Accepted Manuscript

Insensitive Stochastic Gradient Twin Support Vector Machines for
Large Scale Problems

Zhen Wang, Yuan-Hai Shao, Lan Bai, Chun-Na Li, Li-Ming Liu,
Nai-Yang Deng

Pll: S0020-0255(18)30450-X
DOI: 10.1016/j.ins.2018.06.007
Reference: INS 13700

To appear in: Information Sciences
Received date: 18 November 2017
Revised date: 30 May 2018

Accepted date: 3 June 2018

Please cite this article as: Zhen Wang, Yuan-Hai Shao, Lan Bai,
Nai-Yang Deng, Insensitive Stochastic Gradient Twin Support Vector Machines for Large Scale Prob-

lems, Information Sciences (2018), doi: 10.1016/j.ins.2018.06.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please

ScienceDirect

Chun-Na Li,

Li-Ming Liu,

note that during the production process errors may be discovered which could affect the content, and

all legal disclaimers that apply to the journal pertain.



https://doi.org/10.1016/j.ins.2018.06.007
https://doi.org/10.1016/j.ins.2018.06.007

Insensitive Stochastic Gradient T'win Support Vector
Machines for Large Scale Problems

Zhen Wang?®, Yuan-Hai Shao®*, Lan Bai®, Chun-Na Li¢, Li-Ming Liu¢,
Nai-Yang Deng®

@School of Mathematical Sciences, Inner Mongolia University, Hohhot, 010021,
P.R.China
bSchool of Economics and Management, Hainan University, Haikou, 570228=P-R. China
¢Zhigiang College, Zhejiang University of Technology, Hangzhou, 310024, P.R. China
4School of Statistics, Capital University of Economics and Business, Beijing, 100070,
P.R.China
¢College of Science, China Agricultural University, Beijingg100083, P.R.China

Abstract

Within the large scale classification problempthe stochastic gradient descent
method called PEGASOS has beensuccessfully applied to support vector
machines (SVMs). In this paperwe propose a stochastic gradient twin sup-
port vector machine (SGTSVM) based on the twin support vector machine
(TWSVM). Compared to PEGASOS, our method is insensitive to stochas-
tic sampling. Furthermore; we prove the convergence of SGTSVM and the
approximation betweén I'WSVM and SGTSVM under uniform sampling,
whereas PEGASOS"is almost surely convergent and only has an opportunity
to obtain an approximation to SVM. In addition, we extend SGTSVM to
nonlinear clagsSification problems via a kernel trick. Experiments on artificial
and publicly available datasets show that our method has stable performance
and can-handlejlarge scale problems easily.
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1. Introduction

As a powerful classification tool, support vector machines (SVMs) [4, 42]
have been widely used in various practical problems [19, 14, 9]. SVM searches
parallel hyperplanes with the maximum margin between them to achieve
classification. By dropping the parallelism condition, the twin support+ector
machine (TWSVM) [10, 33], which uses a pair of nonparallel hyperplanes, has
been proposed. Benefiting from the nonparallel hyperplanes, TWSVM classi-
fies some different types of heterogeneous data better than SV M. Therefore,
TWSVM has been deeply studied and enhanced, resulting in the develop-
ment of, e.g., the twin bounded support vector machine (TBSVM) [33], twin
parametric margin support vector machine (TPMSVYM) [22]7and weighted
Lagrangian twin support vector machine (WLTSVAM) [31]. These classifiers
have been widely applied in many practical problems\[32, 39, 17, 38, 3, 30,
26, 25, 24].

Due to both SVM and TWSVM needingstessolve quadratic programming
problems (QPPs), it is difficult for these techniques to handle large scale
problems [21, 36]. To accelerate the training-of SVM, many improvements
have been proposed. On the one‘handj sequential minimal optimization
(SMO) [23, 2], successive over-relaxation{(SOR) [18] and the dual coordinate
descent method (DCD) [6] were proposed to solve the dual problem of SVM.
Correspondingly, these methods were also generalized to solve the dual prob-
lems of TWSVM (33, 35,32]. However, the dual solutions of TWSVM cannot
effectively address large scalesproblems because computation of the inverse
of a large matrix is~neéded for all such solutions. On the other hand, the
smooth Newtongnethod [15] and the stochastic gradient descent algorithm
(SGD) [43, 297 41] were proposed to solve the primal problem of SVM, and
the smooth-Newton method has also been generalized to solve the primal
problemstof TWSVM [13, 39]. Although the smooth Newton method has a
second-order, convergence rate, it needs to calculate and store a large Hes-
sian matrix/or its approximation and hence is also difficult to apply to solving
large scalé problems.

In contrast, the SGD solver that partitions a large scale problem into a
series of sub-problems by stochastic sampling has a surprisingly high learning
speed with a very small memory requirement [8, 34, 37]. The SGD solver for
SVM, called PEGASOS [29], stochastically selects only one sample at each
iteration and merely needs a single vector multiplication without additional
computations. PEGASOS has been successfully applied to large scale prob-
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Figure 1: PEGASOS applied to 10 samples from two classes. (i) Trainings<includes all 10
samples with 11 iterations, and the circle sample is used twice; (ii) training includes all
10 samples with 28 iterations, and the circle sample is used once; (iii) training includes 9
samples with 27 iterations, and the circle sample is excluded.

lems [34, 20, 27]. However, PEGASOS is defegtive in theory and practical
application in the following sense: it has only‘been, proven that PEGASOS
is almost surely convergent and that it camsfind-an approximation of SVM
with a certain probability [1, 43, 29]. It is worth noting that PEGASOS does
not contain the bias term b. The authers'ef- PEGASOS proposed another
model by adding a bias term to PEGASOS; however, this modification led
to the problem of non-strong convexity and thus yielded a slow convergence
rate [29]. Furthermore, it is well known that support vectors (SVs) are very
important to SVM and that"SVs directly determine the final classifier. How-
ever, stochastic sampling'in, PEGASOS may not adequately sample SVs, thus
losing its generalization ability:

Therefore, this papet proposes an insensitive stochastic gradient twin sup-
port vector machine, (SGTSVM) based on TWSVM. Our SGTSVM selects
two samples at each iteration stochastically to construct a pair of nonparal-
lel hyperplanesi Compared to SVM, TWSVM fits the entire set of training
samples/i.e., " TWSVM is robust to sampling, and the final classifier is not
dependent on/certain specific samples (such as SVs) [10, 33]. Thus, our
SGTSVM is insensitive to sampling, and its generalization ability is more
robust than that of PEGASOS. Moreover, we theoretically prove the con-
vergence of our method and that under uniform sampling, our method is a
good approximation to TWSVM. In addition, SGTSVM also inherits the ad-
vantages of TWSVM, such as the ability to handle a “cross planes” dataset
[10]. Due to SGTSVM being very efficient in both calculation and storage, it
is currently the fastest method among the TWSVM-type classifiers for large
scale problems.
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Figure 2: SGTSVM applied to 10 samples from two classes. (i) Trainingsincludes all 10
samples with 7 iterations, and the circle sample is used twice; (ii) training includes all
10 samples with 16 iterations, and the circle sample is used once; (iii) training includes 9
samples with 15 iterations, and the circle sample is excluded.

