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Abstract

Within the large scale classification problem, the stochastic gradient descent
method called PEGASOS has been successfully applied to support vector
machines (SVMs). In this paper, we propose a stochastic gradient twin sup-
port vector machine (SGTSVM) based on the twin support vector machine
(TWSVM). Compared to PEGASOS, our method is insensitive to stochas-
tic sampling. Furthermore, we prove the convergence of SGTSVM and the
approximation between TWSVM and SGTSVM under uniform sampling,
whereas PEGASOS is almost surely convergent and only has an opportunity
to obtain an approximation to SVM. In addition, we extend SGTSVM to
nonlinear classification problems via a kernel trick. Experiments on artificial
and publicly available datasets show that our method has stable performance
and can handle large scale problems easily.
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1. Introduction1

As a powerful classification tool, support vector machines (SVMs) [4, 42]2

have been widely used in various practical problems [19, 14, 9]. SVM searches3

parallel hyperplanes with the maximum margin between them to achieve4

classification. By dropping the parallelism condition, the twin support vector5

machine (TWSVM) [10, 33], which uses a pair of nonparallel hyperplanes, has6

been proposed. Benefiting from the nonparallel hyperplanes, TWSVM classi-7

fies some different types of heterogeneous data better than SVM. Therefore,8

TWSVM has been deeply studied and enhanced, resulting in the develop-9

ment of, e.g., the twin bounded support vector machine (TBSVM) [33], twin10

parametric margin support vector machine (TPMSVM) [22] and weighted11

Lagrangian twin support vector machine (WLTSVM) [31]. These classifiers12

have been widely applied in many practical problems [32, 39, 17, 38, 3, 30,13

26, 25, 24].14

Due to both SVM and TWSVM needing to solve quadratic programming15

problems (QPPs), it is difficult for these techniques to handle large scale16

problems [21, 36]. To accelerate the training of SVM, many improvements17

have been proposed. On the one hand, sequential minimal optimization18

(SMO) [23, 2], successive over-relaxation (SOR) [18] and the dual coordinate19

descent method (DCD) [6] were proposed to solve the dual problem of SVM.20

Correspondingly, these methods were also generalized to solve the dual prob-21

lems of TWSVM [33, 35, 32]. However, the dual solutions of TWSVM cannot22

effectively address large scale problems because computation of the inverse23

of a large matrix is needed for all such solutions. On the other hand, the24

smooth Newton method [15] and the stochastic gradient descent algorithm25

(SGD) [43, 29, 41] were proposed to solve the primal problem of SVM, and26

the smooth Newton method has also been generalized to solve the primal27

problems of TWSVM [13, 39]. Although the smooth Newton method has a28

second-order convergence rate, it needs to calculate and store a large Hes-29

sian matrix or its approximation and hence is also difficult to apply to solving30

large scale problems.31

In contrast, the SGD solver that partitions a large scale problem into a32

series of sub-problems by stochastic sampling has a surprisingly high learning33

speed with a very small memory requirement [8, 34, 37]. The SGD solver for34

SVM, called PEGASOS [29], stochastically selects only one sample at each35

iteration and merely needs a single vector multiplication without additional36

computations. PEGASOS has been successfully applied to large scale prob-37
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Figure 1: PEGASOS applied to 10 samples from two classes. (i) Training includes all 10
samples with 11 iterations, and the circle sample is used twice; (ii) training includes all
10 samples with 28 iterations, and the circle sample is used once; (iii) training includes 9
samples with 27 iterations, and the circle sample is excluded.

