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h i g h l i g h t s

• To protect data privacy, multiple parties encrypt their data under their own public key of double decryption algorithm, before outsourcing it to cloud
for storing and processing.
• To improve the efficiency and accuracy of the computation, cloud transforms the encrypted data into noised data, such that the machine learning

algorithm can be executed on this noised data with ϵ-differential privacy.
• The proposed scheme is proven to be secure in the security model.
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a b s t r a c t

With the fast development of cloud computing, more and more data storage and computation are moved
from the local to the cloud, especially the applications of machine learning and data analytics. However,
the cloud servers are run by a third party and cannot be fully trusted by users. As a result, how to perform
privacy-preserving machine learning over cloud data from different data providers becomes a challenge.
Therefore, in this paper, we propose a novel scheme that protects the data sets of different providers
and the data sets of cloud. To protect the privacy requirement of different providers, we use public-key
encryption with a double decryption algorithm (DD-PKE) to encrypt their data sets with different public
keys. To protect the privacy of data sets on the cloud,weuse ϵ-differential privacy. Furthermore, the noises
for the ϵ-differential privacy are added by the cloud server, instead of data providers, for different data
analytics. Our scheme is proven to be secure in the security model. The experiments also demonstrate the
efficiency of our protocol with different classical machine learning algorithms.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the fast development of cloud computing, more andmore
data and applications are moved from the local to cloud servers,
including machine learning and other data analytics. However, the
cloud computing platform cannot be fully trusted because it is
run by a third party. Cloud users lose the control of their data
after outsourcing their data to the cloud. To protect the privacy,
the data are usually encrypted before they are uploaded to the
cloud storage. However, the encryption techniques render the data
utilization difficult.
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Though there are some traditional techniques such as homo-
morphic cryptographic techniques to provide solutions for the data
utilization over encrypted data, they are inefficient in practice. To
address this challenge, another important notion of differential
privacy has been proposed. It can not only protect the privacy, but
also provides efficient data operations.

However, most of the previous mainly focus on the data from
a single user. It is common that the data always from different
data providers for machine learning. Therefore, how to perform
machine learning over cloud data from multiple users become
a new challenge. Traditional differential privacy technique and
encryptionmethods are not practical for this environment. On one
hand, the data from different users are encrypted with different
public keys or noises, which makes the computation be difficult.
On the other hand, data have to be proceeded in different ways
for different applications, which makes both the communication
overhead and computation overhead be huge.
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Main idea. To tackle the above challenges,we propose a scheme
named privacy-preserving machine learning under multiple keys
(PMLM) to solve this problem. Since the secure multi-party compu-
tation (SMC) only supports the computation on the data encrypted
under the same public key and the efficiency and accuracy of the
computation need to be improved. Therefore, our PMLM scheme as
an efficient solution is required that conducts the data encrypted
under different public keys for different data providers and im-
proves the efficiency and accuracy. Our novel technique based on
a new public-key encryption with a double decryption algorithm
(DD-PKE) and differential privacy. The DD-PKE is additively ho-
momorphic scheme and holds two independent decryption algo-
rithms which allows the outsourced data set to be transformed
into randomized data. The differential privacy can be used to add
statistical noises to the outsourced data set for data analyses and
data computations.

Our PMLM schemeworks as follows. First, we set up a public-key
encryption with a double decryption algorithm (DD-PKE) to pro-
tect the data privacy of multiple data providers. During this phase,
we do not take the differential privacy protection into considera-
tion. We then use a cloud server to add different statistical noises
to outsourced ciphertexts according to the different applications
of the data analyst, and these noises are encrypted under a public
key corresponding to the outsourced ciphertexts. Finally, the data
analyst downloads this noise-added ciphertext data sets, decrypts
it using his or her ownmaster key and performs amachine learning
task over this joint distribution with minimum error.

Our Contributions. In our PMLM scheme, we assume that the cloud
server and data analyst are not collude with each other and that
they are semi-honest. In all steps of PMLM scheme, the multiple
users do not interact with each other. We show that our PMLM
scheme is IND-CCA secure in the random oracle model.

In particular, the main contributions of this work are summa-
rized as follows:

• In this work, the cloud server has the authority to add dif-
ferent statistical noises to the outsourced data set according
to different queries of the data analyst rather than the data
providers adding statistical noise by themselves with only
one application.
• We use a DD-PKE cryptosystem to preserve the privacy of

the data providers’ data sets, which can be used to trans-
form the encrypted data into a randomized data set without
information leakage.
• In our PMLM scheme, themachine learning task is performed

on a randomized data set with ϵ-differential privacy rather
than on the encrypted data set. This process improves the
computational efficiency and data analysis accuracy.

Organization of the Paper. The remainder of this paper is or-
ganized as follows. Section 2 provides a literature review over
privacy-preserving machine learning based on differential privacy
protection. Section 3 presents some notations and definitions on
cryptographic primitives and differential privacy. In Section 4, we
present the system model, the problem statement and the adver-
sary model. In Section 5, we provide the PMLM scheme. Then, we
present our simulation results in Section 6 and the security analysis
in Section 7. Finally, the conclusions and directions for future work
are presented in Section 8.

2. Related work

Machine learning is the process of programming computers to
optimize a performance criterion using example data or prior ex-
perience. Because of its powerful ability to process large amounts
of data, machine learning has been applied in various fields in

recent years, including speaker recognition [1], image recogni-
tion [2,3] and signal processing [4]. To protect the data privacy
in the machine learning model, two well-known lines of research
should be considered in our work.