To show the influence of stochastic sampling oh PEGASOS and SGTSVM,
we perform an experiment on a toy example shown,in/Figs. 1 and 2. There
are two classes in these figures, where the pesitive and negative classes con-
tain 6 samples and 4 samples, respectively. The circle-enclosed sample is a
potential SV. The blue solid lines are the final classification lines obtained
by PEGASOS and SGTSVM. We use, three methods to calculate the classi-
fication lines: (i) the potential SV is\selected many times; (ii) the potential
SV is only selected once; and (iii)sthe potential SV is not selected. The re-
sults shown in Fig. 1 show-that the potential SV plays an important role in
PEGASOS. If the potential SV/is not selected or is infrequently selected in
PEGASOS, the classificationjline deviates from the ideal classification posi-
tion. On the otherhand, Fig. 2 shows that even if the potential SV is not
selected, this aspectyhas less influence on the classification line of SGTSVM.
Therefore, SGTSVM 1i§ less sensitive to sampling than PEGASOS.

In summaryy the main contributions of this paper include the following:
(i) An inSensitive SGD-based TWSVM (SGTSVM) is proposed; this method
can be easily extended to other TWSVM-type classifiers.
(i) The convergence of SGTSVM is theoretically proven.
(iii) Foruniform sampling, we prove that the optimal solution of SGTSVM
is. bounded by the optimal solution of TWSVM; therefore, our method is a
good approximation of TWSVM.
(iv) SGTSVM is extended to the nonlinear case via a kernel trick.
(v) Experimental results show that our SGTSVM is more stable than PE-
GASOS and can handle large scale problems efficiently.

The rest of this paper is organized as follows. Section 2 briefly reviews
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SVM, PEGASOS and TWSVM. Our linear and nonlinear SGTSVMs to-
gether with the theoretical analysis are elaborated in Section 3. Experiments
are presented in Section 4. Section 5 concludes the paper.

2. Related Works

Consider a binary classification problem in the n-dimensional.feal'space
R™. The set of training samples is represented by X € R™™ where r€ R" is
the sample with the label y € {41, —1}. We further organize‘m; samples of
Class +1 into a matrix X; € R™"™ and ms samples of Clags —1 into a matrix
Xy € R™™2. Below, we give a brief outline of several related methods.

2.1. SVM
A support vector machine (SVM) [4] seeks afseparating hyperplane

w'z+b=0, (1)

where w € R"™ and b € R. The separating hyperplane is determined by a
pair of parallel supporting hyperplanes w' 2z + b = 41 by considering the
following QPP:

min %||w|\2 + Bl
w,b,€ m (2)
s.t. DXTw+b)>e—¢ €>0,

where ||-|| denotes the.Lynorm, ¢ > 0 is a parameter with certain quantitative
meanings [4], e iséa vecter’of ones with an appropriate dimension, £ € R™
is the slack vector, and D = diag(yi,...,¥n). Note that the minimization
of the regulatization term ||wl||? is equivalent to maximizing the margin of
the pair of parallel supporting hyperplanes w'z + b = £1. Additionally, the
structwral'eisk minimization principle is implemented in this problem [4].
Once the golution to (2) has been obtained, a new sample x can be pre-
dic¢ted, by
y = sign(w'z +b). (3)

2.2. PEGASOS

PEGASOS [29] considers a strongly convex problem by modifying (2) as
min 1||w||?> + Le’
nin 3l + £e¢ "

st. DXTw>e—£6>0

5
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and recasts the above problem to
min gllw|]’ + g (e — DX Tw)y, (5)

where (-); replaces the negative components of a vector with zeros.

PEGASOS solves the above problem iteratively. In the t-th iteration
(t > 1), PEGASOS constructs a temporary function defined by a random
sample z; € X as

ge(w) = l[w|[* + (1 — yrw T wy) . (6)
Then, starting with an initial w;, PEGASOS iteratively updates w;,; =

wy — MV, ge(w) for t > 1, where 1, = 1/t is the step size;"VW,,,g;(w) is the
sub-gradient of g;(w) at wy, and

Vo ge(w) = wy — cyrrsign (L . 24) 4 . (7)

When certain termination conditions are atisfied, the last w, is output as
w. Additionally, a new sample x is predicted by

y = sign (). (8)

T
It has been proven that the average solution w = % > w;y is bounded by

=1
the optimal solution w* t6 (5) with o(1), and thus, PEGASOS has a proba-
bility of at least 1/2 to*findya good approximation of w* [29]. The authors
of [29] also noted thatiwr is often used instead of w in practice. The sample
x; that is selectedirandomly can be replaced with a small subset belonging
to the whole datasetyand the subset only including a sample is often used
in practice [43, 29, 41]. To extend the generalization ability of PEGASOS,
the bias térm b in-SVM can be appended to PEGASOS by replacing g(w;)
of (6) with
g(we, b) = 3llw|]? + C(1 = yu(w/ @ + b))+ (9)

Howeverythis modification leads to the function not being strongly convex,
thus yielding a slow convergence rate [29].

