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Abstract

The numerous applications of time fractional partial differential equations in different fields of

science especially in fluid mechanics necessitate the presentation of an efficient numerical method to

solve them. In this paper, Galerkin method and operational matrix of fractional Riemann-Liouville

integration for shifted Legendre polynomials has been applied to solve these equations. Some defini-

tions for fractional calculus along with some basic properties of shifted Legendre polynomials have

also been put forth. When approximations are substituted into the fractional partial differential

equations, a set of algebraic equations would be resulted. The convergence of the suggested method

was also depicted. In the end, the linear time fractional Klein-Gordon equation, dissipative Klein-

Gordon equations and diffusion-wave equations were utilized as three examples so as to study the

performance of the numerical scheme.

Key words: fractional Klein-Gordon equation, fractional diffusion-wave equation, fractional dissipative Klein-Gordon

equation, shifted Legendre polynomials, operational matrix

1 Introduction

In recent years, with the rapid development of nonlinear sciences, the theory of fractional differential

equations have developed progressively and researchers have found that derivatives and integrals of non

integer order are more suitable and accurate than integer-order equations for modeling some real world

problems. These equations have attracted substantial attention of many investigator because they have

practical applications in diverse areas of science and engineering such as bioengineering [1], anomalous

transport [2], solid mechanics [3], continuum and statistical mechanics [4], nonlinear oscillation of earth-

quakes [5], economics[6], fluid dynamic [7], colored noise [8], viscoelastic damping [9] -[11] and modelling

∗Corresponding author: hashemizadeh@kiau.ac.ir
†Ebrahimzadeh263@gmail.com
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of an ultracapacitor [12] or the heating process [13], etc. Numerical solutions of these kind of fractional

equations have been investigated by several authors [14]-[30]. This work has been concentrated on the

following time-fractional partial differential equations with damping as:

∂αξ(x, t)

∂tα
+ ρ

∂ξ(x, t)

∂t
+ Υξ(x, t) =

∂2ξ(x, t)

∂x2
+ F(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, 1 < α ≤ 2, (1)

with initial conditions

ξ(x, 0) = ϕ(x),
∂ξ(x, 0)

∂t
= φ(x), (2)

and boundary conditions

ξ(0, t) = ζ1(t), ξ(1, t) = ζ2(t). (3)

Two significant cases of equations (1)-(3) were considered as follows:

⋄ In equation (1), if one put Υ = ρ = 0, then the fractional diffusion-wave equation will be obtained

[31]-[34]. These equations can be used to model many of the universal electromagnetic, acoustic,

and mechanical responses accurately [35, 36]. Equation (1) also is characterized as a telegraph

equation which governs electrical transmission in a telegraph cable in the case α = 2 [37]. Over the

past few years, several numerical methods have been proposed for solving fractional diffusion-wave

equations, for instance see [31]-[34] and [38]-[47].

⋄ If one set Υ = 1 in equation (1), then the linear time fractional Klein-Gordon equation will be

obtained for ρ = 0 and the linear time fractional dissipative Klein-Gordon equation will be obtained

for ρ ̸= 0. These equations widely appear in fluid mechanics [48]. They also arise in modelling

different phenomena, including the propagation of dislocations in crystals and the behavior of

elementary particles [47], [49] and [50]. Fore more details about the numerical methods regarding

these equations, see [51]-[54] and the refrences therein.

The properties of shifted Legendre polynomias along with their operational matrix of derivative and frac-

tional Riemann-Liouville integration are utilized to reduce the equations (1)-(3) to a system of algebraic

equations which can be solved easily.

The outline of this paper is as follows. In Section 2, some basic concepts for fractional calculus and

shifted Legendre polynomials are expressed and the error estimate for function approximation with these

bases is also given. The analysis of the proposed approach is introduced in Section 3. An upper error

bound is presented in Section 4. In Section 5, the numerical results of solving the intended fractional

differential problem with the proposed method for three test problems are reported. In this part, the linear

time fractional Klein-Gordon equation, dissipative Klein-Gordon equations and diffusion-wave equations

are considered as prototype examples. The discussion is wrapped up with the conclusion that appears in

Section 6.
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2 Background materials and preliminaries

2.1 The fractional derivative in the Caputo sense

There exist different definitions of fractional integration and differentiation [55], such as Grunwald-

Letnikov, Riemann-Liouville, Caputo, Weyl, Marchaud, Riesz fractional derivatives, Nishimoto fractional

operator and Jumaries definitions. The most important kinds of fractional derivatives are Caputo and

Riemann-Liouville fractional derivatives. In this section, the essentials of the fractional calculus and

shifted Legendre polynomials are reminded [55].

Definition 1. For every ν ∈ R and t > 0, a real function ξ(t), is said to be in the space Cν if there

exists a real number p > ν such that ξ(t) = tpξ1(t), where ξ1(t) ∈ C(0,∞), and for n ∈ N it is said to be

in the space Cn
ν , if ξ(n) ∈ Cν .

Definition 2. The Riemann-Liouville fractional integral operator of order α > 0 for a function ξ(t) ∈ Cν ,

ν ≥ −1, is defined as

Iα
t ξ(t) =

1

Γ(α)

∫ t

0

ξ(s)

(t− s)1−α
ds, α > 0, t > 0, I0ξ(t) = ξ(t). (4)

Iα
t ξ(x, t) =

1

Γ(α)

∫ t

0

ξ(x, s)

(t− s)1−α
ds, α > 0, t > 0, (5)

where Γ(α) is the well-known Gamma function.

Definition 3. The Riemann-Liouville fractional derivative of ξ(t) of order α is defined as

Dα
t ξ(t) =

dn

dtn
In−α
t ξ(t), n− 1 < α ≤ n, n ∈ N ∪ {0}, (6)

in which ξ(t) ∈ Cn
−1 and n ∈ N .