2.1. Homomorphic encryption in machine learning

There are many works considering the problem of privacy pre-
serving for outsourced computation. Homomorphic encryption is
one of the basic techniques, which can be also applied in machine
learning. To protect the privacy of users’ sensitive data, users only
provide the encrypted data for data storing and data processing.
For instance, Chen et al. [5] presented a privacy-preserving two-
party distributed algorithm of back-propagation neural networks
(BPNN) which allows a neural network to be trained without
revealing the information about each of party. To preserve the
privacy of input data and output result, they used a homomorphic
scheme to keep the security. In their work, the BPNN conducts the
vertically partitioned data, i.e., each party has a subset of feature
vector. Due to their scheme only process vertically partitioned
data, in the subsequent work, Bansal et al. [6] proposed a similar
scheme for privacy-preserving BPNN over arbitrarily partitioned
data between two parties. However, all works [5,6] cannot be
applied to the multi-party scenario because directly extending
them to the multi-party scenario will lead to the communication
overhead.

Hence, Samet et al. [7] presented new privacy-preserving pro-
tocols for both the BPNN and extreme learning machine (ELM)
algorithmswith horizontally and vertically partitioned data among
multiple parties. Graepel et al. [8] proposed secure machine learn-
ing scheme over encrypted data, they only trained two simple
classifiers, linearmeans (LM) and fisher’s linear discriminate (FLD).
Dowlin et al. [9] proposed a scheme, called CryptoNets, which
used an fully homomorphic encryption scheme of Bos et al. [10]
to evaluate deep convolutional neural networks (CNN) with two
convolutional layers and two fully connected layers. Hesamifard
et al. [11] proposed a CryptoDL scheme, which is a solution to run
deep NN algorithms on encrypted data and allow the parties to
provide/ receive the servicewithout having to reveal their sensitive
data to the other parties. Themainwork of CryptoDL is combine the
CNN with leveled homomorphic encryption (LHE). Gao et al. [12]
considered a situation that a user requests a naive Bayes classifier
server, both the user and the server do not want to reveal their
private data to each other. Their key technique involves the use of
a ‘‘double-blinding’’ technique, and they shown how to combine it
with additively homomorphic encryptions and oblivious transfer
to hide both parties’ privacy. There are also many other solutions
by using other outsourcing computation techniques, such as [13–
20].

2.2. Differential privacy in machine learning

Differential privacy [21,22] is a popular approach to privacy
protection for machine learning algorithms on data sets, including
Bayesian inference, empirical risk minimization (ERM), stochastic
gradient descent (SGD), and so on. The main idea of differential
privacy in machine learning is to learn a simple rule automatically
from the distributional information of the data set at handwithout
revealing too much about any single individual in the data set. In
fact, we often want to perform privacy-preserving machine learn-
ing as accurately as possible, just like we perform non-privacy-
preserving machine learning on the same number of examples.

Dwork [23] first considered the original definition of ϵ-
differential privacy protection, where the parameter ϵ (> 0) is
a real number and controls how much information is disclosed
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about an individual’s data through a statistical analysis and com-
putation. Subsequently, several variations on the formal definition
of differential privacy, such as computational differential privacy
(CDP) [24] and differentially private consensus algorithm [25] have
been proposed. Friedman and Schuster [26] considered machine
learning within the framework of differential privacy. Under the
condition of privacy and algorithmic requirements, they focused
on decision tree induction as a case study. Abadi et al. [27] devel-
oped new algorithm techniques for learning and a refined anal-
ysis of privacy costs under the framework of differential privacy.
In [28,29], the authors interested how to build differential-privacy
algorithm within the Naive Bayes framework.

3. Preliminaries

In this section, we present some notations, cryptographic prim-
itives and differential privacy that will be used throughout this
paper.

3.1. Notations

Let N, Z and R be sets of all natural numbers, all real numbers
and all integer numbers, respectively. We denote by Rn the n-
dimensional real space and byR+(Z+) the space of all positive real
(integer) numbers. Let [1, n] be a set from 1 to a natural number
n. Let p, q be two primes, and let N = qp2. We write Zp as a set of
{0, 1, . . . , p−1}, andZ∗p = Zp\{0}. LetX = {x ∈ Z∗

p2
|x = 1mod p}

be the p-Sylow subgroup of Z∗
p2
. We use # to denote the order of a

set or an element, such as Zp2 is a cyclic group with order p(p− 1),
i.e., #Zp2 = p(p − 1), and the order of X is #X = p. We define a
function L over X as follows:

L : X → Zp

L(x) :=
x− 1
p

.
(1)

From the definition of L, we can obtain a homomorphic prop-
erty from multiplication to addition as the following lemma:

Lemma 1 (Isomorphism, [30]). For any a, b ∈ X , it has

L(ab mod p2) = L(a)+ L(a) mod p. (2)

Corollary 1 ([30]). For any x ∈ X such that L(x) ̸= 0 mod p and
y = xm mod p2 for m ∈ Zp, it has

m =
L(y)
L(x)
=

y− 1
x− 1

mod p. (3)

Definition 1 (Negligible Functions). We say that a function neg :
N→ R is negligible if for every positive polynomial poly(·) and for all
sufficiently large n,

neg(n) <
1

poly(n)
. (4)

Definition 2 (One-Way). A function f : {0, 1}∗ → {0, 1}∗ is called
one-way if there existed a polynomial time machine A is easy to
output f (x) on input x, and if each probabilistic polynomial time
machineA′ is hard to find an invert of input yunder f , the successful
probability of A′ maybe only with negligible in the length of y.

We use |·| to denote the size of data set D or the bit length of
data x, and we use ⊕ to denote the addition mod 2 of the binary
vectors. For a random variable or distribution S, let s ← S denote
that element s is selected uniformly at random from S according to
its distribution. For a probabilistic polynomial time (PPT) algorithm
A, we write y ← A(x) if A output y on fixed input x according to

A’s distribution. Occasionally, we use y← A(x, r) to denote that y
is computed by running the deterministic time (DT) algorithm A on
input x and randomness r , which are chosen uniformly at random
from some randomness space.

