rank(Ci) = q and a
symmetric matrix P of order n – there exists a matrix P̂ of order n satisfying CiP = P̂Ci if and only if P can be described as

P = V
[

P11 0
0 P22

]
V T , where P11 ∈ Rq×q and P22 ∈ R(n−q)×(n−q).

3. Main results

This study aims to solve the sliding mode investment policy problem of the stochastic financial system (2) by using a
sliding mode investment policy design with EID approach. Firstly, a suitable sliding surface function is designed so that
the dynamics restricted to the switching surface has the desirable property of asymptotic stability. The following theorem
provides a set of sufficient conditions for how to design fuzzy sliding mode investment policy such that the fuzzy stochastic
nonlinear financial systems in Eq. (4) can be solved.

Theorem 3.1. Let some scalars λk > 0 (k = 1, 2, . . . ,m) be given. If the following LMIs constrained sliding mode investment
policy problem can be solved, for symmetric positive definite matrix X = diag{X, X, X} and appropriate dimensioned matrices
Wi, Yi, such that the following LMIs, for all i = 1, 2, . . . , l,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ1i +ΘT
1i +

m∑
k=1

λk(Θ3i(ηk) +ΘT
3i(ηk)) ΘT

2i ΘT
3i(η1) · · · ΘT

3i(ηm)

∗ −X 0 0 0
∗ ∗ −λ−1

1 X 0 0
...

...
...

. . .
...

∗ ∗ ∗ ∗ −λ−1
m X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (13)

where

Θ1i =

⎡⎣AiX + Yi (I − (GB)−1G)WiCi 0
0 AiX − WiCi −BCFX
0 BFB+WiCi AFX + BFCFX

⎤⎦ , Θ2i =

[ 0 0 0
DiX DiX 0
0 0 0

]
,

Θ3i(ηk) =

[ 0 0 0
Ei(ηk)X Ei(ηk)X 0

0 0 0

]
with Yi = KiX and Wi = LiX̂,

then, the sliding mode investment policy problem for the nonlinear fuzzy stochastic financial system (4) can be solved.

Proof. In order to solve the nonlinear fuzzy stochastic financial system (4) under fuzzy sliding mode investment policy it is
enough to consider closed-loop system (12). Let V (ψ(t)) = ψT (t)Pψ(t),whereP = diag{P, P, P}, be the Lyapunov function
for the stochastic nonlinear financial fuzzy system. Based on Ito–Levy formula [33], by taking the stochastic derivative of
V (ψ(t)) along the solution of the system (12), we obtain

dV (ψ(t)) ≤

l∑
i=1

hi(z(t))
[
V T
ψ (ψ(t))Aiψ(t) +

1
2
ψT (t)DT

i Vψψ (ψ
T (t))Diψ(t)

]
dt +

l∑
i=1

hi(z(t))V T
ψ (ψ(t))Di

× ψ(t)dW(t) +

l∑
i=1

m∑
k=1

hi(z(t)) {V (ψ(t) + Ei(ηk)ψ(t)) − V (ψ(t))} dN (t, ηk)

≤

l∑
i=1

hi(z(t))
{
ψT (t)

[
PAi + AT

i P + DT
i PDi

]
ψ(t)

}
dt + 2

l∑
i=1

hi(z(t))ψT (t)PDiψ(t)dW(t)

+

l∑
i=1

hi(z(t))
m∑

k=1

{
ψT (t)

[
ET
i (ηk)PEi(ηk) + PEi(ηk) + ET

i (ηk)P
]}

dN (t, ηk).
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By applying mathematical expectation on both sides of the above inequality and utilizing the properties of stochastic
variables, we have

E{dV (ψ(t))} ≤

l∑
i=1

hi(z(t))ψT (t)
[
PAi + AT

i P + DT
i PDi +

m∑
k=1

λk
{
ET
i (ηk)PEi(ηk)

+PEi(ηk) + ET
i (ηk)P

}]
ψ(t)dt. (14)

By pre- and post-multiplying (14) by P−1
= X and using the singular value decomposition relation on Ci = UMiV , the term