lems [34, 20, 27]. However, PEGASOS is defective in theory and practical38

application in the following sense: it has only been proven that PEGASOS39

is almost surely convergent and that it can find an approximation of SVM40

with a certain probability [1, 43, 29]. It is worth noting that PEGASOS does41

not contain the bias term b. The authors of PEGASOS proposed another42

model by adding a bias term to PEGASOS; however, this modification led43

to the problem of non-strong convexity and thus yielded a slow convergence44

rate [29]. Furthermore, it is well known that support vectors (SVs) are very45

important to SVM and that SVs directly determine the final classifier. How-46

ever, stochastic sampling in PEGASOS may not adequately sample SVs, thus47

losing its generalization ability.48

Therefore, this paper proposes an insensitive stochastic gradient twin sup-49

port vector machine (SGTSVM) based on TWSVM. Our SGTSVM selects50

two samples at each iteration stochastically to construct a pair of nonparal-51

lel hyperplanes. Compared to SVM, TWSVM fits the entire set of training52

samples, i.e., TWSVM is robust to sampling, and the final classifier is not53

dependent on certain specific samples (such as SVs) [10, 33]. Thus, our54

SGTSVM is insensitive to sampling, and its generalization ability is more55

robust than that of PEGASOS. Moreover, we theoretically prove the con-56

vergence of our method and that under uniform sampling, our method is a57

good approximation to TWSVM. In addition, SGTSVM also inherits the ad-58

vantages of TWSVM, such as the ability to handle a “cross planes” dataset59

[10]. Due to SGTSVM being very efficient in both calculation and storage, it60

is currently the fastest method among the TWSVM-type classifiers for large61

scale problems.62
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Figure 2: SGTSVM applied to 10 samples from two classes. (i) Training includes all 10
samples with 7 iterations, and the circle sample is used twice; (ii) training includes all
10 samples with 16 iterations, and the circle sample is used once; (iii) training includes 9
samples with 15 iterations, and the circle sample is excluded.

To show the influence of stochastic sampling on PEGASOS and SGTSVM,63

we perform an experiment on a toy example shown in Figs. 1 and 2. There64

are two classes in these figures, where the positive and negative classes con-65

tain 6 samples and 4 samples, respectively. The circle-enclosed sample is a66

potential SV. The blue solid lines are the final classification lines obtained67

by PEGASOS and SGTSVM. We use three methods to calculate the classi-68

fication lines: (i) the potential SV is selected many times; (ii) the potential69

SV is only selected once; and (iii) the potential SV is not selected. The re-70

sults shown in Fig. 1 show that the potential SV plays an important role in71

PEGASOS. If the potential SV is not selected or is infrequently selected in72

PEGASOS, the classification line deviates from the ideal classification posi-73

tion. On the other hand, Fig. 2 shows that even if the potential SV is not74

selected, this aspect has less influence on the classification line of SGTSVM.75

Therefore, SGTSVM is less sensitive to sampling than PEGASOS.76

In summary, the main contributions of this paper include the following:77

(i) An insensitive SGD-based TWSVM (SGTSVM) is proposed; this method78

can be easily extended to other TWSVM-type classifiers.79

(ii) The convergence of SGTSVM is theoretically proven.80

(iii) For uniform sampling, we prove that the optimal solution of SGTSVM81

is bounded by the optimal solution of TWSVM; therefore, our method is a82

good approximation of TWSVM.83

(iv) SGTSVM is extended to the nonlinear case via a kernel trick.84

(v) Experimental results show that our SGTSVM is more stable than PE-85

GASOS and can handle large scale problems efficiently.86

The rest of this paper is organized as follows. Section 2 briefly reviews87
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SVM, PEGASOS and TWSVM. Our linear and nonlinear SGTSVMs to-88

gether with the theoretical analysis are elaborated in Section 3. Experiments89

are presented in Section 4. Section 5 concludes the paper.90

2. Related Works91

Consider a binary classification problem in the n-dimensional real space92

Rn. The set of training samples is represented by X ∈ Rn×m, where x ∈ Rn is93

the sample with the label y ∈ {+1,−1}. We further organize m1 samples of94

Class +1 into a matrix X1 ∈ Rn×m1 and m2 samples of Class −1 into a matrix95

X2 ∈ Rn×m2 . Below, we give a brief outline of several related methods.96

2.1. SVM97

A support vector machine (SVM) [4] seeks a separating hyperplane98

w>x+ b = 0, (1)

