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An Anomaly Identification Model for Wind Turbine State 

Parameters

Abstract
Identifying the anomalies of wind turbine (WT) and maintaining in time will improve the 

reliability of wind turbine and the efficiency of energy use, however it is difficult toidentify 

the wind turbine’s abnormal operation by the traditional threshold settings because the 

anomalies can be induced by multiple factors.Therefore, this paper presents an anomaly 

identification model for wind turbine state parameters,and the model can identify abnormal 

state which the fluctuation range of the condition parametersis within the SCADA alarm 

threshold. The main work is as follows: 1) in order to increase the accuracy of the prediction 

model, a novel BPNN model integrated genetic algorithm (GA) was employed to optimize 

the training method (called GABP method), data samples, and input parameter selection, 

respectively; 2) on this basis, the distribution characteristics of state parameter prediction 

errors were depicted by a T-location scale (TLS) distribution with the shift factor and elastic 

coefficient; 3)error abnormal index (EAI) is defined to quantify the abnormal level of the 

prediction error, which is used as an indicator of the wind turbine anomaly. The proposed 

method has been applied on areal 1.5 MW wind turbine, and the analysis shows that the 

proposed method is effective in wind turbine anomaly identification.

Keywords:Wind turbine; Anomaly identification; State parameters; Back propagation neural 

networks (BPNN); T-location scale distribution; Error abnormal index
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1. Introduction

Wind power has attracted global attention in recent years as a clean and renewable energy 

generation (Li et al., 2017). Wind turbines (WTs) are an emerging renewable energy 

technology that have the potential to provide low carbon intensity power in the future (Cruz 

and Martín, 2016; Demir and Taşkın, 2013; Li et al., 2016; Ortegon et al., 2013). Rapid 

developments of wind energy in recent years have drawn attention to issues of operation and 

maintenance (O&M) of wind farms (Li and Chen, 2013). Andthe detection of wind turbine 

faults is considered to be a cost-effective approach to improve the reliability of WTs and 

reduce the O&M costs of the wind farms (Li et al., 2012).

Resently, the detection of wind turbine faults becomes a hot problem. In the study (Kusiak 

and Verma, 2012a; Kusiak and Li, 2010), three wind turbine condition parameters, including 

a main bearing temperature, a lubrication oil temperature of the gearbox, and the winding 

temperature of the generator, were modeled in a back propagation neural network (BPNN) 

for the fault detection of WTs based on SCADA data (Zaher et al., 2010). How to utilize the 

BPNNs to model the wind turbine parameters with SCADA data was also investigated in 

publications (Garcia et al., 2006a; Lapira et al., 2012; Schlechtingen and Santos, 2011a; 

Stickland, 2012; Xiang et al., 2009). A comparative analysis of two BPNN-based models and 

a regression-based model was presented (Schlechtingen and Santos, 2011a) for modeling 

parameters of gearbox bearing temperature and generator stator temperature. Besides, certain 

thresholds of prediction errors are usually set to identify the anomalies in the WTs (Kusiak 

and Verma, 2012b; Schlechtingen et al., 2013; Schlechtingen and Santos, 2011b). Intelligent 

anomaly identification systems, such as the multi-agent system (Zaher and Mcarthur, 2007) 

and SIMAP (Garcia et al., 2006b) were developed using the prediction models of the wind 

turbine condition parameters such as gearbox bearing temperature, gearbox oil temperature, 

and generator winding temperature. However, most of the previous studies identify the wind 

turbine’s abnormal operation by the traditional threshold settings, and it is difficult to identify 

abnormal state which the fluctuation range of the condition parameters is within the SCADA 

alarm threshold(Chandola et al., 2009; Sun et al., 2016; Sun et al., 2016).

To solve the problem, the paper developed an anomaly identification model for the wind 

turbine state parameters. The main work is as follows. First, in order to increase the accuracy 

of the prediction model, a novel BPNN model integrated genetic algorithm (GA) was 

employed to optimize the training method (called GABP method), data samples, and input 

parameter selection, respectively. On this basis, the distribution characteristics of state 



ACCEPTED MANUSCRIPT

3

parameter prediction errors were depicted by a T-location scale (TLS) distribution with the 

shift factor and elastic coefficient. After that, the estimated residual anomaly intensity of the 

turbine state parameter was quantized and indicated. Finally, the proposed method has been 

applied to a real 1.5 MW wind turbinefor verification.