Definition 4. The Caputo time fractional derivative operator of order α > 0 is defined as

Dα
∗tξ(x, t) =

∂αξ(x, t)

∂tα
=

{
1

Γ(n−α)

∫ t

0
∂nξ(x,s)

∂sn (t− s)n−α−1ds, n− 1 < α < n, n ∈ N ∪ {0},
∂nξ(x,t)

∂tn , n = α.
(7)

where n is the ceiling function of α.

The next theorem demonstrates the relation between a fractional derivative and a fractional integral.

Theorem 1. Assume that the continuous function ξ(t) has a fractional derivative of order α, then we

have

Dα
t I

β
t ξ(t) =





Iβ−α
t ξ(t) α < β,

ξ(t) α = β,

D−β+α
t ξ(t) α > β,

(8)

Iα
t D

α
∗tξ(t) = ξ(t) −

n−1∑

i=0

ξ(k)(0+)
tk

k!
, n− 1 < α ≤ n, n ∈ N, (9)

Dα
∗tI

α
t ξ(t) =

{
ξ(t), n− 1 < α ≤ n, n ∈ N,

Dα
∗tI

α
t ξ(t) + ξ(0), 0 < α < 1.

(10)
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Remark. Fractional differentiation is a linear operation

Dα
∗t (η1ξ(t) + η2χ(t)) = η1D

α
∗tξ(t) + η2D

α
∗tχ(t). (11)

2.2 Properties of shifted Legendre polynomials

Legendre polynomials, ψ̃i(t), are orthogonal with respect to L2 inner product on the interval [−1, 1] with

the weight function ω(t) = 1. These polynomials are widely used because of their good properties in the

approximation of functions. They are defined by the following recursive formula

ψ̃m+1(t) =
2m+ 1

m+ 1
tψ̃m(t) − m

m+ 1
ψ̃m−1(t), m = 1, 2, 3, · · · , (12)

ψ̃0(t) = 1, ψ̃1(t) = t. (13)

By a proper change of variable, we can define the so-called shifted Legendre polynomials on an arbitary

interval [a, b] as follows:

ψ̃0(t) = 1, ψ̃1(t) =
2(t− a) − h

h
, (14)

and for m = 1, 2, 3, · · · ,

ψ̃m+1(t) =
2m+ 1

h(m+ 1)
(2(t− a) − h)ψ̃m(t) − m

m+ 1
ψ̃m−1(t). (15)

where h = b− a. By assuming that ψm(t) =
√

2m+1
h ψ̃m(t), we will have

∫ b

a

ψi(t)ψj(t)dt =

{
1, i = j

0, i ̸= j.
(16)

The analytical form of the shifted Legendre polynomial of degree m, ψ, is given by [56]

ψm(t) =

√
2m+ 1

h

m∑

k=0

(−1)m+k(m+ k)!(t− a)k

(m− k)!(k!)2hk
, m = 0, · · · ,M. (17)

Function approximation

We can expand a function g(t) as

g(t) =
M∑

i=0

giψi(t) = GTψ(t), (18)

in which

G = [g0, g1, · · · , gM ]T , ψ(t) = [ψ0(t), ψ1(t), · · · , ψM (t)]T , (19)

and the coefficients gi for i = 0, 1, · · · ,M are given by

gi = ⟨g(t), ψi(t)⟩. (20)
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Theorem 2. [57] Let g(t) ∈ Hk(−1, 1) (Sobolev space) and
∑M

i=0 giψi(t) be the best approximation

polynomial of g(t) in L2-norm. Then

∥g(t) −
M∑

i=0

giψi(t)∥L2[−1,1] ≤ C0M
−k∥g(t)∥Hk(−1,1),

where C0 is a positive constant, which depend on the selected norm and is independent of g(t) and m.

Remark 1. The computational interval can be transformed into an arbitrary interval [a, b] via an affine

transformation.

Remark 2. More general information about best approximation and related theorems can be found in

[58].

A function ξ(x, t) is approximated by

ξ(x, t) = ψT (x)Xψ(t), (21)

in which ψ(t) is given in equation (19) and X is the (M + 1) × (M + 1) matrix. The elements of matrix

X are obtained as follows:

Xij = ⟨ψi−1(x), ⟨ξ(x, t), ψj−1(t)⟩⟩ =

∫ 1

0

∫ 1

0

ψi−1(x)ψj−1(t)ξ(x, t)dtdx, 1 ≤ i ≤ M + 1, 1 ≤ j ≤ M + 1.

(22)

The Gauss–Legendre quadrature formula may be utilized to obtain the coefficients Xij

Xij ≈
M∑

k=0

M∑

l=0

w1lw2kψi−1(xl)ψj−1(xk)ξ(xl, xk). (23)

In equation (23), xl and xk are the roots of Legendre polynomial PM+1(t) and the weights w1l and w2k

are given by

w1i = w2i =
2

(1 − xi
2)[P ′

M+1(xi)]2
, 0 ≤ i ≤ M.