where w ∈ Rn and b ∈ R. The separating hyperplane is determined by a99

pair of parallel supporting hyperplanes w>x + b = ±1 by considering the100

following QPP:101

min
w,b,ξ

1
2
||w||2 + c

m
e>ξ

s.t. D(X>w + b) ≥ e− ξ, ξ ≥ 0,
(2)

where ||·|| denotes the L2 norm, c > 0 is a parameter with certain quantitative102

meanings [4], e is a vector of ones with an appropriate dimension, ξ ∈ Rm
103

is the slack vector, and D = diag(y1, . . . , ym). Note that the minimization104

of the regularization term ‖w‖2 is equivalent to maximizing the margin of105

the pair of parallel supporting hyperplanes w>x+ b = ±1. Additionally, the106

structural risk minimization principle is implemented in this problem [4].107

Once the solution to (2) has been obtained, a new sample x can be pre-108

dicted by109

y = sign(w>x+ b). (3)

2.2. PEGASOS110

PEGASOS [29] considers a strongly convex problem by modifying (2) as111

min
w,ξ

1
2
||w||2 + c

m
e>ξ

s.t. DX>w ≥ e− ξ, ξ ≥ 0
(4)
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and recasts the above problem to112

min
w

1
2
||w||2 + c

m
e>(e−DX>w)+, (5)

where (·)+ replaces the negative components of a vector with zeros.113

PEGASOS solves the above problem iteratively. In the t-th iteration114

(t ≥ 1), PEGASOS constructs a temporary function defined by a random115

sample xt ∈ X as116

gt(w) = 1
2
||w||2 + c(1− ytw>xt)+. (6)

Then, starting with an initial w1, PEGASOS iteratively updates wt+1 =117

wt − ηt∇wtgt(w) for t ≥ 1, where ηt = 1/t is the step size, ∇wtgt(w) is the118

sub-gradient of gt(w) at wt, and119

∇wtgt(w) = wt − cytxtsign(1− ytw>t xt)+. (7)

When certain termination conditions are satisfied, the last wt is output as120

w. Additionally, a new sample x is predicted by121

y = sign(w>x). (8)

It has been proven that the average solution w̄ = 1
T

T∑
t=1

wt is bounded by122

the optimal solution w∗ to (5) with o(1), and thus, PEGASOS has a proba-123

bility of at least 1/2 to find a good approximation of w∗ [29]. The authors124

of [29] also noted that wT is often used instead of w̄ in practice. The sample125

xt that is selected randomly can be replaced with a small subset belonging126

to the whole dataset, and the subset only including a sample is often used127

in practice [43, 29, 41]. To extend the generalization ability of PEGASOS,128

the bias term b in SVM can be appended to PEGASOS by replacing g(wt)129

of (6) with130

g(wt, b) = 1
2
||wt||2 + C(1− yt(w>t xt + b))+. (9)

However, this modification leads to the function not being strongly convex,131

thus yielding a slow convergence rate [29].132

2.3. TWSVM133

TWSVM [10, 33] seeks a pair of nonparallel hyperplanes in Rn, which134

can be expressed as135

w>1 x+ b1 = 0 and w>2 x+ b2 = 0, (10)

6
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such that each hyperplane is close to the samples of one class and has a certain136

distance from the other class. To find the pair of nonparallel hyperplanes, it137

is necessary to obtain solutions to the primal problems138

min
w1,b1,ξ1

1
2
(||w1||2 + b21) + c1

2m1
‖X>1 w1 + b1‖2 + c2

m2
e>ξ1

s.t. X>2 w1 + b1 − ξ1 ≤ −e, ξ1 ≥ 0
(11)

and139

min
w2,b2,ξ2

1
2
(||w2||2 + b22) + c3

2m2
‖X>2 w2 + b2‖2 + c4

m1
e>ξ2

s.t. X>1 w2 + b2 + ξ2 ≥ e, ξ2 ≥ 0,
(12)