2)8. TWSVM
TWSVM [10, 33] seeks a pair of nonparallel hyperplanes in R", which
can be expressed as

w)x+b =0 and w, x4 by = 0, (10)

6
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such that each hyperplane is close to the samples of one class and has a certain
distance from the other class. To find the pair of nonparallel hyperplanes, it
is necessary to obtain solutions to the primal problems

min 3 ([[wr|]* +07) + 21X wi + 0[P 4+ 2eT6

w1,b1,61 2m

s.t. X;w1+b1_§1§_€, 6120

(11)

and

min 3 (|[wa|]* + b3) + ST | XS wy + bo|? + 7;—416T€2
w2,b2,62

(12)
s.t. Xfw2+b2+§226, 5220,

where ¢q, ¢o, c3, and ¢4 are positive parameters, and &.€aR™ and & € R™
are slack vectors. Their geometric meanings are clear. For instance, the
objective function of (11) makes the samples 0f,Class +1 proximal to the
hyperplane w{ x + b; = 0 together with the régularization term, while the
constraints make each sample of Class —1 have a distance of greater than
1/||w;|| from the hyperplane w, z + by =.—1.

Once solutions (wy,b;) and (waybs) 10 problems (11) and (12), respec-
tively, have been obtained, a new sample x is assigned to a class depending
on the distances to the hyperplanes.of (10), i.e.,

¢y = arg min —'wiTm_eril, (13)

where | - | denotes obtaining the absolute value.

3. SGTSVM

In thisssection, we describe our SGTSVM and provide its theoretical
analysis:

3.1. (Linean Formulation

Our"SGTSVM aims at solving the QPPs (11) and (12) in TWSVM. Note
that these QPPs are equivalent to the unconstrained problems

min g ([[wi]]* +67) + g || X wi + b |P + s2e (e + Xy wi +b1)+ (14)

2m
w1,b1 1

and

min 5 ([[wa||? +03) + 52 || X5 we + bo[* + e T (e — X wy — ba)+,  (15)

2m
wa,b2 2
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respectively.
To solve the above two problems, we construct a series of strictly convex
functions fi (w1, b1) and for(wa, be) with ¢ > 1 as follows:

fre = ([l +01) + Sllwi ze + bi|[* + eo(1 + w] & + b), (16)

and

fou = 5([[wa|]? + 03) + L [wy ¢ + ba| [ + ca(1 — wy 2 =), (17)

where x; and z; are selected randomly from X; and X5, respectively. The sub-
gradients of the above functions at (wq, b1 ) and (wyeba ) cant be obtained
by

_ T A~ T A
Vaun Jre = wip + ci(wy 2 + big)wy + codysignfl + wy Ty + b1y,

. N 18
Vi, fre=bis+c (wlT’tast + b14) + cosign(l + wItxt +b14)s (18)

and

Vs, for = way + cg(w;tjt + bo )& — Caxysign(l — w;’t:ct —bayt)+,

A . 19
vbufzt = b27t + c;;(w;txt + b27t) N\ 0451gn(1 — w;txt — b17t)+, ( )

respectively.
Our SGTSVM starts ffom the initial (wy 1,b1 1) and (ws1,b21). Then, for
t > 1, the updates aregivenyby

Wi t+1 = Wit — ntvazfl,ta

bl,t—H = bl,t - ntvatfl,t) (2())
W t+1 = Wot — ntvwg,t f2,t7

b2,t+1 = b2,t - ntvbz,tflh

wherg'n, is the’step size, set typically at 1/t. If certain termination conditions
are, satisfied, (wyy,by4) is assigned to (wy,by), and (way, bey) is assigned to
(ws, by). Then, a new sample x € R" can be predicted by (13).

The above steps are summarized in Algorithm 1.
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Algorithm 1 Linear SGTSVM

Input: Positive class X7 € R™ ™ negative class Xy, € R"™™2 positive pa-
rameters c;, ¢, c3, ¢4 and a small tolerance tol; typically, tol = 1073.
Output: wy, by, we and by.

1. Set W11, bl,l, Wa,1 and b2,1 to be VASILON

2. Fort=1,...,

(a) choose a pair of samples z; and Z; at random from X; and Xy, respec-
tively;

(b) compute the gradients using (18) to update (wy 441, b1 4+1) andfor-(19) to
update (wa 41, b2.441) by (20);

(c) if ||wi g1 — wig|] + |11 — biy| < tol, stop updating wy i1/and by 441;
(d) if ||wa 11 — way|| + |b2s+1 — bay| < tol, stop updating=ws ;1 and bayq;
(e) if all wy 441, b1 441, wo 1 and by are no longerbeinguipdated, end this
loop and go to step 3;

3. Set wy = wy 41, by = by gy, Wo = Woypyy and by =y 11,

3.2. Nonlinear Formulation

Now, we extend our SGTSVM ¢o thé nonlinear case via a kernel trick
[10, 33, 12, 16]. Suppose that K (-, -)\issthe predefined kernel function; then,
the nonparallel hyperplanes in the kernel-generated space can be expressed
as

K(z, X)Twptbp=0 and K(z, X) wy + by = 0. (21)

The counterparts of-(14) and (15) can be formulated as

min g ([Jwr] 28 07V 5o (1B (X1, X) Twn + 0P+ e (e + K (Xa, X) Ty + b1) 4

2m
wi,b1 !

(22)
and

min %(H’LUQIP -+ b%) + - ||K(X2,X)TU)2 + b2||2 -+ %GT(e — K(Xl,X)ng — b2)+.

2m
w2,b3 2

(23)
Let K; = K(x,X) and K; = K(&;, X). Then, we construct a series of
funetions with ¢t > 1 as follows:

hoe = 3wl 2+ 63) + LK wn + b2+ o1+ KTwi + b))y, (24)

hoy = ([[wal[? +03) + S| K wy + bo| 2 + ea(1 — K wy — o). (25)

9
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Similar to (18), (19) and (20), the sub-gradients and updates are as fol-
lows:

leﬁthl,t = th + (&1 (Kt—ert + bLt)Kt + CQIA(tsigr}(l + [A(t—ert + bl,t)+;
Vi, hie = by + C1(KtT’LU1,t + b1,4) + cosign(1 + K;wl,t +b14)4,
(26)

Vs hoy = woy + C3(R,5Tw2,t + bQ,t)kt — cqKsign(1 — K,:Twz,t = by )4,

~

Vi, Dot = bay + CS(KtTwQ,t + by y) — cysign(l — KtTUJQ,t b1 )4,

(27)
and
Wy 41 = Wip — Vo, P/t
bl,t-‘rl = bl,t - vbl)thl,t/tv (28)
Wa 41 = Way — Vi, hotft,
bQ,t-i—l = b2,t - Vbz,thQ,t/t'
A new sample z € R" is predicted by

(2

The nonlinear SGTSVM is sumniarized in Algorithm 2.