2. General anomaly identification model of WT state parameters

A prediction model is set up to identify the turbine’s abnormal operation by analyzing the 

prediction residuals according to the following steps:

(1) Based on the data of the SCADA system, optimize the initial weights and thresholds of 

the BPNN by using a GABP-based training method for the prediction model;

(2) Establish data samples of state parameters in various distribution intervals and then 

train the prediction model by a 10-fold cross-validation;

(3) Analyze the precision of the prediction model by a suitable analysis index;

(4) Estimate the state parameters in the period concerned by the established state parameter 

prediction model to gain the prediction residual sequence;

(5) Study the statistics of the residual sequence’s distribution characteristics; gain the TLS 

fitting parameters by fitting the residual errors with TLS distribution, and then divide the 

ranges of residual anomaly intensity;

(6) Quantitatively analyze the intensity of residual anomaly in the period concerned and 

calculate a residual error abnormal index to identify any anomaly of the wind turbine’s state 

parameters.

The general anomaly identification model of WT state parameters is shown in Figure 1.

[Figure1 could be here]

3. PREDICTION MODEL OF WIND TURBINE STATE PARAMETERS

3.1GABP-based prediction model

Known for its strength to map complex nonlinear and unknown relationships, the BPNN is 

usually used by researchers to model unstructured problems (Goh, 1995; Haykin, 2009; Yao, 

1999). The multilayer feed-forward architecture of the BPNN is shown in Figure 2. This 

neural network is trained by using a back-propagation algorithm, which utilizes gradient 

descent to iteratively update the weights and biases of the neural network, minimizing the 

performance function commonly measured in terms of an error goal between the actual and 
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predicted output. Due to easy implementation, the BPNN is well adopted as a universal 

function approximator. However, its drawbacks of getting trapped in slow convergence and 

local minima also needs to be solved. These drawbacks are mainly attributed to random 

initialization of weights and biases before training a neural network. 

[Figure2 could be here]

In order to screen out the best network model for the BPNN, an effective methodology for 

improving its prediction performance and convergence to global optima is developed. There 

are many optimization methods that can be used to optimize BPNN parameters, such as GA, 

backtracking search algorithm (BSA), rain-fall optimization algorithm (RFO), artificial 

cooperative search and multi-objective PSO algorithm (Mostafa et al., 2016; Kaboli et al., 

2017; Kaboli et al., 2016; Rafieerad et al., 2016), which provide the possibility of optimizing 

BPNN parameters. The GA is a gradient-free global optimization and search method which 

imitates natural biological evolution (Srinivas and Patnaik, 2002; Whitley, 1994). Compared 

to traditional search and optimization procedures such as enumerative and calculus-based 

strategies, the GA is a promising optimization technique inspired by evolutionary processes, 

namely, natural selection and genetic variation (Grefenstette, 1986; Konak et al., 2006; 

Shrouf et al., 2014). The GA allows the simultaneous search for optimal solutions in different 

directions to minimize the chance of getting trapped in a local minimum and speed up its 

convergence. In this study, the GA is utilized to optimize the performance of BPNN. The 

flowchart of this hybrid GABP method is presented in Figure 3.

[Figure3 could be here]

The proposed hybrid GABP method has the followingsteps:

(1) Population initialization

Real-number encoding is applied to the individuals, each of which is a real number string 

composed of an input layer, hidden layer connection weight, hidden layer threshold, hidden 

layer, output layer weight and output layer threshold. The individuals, which incorporate all 

weights and thresholds of a neural network, can form a neural network with determined 

structure, weights, and threshold if the network structure is known.

(2) Fitness function

The BPNN is trained with training data; then the anticipated output is worked out. 



ACCEPTED MANUSCRIPT

5

Utilizing the GA to optimize the BPNN, the optimality is measured by the fitness functions 

that are defined in relation to the considered optimization problem. In the process of training 

and testing, the BPNN aims to improve the generalized performance of the regression model; 

in other words, to minimize the deviation of the testing samples between the expected values 

and forecasting values. Therefore, the fitness function can be defined as follows:

1
( ( - ))



 
n

i i
i

F k abs y o
                        (1)

where n is the total number of neural network output nodes, yiis the expected output at 

node i, oi is the forecasting output at node i, and k is the coefficient.

(3) Selection

For the selection operation of GA, several methods are available, (e.g., tournament and 

roulette) which are more commonly used in applications. The latter (roulette) is a selection 

tactic based on the fitness proportion, with pi,the probability of selecting each i,as follows:
/i if k F                                 (2)

1
/



 
N

i i i
i

p f f
                              (3)

where, k is the coefficient, N isthe population size, and Fi is the fitness of individual i, the 

smaller, the better. The fitness value is reciprocated before the individual is selected.

(4) Crossover

Given real number encoding for individuals, real number crossover is applied for this 

procedure.