where c1, c2, c3, and c4 are positive parameters, and ξ1 ∈ Rm2 and ξ2 ∈ Rm1
140

are slack vectors. Their geometric meanings are clear. For instance, the141

objective function of (11) makes the samples of Class +1 proximal to the142

hyperplane w>1 x + b1 = 0 together with the regularization term, while the143

constraints make each sample of Class −1 have a distance of greater than144

1/||w1|| from the hyperplane w>1 x+ b1 = −1.145

Once solutions (w1, b1) and (w2, b2) to problems (11) and (12), respec-146

tively, have been obtained, a new sample x is assigned to a class depending147

on the distances to the hyperplanes of (10), i.e.,148

y = arg
i

min
|w>

i x+bi|
‖wi‖ , (13)

where | · | denotes obtaining the absolute value.149

3. SGTSVM150

In this section, we describe our SGTSVM and provide its theoretical151

analysis.152

3.1. Linear Formulation153

Our SGTSVM aims at solving the QPPs (11) and (12) in TWSVM. Note154

that these QPPs are equivalent to the unconstrained problems155

min
w1,b1

1
2
(||w1||2 + b21) + c1

2m1
||X>1 w1 + b1||2 + c2

m2
e>(e+X>2 w1 + b1)+ (14)

and156

min
w2,b2

1
2
(||w2||2 + b22) + c3

2m2
||X>2 w2 + b2||2 + c4

m1
e>(e−X>1 w2 − b2)+, (15)

7
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respectively.157

To solve the above two problems, we construct a series of strictly convex158

functions f1,t(w1, b1) and f2,t(w2, b2) with t ≥ 1 as follows:159

f1,t = 1
2
(||w1||2 + b21) + c1

2
||w>1 xt + b1||2 + c2(1 + w>1 x̂t + b1)+, (16)

and160

f2,t = 1
2
(||w2||2 + b22) + c3

2
||w>2 x̂t + b2||2 + c4(1− w>2 xt − b2)+, (17)

where xt and x̂t are selected randomly fromX1 andX2, respectively. The sub-161

gradients of the above functions at (w1,t, b1,t) and (w2,t, b2,t) can be obtained162

by163

∇w1,tf1,t = w1,t + c1(w
>
1,txt + b1,t)xt + c2x̂tsign(1 + w>1,tx̂t + b1,t)+,

∇b1,tf1,t = b1,t + c1(w
>
1,txt + b1,t) + c2sign(1 + w>1,tx̂t + b1,t)+

(18)

and164

∇w2,tf2,t = w2,t + c3(w
>
2,tx̂t + b2,t)x̂t − c4xtsign(1− w>2,txt − b2,t)+,

∇b2,tf2,t = b2,t + c3(w
>
2,tx̂t + b2,t)− c4sign(1− w>2,txt − b1,t)+,

(19)

respectively.165

Our SGTSVM starts from the initial (w1,1, b1,1) and (w2,1, b2,1). Then, for166

t ≥ 1, the updates are given by167

w1,t+1 = w1,t − ηt∇w1,tf1,t,
b1,t+1 = b1,t − ηt∇b1,tf1,t,
w2,t+1 = w2,t − ηt∇w2,tf2,t,
b2,t+1 = b2,t − ηt∇b2,tf2,t,

(20)

where ηt is the step size, set typically at 1/t. If certain termination conditions168

are satisfied, (w1,t, b1,t) is assigned to (w1, b1), and (w2,t, b2,t) is assigned to169