Algorithm 2 Nonlinear'SGTSVM

Input: Positive clags” X; €yR™* ™ negative class Xy € R" ™2, positive
parameters ¢y, o, €3, €, kernel function K(-,-) and a small tolerance tol;
typically, tol = 1075,

Output: wy,b, we and by.

1. Set wy 1001 1 w2 1 and by to be zero;

2. For t= 1+ .\,

(a) choose apair of samples x; and &, at random from X; and X5, respectively,
and compute K; = K (x;, X) and K; = K (i, X);

(b) compute the tth gradients using (26) to update (wit41,0b1441) and/or
(27) to update (war1,b2441) by (28);

(c) if [Jwy 11 — wiel| + |b1e41 — b1e| < tol, stop updating wy ;1 and by 411;

(

(

d) if [|wapp1 — way|| + [b2g41 — ba2y| < tol, stop updating wo ;1 and by yyq;
e) if all wy 411, b1 441, Wo i1 and byt are no longer being updated, end this
loop and go to step 3;

3. Set w1 = Wi 41, b1 = bigq1, Wo = Wapqq and by = bayy1.

10
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For large scale problems, it is time consuming to calculate the kernel
K(-,X). However, the reduced kernel strategy, which has been success-
fully applied to SVM and TWSVM [16, 40, 39], can also be applied to our
SGTSVM. This strategy replaces K (-, X) with K (-, X), where X is a ran-
domly sampled subset of X. In practice, X needs only 0.01% ~ 1% of
samples from X to obtain a good performance, reducing the learning time
without loss of generalization [40].

3.8. Analysis

In this subsection, we discuss two issues: (i) the convergence of Algorithm
1 and (ii) the relationship between the solution in SGTSVM and the optimal
one in TWSVM. For convenience, we only consider the firsst QPP (14) of the
linear TWSVM together with the SGD formulationwof the'linear SGTSVM.
The conclusions for another QPP (15) and the‘monlinear algorithm can be
obtained similarly.

Let u = (w] b)), Z1 = (X[,e)", Zo =X )T and 2z = (27,1)7; the
notations with the subscripts in SGTSVIM also'comply with these definitions.
Then, the first QPP (14) is reformulated, as

min  f(u) = g |ull? dgi|[Fvl* + 5ZeT (e + Zou). (30)

2m
Next, we reformulate the t-tha(f > 1) function in SGTSVM as
folw) 5[ A SHlu 2 + ca(1 4+ u' 2, (31)

where z; and Z; aré thesamples selected randomly from Z; and Zs, respec-
tively, for the ¢-th iteration. The sub-gradient of f;(u) at u; is denoted by

Vt = Uy + Cl(/LL:Zt)Zt + 022tsign(1 + UtTét)_F. (32)

Given ), and the step size n, = 1/t, uyyq for t > 1 is updated by

ut+1 = Ut — ntvta (33>
Le.,
et = (1= §ug — 2ozl ug — Fasign(l+u )4 (34)

To prove the convergence of our SGTSVM, we consider the boundedness
of ||| first. Intuitively, if ||u;|| does not have an upper bound, this im-
mediately results in the non-convergence of SGTSVM. In fact, we have the
following lemma.

11
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Lemma 3.1. The sequences {||V||[t = 1,2,...} and {||u||t = 1,2,...}
have upper bounds.

Proof. The formulation (34) can be rewritten as
Uty = Atut + %Ut, (35)

where A; = F((t—1)I—c12.2), I is the identity matrix, and v, = <ca%sign(1+
ul 2) 4 Note that for a sufficiently large ¢, there is a positive integer N such
that for t > N, A, is p081tlve definite, and the largest eigenvaluc A; of A; is

smaller than or equal to =1, Based on (35), we have
¢ by,
U1 = H At+N+1—iUN+1 + Z 7( H At+i+1—j)vi' (36>
i=N+1 i=N+41  g=it+l

For i > N + 1, ||Avrnii—iuns] < Nilluna]| <yl | [7]. Therefore,

t

Il 11 At+N+17iUN+1H < ¥||UN+1||a (37)
i=N+1
and
[15( 1—[+1 Avirizg)ull < § max|fod]. (38)
Thus, we have
[Tuiall” < Fllunall + 55 max o]
(39)
< lunal[ + e InaXIIZII-
2€EZo
Let M be the largest norm of the samples in the dataset and
& = max{max|ur]],. .. [lul[}, lfuxoall + 2. (40)

This leads to G being an upper bound of ||u|| and Gy = G1+c1GyM?*+co M
being’an upper bound of ||V]|. O

Now, we can establish convergence of our SGTSVM.

Theorem 3.1. The iterative formulation (34) is convergent.

12
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Proof. On the one hand, from (37) in the proof of Lemma 3.1, we have

t
lim || [T Avnii-iuni|| =0, (41)
t—00 i=N+1

which indicates that

t

lim H At+N+172‘uN+1 =0. (42)
t—00 i=N+1

On the other hand, from (38), we have

t

t
> ||%( [T Ariaj)ul| < My (43)
I=NA1 | j=it1

which indicates that

t

t
lim Y (2 TT Al < oo. (44)

t=00 ;=N +1 j=i+1

Note that an infinite series of vectorsiis convergent if its norm series is con-
vergent [28]. Therefore, the following, limiit exists:

2 t

lim Z %( H At+i+1_j)vfi < oQ. (45)

209 N+ | =it

Combining (42)avith/(45), we conclude that the series of w4 is convergent
it t — oo. ]

The abové theorem states that the first of two iterative problems in Al-
gorithm 17is comvergent. The same conclusion can be obtained easily for
the other problem for the nonlinear case. Thus, we immediately have the
following;:

Theorem 3.2. Algorithms 1 and 2 are convergent.

Pheorem 3.1 shows that the termination conditions of Algorithms 1 and
27are reasonable. Moreover, the initialization u; = 0 in these algorithms is
shown to be reasonable by noting that

Loy
Yo (I Arrirrj)vi, (46)
=1

t
U1 = [ [ Appr—iun +
i=1 1= j=i+1

13
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255

256

257

258

259

T
%0 Then, lim = 3 ||u,—0|| = lim |lup—0|| = ||a—0]||. Note that lim
T—oo * 1 T—o0 T—o0

as it speeds up convergence of these algorithms.