The operation method of the k-th chromosome ak and the l-th chromosome al at j position 

can be expressed as
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where b is a random number at [0, 1].

(5) Mutation

The gene aij of the i-th individual is selected for mutation, and the mutation operation 

method is shown as
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where amaxand aminare the upper and lower limits of gene aijrespectively, r2 is a random 

number, g is the current iterations, Gmaxis the max iteration number, and r is a direct random 

number at [0, 1].
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3.2Selection of sample data and the input parameters

The status of WTs can be reflected by many parameters, among which the component 

temperature is of great importance. In addition, the condition parameters of WTs can be 

affected by wind speed, ambient temperature and the other components. Therefore, in 

traditional prediction techniques, the training model which uses recent samples does not 

consider the overall operation conditions of the WTs, and a significant prediction error may 

be induced once the other operating points of the parametric sequence appear. Since wind 

energy is random, the real-time sample model to a certain extent is for a single working 

condition. The forecast error can be increased when the volatility of unit operating conditions 

is high. Given the above challenges, in this study, we attempt to determine the section of 

monitored condition parameters of WTs to obtain the unabridged training samples for the 

condition parameters. Obviously, the condition parameters are predominantly wind speed.

In this section, the distribution of wind speed is first analyzed. The cut-in wind speed of the 

WTs is 3m/s, and only the wind speed greater than the cut-in speed is considered. Figure 4 

shows the distribution of wind speed values from ten WTs on a wind farm. It is observed that 

the scope of wind speeds on all WTs are similar, from 5m/s to 10m/s, and only a few values 

are higher than 15m/s. There are differences in the maximum, 75% and 25% of the WTs, 

because there is a wake effect in the wind speed.

[Figure4 could be here]

As an external factor of wind turbine’s operation, wind speed is related to the state 

parameters of the wind turbine. However, it is difficult to categorize the operating conditions 

of the wind turbine only by the wind speed, because the values of each state parameter may 

include the entire range of values in different wind speed intervals. Moreover, there are some 

correlations between the state parameters, and the other state parameters witha higher 

correlation degree can be selected to divide the state parameter interval.

Taking the temperature of gearbox input shaft as an example, when the wind speeds are 3-

4m/s or 4-5m/s, the temperature range of the gearbox in each wind speed range is 20-80°C, 

so the range cannot be divided. Therefore, according to the wind speed and the correlation 

levels of other parameters, the temperatures can be divided by the sample intervals. As shown 

in Figure 5, the wind speeds of 3-25m/s are divided into a Wx range, while the relevant 

monitoring parameters are divided into a Wy range. Each section is a sub-sample of the state 
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parameters, and all the sub-samples together constitute the sample data of the state parameter.

[Figure5 could be here]

Taking the state parameter data of #10 wind turbine in the SCADA system of a wind farm 

as an example, the data samples are divided into groups by taking into account the distinction 

between the samples and the number of samples. Table 1 shows the temperature intervals of 

gearbox input shaft in #10 wind turbine, which is composed of a total of 10 sub-samples. 

Among them, the number of samples larger than the rated wind speed range is limited, and 

these samples are individually divided into an interval.

In the state parameter prediction model, the selection of input parameters is a premise in 

simplifying models and ensuring prediction accuracy. In this paper, the input parameters are 

selected according to the correlation between the state parameters. Meanwhile, to avoid 

information redundancy, the condition parameters of the same type for the same components 

need to be removed. For instance, when the temperature of wind turbine winding (U1) is 

being predicted, although the temperature of wind turbine winding (U2) is closely related to 

U1 and a higher prediction precision can be achieved using U2 as the input parameter, the 

redundancy information would prevent the identification of abnormal information, hence we 

can select the temperature of wind turbine bearing as an input parameter. Besides, the wind 

speed is selected as one of the input parameters for all condition parameters.

[Table 1 could be here]

3.3 Precision analysis for prediction model

In this paper, the goal of wind turbine state parameter prediction is evaluated by the 

prediction accuracy. In order to comprehensively assess the effectiveness of the forecasting 

method, the following three indicators are used to measure the prediction accuracy.

The mean square error (MSE) can be presented by

                           (6)
' 2

1

1 ( )


 
n

t t
t

MSE y y
n

The mean absolute error (MAE) can be calculated by
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The mean absolute percent error (MAPE) can be calculated by
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wherein (6)-(8),yt' is the predicted value at time t, ytis the measured value at time t, and n is 

the length of the sample sequence.