(w2, b2). Then, a new sample x ∈ Rn can be predicted by (13).170

The above steps are summarized in Algorithm 1.171

8
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Algorithm 1 Linear SGTSVM

Input: Positive class X1 ∈ Rn×m1 , negative class X2 ∈ Rn×m2 , positive pa-
rameters c1, c2, c3, c4 and a small tolerance tol; typically, tol = 10−3.
Output: w1, b1, w2 and b2.
1. Set w1,1, b1,1, w2,1 and b2,1 to be zero;
2. For t = 1, . . . ,
(a) choose a pair of samples xt and x̂t at random from X1 and X2, respec-
tively;
(b) compute the gradients using (18) to update (w1,t+1, b1,t+1) and/or (19) to
update (w2,t+1, b2,t+1) by (20);
(c) if ||w1,t+1 − w1,t||+ |b1,t+1 − b1,t| < tol, stop updating w1,t+1 and b1,t+1;
(d) if ||w2,t+1 − w2,t||+ |b2,t+1 − b2,t| < tol, stop updating w2,t+1 and b2,t+1;
(e) if all w1,t+1, b1,t+1, w2,t+1 and b2,t+1 are no longer being updated, end this
loop and go to step 3;
3. Set w1 = w1,t+1, b1 = b1,t+1, w2 = w2,t+1 and b2 = b2,t+1.

3.2. Nonlinear Formulation172

Now, we extend our SGTSVM to the nonlinear case via a kernel trick173

[10, 33, 12, 16]. Suppose that K(·, ·) is the predefined kernel function; then,174

the nonparallel hyperplanes in the kernel-generated space can be expressed175

as176

K(x,X)>w1 + b1 = 0 and K(x,X)>w2 + b2 = 0. (21)

The counterparts of (14) and (15) can be formulated as177

min
w1,b1

1
2
(||w1||2 + b21) + c1

2m1
||K(X1, X)>w1 + b1||2 + c2

m2
e>(e+K(X2, X)>w1 + b1)+

(22)
and178

min
w2,b2

1
2
(||w2||2 + b22) + c3

2m2
||K(X2, X)>w2 + b2||2 + c4

m1
e>(e−K(X1, X)>w2 − b2)+.

(23)
Let Kt = K(xt, X) and K̂t = K(x̂t, X). Then, we construct a series of179

functions with t ≥ 1 as follows:180

h1,t = 1
2
(||w1||2 + b21) + c1

2
||K>t w1 + b1||2 + c2(1 + K̂>t w1 + b1)+, (24)

and181

h2,t = 1
2
(||w2||2 + b22) + c3

2
||K̂>t w2 + b2||2 + c4(1−K>t w2 − b2)+. (25)

9
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Similar to (18), (19) and (20), the sub-gradients and updates are as fol-182

lows:183

∇w1,th1,t = w1,t + c1(K
>
t w1,t + b1,t)Kt + c2K̂tsign(1 + K̂>t w1,t + b1,t)+,

∇b1,th1,t = b1,t + c1(K
>
t w1,t + b1,t) + c2sign(1 + K̂>t w1,t + b1,t)+,

(26)

∇w2,th2,t = w2,t + c3(K̂
>
t w2,t + b2,t)K̂t − c4Ktsign(1−K>t w2,t − b2,t)+,

∇b2,th2,t = b2,t + c3(K̂
>
t w2,t + b2,t)− c4sign(1−K>t w2,t − b1,t)+,

(27)
and184

w1,t+1 = w1,t −∇w1,th1,t/t,
b1,t+1 = b1,t −∇b1,th1,t/t,
w2,t+1 = w2,t −∇w2,th2,t/t,
b2,t+1 = b2,t −∇b2,th2,t/t.

(28)

A new sample x ∈ Rn is predicted by185

y = arg
i

min |K(x,X)>wi+bi|
‖wi‖ . (29)

The nonlinear SGTSVM is summarized in Algorithm 2.186

Algorithm 2 Nonlinear SGTSVM

Input: Positive class X1 ∈ Rn×m1 , negative class X2 ∈ Rn×m2 , positive
parameters c1, c2, c3, c4, kernel function K(·, ·) and a small tolerance tol;
typically, tol = 10−3.
Output: w1, b1, w2 and b2.
1. Set w1,1, b1,1, w2,1 and b2,1 to be zero;
2. For t = 1, . . . ,
(a) choose a pair of samples xt and x̂t at random fromX1 andX2, respectively,
and compute Kt = K(xt, X) and K̂t = K(x̂t, X);
(b) compute the tth gradients using (26) to update (w1,t+1, b1,t+1) and/or
(27) to update (w2,t+1, b2,t+1) by (28);
(c) if ||w1,t+1 − w1,t||+ |b1,t+1 − b1,t| < tol, stop updating w1,t+1 and b1,t+1;
(d) if ||w2,t+1 − w2,t||+ |b2,t+1 − b2,t| < tol, stop updating w2,t+1 and b2,t+1;
(e) if all w1,t+1, b1,t+1, w2,t+1 and b2,t+1 are no longer being updated, end this
loop and go to step 3;
3. Set w1 = w1,t+1, b1 = b1,t+1, w2 = w2,t+1 and b2 = b2,t+1.

