Improving the Accuracy of Scores to Predict Gastrostomy after Intracerebral Hemorrhage with Machine Learning

Ravi Garg, BS, MSc,* Shyam Prabhakaran, MD, MS,* Jane L. Holl, MD, MPH,* Yuan Luo, PhD,† Roland Faigle, MD, PhD,‡ Konrad Kording, PhD,§ and Andrew M. Naidech, MD, MSPH*

Background: Gastrostomy placement after intracerebral hemorrhage indicates the need for continued medical care and predicts patient dependence. Our objective was to determine the optimal machine learning technique to predict gastrostomy.

Methods: We included 531 patients in a derivation cohort and 189 patients from another institution for testing. We derived and tested predictions of the likelihood of gastrostomy placement with logistic regression using the GRAVo score (composed of Glasgow Coma Scale ≤12, age >50 years, black race, and hematoma volume >30 mL), compared to other machine learning techniques (kth nearest neighbor, support vector machines, random forests, extreme gradient boosting, gradient boosting machine, stacking). Receiver Operating Curves (Area Under the Curve, [AUC]) between logistic regression (the technique used in GRAVo score development) and other machine learning techniques were compared. Another institution provided an external test data set.

Results: In the external test data set, logistic regression using the GRAVo score components predicted gastrostomy (P < 0.001), however, with a lower AUC (0.66) than kth nearest neighbors (AUC 0.73), random forests (AUC 0.74), Gradient boosting machine (AUC 0.77), extreme gradient boosting (AUC 0.77), (P < 0.01 for all compared to logistic regression). Results from the internal test set were similar. Conclusions: Machine learning techniques other than logistic regression (eg, random forests, extreme gradient boost, and kth nearest neighbors) were significantly more accurate for predicting gastrostomy using the same independent variables. Machine learning techniques may assist clinicians in identifying patients likely to need interventions.

Key Words: Intracerebral hemorrhage—gastrostomy—outcomes—machine learning

© 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

Introduction

Survivors of intracerebral hemorrhage (ICH), the most morbid form of stroke, often require gastrostomy, a percutaneous feeding tube in the abdomen to provide nutrition.1 Reliably predicting gastrostomy after ICH is important because gastrostomy placement predicts the need for future healthcare services and patient dependence at follow-up, and unexplained racial disparities in gastrostomy have been noted.2

From the *Center for Healthcare Studies, Northwestern University, Chicago, Illinois; †Department of Preventive Medicine, Northwestern University, Chicago, Illinois; ‡Department of Neurology, Johns Hopkins University, Baltimore, Maryland; and §Department of Neuroscience, University of Pennsylvania, Pennsylvania.

Financial Disclosure: Dr. Naidech received support from Agency for Healthcare Research and Quality K18 HS023437. Dr. Faigle receives support from National Institutes of Health grant K23 NS101124. Dr. Luo received support from National Institutes of Health grant R21 LM012618. Research reported in this publication was supported, in part, by the National Institutes of Health's National Center for Advancing Translational Sciences grant UL1 TR00150.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Agency for Healthcare Research and Quality.

Address correspondence to Andrew M. Naidech MD, MSPH, Center for Healthcare Studies, Northwestern University 710 N Lake Shore Dr. 11th floor, Chicago, IL 60611. E-mail: a-naidech@northwestern.edu

1052-3057/$ - see front matter

© 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.026
Like outcomes for ICH generally,3,4 ordinal predictive scores for gastrostomy have been validated,5,6 including variables that measure the severity of neurologic injury and other established risk factors. The GRAVo score is composed of categorical variables (age over 50 years, black race, Glasgow Coma Scale (GCS) 12 or less, and hematoma volume more than 30 mL), with higher GRAVo scores predicting increased odds of the patient undergoing gastrostomy in a logistic regression model.6

Other prediction models of gastrostomy after ICH have identified similar predictors.7 Predicting outcomes, including gastrostomy, with ordinal scores, however, has suboptimal accuracy. The GRAVo score may not distinguish between components that sum to the same score, but are different (eg, a black patient over 50 years may have the same score as a patient with reduced GCS and a large hematoma, but their outcomes may be different).

Therefore, prediction methods other than regression are needed that may more accurately predict the likelihood of a patient undergoing gastrostomy after ICH. Techniques that improve prediction of gastrostomy may be broadly applicable to other procedures, and other diseases.

Machine learning8 refers to a collection of techniques intended to predict a result from data; regression is the most commonly utilized technique in clinical medicine, typically using ordinal scales.9,10 Several machine learning techniques inherently account for nonlinear predictions, such as proximity-based methods (eg, kth nearest neighbors), which predicts a classification based on similar patients) and decision-tree based methods (eg, random forests, which “grows” decision trees and identifies the most significant class). Machine learning techniques have been utilized to predict cardiovascular events in asymptomatic patients11 and arteriovenous malformations12,13 but have not been utilized after ICH. We sought to derive and validate machine learning techniques other than logistic regression to predict gastrostomy (the technique used for GRAVo score development and validation).5

In this study, we tested the hypothesis that machine learning techniques improve the accuracy of gastrostomy prediction derived from traditional logistic regression in patients with ICH using the components of the GRAVo score as independent variables.