(1) Effect of training methods on prediction precision

In this part, we take the SCADA data of a wind farm in China as an example to predict the 

temperature of wind turbine bearing (front) using BPNN and GABP respectively. For 

comparison, the input samples of the two prediction models are the normal sample data of the 

wind turbine in the most recent three months. The input parameters are the ambient 

temperature, wind speeds, and the temperatures of generator bearing at the last moment, and 

the output is the temperature of generator front bearing at the next time unit. Three prediction 

time intervals, namely 1 minute, 10 minutes and 15 minutes are set for the analysis and 

prediction of the temperature.

[Figure6 could be here]

[Figure7 could be here]

[Figure8 could be here]

Figures 6-8 present the temperature prediction results of generator front bearing under 

different prediction time intervals. Table 2 shows the results of prediction precision based on 

GABP and BP. It can be seen that the prediction errors of the two prediction methods become 

more significant as the prediction time scale increases. However, under the same prediction 

time scale, the prediction error of GABP is less than that of the BP neural network. 

Therefore, the GABP improves the prediction accuracy of the wind turbine state parameters 

and is used in this study.

[Table 2 could be here]

(2) Effect of training samples on prediction precision 

Based on the actual data of wind farm SCADA, the prediction accuracy is compared, based 

on the two kinds of training samples (the recent samples and our training samples) using the 

GABP method. For comparison, the input parameters are the ambient temperature, wind 

speeds, and the previous temperatures of generator bearing (front), and the output parameter 



ACCEPTED MANUSCRIPT

9

is the temperature of generator bearing at the next moment. The sample analysis period is 

from May 10 to May 26 in #10 wind turbine. The current samples are selected based on the 

normal data of #10 wind turbine from February to April.

Figures 9-10 show the prediction error sequences and residual distribution results of the 

two prediction methods in the analysis period, respectively. From Figure 9, the prediction 

error range of the training model with the current condition samples is large, and there are 

obvious errors between the anticipated value and real value at the moments 417, 1240 and 

1974, especially. According to the survey, there is no fault record for #10 wind turbine in this 

period, and this may be caused by the insufficiency of training samples. As seen in Figure 10, 

the models’ trained based on the presented data sampling method (seen in Section 3.2) can 

give a smaller fluctuation range of prediction error. Moreover, over 99% of errors appear at 

the temperature interval of [-5oC，5oC]. Table 3 shows the results of prediction precision 

based on two kinds of samples. It can be observed that our training samples, to some extent, 

can improve the prediction precision of condition parameters.

[Figure9 could be here]

[Figure10 could be here]

[Table 3 could be here]

(3) Effect of input parameters on prediction precision

For comparison, the wind turbine gearbox main shaft bearing temperature is taken as an 

example. Four input parameters models of the main bearing gearbox side temperature are 

established under the same data sample and training method. The models of the four input 

parameters are: (a) wind speeds and the previous monitored values; (b) ambient temperatures, 

and the previous monitored values; (c) wind speeds, ambient temperatures and the previous 

monitored values; and (d) wind speeds, the temperature of gearbox input bearing, and the 

previous monitored values.

Figure 11 presents the prediction error residuals based on the four models. From 11(a) and 

(b), it can be observed that the prediction error is large only when the wind speed or the 

ambient temperature is the input parameter. This is because the main bearing temperature is 

affected by the wind speed and the ambient temperature at the same time. Figure 11(c) shows 
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that the prediction error is better improved when the input parameters are both wind speed 

and ambient temperature. From Fig. 11 (d), it can be seen that the accuracy of the prediction 

is further improved when the ambient temperature is replaced by the temperature of gearbox 

input bearing. The comparison in Table 4 shows that the input parameters have a great 

influence on the accuracy of the prediction model. In particular, selecting the state parameters 

with wind speed and the parameters with large correlation as input parameters can improve 

the prediction accuracy.

[Figure11 could be here]

[Table 4 could be here]

4. ANOMALY IDENTIFICATION MODEL FOR TURBINE STATE 
PARAMETERS

4.1Distribution characteristics of state parameter prediction errors

In the literature, a normal distribution is always used to describe the prediction model of 

wind turbine state parameters (Schlechtingen et al., 2014). However, many tests have shown 

that the wind turbine state parameters show a "pointed apex and thick tail" distribution 

characteristic. Thus the normal distribution may not be suitable to describe the actual data.

The t location-scale (TLS) distribution is usually used to model data distributions with 

heavy tails (more prone to outliers). The TLS approaches the normal distribution as its shape 

parameter approaches infinity, and small shape parameters yield heavy tails. In this study, the 

TLS is used to depict the state parameter errors, and the fitting effect of the TLS is also 

verified.