3.2. Diffie–Hellman and discrete logarithm problem over ZN

The Diffie–Hellman (DP) problem as a cryptographic primitive
has beenwidely used inmany cryptographic schemes. LetP(κ) be a
set of all prime numbers with length κ . For any two distinct primes
p, q ∈ P(κ), define N = qp2. Let Gp = {x ∈ ZN |#(xp−1 mod p2) =
p} be a set. The p-DH problem is defined below:

Definition 3 (p-Diffie–Hellman, p-DH). Given three elements a, b←
Z∗p , g ← Gp, and (ga mod N, gb mod N), find gab mod N.

From Definition 3, we know that the hardness of the Diffie–
Hellman problem over Zqp2 is based on the modulo size. If the size
of exponent is κ = 160 bit, then it is sufficient for obtaining the
current desired security on the DH problem. Therefore, the choice
of κ should be not too small to be broken.

Weuse p-DL to denote the discrete logarithm (DL) problemover
Z∗N , the formal definition is given below:

Definition 4 (p-Discrete Logarithm, p-DL). Given a set Gp, an ele-
ment g ∈ Gp and ga mod N for a ∈ ZN , find amod p.

3.3. Public-Key encryption with a double decryption algorithm

Generally speaking,most of public-key encryption scheme gen-
erally has only one decryption algorithm. However, there are some
special public-key encryption schemes that have a double decryp-
tion algorithm, denoted as DD-PKE. The formal definition of DD-
PKE scheme is given as follows.

Definition 5 (DD-PKE). A public-key encryption scheme with a
double decryption Π = (Setup, KeyGen, Enc, uDec, mDec) con-
sists of the following PPT algorithms:

Setup(1κ ). In setup algorithm, it takes the system se-
curity parameter κ as input and outputs a
tuple (pp,msk), where pp is a public sys-
tem parameter, which contains descrip-
tion of theplaintext spaceP and ciphertext
space C, and msk is the master secret key,
which is only known to the master entity.

KeyGen(pp). The key generation algorithm that gener-
ates the user’s public key pk and secret key
sk.

Enc(pp, pk,m). The encryption algorithm takes the public
system parameter pp, a user’s public key
pk and a message m ∈ P as input and
outputs a ciphertext c ∈ C.

uDec(pp, sk, c). The user decryption algorithm takes pub-
lic system parameter pp, the user’s secret
key sk and a ciphertext c ∈ C as input
and returns a message m ∈ P or a special
symbol⊥.

mDec(pp, pk,msk, c). Themaster decryption algorithm takes the
public system parameter pp, a user’s pub-
lic key pk, the master secret key msk and
a ciphertext c ∈ C as input and returns a
message m ∈ P or a special symbol⊥.
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According to the definition of DD-PKE, we know that for the key
generation algorithm KeyGen, the user does not obtain the master
secret key msk as input and msk is only kept by the master entity.
Additionally, for themaster decryption algorithmmDec, themaster
entity takes the user’s public key pk as one of the inputs, which
means that the mDec algorithm is dependent on the users’ public
key.

3.4. Differential privacy

Prior to defining the system model that we study, we will
provide some notations. We assume a data set D with d attributes
{Γ1, Γ2, . . . , Γd}, the value domain of an attribute Γi by a real
number xi ∈ R, and its size by |D|. Two data setsD andD′ are said to
be neighbors if they have the same cardinality and differ by at most
one record. We use D = ∪n

k=1Dk to denote an aggregated data set,
with sizes increasing according to the parameter k. MechanismM
is a randomized function mapping a data set D into an output in a
range space, i.e., M : D → Range(M), which is said to preserve
differential privacy if any computational result from D and its
neighbor D′ will be statistically indistinguishable. Specifically, we
provide a formal definition of differential privacy as follows:

Definition 6 (ϵ-Differential Privacy, ϵ-DP [21]). A random mech-
anism M is said to be ϵ-differential privacy if for any pair of
neighboring data sets D and D′ and for any possible anonymized
data set O in output range space Range(M),

Pr[M(D) = O] ≤ eϵ
× Pr[M(D′) = O] (5)

where the probability Pr[·] is taken over the randomness of mecha-
nism M and also shows the risk of privacy disclosure.

In this definition, ϵ is a predefined privacy parameter for con-
trolling the privacy budget, and it depends on the output of the sta-
tistical analysis and computation, the way in which the statistical
analysis and computation are performed, and the information that
the individual wants to hide. The smaller ϵ is, the stronger is the
privacy protection. To achieve ϵ-DP, a private version of a function
f needs to be constructed that maps a data set into numbers. These
types of functions f are fundamental tools for statistical analysis
and are called numeric queries. Typically, the numeric query has
bounded sensitivity, and the maximum impact of a tuple on the
output of f is called its sensitivity. The formal definition is given
below.

Definition 7 (Sensitivity). Assume that f is a numeric query func-
tion that maps a data set D into a d-dimensional real space Rd,
i.e., f : D → Rd. For any pair of neighboring data sets D and D′,
the sensitivity f is defined as

∆f = max
D,D′
∥f (D)− f (D′)∥L1 (6)

where ∥ · ∥L1 denotes the L1 norm.

There are two standardmechanisms used to choose the statisti-
cal noise and achieve differential privacy: the Laplace mechanism
and the exponential mechanism. Both of these mechanisms are
based on the concept of the sensitivity of f . In this paper, we
mainly consider the Laplace mechanism, which adds statistical
noise drawn from a Laplace distribution to the data sets.

Theorem 1 (Laplace Mechanism). Let σ ∈ R+, and f is a numeric
query function that maps a domain D into a d-dimension real space
Rd, i.e., f : D→ Rd. The computation M

M(x) = f (x)+ (Lap1(σ ), Lap2(σ ), . . . , Lapd(σ )) (7)

Fig. 1. System model under consideration.

provides ϵ-differential privacy, where the noise Lapi(σ ) (i ∈ [1, d]) is
drawn from the Laplace distribution with scaling parameter σ , whose
density function is

p(σ ) =
1
2σ

exp(−|x|/σ ). (8)

Here, the parameter σ = ∆f /ϵ is controlled by the privacy budget ϵ

and the function’s sensitivity ∆f .