Methods

Patient Identification

We used prospectively collected data from Johns Hopkins Medicine and Northwestern Medicine. The methods of patient identification have been previously described.5,14 A board-certified neurologist confirmed the diagnosis of spontaneous ICH, using each patient’s head computed tomography results and the appropriate clinical history. Patients with trauma, hemorrhagic conversion of ischemic stroke, or structural lesions (eg, tumor) were excluded. Gastrostomy was specifically coded.

Statistical Analysis

We predicted gastrostomy placement with standard machine learning techniques, using previously identified predictors from the GRAVo score,6 a logistic regression model that accounts for age over 50 years, GCS (12 or less, black race, and hematoma volume >30 mL). In addition to logistic regression, the following machine learning techniques were employed: K nearest neighbors algorithm14 predicts a data point will belong to the same class as its nearest neighbors (k, the number of nearest neighbors, which is typically set between 3 and 7). Support Vector Machines builds a predictive model by mapping example data points in a space where points are divided into separate categories with as wide a gap as possible. Random forest12 algorithms construct multiple decision trees and identify the mode of the classes predicted across the trees. Gradient boosting13 adds trees to maximally reduce variability at every step to improve on previously imperfect models. Extreme Gradient Boosting (Xgboost)15 is built upon gradient boosting and mitigates over-fitting by adding regularization in order to specify the complexity of the model (accurately predicting the derivation dataset while performing poorly in test and other datasets). We also performed stacking17 wherein predictions from these models are used by a metaclassifier (Logistic Regression and Xgboost) to perform further classification. We used the same variables, classifying rules, and weights as specified by the GRAVo model. The Northwestern data set was divided into training (80%) and testing (20%) subsets. We performed 10-fold cross-validation to find best hyperparameters for machine learning algorithms and optimize base classifiers. We then tested the trained classifier on the test data set. To generate point estimates and test the significance of the results, we performed bootstrapping with 100 sets of random samples (with replacement) of training and test dataset. Further, the trained machine learning classifiers were applied to the Hopkins data as an additional external test data set. Area Under the Curve (AUC) values from Receiver Operating Characteristic curves for each of the respective techniques were compared. Analyses and graphics were produced using Scikit-learn package (v0.19) available in Python language (v2.7).

Results

Of 544 patients in the Northwestern data, 13 had incomplete data for calculating the GRAVo score, leaving 531
patients, of whom 424 patients (351 without and 73 with gastrostomy) were randomly selected for training, while the remaining 107 patients (89 without and 18 with gastrostomy) were selected for testing. Demographics of the Northwestern data are shown in Table 1. The demographics of the Hopkins dataset have been previously published. Thus, the datasets were large enough to apply machine learning techniques.

Logistic regression with the GRAVo score was associated with gastrostomy in the Northwestern dataset with moderate accuracy (Fig 1). For example, while both lower GCS and older age increase the likelihood of gastrostomy, some black and non-black patients who were the oldest and had the lowest GCS did not undergo gastrostomy, even though the logistic regression model predicted the highest likelihood of gastrostomy for such patients.

While testing on Northwestern data without any random sampling, modern machine learning algorithms achieved a higher area under the curve with k nearest neighbors (0.73), Random Forests (0.74), Gradient Boosting Machine (0.74), Xgboost (0.76) and stacking with logistic regression (0.74) and stacking with Xgboost (0.74), compared to the GRAVo logistic regression model (0.70) ($P < 0.01$ for all comparisons to logistic regression).

To test the generalizability of the results, we performed bootstrapping with 100 iterations of random sampling of training and test datasets with replacements. We found that decision-tree based methods Random Forests 0.73 (0.718-0.742, 95% confidence interval), Gradient Boosting Machine 0.72 (0.706-0.733), Xgboost 0.74 (0.729-0.752), Stacking using logistic regression 0.73 (0.718-0.742) and Stacking using Xgboost 0.72 (0.704-0.734) outperformed linear classifiers logistic regression 0.71 (0.700-0.727) and Support Vector Machines 0.54 (0.522-0.565) ($P < 0.01$ for each modern machine learning technique compared to logistic regression).

We observed similar results in the Hopkins (external test) data set, in which all machine learning techniques (other than support vector machines) predicted gastrostomy more accurately than the logistic regression model, using the GRAVo score components as independent variables ($P < 0.01$) (Fig 2).