Theorem 3. [56] Suppose that function ξ ∈ L2[0, 1] is approximated by gM as follows

gM (t) =
M∑

j=0

γiψi(t), (24)

where

γi =

∫ 1

0

ψi(t)ξ(t)dt, i = 0, 1, · · · ,M. (25)

Consider

SM (ξ) =

∫ 1

0

[ξ(t) − gM (t)]2dt, (26)

then we have

lim
M−→∞

SM (ξ) = 0. (27)

Theorem 4. [56] Let Ĥ ⊂ L2[0, 1] and Ĥ = span{ψ0, ψ1, · · · , ψM} and ξ(x, t) be an arbitrary function

in L2[0, 1]. Hence by using Theorem 3, ξ has a best approximation, such that

∀ζ(x, t) : ∥ξ(x, t) − ψT (x)Xψ(t)∥2 ≤ ∥ξ(x, t) − ζ(x, t)∥2, (28)

where ψ(x) and X = [X ]ij are defined in equations (19) and (22).
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Operational matrices

Recently, approaches relied on operational matrices have attracted a striking attention due to their

agreeable attributes. There are several authors who have elaborated them to solve various kinds of

equations (see for example [59] and the references therein). Among them, the operational matrix of

integration and derivative are the most prominent matrices. The integral or derivative operator will be

replaced by the related matrix so the main problem converted to a system of algebraic equations. The

operational matrix of derivative of vector ψ(x) is defined as

ψ
′
(x) = Dψ(x), (29)

where D ∈ R(M+1)(M+1). Straightforward computations on (17) due to (29) demonstrate that each

element of matrix D, dij , is given by

dij =
1

h

√
2i+ 1

√
2j + 1

i∑

k=0

j∑

l=1

l(−1)i+k+l+j(i+ k)!(j + l)!

(i− k)!(k!)2(j − l)!(l!)2(k + 1)
1 ≤ i ≤ M + 1, 1 ≤ j ≤ M + 1. (30)

By using Eq.(29), it is clear that

dnψ(x)

dxn
= Dnψ(x), (31)

where n ∈ N denotes matrix power thus

D(n) = Dn, n = 1, 2, · · · (32)

It sould be noted that one of the prominent advantages to apply the operational matrix of derivative is

that there is no need to use any approximation to eliminate the differential part, so it is preferable to

exert these matrices.

The operational matrix of the Riemann-Liouville fractional integration can be defined as

Iα
t ψ ≈ Pαψ. (33)

Matrix Pα is constructed and defined in [56] as

Pα = [Pij ], 1 ≤ i, j ≤ M + 1, (34)

where

Qij =
√

(2i+ 1)(2j + 1)
i∑

k=0

j∑

l=0

(−1)i+k+j+l(i+ k)!(j + l)!

(i− k)!k!Γ(k + 1 + α)(j − l)!(l!)2(l + k + α+ 1)
, (35)

and

Pij = Qi−1j−1, 1 ≤ i, j ≤ M + 1. (36)

3 Numerical method

In this section, the Galerkin method is expressed to solve problem (1)-(3). By using the operational

matrices of derivative and fractional integration introduced in equations (29) and (33), along with Galerkin
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approach, the considered fractional differential equation is reduced to a system of algebraic equations.

Firstly, we approximate the functions ξ(x, t) and F(x, t) by Legendre polynomials

ξ(x, t) ≈ ξM(x, t) = ψT (x)Xψ(t), F(x, t) ≈ FM(x, t) = ψT (x)Fψ(t), (37)

in which the elements of matrices X and F are given in equation (22). Applying the Riemann-Liouville

integral operator Iα
t to fractional differential equation (1) and using equation (9) together with initial

conditions (2) leads to the following equation

ξ(x, t) − Ĝ(x, t) + ρIα
t

∂ξ(x, t)

∂t
+ ΥIα

t ξ(x, t) = Iα
t

∂2ξ(x, t)

∂x2
+ Iα

t F(x, t), (38)

where Ĝ(x, t) = ϕ(x) + tφ(x). The function Ĝ(x, t) is approximated as follows

Ĝ(x, t) = ψT (x)Gψ(t). (39)

By substituting approximate functions (37) and (39) into equation (38) and using equations (29) and

(33), this equation is transformed to a matrix equation

ψT (x)
(
X + ρXDPα + ΥXPα − (D2)T XPα

)
ψ(t) = ψT (x) (G+ FPα)ψ(t) (40)

By multiplying equations (40) in ψ(x) from right side and integrating from 0 and 1, we get

(
X + ρXDPα + ΥXPα − (D2)T XPα

)
ψ(t) =

(
G+ FP (α)

)
ψ(t). (41)

Now, by multiplying equations (41) in ψT (t) and integrating from 0 to 1, we have

X + ρXDPα + ΥXPα − (D2)T XPα = G+ FPα. (42)

Finally, for solving the main problem we need to apply the boundary conditions in equqtion (3)

ψT (0)Xψ(t) = ζ1(t) (43)

ψT (1)Xψ(t) = ζ2(t)

The functions ζ1(t) and ζ2(t) are approximated by using equation (18) as follows

ζ1(t) ≈ MT
1 ψ(t) ζ2(t) ≈ MT

2 ψ(t) (44)

By replacing equation (44) into (43), we obtain

ψT (0)X = MT
1 , ψT (1)X = MT

2 , (45)

where M1 and M2 are (M + 1) vectors and calculated in (19).

We omit the last 2(M +1) equations from equations (42) in order to have (M +1)2 −2(M +1) equations.

These equations added up toghether with equations in (45) so as to have the outcome of a linear system

of equations with (M + 1)2 equations and unknowns.

Remark 1 We proceed by discussing the sparsity of the matrices D and D2 as an important issue for

increasing the computation speed.The number of nonzero matrix elements in D for odd values of M is
(M+1)2

4 and for even values of M is M(M+2)
4 . These values in D2 is M2−1

4 and M2

4 for odd and even

values of M respectively. The graphs 1, 2, 3 and 4 are a visual representation of the values of elements

in matix D and D2 for M = 5 and M = 6. Black and white respectively show nonzero and zero elements

of matrices. As the graphs 1, 2, 3 and 4 show matrices D and D2 are lower triangular matrices.
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Figure 1:The structure of D for odd value of M Figure 2: The structure of D for even value of M

Figure 3:The structure of D2 for odd value of M Figure 4:The structure of D2 for even value of M

So one of advantages of the derivative operational matrix is that it allow us to solve the linear system

(42) with much less computational cost.