Before analyzing the relationship between the solution w; in SGTSVM
and the optimal solution u* = (w*",b*)T in TWSVM, we give a generalized

conclusion for the iterative formulation used in SGTSVM.

Lemma 3.2. Let fi,..., fr be asequence of convex functions and wy, A~ Sur, 1€
R"™ be a sequence of vectors. For t > 1, u;yq = uy — n;Vy, where V,; belongs
to the sub-gradient set of f; at w;, and n, = 1/t. Suppose that [Ju,|| &nd
||V¢|| have upper bounds G and G, respectively. Then, for@ll § € R", we

have
T T
(i) %t:Zlft(ut) < %tzzl F:(0) + Go(Gy + |0]]) + 5=G3(1 & T);

t=1

T T
(ii) given any € > 0, for a sufficiently large T', 7 3~ fu(w) < = > fi(0) +&.
t=1

Proof. As f; is convex and V,; is the sub-gradient of"f; at u;, we have

ft(ut) — ft(Q) S (ut — H)Tvt. (47)
Note that
(ue = 0)"Ve = (1t <ONE = [[ur — 0) + %[Vl (48)
Combining (47) and (48), we have
T
Z(ft(ut) - ft(e))
= T
< %t_Zl (i 012 — [luen — 0]%) + %t_Zl(UtHVtHQ)
= A0 ur = Ol = Tllugsr = 01) + 5 3y (el Vel ) (49)
T
< (G101 X Mlursy — wl| + 3G3(1 + InT)
=1
T T
=G0 L | ;%W! +3G3(1+InT)
< TGo(Gy+|16]]) + 3G3(1 +InT).
Multiplying (49) by 1/T leads to conclusion (i).
Furthermore, assuming that lim wy = @, we have lim |jur|| = ||all.
T—o0 T—o0
G3(1+InT) _

14
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281
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283

284

0. Given any ¢ > 0, for a sufficiently large T,

) — f(9))

—0|1* — [lurs1 — 0|%) + %G%(l + InT)

N

(50)

IN

IO(\I‘;—A lflr: S|~
+ = M

N
()

IN
N)I»—A”

)

R

]

The above lemma shows that the average convex functions’ value w.r.t. an
arbitrary sequence of variables is bounded by the corresponding average value
w.r.t. an arbitrary constant. Because SGTSVM satisfiesythe conditions of
this lemma, we straightforwardly obtain the same boundedness for SGTSVM
as follows.

Theorem 3.3. For f; (t = 1,...,T) defined by (31) in SGTSVM, u; (t =
1,...,T) is constructed by (34), and u* ig the optimal solution to (30). Then,
(i) there are two constants G; and Gy (in fact; they are the upper bounds of

T T
||u,|| and [|V,]|, respectively) such thateg > fi(w) < £ 3 fu(u*) + Go(Gy +
t=1 t=1
lu|) + 7 G3(1 + In T);
T T
(ii) given any e > 0, for d'sufficiently large T', = > fi(u) < 7 > fi(u*) +e.
t=1 t=1
Recall that the/avetage instantaneous objective of SGTSVM correlates
with the objective ‘of TWSVM. We may estimate the relation between the

solutions of SGTSVM and TWSVM under certain special conditions. For
instance, for uniform sampling, we have the following desirable conclusion.

Corollary'3.1. Assume that the conditions stated in Theorem 3.1 are sat-
isfied and my = mo, where m; and moy are the sample numbers of X; and
X5, respeetively. Suppose that T' = kmy, where k£ > 0 is an integer, and each
samplé is selected k£ times at random. Then,

(D Cur) < f(u*) + G2(Gr + |[u*]| + G2) + 3G (1 +InT);

(1i) given any € > 0, for a sufficiently large T', f(ur) < f(u*) + G3 + ¢.

Proof. First, we prove that for all 2,7 =1,2,...,T,

| fe(wi) = fe(uy)| < Gallug —wyl], t=1,2,...,T. (51)

15
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291

292

293

294

295

296

From the formulation of f;(u), we have

| fe(wi) = foluy)] < gl = [luyl]?|
+5 (] 2)? = (u] 2)°] (52)
+62‘(1 + U;ré’t)_;'_ — (]. + u;l—ZA’t)_i_’

As Gy is the upper bound of ||u|| (t > 1) and M is the largest morm of
samples in the dataset, the first, second and third parts on the right<hand
side of (52) are

shlwil> = [l ][] < Gillui — uyll, (53)
%’(UIZOQ —( ]th)2|

= 2 (g + ) Tz s — ) (54)

< GiIM?||u; — uj],

and
Cal(L+uf )+ — (14 u )+
= cof(ui —uy) T 2] (55)
< Ml — ],

respectively. Therefore, there is a constantrGy = G + ¢;G1 M? + co M satis-
fying (51).
Second, from w1 = uy — %Vt, it \is easy to obtain
t
ut+1:u1_z%vt’ t:1,2,...,T. (56)
i=1
Thus, for 1 <i < j <T,
= =
IIUi—UjH:II;;VtIIStZ_:;Gz- (57)
T
As T ='kmi'=kms, for all u € R", £ > fi(u) = f(u). Note that f(u) is
t=1
the objective of TWSVM. Based on (51) and (57), we have
L
f(UT) -7 left(ut)
t=

= 4 ZT:(ft(uT) — fi(uy))
= (58)

T
< %;Gzllw—utll
G2(T—1)
< 24—
< Gi

16



207 Finally, by using Theorem 3.3, we reach the conclusion immediately. [

208 If my # ms, we can modify the sampling rule to obtain the same result
200 as that in Corollary 3.1.

s0 Corollary 3.2. Assume that the conditions stated in Corollary 3.1 are sat-
s isfied, but m; # mg. Suppose that T = kd(mq, msy), where k& >“0_is an
w2 integer, and d is the least common multiple of m; and my. The sample in,X;
203 is selected kd/m; times at random, and that in X, is selected kd/mayptimes
s0  at random. Then,

ws (1) f(ur) < f(u) + Go(Gr + |[u*]] + G2) + 5-G3(1 + InT));

s (ii) given any € > 0, for a sufficiently large T, f(ur) < (W) +/G3 + <.

T
307 Note that for all w € R", > fi(u) = f(u). Theproof of the above
=1

w8 corollary is similar to that of Corollary 3.1.