4. System and adversary models

In this section, we present the definitions of our system model,
problem statement and the adversary model.

4.1. System model

Our system consists of a data provider set DP , a data analyst
DA and a cloud server C (see Fig. 1).

• DP is a set of data providers, i.e., DP = {P1, P2, . . . , Pn}.
Each data provider Pi ∈ DP uses its own public key pki to
encrypt its sensitive data set Di (i ∈ [1, n]) before outsourc-
ing to C.
• C as a semi-honest entity holds a data center,which provides

unlimited storage space and powerful computation abilities
for cloud users in this system. Furthermore, C can aggregate
the combined data sets from the various cloud users and
publish the data sets according to the task of DA, such as
query, classification and computation. Noting that C owns
the data sets encrypted with different public keys.
• DA trains a machine learning model on the published data

such that no data sets of participants are disclosed and no
information is leaked about any single data set from the
trained machine learning model.

4.2. Problem statement

In this paper, we consider the following problem: Assume that
each data provider Pi ∈ DP keeps data set Di = {(xij, y

i
j) ⊂ X × Y :

j ∈ [1, pi], i ∈ [1, n]}. Each data Di (i ∈ [1, n]) is of size pi
with data vector xij ∈ Rd, and the corresponding binary label yij ∈
Y := {0, 1}. Due to privacy concerns, data providers P1, P2, . . . , Pn
encrypt their local data sets before uploading to C for data storing
and data processing. Based on these encryptions under different public
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keys, C generates a synthetic data set, in which different statistical
noises are added according to different applications.We aim to release
this synthetic data with ϵ-DP and to perform a privacy-preserving
machine learning model on these synthetic data.

In this scenario, we should consider the following challenges:

• To reduce the cost of key management, data providers
P1, P2, . . . , Pn should be able to generate their own public
and secret keys without communicating with DA.
• Since DA holds the master secret key (independent of the

data providers’ individual secret keys) that allows any en-
crypted data set stored on the cloud to be decrypted. Hence,
the interaction protocol between C and DA needs to do
‘mask’ processing.
• In order to support the computation over the ciphertext

space, the used encryption scheme should be have the prop-
erty of homomorphic or some malleability.

4.3. Adversary model

In this work, we assume that data provider Pi ∈ DP (i ∈
[1, n]), C and DA are semi-honest but untrusted. Additionally, we
assume that there is no collusion between C andDA, between any
two data providers or between any data provider and DA. Based
on this security assumption, we present an active adversary A in
our scheme. The aim of A is to obtain the plaintext of DP ’s data
with the following abilities:

1. A is able to collude with DA to obtain plaintexts of all ci-
phertext data downloaded from C by running an interactive
protocol.

2. Amay corrupt C to guess the plaintexts of all ciphertext data
outsourced from Pi ∈ DP (i ∈ [1, n]) and all data sent from
DA by performing an interactive protocol.

3. Amay corrupt some data providers ofDP to generate plain-
text information of other data providers’ ciphertexts.

5. Our solution

In this section, we first present the main steps of our solution.
We then describe in detail the construction of our solution based
on the DD-PKE cryptosystem Π1 = (Setup, KeyGen, Enc, uDec,
mDec) and ϵ-DP. The DD-PKE cryptosystem Π1 is based on the
application of basic scheme in [31] to achieve CCA security in the
random oracle model [32] by using the generic transformation
proposed in [33].

1. Initialization. In this step, DA runs a Setup algorithm to
set up the DD-PKE system and distributes the public system
parameter pp to C.

2. DataUploading. After obtaining the public system param-
eter pp sent from C, data providers generate their own
public/secret keys using the algorithm KeyGen and upload
the data encrypted under their own associated public key to
C.

3. NoiseAdding. In this phase, according to the differential
application or queries ofDA, cloud server C adds differential
Laplace noise to these outsourced ciphertexts. Here, the
Laplace noises are encrypted under the public key corre-
sponding to outsourced ciphertexts. Later, C publishes these
noise-added ciphertexts to DA.

4. Machine Learning-based ϵ-DP. After downloading the
noise-added ciphertexts from C, DA can decrypt these ci-
phertexts using the mDec algorithm since he has the master
private key msk. Then, DA keeps a synthetic data set with
added noise. Based on this new data set, DA can learn a
machine learning model with ϵ-DP.

5.1. Initialization

We stress that DA and C are semi-honest and are not colluding
with each other. To set up the DD-PKE cryptosystem Π1 and dis-
tribute the public system parameters to C,DA runs the following
algorithm Setup (illustrated in Algorithm 1):

Algorithm 1 Set up of DD-PKE cryptosystem Π1

Input: a security parameter κ ∈ N, two prime numbers p, qwith κ

bits length (2κ−1 < p, q < 2κ ), let N = qp2. The cryptosystem
uses a symmetric encryption scheme SE = (Enc,Dec) with
keys of length s + (κ − 1) and also uses two hash functions
H : {0, 1}∗ → Z2κ−1 and G : ZN → {0, 1}s × {0, 1}κ−1, where
s ∈ Z+.

Output: (pp,msk)
1: DA selects a random element g ∈ Z∗N such that the order of

gp := gp−1 mod p2 is p;
2: The public system parameters are pp = (N, g,H, G);
3: The master secret key ismsk = (p, q).