The probability density function of the TLS distribution can be presented as 

1( )
2

1 ( )( )
2( , , , ) [ ]

( )
2


 

 



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



v
xv v

f x v
v vv

                      (9)
where Γ is the gamma function, µ is the location parameter, σ is the scale parameter, 

and ν is the shape parameter.The fitting effect of the TLS distribution is compared with the 

normal and logistic distributions. For more intuitive comparison, the fitting index is utilized 

to describe the difference between the probability density curve and the square probability 

density distribution; that is, the probability density distribution curve of the actual data. The 
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fitting index I is defined as

2

1
( ) ( ) 1, 2, ,



     ，，
M

i i i i
i

I y N y f C i M
                   (10)

where M is the number of groups of the frequency distribution histogram, Ni and Ci are the 

height and the central positions of the i-th square column respectively, f is the fitted 

probability density function, and yi is the value corresponding to the probability density 

function on the Ci. The smaller the fitting index I, the more accurate the fit.

The GABP method is used to predict the temperature of generator front bearing and the 

wind speed, whenthe temperature of generator front bearing at the previous moment and main 

bearing gearbox-side temperature (data of the farm’s #17 turbine in May 2012) are the input 

parameters. The prediction errors at time intervals of 1 minute, 10 minutes and 15 minutes 

are obtained. 

Table 5 lists the fitting precisions of the prediction errors under three time-intervals based 

on the normal, logistic, and the TLS distributions, respectively. Under the three prediction 

time-intervals, the TLS distribution is more accurate than the other two distributions. Figures 

12(a)~(c) show the fitting results of the prediction error of generator front bearing 

temperatures. It illustrates that the normal distribution has a large amplitude error at the tail of 

the fitting error distribution. In addition, the logistic distribution model has a large amplitude 

error in the central region of the fitting error distribution. Therefore, the overall probability 

density curve of TLS distribution is more accurate to describe the prediction error in the 

interval within the probability.

[Table 5 could be here]

[Figure12 could be here]

4.2Distribution characteristics of state parameter prediction errors

In this section, the TLS distribution is used to analyze the difference of the error 

distribution under different forecasting time-intervals and different operating conditions. The 

prediction errors of the generator bearing temperature (data of #17 turbine in May 2012) are 

analyzed. The change in wind speeds mainly leads to the variation of the operating condition 

of wind turbine. In order to ensure the number of sample data in each wind speed range, the 

values of wind speeds are divided into four wind speed ranges which are 3-6m/s, 7-9m/s, 9-

11m/s,  and 12-25m/s). In Table 6, the residual fitting parameters of TLS distributions in 
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different wind speed ranges under three prediction time scales are compared. It can be seen 

that the standard deviation of TLS distribution increases with respect to the increase of the 

wind speed at the same prediction time, indicating that the error dispersion increases with the 

increase of the wind speed. In the same wind speed range, the standard deviation of different 

prediction time interval is different. The larger the prediction time interval, the larger the 

standard deviation, indicating that the error disperses more widespread as the prediction time 

interval increases.

Figures 13 (a)-(c) show the prediction error probability density curves for the generator 

bearing temperatures under the predicted winds at three time intervals. It can be seen that the 

error probability density curves vary greatly at different wind speeds under the same interval 

and the error probabilities deviate to different degrees from the zero. In addition, the high 

wind speed leads toa flat probability curve and wide error distribution. Therefore, it is 

concluded that the prediction error of the wind turbine state parameters is highly related to 

the wind speed. Moreover, the probability density functions are different with different wind 

speed intervals for the prediction error of the same state parameter.

[Table 6 could be here]

[Figure13 could be here]

4.3Quantification of the abnormal level of prediction residuals

When the wind turbine is in normal operation, the prediction residual of the state parameter 

is the same as the distribution characteristic of the training error. Therefore, abnormal state 

parameters can be identified based on the characteristics of their residual distribution. At 

present, the standard normal distribution is mainly chosen to identify the anomaly of the 

parameters in the large data samples, but the accuracy of the state parameter fitting is low 

when applied in wind turbine state parameters.

Figures 14(a)-(d) show the probability density curves of the temperature residual of 

generator front bearing in different operating conditions. It can be seen that the TLS 

distribution has a good fitting effect with different wind speed ranges in this study.

[Figure14 could be here]

The traditional method of identifying the residual error is to determine the threshold by 

setting the confidence interval of the prediction residual. However, the data of the farm’s 
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SCADA system can be affected by multiple non-turbine-fault factors(e.g., sensor faults and 

interfered data transmission resultedinexcessive residuals). Moreover, the distribution 

characteristics of prediction residuals are based on the statistical rule of massive data, and the 

judgment of a single data’s threshold is not able to present the general anomaly information 

of the turbine operation state. Therefore, an abnormal index is presented in this paper based 

on the residual distribution of turbine state parameters to identify the anomaly of these 

parameters.