300 As the inequality f(u*) < f(ur) always-holds;-the above two corollaries
s provide the approximations of u* by urwIf the'sampling rule is not as stated
s in these corollaries, these upper bounds,no longer hold. However, Kakade
s and Tewari [11] have shown a way, te obtain similar bounds with a high
si3 probability.

su 4. Experiments

315 In the experiments, we compared our SGTSVM to SVM [4], PEGASOS
a6 [29], and TWSVM/[10,33] applied to several artificial and publicly available

si7 datasets. All méthoeds were implemented on a PC with an Intel Core Duo
us processor (3.4 GHz) with 4 GB of RAM.

si0 4.1. Bemehmark datasets

320 For applieation to the benchmark datasets, SVM, PEGASOS, TWSVM

s and our SGTSVM were implemented in Matlab. The corresponding SGTSVM

s22 Matlab source code is available at http://www.optimal-group.org/Resources/
23 Code/SGTSVM.html.

34 First, we consider the similarity between TWSVM and SGTSVM. These

25, two methods were implemented on the “cross planes” dataset, where TWSVM

2 was superior [10]. Fig. 3 shows the proximal lines on the dataset. It is clear

w7 that the two proximal lines obtained by SGTSVM are similar to those ob-

2s  tained by TWSVM; hence, TWSVM and SGTSVM can precisely capture the

17
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(a) TWSVM

Figure 3: Results of TWSVM and SGTSVM on thes“cross planes”, where the black solid

1 -1

lines are w{ x + by = 0 and wq z + by = 0.

Table 1: The anean accuracy (%) and standard deviation of TWSVM and SGTSVM

attained by 10-fold cross validation.

-08 -06 -04 -0.2 0

0.2 0.4 0.6 0.8 1

(b)\SGTSVM

Dataset TWSVMT

SGTSVM'

TWSVM?

SGTSVM?

Cross Planes 96.05+0.70

97.71£0.41

99.01+£2.24

98.51£2.15

Australia 86.874+0.38

87.34£0.13

87.10+0.43

85.21£0.16

Creadit 85.78+0.32

85.72+0.23

86.71+0.33

85.21+0.45

Hypothyroid 98.21+0.09

97.28+0.01

98.08+0.09

98.07%0.03

flinear case;*nonlinear case.
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data distribution, and thus, both of them obtain good classifiers. To mea-
sure the similarity quantitatively, 10-fold cross validation [5] was used on the
“cross planes” and several UCI datasets (http://archive.ics.uci.edu/
ml/index.php, e.g., the Australia dataset that includes 690 samples with14
features, the Creadit dataset that includes 690 samples with 15 features; and
the Hypothyroid dataset that includes 3, 163 samples with 25 features). The
linear TWSVM, SGTSVM, and their nonlinear versions were implemented,
with the Gaussian kernel K (x,y) = exp{—u||z — y||*} being used, for nonlin-
ear versions. We ran TWSVM and SGTSVM 10 times and report=the mean
accuracy and standard deviation in Table 1. The differénces inythe mean
accuracy values are at most 2% between the two methods, implying that
the classifiers obtained by TWSVM and SGTSVM do.net have significant
differences.

The following test compares the optimums hetween TWSVM and SGTSVM
together with SVM and PEGASOS. The optimums*“f{ of (11) and f> of (12)
in TWSVM and f of (4) were calculated ‘and compared to those of each
iteration in SGTSVM and PEGASOS run on these datasets. Parameters ¢y,
o, c3, ¢4 and p were fixed at 0.1. Fig. 4 shows results from the linear clas-
sifiers, while Fig. 5 corresponds to the.nonlinear case. In Figs. 4 and 5, the
horizontal axis denotes the iteration.of SGTSVM and PEGASOS, while the
vertical axis denotes the objectivesiof these methods. Due to the objectives
of TWSVM and SVM being censtant, they are denoted by the horizontal
dashed lines, while the ebjectives of SGTSVM and PEGASOS for each iter-
ation are denoted by<the'solid lines in these figures. It can be observed that
the number of iterations,needed for our SGTSVM to converge to TWSVM
varies with the'dataset.” For instance, the linear SGTSVM converges to
TWSVM after 20 iterations in Fig. 4 (a), while convergence appears in Fig.
4 (b) after'180 iterations. Generally, SGTSVM converges to TWSVM after
150 iterations on these datasets for both linear and nonlinear cases. However,
PEGASOS dees not converge to SVM within 200 iterations, indicating that
our.SGTSVM converges much faster than PEGASOS. Moreover, the objec-
tives of PEGASOS fluctuate within 200 iterations; hence, PEGASOS needs
tosrun’ many more iterations to obtain a stable solution, while the same does
not apply to SGTSVM.

4.2. Artificial datasets

Second, we test the stability of SGTSVM compared to PEGASOS on
several artificial datasets. One hundred datasets were generated randomly,
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Figure 4: Results of linear TWSVM and SGTSVM applied to the four datasets, where
the vertical axis denotes the objectives of \fjnand\f.

with each containing 10,000 samples in R, where 5,000 negative samples
were from a normal digtribution N(—2,1) and 5,000 positive ones were from
N(2,1). The best classification point is at zero. We applied PEGASOS and
SGTSVM to the 100 datasets and obtained 100 classifiers, as shown in Fig.
6, where the numbets in the upper right corner represent the mean of the
classifiers and, their standard deviation (parameters ¢ in PEGASOS and ¢,
o, c3 and’cy in ' SGTSVM were fixed at 0.1). It is clear that our SGTSVM
obtains,a miich, more compact set of classification lines than does PEGASOS.
The mean line of SGTSVM is at —0.0016, which is closer to zero and has
asmaller standard deviation than that for PEGASOS. To investigate the
effect of sampling, PEGASOS and SGTSVM were applied to the above 100
dataséts with restricted sampling (i.e., some possible SVs from the negative
samples in SVM and the samples close to these SVs were made invisible to
sampling). Fig. 7 shows the results of PEGASOS and SGTSVM, where
the dashed line denotes that the samples in the corresponding range are
invisible to sampling. Fig. 7 shows that the classification lines obtained
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Figure 5: Results of nonlinear TWSVM and SGTSVM applied to the four datasets, where
the vertical axis is the same as that in Fig. 4.