10
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For large scale problems, it is time consuming to calculate the kernel187

K(·, X). However, the reduced kernel strategy, which has been success-188

fully applied to SVM and TWSVM [16, 40, 39], can also be applied to our189

SGTSVM. This strategy replaces K(·, X) with K(·, X̃), where X̃ is a ran-190

domly sampled subset of X. In practice, X̃ needs only 0.01% ∼ 1% of191

samples from X to obtain a good performance, reducing the learning time192

without loss of generalization [40].193

3.3. Analysis194

In this subsection, we discuss two issues: (i) the convergence of Algorithm195

1 and (ii) the relationship between the solution in SGTSVM and the optimal196

one in TWSVM. For convenience, we only consider the first QPP (14) of the197

linear TWSVM together with the SGD formulation of the linear SGTSVM.198

The conclusions for another QPP (15) and the nonlinear algorithm can be199

obtained similarly.200

Let u = (w>1 , b1)
>, Z1 = (X>1 , e)

>, Z2 = (X>2 , e)
> and z = (x>, 1)>; the201

notations with the subscripts in SGTSVM also comply with these definitions.202

Then, the first QPP (14) is reformulated as203

min
u

f(u) = 1
2
||u||2 + c1

2m1
||Z1u||2 + c2

m2
e>(e+ Z2u)+. (30)

Next, we reformulate the t-th (t ≥ 1) function in SGTSVM as204

ft(u) = 1
2
||u||2 + c1

2
||u>zt||2 + c2(1 + u>ẑt)+, (31)

where zt and ẑt are the samples selected randomly from Z1 and Z2, respec-205

tively, for the t-th iteration. The sub-gradient of ft(u) at ut is denoted by206

∇t = ut + c1(u
>
t zt)zt + c2ẑtsign(1 + u>t ẑt)+. (32)

Given u1 and the step size ηt = 1/t, ut+1 for t ≥ 1 is updated by207

ut+1 = ut − ηt∇t, (33)

i.e.,208

ut+1 = (1− 1
t
)ut − c1

t
ztz
>
t ut − c2

t
ẑtsign(1 + u>t ẑt)+. (34)

To prove the convergence of our SGTSVM, we consider the boundedness209

of ||ut|| first. Intuitively, if ||ut|| does not have an upper bound, this im-210

mediately results in the non-convergence of SGTSVM. In fact, we have the211

following lemma.212
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Lemma 3.1. The sequences {||∇t|||t = 1, 2, . . .} and {||ut|||t = 1, 2, . . .}213

have upper bounds.214

Proof. The formulation (34) can be rewritten as215

ut+1 = Atut + 1
t
vt, (35)

whereAt = 1
t
((t−1)I−c1ztz>t ), I is the identity matrix, and vt = −c2ẑtsign(1+216

u>t ẑt)+. Note that for a sufficiently large t, there is a positive integer N such217

that for t > N , At is positive definite, and the largest eigenvalue λt of At is218

smaller than or equal to t−1
t

. Based on (35), we have219

ut+1 =
t∏

i=N+1

At+N+1−iuN+1 +
t∑

i=N+1

1
i
(

t∏
j=i+1

At+i+1−j)vi. (36)

For i ≥ N + 1, ||At+N+1−iuN+1|| ≤ λi||uN+1|| ≤ i−1
i
||uN+1|| [7]. Therefore,220

||
t∏

i=N+1

At+N+1−iuN+1|| ≤ N
t
||uN+1||, (37)

and221

||1
i
(

t∏
j=i+1

At+i+1−j)vi|| ≤ 1
t

max
i≤t
||vi||. (38)