For normal state parameters, the prediction residual errors stay within the wide range of the 

probability density. However, narrow ranges might indicate anomaly of state parameters. 

Therefore, we set quantiles at 0.025, 0.25, 0.75 and 0.975, based on the probability 

distribution of the parameter residuals. Combined with the parameters of the TLS 

distribution, the residual value ranges can be divided as shown in Figure 15.

[Figure15 could be here]

The error abnormal index (EAI) refers to the residual error’s intensity of anomaly and can 

be calculated by

1 1
3

1

1



 

 i i
i

N CEAI
N C

                               (11)
where Ni refers to the number of residual sequences in interval i, Ci is the penalty factor in 

interval i (set to [1, 3, 5]), N1 is the number of residual sequences in the first interval, and C1 

is set to 1. A greater EAI means a higher intensity of residual anomaly. According to the data 

tests and statistics in our studies, the wind turbine state parameters can be directly judged 

abnormal when EAI exceeds 0.8.

5. CASE ANALYSIS

This case study is based on the SCADA data of a real wind farm. The farm’s repair record 

showed that the #17 turbine was shut down on May 30, 2012, due to the overheating of the 

generator rear bearing. However, the SCADA system did not have any status parameter limit 

alarm records before the fault occurred. In order to analyze the pre-fault changes of generator 

rear bearing temperature, the analysis period is two months before the fault occurred, from 

April 1 to May 30, 2012. The analysis of the identification process is as follows:

(1) Temperature prediction of generator rear bearing 
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First, the temperatures of generator rear bearing during the above-mentioned 60 days are 

predicted every 10 minutes by the GABP method. In the training phase, the first correlation 

quantity in the samples is the wind speed, and the second correlation quantity is the generator 

winding temperature, both of which are used to establish the training data samples of the 

temperatures. In the prediction phase, the data is tested by cross-validation based on different 

wind speed ranges. The input parameters of the prediction model are wind speed, generator 

winding temperature, and generator rear bearing temperature at the last time unit, and the 

output parameter is the generator rear bearing temperature at the next time unit.

Figures 16(a) and (b) show the prediction results of generator rear bearing temperatures by 

GABP on April 1, 2012, with the following prediction precisions of MSE=0.91°C, 

MAE=0.49°C and MAPE=1.23%. It can be seen that the GABP has an excellent prediction 

performance for the generator rear bearing temperatures.

According to the above prediction process, a rolling prediction method is employed to get 

the residual sequences from April 1 to May 30. Figure 17(a) shows the prediction results of 

generator rear bearing temperatures in this study period. From Figure 17(a), the maximum 

temperature of generator rear bearing is 95.20oC in. However, the upper limit warning 

temperature of generator rear bearing is usually set at 110oC. Hence the monitoring of 

SCADA fails to alarm the fault because the maximum temperatures in the whole study period 

are less than 110oC. From the residual sequences shown in Figure 17(b), it can be seen that 

the residual error increases abruptly at the moment 6500, to a max of 7.4°C and -4.23°C. The 

residual error changes in a wide range which necessitates a further quantitative analysis of the 

residual sequence in thefollowing:

[Figure16 could be here]

[Figure17 could be here]

(2) Quantitative analysis of TLS fitting residuals

Table 7 lists the TLS distribution parameters of sample data under the four wind speed 

ranges. Figures 18 (a)-(d) show the TLS distribution characteristics. It can be seen that the 

fitting curves are symmetrical about the maximum value, but the mean values have different 

degrees of deviation from zero. In addition, Table 8 shows the results of fitting accuracy. 

From the table, we can conclude that the TLS has an excellent fitting performance in the 

application of fitting residuals for generator rear bearing temperatures.
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[Table 7 could be here]

[Figure18 could be here]

[Table8 could be here]

(3) EAI analysis

According to Section 4.4 (Quantification of the residual anomaly), the division results of 

the sample residuals are shown in Table 9. In this case, the sliding window period is set to be 

one day for such an extended analysis period. The EAIs are calculated according to (11), and 

the result is shown in Figure 19. The figure shows that the EAIs increase continuously from  

Day 40 to Day 46. The EAI reaches 0.8 on Day 46, and the abnormal index of more than 0.8 

lasts four days. Afterwards, the EAIs drop down, and then they quickly rise again before the 

failure with the abnormal index of more than 0.8, lasting four days,occurs again. These 

observations show that the state parameter is abnormal.