CiX can be equivalently rewritten as X̂Ci with the help of Lemma 2.1 where X̂ = UMiX−1
11 M−1

i U−1, and denoting Yi = KiX
andWi = LiX̂ , we can get

E{dV (ψ(t))} ≤

l∑
i=1

hi(z(t))ψT (t) [Ωi]ψ(t)dt,

where

Ωi = Θ1i +ΘT
1i +ΘT

2iPΘ2i +

m∑
k=1

λk
{
ΘT

3i(ηk)PΘ3i(ηk) +Θ3i(ηk) +Θ3i(ηk)T
}
, (15)

Θqi (q = 1, 2, 3) are defined as in statement of Theorem 3.1. Further, by the virtue of Schur complement,Ωi is equivalent to
left hand side of LMI (13). Moreover, if the set of LMIs (13) hold, then E{dV (ψ(t))} < 0. Therefore, sliding mode investment
policy problem for nonlinear fuzzy stochastic financial system (12) is solvable, which completes the proof.

Now, we are in position to synthesize a sliding mode investment policy design, by which the trajectories of the fuzzy
nonlinear financial system (12) can be driven onto the pre-specified switching surface s(t) = 0 in a finite time and then are
maintained there for all subsequent time. The following theorem will provide the sufficient condition for the sliding mode
fuzzy investment policy ud(t) can be driven onto the predefined sliding mode surface s(t) in a finite time and maintain a
sliding mode motion thereafter.

Theorem3.2. For the fuzzy nonlinear financial stochastic system (4), assume that the LMIs-constrained in Theorem 3.1 is feasible.
Then, under the designed sliding surface given in (7), where G is chosen such that GB is non-singular, the sliding mode reaching
condition can be satisfied with the following investment policy design:

ud(t) =

r∑
i=1

hi(z(t))
[
Ki(x̂(t) − xd(t)) − βi(t)sgn(s(t))

]
, (16)

where βi(t) = λ+ ηi(t, x(t)) + ∥(GB)−1G∥(∥BKix̂(t)∥) + ∥LiCi(x(t) − x̂(t))∥ and sgn(·) is the signum function.

Proof. To prove the reachability condition, we select G such that GB is non-singular. Now, we consider the following
Lyapunov function

V(t) =
1
2
sT (t)(GB)−1s(t). (17)

From (7), it can be easily obtained that

ṡ(t) = −(GB)−1G
l∑

i=1

hi(z(t))
[
BKi(x̂(t) − xd(t)) + LiCi(x̂(t) − x(t))

]
+

l∑
i=1

hi(z(t))(ud(t) − Ki(x̂(t))). (18)

Taking the time derivative of V(t) and using the above equation, we can get

V̇(t) = sT (t)(GB)−1ṡ(t)

= − sT (t)(GB)−1G
l∑

i=1

hi(z(t))
[
BKi(x̂(t)) + LiCi(x(t) − x̂(t))

]
+ sT (t)

l∑
i=1

hi(z(t))(ud(t) − Ki(x̂(t)))

≤ ∥s(t)∥
l∑

i=1

hi(z(t))
[
∥(GB)−1G∥(∥BKix̂(t)∥) + ∥LiCi(x(t) − x̂(t))∥ + ηi(t, x(t))

]
+ sT (t)

l∑
i=1

hi(z(t))(ud(t) − Ki(x̂(t))). (19)
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By substituting (16) into (19), we can obtain V̇(t) ≤ −λ∥s(t)∥ < 0, ∀ ∥s(t)∥ ̸= 0. Thus, the system trajectories of (4)
converge to the predefined sliding surface in finite time and are restricted to the surface itself for all subsequent time, thereby
completing the proof.

Remark 3.3. It should bementioned that the proposed the fuzzy rule-dependent EID-based slidingmode investment policy
design is more general and appropriate than the conventional EID-based investment policy and sliding mode investment
policy. By restrictingG = 0 then the proposed fuzzy EID-based slidingmode investment policy design becomes conventional
EID-based investment policy design.