Remark 2 The computational cost of our proposed method in section 3 is based on the counting of

multiplication and summation operations according to [60]. The computational cost is mainly consisted

of (i) construction of linear system of equation 42 and (ii) the linear system solver.

(i): In the first part, by considering of the sparsity of D and D2, we have the following flops.

1. The calculation of long operations in term ρXDPα for odd M is (M+1)2(M−1)
4 + 1

2 (M+1)2+M(M+

1)2 + (M + 1)2 and for even M is M(M+1)(M+2)
4 +M(M + 1)2 + (M + 1)2. For large M , the term

M3 is dominant one.

2. The long operations in ΥXPα and FPα is respectively (M + 1)2(M + 1) + (M + 1)2 and (M +

1)(M + 1)2. In this part for large M , the term M3 is dominant.

3. The number of long operations in (D2)T XPα is M(M+1)
2 + M(M−2)(M+1)

4 + (M + 1)3 for even M

and (M+1)2(M−1)
8 +(M +1)2(M +1) for odd M. In this case for large M , the term M3 is dominant.

So, the linear system (42) can be obtained efficiently in O(M3) flops.

(ii): Gaussian elimination method which is used for solving linear system (42) is involved approximately
4
3 (M + 1)3 + 1

2 (M + 1)2 long operations [60]. So, this equation is solved in O( 4
3M

3) flops.
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4 Error Analysis

In this section, we present an upper error bound for the method. Assume that ξ(x, t) is a bivariate

polynomial that interpolate ξ(x, t) at points (xi, tj), we have from [61]

ξ(x, t) − ξ(x, t) =
∂M+1ξ(ζ, t)

∂xM+1(M + 1)!
ΠM+1

i=1 (x− xi) +
∂M+1ξ(x, τ)

∂tM+1(M + 1)!
ΠM+1

i=1 (t− tj) (46)

− ∂2M+2ξ(ζ
′
, τ

′
)

∂xM+1∂tM+1((M + 1)!)2
ΠM+1

i=1 (x− xi)Π
M+1
j=1 (t− tj),

where ζ, ζ
′
, τ and τ

′
belong to interval [0, 1]. Now if we assume that Ω = [0, 1] × [0, 1] and

K = max

{
max

(x,t)∈Ω

∂M+1ξ(x, t)

∂xM+1
, max
(x,t)∈Ω

∂M+1ξ(x, t)

∂tM+1
, max
(x,t)∈Ω

∂M+1ξ(x, t)

∂xM+1∂tM+1

}
, (47)

as a result, we obtain

∣∣ξ(x, t) − ξ(x, t)
∣∣ ≤ K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
. (48)

Proposition 1. [62]Let ξ(x, t) be a sufficiently smooth function on L2[0, 1] that approximated by Leg-

endre polynomials as ξ(x, t) ≃ ψT (x)Xψ(t), then the upper bound to estimate the error is as

∥∥ξ(x, t) − ψT (x)Xψ(t)
∥∥

2
≤ K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
. (49)

By utilizing proposition 1, the following result is obtained.

Theorem 5. Let ξ(x, t) be the exact solution of fractional differential equation (1)-(3) and ξM(x, t) =

ϕT (x)Xϕ(t) be its approximation obtained by the method presented in section 3, then

∥∥ξ(x, t) − ψT (x)Xψ(t)
∥∥

2
⩽ 5K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
. (50)

where K is given in (47) and M is the maximum order of Legendre polynomials.

Proof. It is evident that the exact solution ξ(x, t) of fractional differential equation (1)-(3) satisfies in

equation (38). Also, using approximations (37) and (39), we have

ψT (x)Xψ(t) + ρψT (x)XDPαψ(t) + ΥψT (x)XPαψ(t) − ψT (x)(D2)T XPαψ(t)

= ψT (x)Gψ(t) + ψT (x)FPαψ(t). (51)

Substracting equation (51) from(38) yields

∥∥ξ(x, t) − ψT (x)Xψ(t)
∥∥

2
≤ ∥G(x, t) − ψT (x)Gψ(t)∥2 + |ρ|∥Iα

t

∂ξ(x, t)

∂t
− ψT (x)XDPαψ(t)∥2 (52)

+|Υ|∥Iα
t ξ(x, t) − ψT (x)XPαψ(t)∥2 + ∥Iα

t

∂2ξ(x, t)

∂x2
− ψT (x)(D2)T XPαψ(t)∥2

+∥Iα
t F(x, t) − ψT (x)FPαψ(t)∥2

9



By neglecting the error of the operational matrix of fractional integration and using prepositon 1, the

following estimates will be obtained

∥∥g(x, t) − ψT (x)Gψ(t)
∥∥

2
≤ K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
, (53)

∥∥∥∥Iα
t

∂ξ(x, t)

∂t
− ψT (x)XDPαψ(t)

∥∥∥∥
2

≤ K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
, (54)

∥∥∥∥Iα
t

∂ξ(x, t)

∂t
− ψT (x)XDPαψ(t)

∥∥∥∥
2

≤ K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
, (55)

∥∥∥∥Iα
t

∂2ξ(x, t)

∂x2
− ψT (x)(D2)T XPαψ(t)

∥∥∥∥
2

≤ K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
, (56)

∥∥Iα
t F(x, t) − ψT (x)FPαψ(t)

∥∥
2

≤ K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
. (57)

Finally, using equations (53)-(57) we obtain

∥∥ξ(x, t) − ψT (x)Xψ(t)
∥∥

2
⩽ K(|ρ| + |Υ| + 3)

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
. (58)

By assuming that |ρ| ⩽ 1 and |Υ| ⩽ 1, we obtain

∥∥ξ(x, t) − ψT (x)Xψ(t)
∥∥

2
⩽ 5K

2M (M + 1)!