In this case, although the bearing temperature is abnormal due to the fault, the fluctuation 

range of the state parameter is still within the SCADA alarm threshold. Thus, the abnormal 

state cannot be detected in time based on the monitoring of the SCADA alarm system. In this 

paper, a state parameter prediction model is established by normal sample data based on 

GABP. The EAI is used to quantify the anomaly and reflects the anomaly of the state 

parameters. It is found that there is a large error between the predicted value and the actual 

value of the generator bearing temperatures at the early stage of the fault, and the residual 

distribution is different from normal. Therefore, the case analysis verifies the validity of the 

proposed identification model. Moreover, this method shows advantages of detecting the 

abnormal information of the state parameters in advance and then avoiding the occurrence of 

severe faults of the WTs.

[Table 9 could be here]

[Figure19 could be here]
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6. Conclusions
An anomaly identification model for wind turbine state parameters was presented in this 

paper. The conclusion can be summarized as follows:

Firstly, the wind turbine state parameter prediction model has been developed and trained 

by the GABP algorithm. The influence of the training algorithm, data samples and input 

parameters on the prediction performance of the developed models has been analyzed. 1) The 

GABP optimized model can provide much higher accuracy than the BPNN based model: the 

MSE(°C), MAE(°C), and MAPE(%) of GABP and BP with 1 minute interval time are 

(0.0530, 0.0367, 0.0964) and (0.0705, 0.0556, 0.1476), respectively; the MSE(°C), MAE(°C), 

and MAPE(%) of GABP and BP with 10 minute interval time are (0.1998, 0.1625, 0.4380) 

and (0.2884, 0.2255, 0.6247), respectively; the MSE(°C), MAE(°C), and MAPE(%) of 

GABP and BP with 15 minute interval time are (0.2701, 0.2096, 0.5435) and (0.3095, 

0.2385, 0.5977), respectively. 2) The accuracy of prediction models developed by using the 

proposed data sampling method is higher than that trained by the current data: the MSE(°C), 

MAE(°C), and MAPE(%) of recent samples and samples of this paper with 1 minute interval 

time are (1.3822, 1.0563, 2.0231) and (1.0977, 0.6448, 1.4491), respectively; the MSE(°C), 

MAE(°C), and MAPE(%) of recent samples and samples of this paper with 10 minute 

interval time are (1.5479, 0.9888, 2.1844) and (1.2514, 0.9661, 1.8789), respectively; the 

MSE(°C), MAE(°C), and MAPE(%) of recent samples and samples of this paper with 15 

minute interval time are (1.7643, 1.2633, 2.3431) and (1.4327, 1.1608, 2.0742), respectively. 

3) Selecting the state parameters with wind speed and the parameters with large correlation as 

input parameters can further improve the prediction accuracy: the MSE(°C), MAE(°C), and 

MAPE(%) of Input parameters including a) Wind speeds and the previous monitored values, 

b) Ambient temperatures and the previous monitored values, c) Wind speeds, ambient 

temperatures and the previous monitored values, d) Wind speeds, temperature of gearbox 

input bearing and the previous monitored values are (1.4473, 1.0901, 2.1886), (1.2327, 

0.9505, 2.0491), (1.1356, 0.8087, 1.5926), and (1.1180, 0.7692, 1.3826), respectively.

Secondly, the TLS distribution is employed to characterize the distribution of condition 

parameter prediction error under different wind speed intervals which is better than Normal 

distribution and Logistic distribution. And the Fitting precisions of the prediction errors of the 

three distributions (Normal distribution, Logistic distribution, and TLS distribution) in 1-

minute interval time, 10-minutes interval time, and 15-minutes interval time are (0.1054, 

0.0815, 0.0493), (0.0779, 0.0943, 0.0772), and (0.1760, 0.1301, 0.1245), respectively.
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In addition, A case study for an onshore wind farm has been carried out and analyzed. In 

this case, although the bearing temperature is abnormal due to the fault, the fluctuation range 

of the state parameter is still within the SCADA alarm threshold. Thus, the abnormal state 

cannot be detected in time based on the monitoring of SCADA alarm system by regular 

method. However, by the proposed method, the EAI reaches 0.8 on the Day 46, and the 

abnormal index of more than 0.8 lasts four days, which shows that the state parameter is 

abnormal. The results show that the proposed method is effective in anomaly identification of 

WTs and can provide an early warning before the wind turbine faults occur.