In particular, the conventional sliding mode investment policy design is deduced by the following corollary. The proof of
the following corollary is similar to that of proof of Theorem 3.1. Before providing the corollary, estimation error dynamics
between the considered fuzzy system (4) and estimated system (10) can be calculated as

dxδ(t) =

l∑
i=1

hi(z(t))

((
(Ai − (I − (GB)−1G)LiCi)xδ(t) + w(t)

)
dt + Dix(t)dW(t) +

m∑
k=1

Ei(ηk)x(t)dN (t, ηk)

)
dt. (20)

Corollary 3.4. For given some positive scalars λk (k = 1, 2, . . . ,m), the investment policy design along with the fuzzy state
estimator system (20) and the sliding mode dynamics (7) stochastically stabilizes the nonlinear stochastic fuzzy Poisson jump
financial system in Eq. (4) if there exist positive definite matrixX = diag{X, X} and some appropriate dimension matrices Wi and
Yi such that the following LMIs hold:

Ω̃i < 0, for all i = 1, 2, . . . , l, (21)

where

Ω̃i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̃1i + Θ̃T
1i +

m∑
k=1

λk(Θ̃3i(ηk) + Θ̃T
3i(ηk)) Θ̃T

2i Θ̃T
3i(η1) · · · Θ̃T

3i(ηm)

∗ −X 0 0 0
∗ ∗ −λ−1

1 X 0 0
...

...
...

. . .
...

∗ ∗ ∗ ∗ −λ−1
m X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
with Θ̃1i =

[
AiX + Yi (I − (GB)−1G)WiCi

0 AiX − WiCi

]
, Θ̃2i =

[
0 0

DiX DiX

]
and Θ̃3i =

[
0 0

Ei(ηk)X Ei(ηk)X

]
.

Remark 3.5. It should be noted that in the sliding mode control approach, one particular surface is designed to drive the
system states on it. Once the system states reach the sliding surface, the controller keeps the states on the close neighborhood
of the sliding surface. That is, the closed-loop response becomes totally insensitive to some particular uncertainties,
disturbance and nonlinearity.

4. Numerical simulations

In order to illustrate the performances of the proposed EID-based sliding mode investment policy design, we borrow
the nonlinear stochastic jump diffusion financial system parameter values provided in [33]. Let z(t) = [z1(t), z2(t)] and
assume that each za(t) (a = 1, 2) has eight operational points, which are given in Appendix. Therefore, the fuzzy system (4)
contains totally 64 fuzzy rules and is assumed to be affected by continuous stochastic noise and six discontinuous Poisson
jumps∆ = {η1, η2, . . . , η6}. Further, additional matrix values of the stochastic fuzzy system (4) are provided in Appendix.
Let us chooseG = I3 to reduce the computational complexity and consider the filter parameters as AF = −101I3, BF = 100I3
and CF = I3.With these considered parameter values, by solving the LMIs in (13) in Theorem 3.1, the feasible solution can be
obtained and the calculated feedback controller and observer gains are not provided here due to the page constraint. For the
simulation purposes, we choose the initial state conditions of the fuzzy plant and observer as x̂(t) = x(t) = [0.47 1.44 0.51]T .
Further, the reference input and disturbance inputs are chosen as xd(t) = [−0.2 4.5 0.1]T and w(t) = 0.01 sin(t),
respectively.

In order to show the advantage of the proposed investment policy design, the trajectories of the considered fuzzy
stochastic jump system (4) based on the conventional sliding mode investment policy design and the conventional EID-
based investment policy design and the proposed EID-based sliding mode investment policy design are provided in Fig. 1.
Specifically, Fig. 1 shows the state trajectories of the interest rate, investment demand and price index. From Fig. 1, it is
concluded that the EID-based sliding mode investment policy design can achieve the desired interest rate, investment
demand and price index even in the presence of unpredictable investment changes or worldwide events such as nature
disaster and war. Fig. 2 shows the investment policy of the considered financial model. Further, Fig. 3 shows the open-
loop response of the considered system in which it can be seen that the desired target cannot be achieved. From the
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Fig. 1. State trajectories of the closed-loop system with Poisson jump.