(
2 +

1

22(M + 1)!

)
. (59)

For sufficiently large M , this error bound tends to zero.

5 Numerical experiments

In this section, the proposed scheme is implemented to construct solutions for variants of fractional

differential equations. The results demonstrate the effectiveness of the presented method. Assume that

Eξ shows absolute error.

Figure 5: Eξ for α = 1.5 and M = 6 Figure 6: Eξ for α = 1.5 and M = 7
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Example 1

As the fist example, consider the following linear time fractional Klein-Gordon equation[63]

∂αξ(x, t)

∂tα
+ ξ(x, t) =

∂2ξ(x, t)

∂t2
+ F(x, t). (60)

with boundary conditions

ξ(0, x) = 0, ξ(1, x) = 0, (61)

and initial conditions

ξ(x, 0) = 0,
∂ξ(x, 0)

∂t
= 0, (62)

and

F(x, t) =
2t2−α

(2 − α)Γ(2 − α)
(e− ex) sin(x) + t2(2e− ex) sin(x) + 2t2ex cos(x). (63)

ξ(x, t) = t2(e − ex) sin(x) is the exact solution of this problem. This equation is solved for M = 6 and

M = 7 and different values of α. The numerical results are given in Table 1 and in Figures 5 and 6. The

exact and approximate solutions are shown in Figures 7 and 8.

Figure 7: Exact solution for example 1 Figure 8: Approximate solution for example 1

Example 2

Consider the fractional dissipative Klein-Gordan equation [63]

∂αξ(x, t)

∂tα
+
∂ξ(x, t)

∂t
+ ξ(x, t) =

∂2ξ(x, t)

∂x2
+ F(x, t).

with initial condition

ξ(0, t) = 0,
∂ξ

∂t
(0, t) = 0,

and boundary condition

ξ(x, 0) = 0, ξ(x, 1) = 0,

and

F(x, t) =
2t2−α

(2 − α)Γ(2 − α)
x sin(x− 1) + 2tx sin(x− 1) + t2x sin(x− 1) − t2(2cos(x− 1)) − x sin(x− 1)).

The exact solution of this problem is ξ(x, t) = t2x sin(x − 1). Table 2 represents the results of using

propounded approach for M = 5 and various values of α. The numerical results of this example are

compared with those in [63] in table 3.
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α = 1.5 α = 1.75 α = 1.9

t x ξExact ξApproximate ξApproximate ξApproximate

0.2 0 0.0000000 0.0000000 0.0000000 0.0000000

0.25 0.0141936 0.0142381 0.0142909 0.0142717

0.5 0.0205110 0.0205748 0.0206538 0.0206252

0.75 0.0163943 0.0164398 0.0164997 0.0164811

1 0.0000000 0.0000000 0.0000000 0.0000000

0.5 0 0.0000000 0.0000000 0.0000000 0.0000000

0.25 0.0887102 0.0887181 0.0887920 0.0888142

0.5 0.1281940 0.1282040 0.1283060 0.1283400

0.75 0.1024640 0.1024720 0.1025410 0.1025650

1 0.0000000 0.0000000 0.0000000 0.0000000

0.8 0 0.0000000 0.0000000 0.0000000 0.0000000

0.25 0.2270980 0.2270890 0.2270860 0.2271240

0.5 0.3281760 0.3281640 0.328160 0.3282090

0.75 0.2623080 0.2623000 0.2622980 0.2623320

1 0.0000000 0.0000000 0.0000000 0.0000000

Table 1: Results of example 1 for M = 7
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α = 1.5 α = 1.75 α = 1.9

t x ξExact ξApproximate ξApproximate ξApproximate

0.2 0 0.0000000 0.0000000 0.0000000 0.0000000

0.25 −0.0068164 −0.0068386 −0.0068570 −0.0068493

0.5 −0.0095885 −0.0096193 −0.0096462 −0.0096356

0.75 −0.0074221 −0.0074448 −0.0074646 −0.0074572

1 0.0000000 0.0000000 0.0000000 0.0000000

0.5 0 0.0000000 0.0000000 0.0000000 0.0000000

0.25 −0.0426024 −0.0426158 −0.0426445 −0.0426395

0.5 −0.0599282 −0.0599404 −0.0599806 −0.0599808

0.75 −0.0463882 −0.0464011 −0.0464294 −0.0464247

1 0.0000000 0.0000000 0.0000000 0.0000000

0.8 0 0.000000 0.000000 0.000000 0.000000

0.25 −0.109062 −0.109069 −0.109067 −0.109073

0.5 −0.153416 −0.153409 −0.153405 −0.153431

0.75 −0.118754 −0.118761 −0.118758 −0.118764

1 0.000000 0.000000 0.000000 0.000000

Table 2: Results of example 2 for M = 5
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(x, t) ξapproximate[63] ξapproximate ξExact

( 1
8 , 1) −0.095847 −0.0959423 −0.095942

( 2
8 , 1) −0.170240 −0.170409 −0.170409

( 3
8 , 1) −0.219193 −0.219410 −0.219411

( 4
8 , 1) −0.239474 −0.239712 −0.239712

Table 3: Comparision of numerical results for α = 1.25

(a). M = 5 (b). M = 6

(c). M = 7 (d). M = 8

Figure. 9 Absolute Errors Eξ for α = 1.9 and different values of M .