by PEGASOS belong tostwo tegions, while SGTSVM obtains a compact
region. Thus, this resultsindicates that the possible SVs significantly influence
PEGASOS, while SG'ESVM,is comparatively reliant on the data distribution.
According to Figs< 6 andi\7y PEGASOS always results in a mean classification
line further from zere and with a larger standard deviation than SGTSVM.
Therefore, SGTSVM is more stable than PEGASOS on these datasets with or
without the restricted sampling. To further show the classifiers’ stability, we
recorded the classification accuracies (%) of PEGASOS and SGTSVM on one
of th¢ 100 datasets. PEGASOS and SGTSVM were applied 100 times to this
dataset, with parameters set as before, and the two methods were iterated
200 times. The accuracies of these methods are reported in Fig. 8. According
tonEig. 8, the accuracies of SGTSVM are in the range of [99.0,99.5], while
the values for PEGASOS are within [96.5,99.5], indicating that SGTSVM is
more stable than PEGASOS from the perspective of the classification result.
Although PEGASOS obtains the highest accuracy in this test, SGTSVM
obtains a higher accuracy than PEGASOS in most cases.
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Figure 6: Results of PEGASOS and SGTSVM applied«to 100, artificial datasets, where
the 100 vertical black solid lines are the final classifiers.
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Figure 7: Results of PEGASOS and SGTSVM applied to 100 artificial datasets, where
thenl00 vertical black solid lines are the final classifiers, and the samples along the dashed
line are invisible to sampling.
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Figure 8: Accuracies of PEGASOS and SGTSVM applied o:normally distributed
dataset, where each method was implemented 100 times.
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ure 9: Results of PEGASOS and SGTSVM applied to a normally distributed dataset,
where each method was implemented 10 times. The horizontal axis shows the iteration
count, while the vertical axis represents the classification location.
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Figure 10: The number of iterations and running time of PEGASOS_ and'SGTSVM on a
normally distributed dataset, where each method was implemented(100 times:

Finally, we test the convergence of PEGASOS and SGTSVM. A dataset
containing 20,000 samples in R was generated randomly, with 10,000 nega-
tive samples being from a normal distribution N (—2, 1) and 10, 000 positive
ones being from N(2,1). PEGASOS and SGTSVM were implemented 10
times, and each method was iterated 1,000,times. The current classification
locations for various iterations are reported in Fig. 9, where the horizontal
axis shows the iteration count, and thewertical axis represents the classifica-
tion location. Fig. 9 shows that (1) the initially selected samples do not affect
either PEGASOS or SGTSVM after iterating 150 times; (ii) after iterating
100 times, the classification locations of the two methods center around zero,
and the error is less than 0.1y and (iii) PEGASOS obtains a higher error
than SGTSVM after iterating 800 times, which is important, indicating that
PEGASOS converges slower than SGTSVM. To explore convergence more
precisely, PEGASOS'and SGTSVM were implemented 100 times, and each
method wagterminated based on the solution error parameter tol (more de-
tails about tel cam be found in Algorithms 3.1 and 3.2). Parameter tol was
selected-from {10°[i = —1,—2,...,—6}, and the corresponding number of
iterations and the time cost are reported in Fig. 10. It is clear from Fig. 10
that our. SGTSVM converges faster than PEGASOS if tol < 1073, Moreover,
if one needs a smaller solution error, such as tol = 107 or tol = 10~°, PEGA-
SOSwould need approximately 10 times as many iterations as SGTSVM, and
the ratio of required iterations would be 100 if tol = 107% (thus, the learn-
ing times of PEGASOS and SGTSVM differ by more than a hundredfold).
Therefore, SGTSVM converges much faster than PEGASOS.
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Table 2: The details of large scale datasets.

Dataset Name No. of samples Dimension Ratio
(a) Skin 245,057 3 0.262
(b) Gashome 928,990 10 0.578
(c) Susy 5,000,000 18 0.844
(d) Kddcup 4,898,432 41 0.248
(e) Gas 8,386,764 16 0.077
(f) Hepmass 10,500,000 28 1.000

4.3. Large scale datasets

To test the feasibility of these methods on large scale datasets, we ran
SVM, PEGASOS, and SGTSVM on six large scal¢ datasets (http://archive.
ics.uci.edu/ml/index.php). Table 2 shows.theidetails of the large scale
datasets, where Ratio is the ratio of the numbet,of samples in the positive
class to that in the negative class. Each dataset is split into two subsets, with
one (including 90% of samples) used for training and the other (including 10%
of samples) for testing. SVM was iniplemented by Liblinear [6], while PEGA-
SOS and SGTSVM were implemented by software programs written in the
C language. The corresponding software programs can be downloaded from
http://www.optimal-groupwerg/Resources/Code/SGTSVM.html. For the
nonlinear SGTSVM, the‘teduced kernel [16] was used, and the kernel size
was fixed at 100.

First, let us testtheinfluence of parameter tol on PEGASOS and SGTSVM.
These methods swere implemented on large scale datasets, with tol selected
from {10%[i =~1, —2,v.., —6} and other parameters fixed at 0.1. The test-
ing accuragy and the learning time are reported in Fig. 11. A comparison
of Fig. Al (&),,(¢) and (e) shows that our SGTSVM (including the linear
and nonlinear cases) is more stable than PEGASOS if tol < 10~%. To select
a high accuracy with an acceptable learning time from Fig. 11, tol is set to
10~° forPEGASOS and to 10~ for SGTSVM.