Here, we define the plaintext space as P := {0, 1}s and the
ciphertext space asC := ZN ×{0, 1}s. We say a encryption scheme
SE = (Enc,Dec) is a symmetric encryption, if the encryptionmech-
anism Enc and decryption mechanism Dec are both deterministic,
and the private key and public key are the same. For the efficiency,
we use one-time padding as a symmetric encryption scheme SE,
that is Enc(τ , x ∥ r) = τ ⊕ (x ∥ r). By running Algorithm 1,
DA obtains the public system parameters pp and master secret
key msk. Later, DA sends pp to C and keeps msk. C sends pp to n
data providers P1, P2, . . . , Pn, who can run the following algorithm
KeyGen (illustrated in Algorithm 2) to generate their own pair of
public and secret keys.

Algorithm 2 The key generation of DD-PKE cryptosystem Π1

Input: The public system parameters pp = (N, g,H, G),
Output: (pki, ski), where i ∈ [1, n]
1: Data provider Pi ∈ DP chooses a random element ski ∈
{0, 1, · · · , 2κ−1

− 1}with bit length κ − 1;
2: Data provider Pi ∈ DP computes pki = g ski mod N;
3: The public-secret key pair of data provider Pi ∈ DP is (pki, ski).

5.2. Data uploading

Assume that any data provider Pi ∈ DP has a sensitive data set
Di = {(xij, y

i
j) ⊂ X × Y : j ∈ [1, pi], i ∈ [1, n]}, which is of size

pi with data vector xij ∈ Rd, and the corresponding binary label
is yij ∈ Y := {0, 1}, where xij = (xij1, x

i
j2, . . . , x

i
jd). To preserve the

privacy of sensitive data set Di, each data provider Pi ∈ DP needs
to encrypt it by running the algorithm Enc (outlined in Algorithm
3):

From the above Algorithm 3, a vector xij = (xij1, x
i
j2, . . . , x

i
jd)

encrypted under pki can be presented by

Enc(pp, pki, xij) = [x
i
j]i = {[x

i
jv]i}

d
v=1

= ([xij1]i, [x
i
j2]i, . . . , [x

i
jd]i)

= ((Ai
j1, B

i
j1), (A

i
j2, B

i
j2), . . . , (A

i
jd, B

i
jd))

= {(Ai
jv, B

i
jv)}

d
v=1.

Here, we use the notation (Ai
j,B

i
j) to denote a encryption vector

[xij]i = {(A
i
jv, B

i
jv)}

d
v=1. Therefore, the encryption of sensitive data

set Di is computed by Enc(pp, pki,Di) = [Di]i = ([xij]i, [y
i
j]i) =

((Ai
j,B

i
j), [y

i
j]i). To improve the efficiency of the data processing and
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Algorithm 3 The encryption of DD-PKE cryptosystem Π1

Input: The public system parameters pp = (N, g,H, G), the public
key pki and themessage xij = (xij1, x

i
j2, · · · , x

i
jd), where i ∈ [1, n],

j ∈ [1, pi] and v ∈ [1, d]
Output: [xij]i
1: Data provider Pi ∈ DP selects a random element r ijv ∈ Z2κ−1

with bit length κ − 1, where v ∈ [1, d];
2: Data provider Pi ∈ DP computes hi

jv = H(xijv ∥ r ijv) and

τ i
jv = G(pki

hijv mod N) for each component xijv of xij;

3: Data provider Pi ∈ DP computes Ai
jv = ghijv mod N and

Bi
jv = Enc(τ i

jv, x
i
jv ∥ r

i
jv) = τ i

jv ⊕ (xijv ∥ r
i
jv);

4: The ciphertext of xijv under the public key pki is [xijv]i =
(Ai

jv, B
i
jv);

5: The ciphertext vector of xij under the public key pki is [xij]i =
{[xijv]i}

d
v=1 = ([xij1]i, [x

i
j2]i, · · · , [x

i
jd]i).

to keep the privacy of data processing, any data provider Pi ∈
DP(i ∈ [1, n]) should first certify the sensitivity of a query function
fi and privacy level ϵi for his sensitive data set Di. Thus, each data
provider Pi ∈ DP uploads ∆fi, ϵi and pki in addition to ciphertext
[Di]i to the cloud server C, where i ∈ [1, n].

Recall that a data set Di is tuple of d attributes and that each
attribute value is taken from a real space R. However, the DD-PKE
cryptosystem Π1 in this paper has a plaintext space P = {0, 1}s,
and for simplicity, we continue to use Di and xijv to represent the
binary bit of sensitive data set Di and record xijv , respectively.

Remark 1. If Pi ∈ DP (i ∈ [1, n]) wants to decrypt his/her cipher-
text [xij]i = (Ai

j,B
i
j) = {(A

i
jv, B

i
jv)}

d
v=1 = {[x

i
jv]i}

d
v=1, he/she can use

the Algorithm 4, the user decryption algorithm uDec to decrypt it.
The special symbol ‘‘⊥’’ denotes the fact that the ciphertext was
rejected.

Algorithm 4 The user decryption of DD-PKE cryptosystem Π1

Input: The public systemparameters pp = (N, g,H, G), public key
pki, and user private key ski and the ciphertext vector [xij]i =
{[xijv]i}

d
v=1 = ([xij1]i, [x

i
j2]i, · · · , [x

i
jd]i), where [xijv]i = (Ai

jv, B
i
jv),

i ∈ [1, n], j ∈ [1, pi] and v ∈ [1, d]
Output: xij
1: Data provider Pi ∈ DP computes τ i

jv = G(Ai
jv
ski modN) for each

component [xijv]i = (Ai
jv, B

i
jv) of [x

i
j]i;

2: Data provider Pi ∈ DP computes xijv ∥ r ijv = Dec(τ i
jv, B

i
jv) =

Bi
jv ⊕ τ i

jv and hi
jv = H(xijv ∥ r

i
jv);

3: Data provider Pi ∈ DP checks

uDec(pp, ski, [xijv]i) =

{
xijv, if Ai

jv = ghijv ,

⊥, otherwise.