Example 3

As the last example, consider the following fractional diffusion-wave equation [31] and [34]

∂αξ

∂tα
=
∂2ξ

∂x2
+ sin(πx), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, 1 < α ≤ 2.

with the initial and boundary conditions

ξ(x, 0) = 0,
∂ξ(x, 0)

∂t
= 0, 0 ≤ x ≤ 1,
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α = 1.25 α = 1.75

t x ξExact ξApproximate ξExact ξApproximate

0.2 0 0.0000000 0.0000000 0.0000000 0.0000000

0.25 0.0542538 0.0543029 0.0242284 0.0242339

0.5 0.0767264 0.0767959 0.0342641 0.0342719

0.75 0.0542538 0.0543029 0.0242284 0.0242339

1 0.0000000 0.0000000 0.0000000 0.0000000

0.5 0 0.0000000 0.0000000 0.0000000 0.0000000

0.25 0.0789221 0.0789479 0.0864843 0.0864867

0.5 0.1116130 0.1116490 0.1223070 0.1223110

0.75 0.0789221 0.0789479 0.0864843 0.0864867

1 0.0000000 0.0000000 0.0000000 0.0000000

0.8 0 0.0000000 0.0000000 0.0000000 0.0000000

0.25 0.0761343 0.0761451 0.1140370 0.1140380

0.5 0.1076700 0.1076850 0.1612720 0.1612730

0.75 0.0761343 0.0761451 0.1140370 0.1140380

1 0.0000000 0.0000000 0.0000000 0.0000000

Table 4: Results of example 3 for M = 6

ξ(0, t) = 0 ξ(1, t) = 0, 0 ≤ t ≤ 1.

In this case, the exact solution of this problem is as follows:

ξ(x, t) =
1

π2
(1 −Qα(−π2tα)) sin(πx),

in which

Qα(z) =
∞∑

k=0

zk

Γ(αk + 1)
.

Table 4 exhibits the results of this example for M = 6 and various values of α. Absolute errors of this

example for α = 1.9 and different values of M are shown in Figure 9. As the figures show the absolute

error decreases with the increase in the order of Legendre polynomials. The results of solving this example

by the proposed method and comparing with the exact solution and the methods in [31] and [34] are

given in Table 5.

6 Concluding remarks

Fractional differential equations have found applications in many different fields. In this paper, the op-

erational matrices of derivative and fractional Riemann-Liouville integration with Legendre polynomials
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(x, t) ξapproximate[31] ξapproximate[34] ξapproximate ξExact

( 1
8 , 1) 4.3724 × 10−2 4.34346 × 10−2 4.32696 × 10−2 4.32436 × 10−2

( 2
8 , 1) 8.0607 × 10−2 8.02566 × 10−2 7.99037 × 10−2 7.99519 × 10−2

( 3
8 , 1) 1.0532 × 10−1 1.04860 × 10−1 1.04462 × 10−1 1.04399 × 10−1

( 4
8 , 1) 1.1400 × 10−1 1.13500 × 10−1 1.13069 × 10−1 1.13001 × 10−1

Table 5: Comparision of numerical results for α = 1.5

have been successfully applied to compute approximate solutions of some fractional partial differential

equations. As test examples, the linear time fractional Klein-Gordan equation, dissipative Klein-Gordan

equation and diffusion-wave equation were considered. The numerical results demonstrated that the pre-

sented scheme provide approximate solutions in an acceptable agreement with exact solutions. Moreover,

results indicated that the propounded approach leads to a better approximation as the order of Legendre

polynomials increases. For future works this work can also be generalized and verified for more compli-

cated linear, nonlinear or high dimensions problems. It is worth mentioning that the numerical solutions

were obtained using Mathematica 11 software.

Acknowledgements

The authors wish to express their sincere thanks to the referees for their careful analysis of the manuscript

and their valuable suggestions which led to a considerably improved and gave the paper its final form.

References

[1] R. L. Magin. Fractional calculus in bioengineering. Redding: Begell House, 2006.

[2] M. Ralf, and J. Klafter. ”The restaurant at the end of the random walk: recent developments in the

description of anomalous transport by fractional dynamics.” Journal of Physics A: Mathematical

and General 37.31 (2004): R161-R208.

[3] Y. A. Rossikhin., and M. V. Shitikova. ”Applications of fractional calculus to dynamic problems of

linear and nonlinear hereditary mechanics of solids.” Applied Mechanics Reviews 50.1 (1997): 15-67.

[4] A. Carpinteri, and F. Mainardi, eds. Fractals and fractional calculus in continuum mechanics. Vol.

378. Springer, 2014.

[5] J. H. He. ”Nonlinear oscillation with fractional derivative and its applications.” International con-

ference on vibrating engineering. Vol. 98. (1998): 288-291.

[6] R. T. Baillie, ”Long memory processes and fractional integration in econometrics.” Journal of econo-

metrics 73.1 (1996): 5-59.

16



[7] J. H. He. ”Some applications of nonlinear fractional differential equations and their approximations.”

Bull. Sci. Technol 15.2 (1999): 86-90.

[8] B. Mandelbrot. ”Some noises with I/f spectrum, a bridge between direct current and white noise.”

IEEE transactions on Information Theory 13.2 (1967): 289-298.

[9] R. L. Bagley, and J. TORVIK. ”Fractional calculus-a different approach to the analysis of viscoelas-

tically damped structures.” AIAA journal 21.5 (1983): 741-748.

[10] L. Gaul, P. Klein, and S. Kempfle. ”Impulse response function of an oscillator with fractional deriva-

tive in damping description.” Mechanics Research Communications 16.5 (1989): 297-305.

[11] M. Caputo. ”Linear models of dissipation whose Q is almost frequency independentII.” Geophysical

Journal International 13.5 (1967): 529-539.

[12] A. Dzieliski, D. Sierociuk, and G. Sarwas. ”Some applications of fractional order calculus.” Bulletin

of the Polish Academy of Sciences: Technical Sciences 58.4 (2010): 583-592.

[13] D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek. ”Modelling heat transfer

in heterogeneous media using fractional calculus.” Phil. Trans. R. Soc. A 371.1990 (2013): 20120146.