Thus, we have222

||ut+1|| ≤ N
t
||uN+1||+ t−N

t
max
i≤t
||vi||

≤ ||uN+1||+ c2 max
z∈Z2

||z||. (39)

Let M be the largest norm of the samples in the dataset and223

G1 = max{max{||u1||, . . . , ||uN ||}, ||uN+1||+ c2M}. (40)

This leads to G1 being an upper bound of ||ut|| and G2 = G1+c1G1M
2+c2M224

being an upper bound of ||∇t||.225

Now, we can establish convergence of our SGTSVM.226

Theorem 3.1. The iterative formulation (34) is convergent.227
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Proof. On the one hand, from (37) in the proof of Lemma 3.1, we have228

lim
t→∞
||

t∏
i=N+1

At+N+1−iuN+1|| = 0, (41)

which indicates that229

lim
t→∞

t∏
i=N+1

At+N+1−iuN+1 = 0. (42)

On the other hand, from (38), we have230

t∑
i=N+1

||1
i
(

t∏
j=i+1

At+i+1−j)vi|| ≤M, (43)

which indicates that231

lim
t→∞

t∑
i=N+1

||1
i
(

t∏
j=i+1

At+i+1−j)vi|| <∞. (44)

Note that an infinite series of vectors is convergent if its norm series is con-232

vergent [28]. Therefore, the following limit exists:233

lim
t→∞

t∑
i=N+1

1
i
(

t∏
j=i+1

At+i+1−j)vi <∞. (45)

Combining (42) with (45), we conclude that the series of ut+1 is convergent234

if t→∞.235

The above theorem states that the first of two iterative problems in Al-236

gorithm 1 is convergent. The same conclusion can be obtained easily for237

the other problem for the nonlinear case. Thus, we immediately have the238

following:239

Theorem 3.2. Algorithms 1 and 2 are convergent.240

Theorem 3.1 shows that the termination conditions of Algorithms 1 and241

2 are reasonable. Moreover, the initialization u1 = 0 in these algorithms is242

shown to be reasonable by noting that243

ut+1 =
t∏
i=1

At+1−iu1 +
t∑
i=1

1
i
(

t∏
j=i+1

At+i+1−j)vi, (46)
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as it speeds up convergence of these algorithms.244

Before analyzing the relationship between the solution ut in SGTSVM245

and the optimal solution u∗ = (w∗>, b∗)> in TWSVM, we give a generalized246

conclusion for the iterative formulation used in SGTSVM.247

Lemma 3.2. Let f1, . . . , fT be a sequence of convex functions and u1, . . . , uT+1 ∈248

Rn be a sequence of vectors. For t ≥ 1, ut+1 = ut − ηt∇t, where ∇t belongs249

to the sub-gradient set of ft at ut, and ηt = 1/t. Suppose that ||ut|| and250

||∇t|| have upper bounds G1 and G2, respectively. Then, for all θ ∈ Rn, we251

have252

(i) 1
T

T∑
t=1

ft(ut) ≤ 1
T

T∑
t=1

ft(θ) +G2(G1 + ||θ||) + 1
2T
G2

2(1 + lnT );253

(ii) given any ε > 0, for a sufficiently large T , 1
T

T∑
t=1

ft(ut) ≤ 1
T

T∑
t=1

ft(θ) + ε.254

Proof. As ft is convex and ∇t is the sub-gradient of ft at ut, we have255

ft(ut)− ft(θ) ≤ (ut − θ)>∇t. (47)

Note that256

(ut − θ)>∇t = 1
2ηt

(||ut − θ||2 − ||ut+1 − θ||2) + ηt
2
||∇t||2. (48)

Combining (47) and (48), we have257

T∑
t=1

(ft(ut)− ft(θ))

≤ 1
2

T∑
t=1

1
ηt

(||ut − θ||2 − ||ut+1 − θ||2) + 1
2

T∑
t=1

(ηt||∇t||2)
= 1

2
(
∑T

t=1 ||ut − θ||2 − T ||uT+1 − θ||2) + 1
2

∑T
t=1(ηt||∇t||2)

≤ (G1 + ||θ||)
T∑
t=1

||uT+1 − ut||+ 1
2
G2

2(1 + lnT )

= (G1 + ||θ||)
T∑
t=1

||
T∑
i=t

1
i
∇i||+ 1

2
G2

2(1 + lnT )

≤ TG2(G1 + ||θ||) + 1
2
G2

2(1 + lnT ).