5.3. Noise addition

After the data uploading phase, C collects data sets encrypted
with different public keys, i.e., [D1]1, [D2]2, . . . , [Dn]n. Because DA
keeps the master secret key msk, it can decrypt any valid cipher-
text. Therefore, to securely publish data, C must perform some
transformation of the uploaded data set before publishing to DA.

For each uploaded data set [Di]i of data provider Pi ∈ DP, C
generates ηi

j = (ηi
j1, η

i
j2, . . . , η

i
jd), a d-dimensional noise vector

sampled from a Laplace distribution with parameter ∆fi/ϵi, where
i ∈ [1, n], j ∈ [1, pi]. Then, it encrypts this noise vector ηi

j as [η
i
j]i =

([ηi
j1]i, [η

i
j2]i, . . . , [η

i
jd]i) = {[η

i
jv]i}

d
v=1 = {(C

i
jv,D

i
jv)}

d
v=1 = (Ci

j,D
i
j).

According to the additively homomorphic property of the DD-PKE
schemeΠ1, for each Pi’s uploaded data set [Di]i, the computation of
[xij]i⊗[η

i
j]i over the encrypted domain can be computed as [x′ij ]i =

[xij + ηi
j]i = (Ai

j + Di
j, C

i
j + Di

j) = (A′ij ,B
′i
j ). Therefore, C publishes

ciphertext data set [D̂i]i toDA, where [D̂i]i = ((A′ij ,B
′i
j ), [y

′ i
j]i) is the

ciphertext data set of [Di]i (i ∈ [1, n]) with added noise.

5.4. Learning-based ϵ-differential privacy

In this phase, DA downloads only noise-added ciphertexts of
the data sets [D̂1]1, [D̂2]2, . . . , [D̂n]n. Because the master decryp-
tion algorithm mDec depends on the factoring information of N
and DA keeps the master secret key msk, it can decrypt a valid
ciphertext with a corresponding data provider’s public key. Hence,
to decrypt each noise-added encryption of [D̂i]i = ([x′ij ]i, [y

i
j]i) =

((A′ij ,B
′i
j ), [y

i
j]i), DA runs the Algorithm 5, the master decryption

algorithm mDec to obtain the message:

Algorithm 5 The master decryption of DD-PKE cryptosystem Π1

Input: The public system parameters pp = (N, g,H, G), public
key pki, and master key msk and the ciphertext vector [x′ ij] =
{[x′ijv]i}

d
v=1 = ([x′ij1]i, [x

′i
j2]i, · · · , [x

′i
jd]i), where [x′ijv]i = (A′ijv, B

′i
jv),

i ∈ [1, n], j ∈ [1, pi] and v ∈ [1, d]
Output: x′ ij
1: DA computes the secret key ski of Pi ∈ DP , i.e., ski =

L(pkip−1 mod p2)
L(gp)

mod p;
2: DA checks whether ski is smaller than 2κ−1;
3: DA computes τ ′

i
jv = G(A′ ijv

ski mod N), x′ ijv ∥ r ′ ijv =

Dec(τ ′ijv, B
′ i
jv) = B′ ijv ⊕ τ ′

i
jv and h′ ijv = H(x′ ijv ∥ r

′ i
jv);

4: DA checks

mDec(pp, pki,msk, [x′ ijv]i) =

{
x′ ijv, if A′ ijv = gh′ ijv ,

⊥, otherwise.

Recall that gp = gp−1 mod p2 with order p; we have (gp)p =
gp(p−1) mod p2 = 1 mod p2. We can see that g is a primitive root
mod p2; then, there exists b ∈ Z∗p such that gp−1

= 1+ pbmod p2,
i.e., gp−1

∈ X ,L(gp−1) = (1+pb)−1
p = b mod p. Hence, gp =

1 + bp mod p2. For any element u ∈ Zp, compute gu
p mod p2 =

(1 + ubp) mod p2, which is not equal to 1. If ub > p, then we
can find two integers a′, b′ ∈ Z such that ub = a′p + b′ with
b′ < p. Therefore, we have b′b−1 = u mod p and gu

p mod p2 =
(1+ubp) mod p2 = 1+b′p. According to Corollary 1, the exponent
u ∈ Zp can be computed by

L(gu
p mod p2)

L(gp)
mod p =

L(1+ b′p)
L(1+ bp)

mod p

=
b′

b
mod p = u.

Here, DA checks if the size of private key ski is less than 2κ−1.
If the private key ski is smaller than 2κ−1 (ski < 2κ−1 < p), then
the master decryption performs correctly. Otherwise, the master
decryption outputs a special symbol ‘‘⊥’’.

Based on this fact,DA computes the secret key sk1, sk2, . . . , skn
of data providers P1, P2, . . . , Pn, respectively. Therefore,DA knows
the factorization of N , i.e., msk = (p, q), can use the master
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Table 1
Performance of the cryptosystem Π1 .

κ N = (p, q) g Plaintext Ciphertext Time (s)

4 N = (11, 13) 1759 7 bit 19 bit 16.18
5 N = (29, 23) 15 671 8 bit 23 bit 0.79
6 N = (43, 37) 50 829 8 bit 26 bit 1.51
8 N = (241, 193) 10 636 571 6 bit 30 bit 112.83

decryption algorithm mDec to decrypt each component [x′ ijv]i of
ciphertext [x′ij ]i and obtain noise-added data sets D̂i; it has the form
x′ij = xij + ηi

j, where i ∈ [1, n] and j ∈ [1, pi]. Now, DA possesses
the noise-added data sets D̂1, D̂2, . . . , D̂n. Assume that DA wants
to compute f (D̂1, D̂2, . . . , D̂n) for an n-input function f ; then, it can
perform any process on these data sets, as described in Section 6.