[14] D. Baleanu, M. Inc, A. Yusuf, A. I. Aliyu. ”Lie symmetry analysis, exact solutions and conservation

laws for the time fractional modified ZakharovKuznetsov equation.” Nonlinear Anal. Model. Control

22.6 (2017): 861-876.

[15] M. A. Zaky, D. Baleanu, J. F. Alzaidy, E. Hashemizadeh. ”Operational matrix approach for solving

the variable-order nonlinear Galilei invariant advection–diffusion equation”. Advances in Difference

Equations, 1 (2018): 102.

[16] A. Yusuf, A. I. Aliyu, D. Baleanu. ”Soliton structures to some time-fractional nonlinear differential

equations with conformable derivative.” Optical and Quantum Electronics 50.1 (2018): 20.

[17] A.I. Aliyu, A. Yusuf. ”Solitons and conservation laws to the resonance nonlinear Shrdinger’s equation

with both spatio-temporal and inter-modal dispersions.” Optik-International Journal for Light and

Electron Optics 142 (2017): 509-522.

[18] M.M. Al Qurashi, A. Yusuf, A. I. Aliyu. ”Optical and other solitons for the fourth-order dispersive

nonlinear Schrdinger equation with dual-power law nonlinearity.” Superlattices and Microstructures

105 (2017): 183-197.

[19] A. I. Aliyu, A. Yusuf, D. Baleanu. ”Optical solitons and modulation instability analysis with (3+1)-

dimensional nonlinear Shrdinger equation.” Superlattices and Microstructures 112 (2017): 296-302.

[20] D. Baleanu, A. Yusuf, and A. I. Aliyu. ”Time fractional third-order evolution equation: symme-

try analysis, explicit solutions, and conservation laws.” Journal of Computational and Nonlinear

Dynamics 13.2 (2018): 021011.

17



[21] E. C. Aslan, M. Inc, M. M. Qurashi, D. Baleanu. ”On numerical solutions of time-fraction generalized

Hirota Satsuma coupled KdV equation.” Journal of Nonlinear Sciences Applications (JNSA) 10.2

(2017): 724-733.

[22] D. Baleanu, Y. Abdullahi, A. I. Aliyu. ”Optical solitons, nonlinear self-adjointness and conservation

laws for KunduEckhaus equation.” Chinese Journal of Physics 55.6 (2017): 2341-2355.

[23] M. Inc, A. I. Aliyu, and Y. Abdullahi. ”Optical solitons to the nonlinear Shrdingers equation with

spatio-temporal dispersion using complex amplitude ansatz.” Journal of Modern Optics 64.21 (2017):

2273-2280.

[24] D. Kondrashova, R. Valiullin, J. Krger, A. Bunde. ”Structure-correlated diffusion anisotropy in

nanoporous channel networks by Monte Carlo simulations and percolation theory.” The European

Physical Journal B 90.7 (2017): 136.

[25] V. F. Morales-Delgado, J. F. Gmez-Aguilar, H. Ypez-Martnez, D. Baleanu, R. F. Escobar-Jimenez,

V. H. Olivares-Peregrino. ”Laplace homotopy analysis method for solving linear partial differential

equations using a fractional derivative with and without kernel singular.” Advances in Difference

Equations.1 (2016): 164.

[26] H. Bulut, G. Yel, H.M. Baskonus. ”An application of improved Bernoulli sub-equation function

method to the nonlinear time-fractional Burgers equation.” Turkish Journal of Mathematics and

Computer Science 5 (2016): 1-17.

[27] A. Atangana, J. F. Gmez-Aguilar. ”Numerical approximation of Riemann-Liouville definition of

fractional derivative: From Riemann-Liouville to Atangana-Baleanu.” Numerical Methods for Partial

Differential Equations (2017).

[28] H. Yepez-Martineza , J.F. Gomez-Aguilar, I.O. Sosaa , J.M. Reyesa and J. Torres-Jimenez, ”The

Fengs first integral method applied to the nonlinear mKdV space-time fractional partial differential

equation.” Revista Mexicana de Fsica 62.4 (2016).

[29] E. Shivanian. ”Spectral meshless radial point interpolation (SMRPI) method to two-dimensional

fractional telegraph equation.” Mathematical Methods in the Applied Sciences 39.7 (2016): 1820-

1835

[30] V. R. Hosseini, E. Shivanian, W. Chen. ”Local radial point interpolation (MLRPI) method for

solving time fractional diffusion-wave equation with damping.” Journal of Computational Physics

312 (2016): 307-332.

[31] R. Du, W. R. Cao, Z. Z. Sun. ”A compact difference scheme for the fractional diffusion-wave equa-

tion.” Applied Mathematical Modelling 34.10 (2010): 2998-3007.

[32] M. Cui. ”Compact finite difference method for the fractional diffusion equation.” Journal of Com-

putational Physics 228.20 (2009): 7792-7804.

18



[33] JF. Gmez-Aguilar. ”Spacetime fractional diffusion equation using a derivative with nonsingular and

regular kernel.” Physica A: Statistical Mechanics and its Applications 465 (2017): 562-572.

[34] Z. Z. Sun and X. Wu. ”A fully discrete difference scheme for a diffusion-wave system.” Applied

Numerical Mathematics 56.2 (2006): 193-209.

[35] R. R. Nigmatullin. ”To the theoretical explanation of the universal response.” physica status solidi

(b) 123.2 (1984): 739-745.

[36] R. R. Nigmatullin. ”The realization of the generalized transfer equation in a medium with fractal

geometry.” physica status solidi (b) 133.1 (1986): 425-430.

[37] M. S. Rawashdeh and N. A. Obeidat. ”Applying the Reduced Differential Transform Method to Solve

the Telegraph and Cahn-Hilliard Equations.” Thai Journal of Mathematics 13.1 (2014): 153-163.