Although the proposed model can provide a good performance for anomaly identification 

of wind turbine, some improvements of the model are needed. For example, GABP can 

provide good performance in the forecasting process in the paper, however, there are many 

effective optimization methods that can be used to optimize BPNN parameters, such as RFO, 

artificial cooperative search algorithm and optimized gene expression programming (Kaboli 

et al., 2017; Kaboli et al., 2016; Kaboli et al., 2017), which may have a similar performance 

with GABP. Thus, a subsequent work needs to be addressed in the near future, although not 

demonstrated in this paper.
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Figure 6 Prediction results of generator front bearing under time interval of 1 minute
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Figure 12 Fitting results of prediction error of generator front bearing temperatures
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Figure 16 Prediction results of generator rear bearing temperatures
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Table list

Table 1 Temperature intervals of gearbox input shaft in #10 WT

Sample of input shaft 
temperatureRange of wind 

speed range
Range of main bearing 

temperature
number sample size

5-20°C Y11 4237

20-35°C Y12 791743-6m/s

35-50°C Y13 89592

5-20°C Y21 1048

20-35°C Y22 250946-9m/s

35-50°C Y23 4596

5-20°C Y31 0

20-35°C Y32 103059-12m/s

35-50°C Y33 11804

>12 and <25m/s 5-50°C Y41 2580

Table 2 Prediction precision results based on GABP and BP

Indicators of evaluationInterval of 
forecast time

Training 
methods MSE(°C) MAE(°C) MAPE(%)

BP 0.0705 0.0556 0.1476
1 min

GABP 0.0530 0.0367 0.0964

BP 0.2884 0.2255 0.6247
10 mins

GABP 0.1998 0.1625 0.4380

BP 0.3095 0.2385 0.5977
15 mins

GABP 0.2701 0.2096 0.5435
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Table 3 Results of prediction precision based on two kinds of samples

Indicators of evaluation
Samples Sample 

selection MSE(°C) MAE(°C) MAPE(%)

recent samples 1.3822 1.0563 2.0231
1 min samples of 

this paper 1.0977 0.6448 1.4491

recent samples 1.5479 0.9888 2.1844
10 mins samples of 

this paper 1.2514 0.9661 1.8789

recent samples 1.7643 1.2633 2.3431
15 mins samples of 

this paper 1.4327 1.1608 2.0742

Table 4 Prediction error results based on the four models

Indicators of evaluation
Input parameters

MSE(°C) MAE(°C) MAPE(%)

Wind speeds and the previous 
monitored values 1.4473 1.0901 2.1886

Ambient temperatures and the 
previous monitored values 1.2327 0.9505 2.0491

Wind speeds, ambient 
temperatures and the previous 

monitored values
1.1356 0.8087 1.5926

Wind speeds, temperature of 
gearbox input bearing and the 

previous monitored values
1.1180 0.7692 1.3826
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Table 5 Fitting precisions of the prediction errors

Distribution model
Interval of 

forecast time Normal 
distribution

Logistic 
distribution

TLS 
distribution

1 min 0.1054 0.0815 0.0493

10 mins 0.0779 0.0943 0.0772

15 mins 0.1760 0.1301 0.1245

Table 6 Residual fitting parameters of TLS distributions

Interval of forecast time wind speed m/s μ/°C σ/°C v

3-6 -0.0061 0.0632 2.0053

6-9 0.0016 0.0552 8.88081

9-12 0.2272 0.0764 2.8462
1 min

>12 and<25m/s -0.0429 0.1051 6.9641

3-6 0.3413 0.2668 2.21639

6-9 0.2541 0.2726 1.68373

9-12 0.0327 0.2830 2.1786
10 mins

>12 and<25m/s 0.2293 0.3046 1.6602

3-6 0.2033 0.2971 2.2708

6-9 0.0715 0.3322 2.2233

9-12 0.1257 0.4355 2.5481
15 mins

>12 and<25m/s 0.4271 0.4703 2.3381

Table 7 TLS distribution parameters of different sample data

Sample number μ/°C σ/°C v

Sample 1 0.1256 0.5722 2.9020

Sample 2 0.4419 0.7543 5.7670

Sample 3 0.9168 0.8847 4.2980

Sample 4 0.2301 0.98441 2.7151
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Table 8 TLS fitting accuracy results of different samples

Sample number Indicator value

1 0.0824

2 0.0752

3 0.1046

4 0.1244

Table 9 Results of the residual quantiles under four kinds of wind speeds

Quantile
Sample number

0.025 0.25 0.75 0.975

1 -1.7307 -0.3140 0.5652 1.9819

2 -1.4220 -0.1007 0.9845 2.3058

3 -1.7440 0.1923 1.6413 3.5776

4 -2.8814 -0.8383 0.3781 2.4212