6. Simulation results

In this section, we show how we use our scheme to preserve
data privacy according to the DD-PKE cryptosystem Π1 and ϵ-
DP. On the one hand, the performance of DD-PKE cryptosystem
Π1 is conducted on a PC with an Intel(R) Core(TM) i7-6500U CPU
with 2.59 GHz and 8 GB of RAM. To perform the cryptosystem
Π1, all programs are built in MAGMA. We firstly choose a security
parameter to test the operations in cryptosystemΠ1. Secondly, we
randomly choose two primes p and q from the interval (2κ−1

+

1, 2κ
− 1) and let N = p2q. Thirdly, we generate g ∈ Z∗N such

that #(gp−1 mod N) = p. As illustrated in Table 1, when we choose
four security parameters κ = 4, 5, 6, 8, the integer N = (p, q)
and element g is (11, 13), (29, 23), (43, 37), (241, 193) and 1759,
15 671, 50 829,10 636 571, respectively. Accordingly, the size of
plaintext space and ciphertext space are s = 7, 8, 8, 6 bit and
logN + s = 19, 23, 26, 30 bit. In the last column of Table 1, the
performance time is given. If the security parameter κ = 8 and
plaintext bit s = 6, the performance time in fourth line (112.83) is
much higher than the first three lines.

On the other hand, all simulations of ϵ-DP are conducted on a
PC with an AMD A4-3300M APU with Radeon(TM) HD Graphics
1.90 GHz and 6 GB of RAM.We treat the Abalone, Wine, Cpu, Glass
and Krkopt data sets as our test data sets which can be downloaded
from the UCI Machine Learning Repository, and use it to train the
machine learning algorithms. To perform the ϵ-DP over the above
five data sets, all programs are built in Java. To simulate the K-
nearest neighbor (K-NN) classifier, Support vector machine (SVM),
Random forest and Naive Bayes, we withdraw 1

10 of the data sets’
records to compose the test data set. Additionally, we choose the
privacy level ϵ = 0.1 to apply the Laplace mechanism to our five
data sets (see Fig. 2).

7. Security analysis

In this section, we first present the security analysis of the basic
cryptographic encryption primitive and ϵ-DP before analyzing the
security of our PMLM scheme.

7.1. Analysis of encryption primitive

In this section, we give some a secure analysis of the DD-PKE
cryptosystem Π1.

Definition 8 (IND-CCA2). Let Π1 = (Setup, KeyGen, Enc, uDec,
mDec) be a DD-PKE cryptosystem and let A = (A1,A2) be a PPT

adversary. For 1κ
∈ N, let

Advind−cca2
Π1,A (1κ ) = 2Pr[(pk, sk)← KeyGen(1κ );

(m0,m1, state)← AO1,G,H
1 (pk);

b← {0, 1}; y← Enc(pk,mb) :

AO2,G,H
2 (pk,m0,m1, state, y) = b]− 1

whereO1(·) andO2(·) are decryption oracles, and ′state′ is secret
information, possibly including the public key pk. The adversaryA1
outputs messagesm0 and m1 with the same length |m0| = |m1|.

We say the DD-PKE cryptosystem Π1 is IND-CCA2 secure if
Advind−cca2

Π1,A (1κ ) is negligible.

The formal definition of the one-time encryption (OTE) is as
follows:

Definition 9 (OTE). Let A = (A1,A2) be a PPT adversary. Define

AdvOTE
SE,A = 2Pr[κ ← {0, 1}l;

(m0,m1, state)← A1(·);
b← {0, 1}; y← Enc(κ,mb) :

b← A2(m0,m1, state, y)]− 1.

where the outputs m0 and m1 of adversary A1 have the same
length.We say that a symmetric encryption SE = (Enc,Dec) is OTE
secure if AdvOTE

SE,A is negligible.

According to Definition 4, we obtain the following theorem:

Theorem 2. p-DL problem over Z∗N is intractable if and only if the
factoring N = qp2 is intractable.

The construction of cryptosystem Π1 uses two hash functions
which are modeled as random oracles in the security analysis. In
general, DL problem is hard to solve than DH problem. Hence, we
can believe cryptosystem Π1 is an enhanced ElGamal type encryp-
tion schemewhich is based its security on the computational p-DH
problem. Therefore, we can obtain the following theorem:

Theorem 3 (One-Way). In the random oracle model, the DD-PKE
cryptosystemΠ1 = (Setup, KeyGen, Enc, uDec, mDec) is one-way
if the p-DH problem is intractable.

Proof. Assume that the p-DH problem is not intractable. A PT ma-
chine A can solve the p-DH problem. By using the machine A, we
canmake a PTmachineA′. This machinewill runA as a subroutine
and break the one-wayness of the DD-PKE cryptosystem Π1. Let
the public key and challenge ciphertext be (N, g, g sk mod N) and
(A = gh modN, B = G(g skh modN)⊕(m ∥ r)) respectively, where h
is a string by asking the random oracleH on a querym ∥ r . Because
A can compute g skh mod N from (g sk mod N, A = gh mod N) and
obtain the value τ by querying the random oracle G with a query
(g skh mod N). Then,A′ can compute B⊕ τ and extract the first s-bit
of B ⊕ τ as the corresponding plaintext m. Therefore, the DD-PKE
cryptosystem Π1 is not one-way. □

Due to the work of [33] and [34], we have the following result:

Theorem 4. In the random oracle model, the DD-PKE cryptosys-
tem Π1 is IND-CCA2 secure if the computational p-DH problem is
intractable and the SE is OTE secure for a message m ∈ P and
randomness r ∈ Z2κ−1 .

Proof. The details of the proof is given in [33]. Here, we give a
simple proof as follows.

Assume that the p-DH problem is not intractable and that the
symmetric encryption scheme SE = (Enc,Dec) is not OTE secure.
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(a) K-NN classifier with k = 1. (b) K-NN classifier with k = 5.

(c) SVM classifier. (d) Random forest. (e) Naive Bayes.

Fig. 2. Simulation results.