Discussion

We found that machine learning techniques predicted gastrostomy after ICH with higher accuracy than logistic

Table 1. Demographics of 531 patients from the derivation data set

<table>
<thead>
<tr>
<th>Variable</th>
<th>N(%)</th>
<th>Median [Q1-Q3] or Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>65.5 ± 14.6</td>
<td></td>
</tr>
<tr>
<td>Hematoma volume, mL</td>
<td>12 [5-32]</td>
<td></td>
</tr>
<tr>
<td>ICH Score</td>
<td>1 [1-3]</td>
<td></td>
</tr>
<tr>
<td>Black race</td>
<td>221 (41.6)</td>
<td></td>
</tr>
<tr>
<td>Glasgow Coma Scale on admission</td>
<td>13 [8-15]</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Heat map of likelihood of undergoing gastrostomy shown in black. Both black and non-black patients at the extremes of Glasgow Coma Scale and age were unlikely to undergo gastrostomy, although patients at lowest Glasgow Coma Scale and highest age would be predicted to be most likely to undergo gastrostomy.
Machine learning techniques are likely to be insightful. Signiﬁcant differences in patient inclusion are unlikely to be consequential (eg, limitations in medical care), and can be easily retrieved from the electronic health record; we are unaware of such an outcome measure. Machine learning techniques may also be particularly helpful for large multicenter or anonymous data sets (eg, the Nationwide Inpatient Sample) where it is not possible to review the medical record of individual patients for context.

Logistic regression using the GRAVo score was associated with gastrostomy placement overall in the Northwestern data set, like the Hopkins data set. Like many ordinal scores, the major advantage of the GRAVo is that it is practicable for humans to calculate and interpret. No ordinal predictive score can account for all the predictive characteristics and still be practicable. For example, dysphagia is not accounted for in the GRAVo score, but would also be expected to be predictive of gastrostomy placement. As machine learning becomes practicable in electronic health record generally, the advantages of ordinal scores are likely to wane in favor of machine learning techniques. Machine learning is able to accommodate a higher number of independent predictors and may achieve greater accuracy, ie, by including embedded algorithms for predicting complications. Future research might leverage machine learning techniques that perform well with large data sets, such as random forests. These techniques may allow for new insights to be gleaned from existing data where regression models have been previously utilized and no association was found. Alternatively, Xgboost, random forests, and gradient boosting machine techniques are relatively resistant to “over-ﬁtting” when many potential independent variables are present, and run relatively quickly on large data sets.

Improved prediction of gastrostomy is likely to improve the clinical care of patients with ICH. Physicians could be alerted to a high likelihood of a patient requiring gastrostomy by the electronic health record, a widely supported functionality, which could lead to earlier consideration. Timely gastrostomy placement in patients is highly likely to require that one could lead to shorter length of stay and a reduced risk of complications. Conversely, a low predicted probability of gastrostomy could encourage physicians to delay and reconsider a potentially unneeded procedure. Our algorithms were highly accurate not only derivation and validation sets at one institution, but also at an independent institution, and were robust to differences in limitations of medical care, underscoring their generalizability.

Machine learning algorithms are likely to have wide applicability. Several machine learning algorithms are already in use, and user-generated algorithms can be uploaded to some electronic health records for use in real time. A potential downside of machine learning algorithms is that they are likely to be less intuitive to humans, eg, a GRAVo score of 4 is likely to be more intuitive than a prediction from a random forest model seen by clinicians as a “black box.”

There are limitations to this investigation. We used the components of the GRAVo score, derived and validated
from another institution, for advanced machine learning techniques, but not another published ordinal score for gastrostomy placement because we did not have information on all of the components of the score, such as midline shift on computed tomography scans. The machine learning techniques we employed here are standard and well-described, and might be applicable to other complications and outcomes. Machine learning as a field is rapidly evolving, however, and while we utilized well-described techniques, new techniques may emerge quickly that may require additional software and knowledge of how to apply them.

Summary

We found that machine learning techniques had higher accuracy in predicting gastrostomy after ICH compared to a validated ordinal prediction score using regression, even when using the same score components as independent variables. Machine learning techniques are likely to be useful to predict outcomes that have heretofore been predicted by logistic regression using ordinal scores. Machine learning may be broadly applicable for predicting complications and outcomes, given the ubiquitous need for accurate predictions and risk assessments in clinical medicine.

Author Contributions: All those who contributed to manuscripts are included as an author.

Ravi Garg performed the statistical analysis and wrote the manuscript with Dr. Naidech. Drs. Prabhakaran, Luo, and Holl revised the manuscript for important intellectual content. Dr. Faigle provided testing data and revised the manuscript for important intellectual content. Dr. Kording provided guidance about the statistical analysis and edited the manuscript for important intellectual content. Dr. Naidech designed and conceptualized the manuscript, and wrote the manuscript with Mr. Garg.

References