[38] A. H. Bhrawy, E. H., Doha, D. Baleanu, S. S. Ezz-Eldien. ”A spectral tau algorithm based on Jacobi

operational matrix for numerical solution of time fractional diffusion-wave equations.” Journal of

Computational Physics 293 (2015): 142-156.

[39] R. Darzi , B. Mohammadzade, S. Mousavi, R. Beheshti. ”Sumudu transform method for solving

fractional differential equations and fractional diffusion-wave equation.” J. Math. Comput. Sci 6

(2013): 79-84.

[40] M. Cui. ”Convergence analysis of high-order compact alternating direction implicit schemes for the

two-dimensional time fractional diffusion equation.” Numerical Algorithms 62.3 (2013): 383-409.

[41] B. Mbodje, G. Montseny. ”Boundary fractional derivative control of the wave equation.” IEEE

Transactions on Automatic Control 40.2 (1995): 378-382.

[42] X. Hu and L. Zhang. ”On finite difference methods for fourth-order fractional diffusionwave and

subdiffusion systems.” Applied Mathematics and Computation 218.9 (2012): 5019-5034.

[43] J. Chen, F. Liu, V. Anh, S. Shen, Q. Liu, C. Liao. ”The analytical solution and numerical solution of

the fractional diffusion-wave equation with damping.” Applied Mathematics and Computation 219.4

(2012): 1737-1748.

[44] F. Mainardi. ”The fundamental solutions for the fractional diffusion-wave equation.” Applied Math-

ematics Letters 9.6 (1996): 23-28.

[45] M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, C. Cattani. ”Wavelets method for the

time fractional diffusion-wave equation.” Physics Letters A 379.3 (2015): 71-76.

[46] W. Wess. ”The fractional diffusion equation.” Journal of Mathematical Physics 27.11 (1986): 2782-

2785.

[47] F. Mainardi. Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical

models. World Scientific, 2010.

19



[48] S. Momani and Z. M. Odibat. ”Fractional green function for linear time-fractional inhomogeneous

partial differential equations in fluid mechanics.” Journal of Applied Mathematics and Computing

24.1-2 (2007): 167-178.

[49] L. Debnath, D. Bhatta. ”Solutions to few linear fractional inhomogeneous partial differential equa-

tions in fluid mechanics.” FRACTIONAL CALCULUS AND APPLIED ANALYSIS. 7.1 (2004):

21-36.

[50] M. Dehghan, J. Manafian, A. Saadatmandi. ”The solution of the linear fractional partial differential

equations using the homotopy analysis method.” Zeitschrift fr Naturforschung-A 65.11 (2010): 935.

[51] H. Kheiri, S. Shahi, A. Mojaver. ”Analytical solutions for the fractional Klein-Gordon equation.”

Computational Methods for Differential Equations 2.2 (2014): 99-114.

[52] R. Garra, E. Orsingher, F. Polito. ”Fractional KleinGordon equations and related stochastic pro-

cesses.” Journal of Statistical Physics 155.4 (2014): 777-809.

[53] M. Inc, A. Yusuf, A. I. Aliyu A, D. Baleanu. ”Time-fractional CahnAllen and time-fractional Klein-

Gordon equations: lie symmetry analysis, explicit solutions and convergence analysis.” Physica A:

Statistical Mechanics and its Applications 493 (2018): 94-106.

[54] M. Dehghan, M. Abbaszadeh and A. Mohebbi. ”An implicit RBF meshless approach for solving

the time fractional nonlinear sine-Gordon and KleinGordon equations.” Engineering Analysis with

Boundary Elements 50 (2015): 412-434.

[55] I. Podlubny. Fractional differential equations: an introduction to fractional derivatives, fractional

differential equations, to methods of their solution and some of their applications. Vol. 198. Elsevier,

1998.

[56] A. Lotfi, M. Dehghan, SA. Yousefi. ”A numerical technique for solving fractional optimal control

problems.” Computers Mathematics with Applications 62.3 (2011): 1055-1067.

[57] K. Maleknejad k. Nouri, M. Yousefi. ”Discussion on convergence of Legendre polynomial for numer-

ical solution of integral equations.” Applied Mathematics and Computation 193.2 (2007): 335-339.

[58] E. Kreyszig. Introductory functional analysis with applications. Vol. 1. New York: wiley, 1978.

[59] S. Yousefi, M. Behroozifar. ”Operational matrices of Bernstein polynomials and their applications.”

International Journal of Systems Science 41.6 (2010): 709-716.

[60] D. R. Kincaid, E. W. Cheney. Numerical analysis: mathematics of scientific computing. Vol. 2.

American Mathematical Soc., 2002.

[61] M. Gasea and T. Sauer. ”On the history of multivariate polynomial interpolation.” Numerical Anal-

ysis: Historical Developments in the 20th Century. 2001. 135-147.

20



[62] Y. Khan, S. Panjeh Ali Beik, K. Sayevand, A. Shayganmanesh. ”A numerical scheme for solving

differential equations with space and time-fractional coordinate derivatives.” Quaestiones Mathe-

maticae 38.1 (2015): 41-55.

[63] A. Mohebbi, M. Abbaszadeh, M. Dehghan. ”Highorder difference scheme for the solution of linear

time fractional kleingordon equations.” Numerical Methods for Partial Differential Equations 30.4

(2014): 1234-1253.

21



 Applications of fractional partial differential equations appears in fluid 

mechanics.  

 The Klein-Gordon and diffusion-wave are two important kinds of these 

equations.  

 The computational cost of the presented numerical method is derived.  

 This approach based on the operational matrix of derivative which is sparse 

and cause the implementation run faster.   

 Comparison with other existed method show the superiority of the 

presented numerical method.   