Then, we use these datasets to compare SVM and PEGASOS to our
SGTSVM at fixed tol. The methods’ accuracy values are shown in Table 3,
where the validation accuracy is obtained by 5-fold cross validation on the
training subset, and the testing accuracy is obtained for the testing subset.
Parameters ¢ in SVM and PEGASOS and ¢y, ¢s, ¢3 and ¢4 in SGTSVM were
selected from {2|i = —8,—7,...,1}, and the Gaussian kernel parameter

25



ACCEPTED MANUSCRIPT

100 T T é é I:(., 1800 T T T T
,,,,,,,,,,,,, L
A - il —F —sum A
o L ’ ~ - 4! 1600 |- | — % — Gashome Iall
N
’ N e I| —© - susy /il
k / N | — B - Kddeup an
S0 A—m— X SA Lo ity y BT L | =8 -G /N
NI = T Z X~ Hepmass A
SR o —— JRe 1 pr |
v - ————o—————— O-——=5<4-B0--——-— 4 N
O P AT 1200 - / )i
AN s AR / aa
s ol AN e —— x-Z A VT S
£ -\ -7 --¢ I b S ok YR S
Z TR T - SooLE 3 s !
g sl o-—-—--- & / 4% st s !
g PN )/ E g [
’
2 wp e AN / 4 = P ik
a N /
. R / !
EU ~ / B 1
. N / 1
2% Ho———— o +o—— - — 1 ! |
o [= = skin — % — Gashome — ©— Suyy — B — Kadeup — & — Gas — A — Hepmass ._B,
N . . . .
10! 10?2 1073 10 108 10 106

tol

(a) PEGASOS

— + — Skin / /
— % — Gashome / /
600 | —© —Susy
— B — Kddeup.
— & —Gas
500 |- L= 2 — Hepmass
_ 400 -
B @
H E 300 -
H
2 £
200 -
100 -
40 7 [ SE——— - —mm===
— + — Skin — % — Gashome — © — Susy — B — Kddewp — & — Gas — A — Hepmass |
2 I I I I I I I I
10! 10?2 107 10 108 10 10! 10?2 107 104 108 10
tol tol
(c) SGTSVMT[\ ) (d) SGTSVMT
800 T T T T
—+ — Skin
— % — Gashome
70T~ —susy /;
— B — Kddeup /
= —Gas
600 | _ A _ Hepmass ,/ 1
/
’
500 - / B
- ’
2 3 /
B 3 anl , A
g 2 / /
; E / 4
g Es00 /, 7oA
Z L / 7
/7
200 - P }j , / 4
e ’
- /
100 - il L, _ -
137 K-
w0l 4 - ————— P .‘_..‘===;|Iil.=EE= :: _é ______ -5
[=+ —skin — % — Gashome —© —Susy — B — Kddeup — & — Gas — A — Hepmass -
10 I I I I I I I I
10! 107 103 10 108 10°¢ 10! 10 103 10 108 10°¢

tol

(e) SGTSVM:

-

tol

(f) SGTSVM!

re 11: The accuracy and learning time of PEGASOS, the linear SGTSVM (T), and
the nonlinear SGTSVM () on six large scale datasets. The dashed box corresponds to
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Table 3: The results for the large scale datasets.

Dataset SVM PEGASOS SGTSVM' SGTSVM*
Skin validation(%) 78.87  82.46 85.23 84.70
245,057%x3 testing(%) 84.28  85.39 87.70 85:34
Gashome validation(%) 49.11  70.09 67.50 7449
919,438 x10 testing(%) 82.57 72.85 76.09 89.13
Susy validation(%) 78.41 54.11 76.14 69.90
5,000,000x18  testing(%) 78.52 56.44 75.09 68.61
Kddcup validation(%) * 96.39 95.24 93.19
4,898,432x41  testing(%) * 96.42 97.45 99.20
Gas validation(%) * 69.77 89.73 92.60
8,386,764x16  testing(%) * 50.54 92.45 92.86
Hepmass validation(%) * 80.63 80.80 82.18
10,500,000 28  testing(%) * 80.84 81.10 79.59
flinear case; *nonlinear ease; *out of memory.
Table 4: The optimal parametersiof SVM, PEGASOS and SGTSVM.
Dataset SVM. PEGASOS SGTSVM' SGTSVM*
C C Cl =C3,Cqg =C4 C1 =C3,Cp = Cy, b
2t 21 2 97 2t 27 ok
Skin validation -1 -6 0,-5 -6,-5,-3
testing -1 -4 1,-6 -1,0,-9
Gashome yalidation 0 -6 -4.-5 -3,-5,-2
testing -1 -1 -8,-7 -8,-1,-2
Susy validation 1 0 -2,-6 -3,-1,-4
testing 0 -7 -1,-3 3,-3,-3
Kddeup / validation NA -6 -8,-4 0,-3,-4
testing NA -2 -8,-4 -6,-1,-8
Gas validation NA -1 -4,0 -1,-1,-6
testing NA 1 -3,1 -4 -8.-6
Hepmass validation NA 0 -1,-2 -4,-1,-3
testing NA 0 0,-2 -4,-2-3
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Figure 12: The learning time of SGTSVM, PEGASOS, and=Liblinear with the optimal
parameters on large scale datasets.

in the nonlinear SGTSVM was selected frem {2¢|i = —10,—9,...,—1}. For
simplicity, we also set ¢; = c3 andvwey. = ¢4 in SGTSVM. The optimal param-
eters are shown in Table 4. Table 3-clearly shows that our SGTSVM obtains
the highest accuracy on 9 groups of comparisons and performs as well as
SVM and PEGASOS on the other 3 groups. However, SVM performs much
worse than SGTSVMon the Gashome dataset and cannot be applied to three
much larger dataséts. Thotigh PEGASOS can be applied to these datasets,
it performs much worse than SGTSVM on the Susy and Gas datasets. To
further compare the learning time of these methods, we report the time for a
single run/in Figy 12 with the optimal parameters. It is clear that SGTSVM
(includingythe linear and nonlinear cases) is much faster than the others.
Thus! our SGTSVM is comparable to SVM and PEGASOS on these large
scale'datasets. In addition, the software implementations of SGTSVM and
PEGASOS need much less RAM than does Liblinear (the software implemen-
tation’of SVM). In particular, Liblinear needs to store the entire training set
in, RAM, while PEGASOS and SGTSVM only store a subset related to the
iteration. Due to the required memory of Liblinear increasing with the size

of the dataset, the method tends to run out of memory with the increasing
data size, while PEGASOS or SGTSVM does not.
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ws 5. Conclusion

469 An insensitive stochastic gradient twin support vector machine (SGTSVM)
a0 has been proposed. This method is less sensitive to sampling than PEG A=
a SOS while having better convergence and approximation. The experimental
a2 results have shown that our method has a better performance and a‘higher
a3 training speed than PEGASOS and LIBLINEAR. For practical conveniénce,
s the corresponding SGTSVM source code (including programs in Matlab and
w5 the C language) have been uploaded to http://www.optimal-group.org/
s Resources/Code/SGTSVM.html. The possibilities for future research include
a7 designing a special sampling for SGTSVM to obtain a better performance
«s and applying SGTSVM to big data problems.
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