There exists a polynomial time machine A which solves the p-
DH problem and it must break the symmetric encryption scheme
SE with non-negligible probability. We construct two polynomial
time machines A′ and A′′ with the help of A (both of them run A
as a subroutine), which can break the IND-CCA2 security of DD-
PKE cryptosystem Π1. Let the public key and challenge ciphertext
be (N, g, pk = g sk mod N) and (m0 ∥ r0,m1 ∥ r1, c∗ = (A∗ =
gh mod N, B∗ = (G(g skh mod N)⊕ (mb ∥ rb)))), respectively, where
b ∈ {0, 1} and h is a random oracle value of OH. Then A computes
g skh modN from thepair (pk = g sk modN, A∗ = gh modN) since he
can break the p-DH problem. Hence, A′ obtains the corresponding
value τ ∗ = OG(g skh mod N) by querying the random oracle OG .

Meanwhile, we assume that the polynomial time machine A
can break the OTE of SE with non-negligible probability.A accesses
to the decryption oracleODec to ask queries. Hence, the constructed
A′′ runs A as a subroutine (an oracle) and make the answer by
himself whenAmake access toODec with a query. Given the (m0 ∥

r0,m1 ∥ r1, c∗ = (A∗, B∗)), A makes ODec query of c∗ and obtains
m′, and outputs b. Finally, A′′ outputs the answer b with the non-
negligible probability, and the correct answer immediately implies
whether c∗ is Enc(pp, pk,m0 ∥ r0) or Enc(pp, pk,m1 ∥ r1). □

7.2. Analysis of ϵ-differential privacy

In this subsection, we show the differential privacy of the set D̂,
which consists of disjoint data sets, independent of the actual data
sets, D̂1, D̂2, . . . , D̂n, and the ultimate privacy level depends on the
worst of the guarantees of each analysis. This fact can be described
as the following theorem:

Theorem 5 (Parallel Composition). Let M1,M2, . . . ,Mn be n
mechanisms, where each mechanism Mi (i ∈ [1, n]) provides
ϵi-DP. Let D1,D2, . . . ,Dn be n arbitrary disjoint data sets of
the input domain D. For a new mechanism M, the sequence of
M(M1(D1),M2(D2), . . . ,Mn(Dn)) provides (max1≤i≤nϵi)-DP.

Proof. For any sequence r of outcomes D̂i ∈ Rang(Mi), let D̂i
be mechanism Mi applied to data set Di, i.e., D̂i = Mr

i (Di). The
probability of output D̂i from the sequence of Mr

i (Di) is

Pr[M(A) = r] =
∏
i

Pr[Mr
i (Di) = D̂i].

Weknow that if x is smaller than one, then eϵ
≈ 1+x. According

to Definition 6, we have that

Pr[M(A) = r] ≤ Pr[M(B) = r] × eϵ×|A⊞B|,

since the triangle inequality ∥A|−|B∥ ≥ |r−|B∥ − ∥A|−r|, and
∥A|−|B∥ ≤ |A ⊞ B|, where ⊞ denotes the symmetric difference
betweendata setsA and B and |A⊞B|denotes the shifted count from
data set A to data set B. For each Mr

i (Di), by using the definition of
ϵ-DP,∏

i

Pr[Mr
i (Ai) = D̂i]

≤

∏
i

Pr[Mr
i (Bi) = D̂i] ×

∏
i

eϵ×|Ai⊞Bi|

≤

∏
i

Pr[Mr
i (Bi) = D̂i] × eϵ×|A⊞B|. □

7.3. Analysis of PMLM scheme

On the one hand, our PMLM scheme is based on DD-PKE cryp-
tosystem Π1, which uses two hash functions G : ZN → {0, 1}s ×
{0, 1}κ−1 and H : {0, 1}∗ → Z2κ−1 and symmetric encryption
function SE in the encryption function. The security proof is given
in Theorem 4. The previous double decryption cryptosystem, de-
noted by BCP [35], is semantically secure in the standard model.
In addition, we can also show that our PMLM scheme can against
the adversary described in Section 4.3. Here, we give the analysis
as follows:
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• If A has corrupted DA or C to obtain the outsourced data,
A cannot obtain the corresponding plaintext by using the
master key msk because of the IND-CCA2 security of our
PMLM scheme.
• Assume that A has corrupted some data providers of DP

and obtains the public/private keys of these corrupted data
providers. Due to the non-interactive and independent key
generation algorithm KeyGen of the data provider in DP ,
these multiple private/public keys are uncorrelated. There-
fore, A still cannot decrypt the ciphertext.

On the other hand, our PMLM scheme is also support ϵ-DP.
Noting that some query functions are non-linear functions, such
as exponential operation, derivative operation and so on. These
operations cannot be directly performed over the encrypted do-
main. Although this non-linear function can be computed by in-
terpolation, fitting and approximation of a polynomial, the cost
of computation over the encrypted domain is higher than the
computation over the plaintext domain. Based on this fact, our
PMLM scheme improves the efficiency and accuracy of data process-
ing. This is because PMLM scheme transforms the data encrypted
under different public keys into noise-added plaintext data.DA can
perform machine learning model on this noise-added plaintext
domain with ϵ-DP and without information leakage.

8. Conclusion and future work

In this paper, we proposed PMLM, a scheme for privacy-
preserving machine learning under multiple keys, which allows
multiple data providers to outsource encrypted data sets to a
cloud server for data storing and processing. In our work, the
cloud server can add different statistical noises to the outsourced
data sets according to the different queries of the data analyst,
which is different from existing works (i.e., data providers add
statistical noise by themselves). Our work is mainly based on DD-
PKE cryptosystemΠ1 and ϵ-DP,which can be proven to achieve the
goal of outsourced computation onmulti-party’s data sets without
privacy leakage in the random oracle model.

Many important works have shown that differential privacy
is an effective and useful tool for data privacy calculations. As a
further research work, we hope that our PMLM scheme will be use-
ful in both the application domain and theory domain of privacy-
preserving machine learning.
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