Fig. 2. Investment policy.



R. Sakthivel et al. / Nonlinear Analysis: Hybrid Systems 31 (2019) 100–108 107

Fig. 3. State trajectories of the open-loop system.

simulation results, it can be concluded that the proposed EID based estimator block effectively rejects the disturbances such
as unpredictable investment changes and worldwide unpredictable events. The result reveals that based on the proposed
approach, an investor can analyze the financial status and can calculate the better investment with increasing profit in
financial market in the presence of unpredictable investment changes and worldwide unpredictable events.

Remark 4.1. It should be noted that the authors in [33] investigated the multi objective H2/H∞ investment policy for
nonlinear stochastic jump diffusion financial systems via T–S fuzzy model interpolation method. The H2/H∞ investment
policy requires the information of the interest rate, investment demand and price index at each instants which may difficult
to get always due to unpredictable investment changes or worldwide events. In this study, the proposed EID-based sliding
mode investment policy effectively estimate the interest rate, investment demand and price index exactly right after the
initial time. Moreover, the integral sliding-mode technique offers the advantage of forcing the system to be on sliding phase
from the first moment and helps to attain the desired target quickly. In addition, the EID-based disturbance estimator is
used to estimate the unpredictable investment changes and worldwide unpredictable events on the financial systems and
explains how the deregulation policies leading to the crisis could be pursued each and every instant which helps to attains
desired target in an optimal sense.

5. Conclusion

In this paper, we have discussed the fuzzy nonlinear stochastic jump model to describe the dynamical behavior of
financial system in the presence of unpredictable investment changes and worldwide unpredictable events. An EID-based
sliding mode investment policy is proposed to achieve the desired interest rate, investment demand and price index with
better investment cost and increase profit under both the continuous and discrete random jump input. The proposed EID-
based sliding mode investment policy could solve the robustness of a nonlinear stochastic jump diffusion financial system
to achieve a desired interest rate, investment demand and price index even in the presence of unpredictable investment
changes or worldwide events such as nature disaster andwar. At last, an example with simulation is provided to confirm the
performance of the proposed fuzzy EID-based slidingmode investment policy design for nonlinear stochastic jump diffusion
financial systems.

Appendix

The fuzzy operation points are chosen as in [33]. The eight operation points of z1 are given that z11 = −1.5, z12 =

−1.11, z13 = −0.72, z14 = −0.33, z15 = 0.07, z16 = 0.46, z17 = −0.85, z18 = 1.24, and the eight operation
points of z2 are given that z21 = −1.5, z22 = −1.11, z23 = −0.72, z24 = −0.33, z25 = 0.07, z26 = 0.46, z27 =

−0.85, z28 = 1.24, Further the index term i is represented in terms of (j, k), j = 1, 2, . . . , 8, k = 1, 2, . . . , 8. The state
matrices of the inferred stochastic jump fuzzymodel [33] at z1j and z2k operation points are given byAi = [ajk]3×3 with ajk1,1 =

−α+ z2j + zd+xdyd−αxd
z1i

, ajk1,2 = xd a
jk
1,3 = 1, ajk2,1 = z1i − 2xd, a

jk
2,2 = −β+

1−βyd−x2d
z2j

, ajk2,3 = 0, ajk3,1 = −1−
xd+czd

z1i
, ajk3,2 = 0,

ajk3,3 = −γ and Di =

⎡⎢⎢⎣0.3ajk1,1 0.3xd 0.3

0.1ajk2,1 0.1ajk2,2 0

0.2ajk3,1 0 −0.2γ

⎤⎥⎥⎦. Further, Ei(η1) = diag{0.21, 0, 0}, Ei(η2) = diag{−0.3, 0, 0}, Ei(η3) =
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diag{0, 0.05, 0}, Ei(η4) = diag{0, −0.05, 0}, Ei(η5) = diag{0, 0, −0.01} and Ei(η6) = diag{0, 0, 0.15}. Moreover,
the control input position vectors are assumed to be common B = I3. The measured output matrix Ci is chosen as

Ci =

[
0 1 0
0 0 1

]
.
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