(49)

Multiplying (49) by 1/T leads to conclusion (i).258

Furthermore, assuming that lim
T→∞

uT = ũ, we have lim
T→∞

||uT || = ||ũ||.259

Then, lim
T→∞

1
T

T∑
t=1

||ut−θ|| = lim
T→∞

||uT−θ|| = ||ũ−θ||. Note that lim
T→∞

G2
2(1+lnT )

T
=260
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0. Given any ε > 0, for a sufficiently large T ,261

1
T

T∑
t=1

(ft(ut)− ft(θ))

≤ 1
2
( 1
T

T∑
t=1

||ut − θ||2 − ||uT+1 − θ||2) + 1
2T
G2

2(1 + lnT )

≤ 1
2
ε+ 1

2
ε = ε.

(50)

262

The above lemma shows that the average convex functions’ value w.r.t. an263

arbitrary sequence of variables is bounded by the corresponding average value264

w.r.t. an arbitrary constant. Because SGTSVM satisfies the conditions of265

this lemma, we straightforwardly obtain the same boundedness for SGTSVM266

as follows.267

Theorem 3.3. For ft (t = 1, . . . , T ) defined by (31) in SGTSVM, ut (t =268

1, . . . , T ) is constructed by (34), and u∗ is the optimal solution to (30). Then,269

(i) there are two constants G1 and G2 (in fact, they are the upper bounds of270

||ut|| and ||∇t||, respectively) such that 1
T

T∑
t=1

ft(ut) ≤ 1
T

T∑
t=1

ft(u
∗) +G2(G1 +271

||u∗||) + 1
2T
G2

2(1 + lnT );272

(ii) given any ε > 0, for a sufficiently large T , 1
T

T∑
t=1

ft(ut) ≤ 1
T

T∑
t=1

ft(u
∗) + ε.273

Recall that the average instantaneous objective of SGTSVM correlates274

with the objective of TWSVM. We may estimate the relation between the275

solutions of SGTSVM and TWSVM under certain special conditions. For276

instance, for uniform sampling, we have the following desirable conclusion.277

Corollary 3.1. Assume that the conditions stated in Theorem 3.1 are sat-278

isfied and m1 = m2, where m1 and m2 are the sample numbers of X1 and279

X2, respectively. Suppose that T = km1, where k > 0 is an integer, and each280

sample is selected k times at random. Then,281

(i) f(uT ) ≤ f(u∗) +G2(G1 + ||u∗||+G2) + 1
2T
G2

1(1 + lnT );282

(ii) given any ε > 0, for a sufficiently large T , f(uT ) ≤ f(u∗) +G2
2 + ε.283

Proof. First, we prove that for all i, j = 1, 2, . . . , T ,284

|ft(ui)− ft(uj)| ≤ G2||ui − uj||, t = 1, 2, . . . , T. (51)
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From the formulation of ft(u), we have285

|ft(ui)− ft(uj)| ≤ 1
2
|||ui||2 − ||uj||2|

+ c1
2
|(u>i zt)2 − (u>j zt)

2|
+c2|(1 + u>i ẑt)+ − (1 + u>j ẑt)+|.

(52)

As G1 is the upper bound of ||ut|| (t ≥ 1) and M is the largest norm of286

samples in the dataset, the first, second and third parts on the right-hand287

side of (52) are288

1
2
|||ui||2 − ||uj||2| ≤ G1||ui − uj||, (53)

289
c1
2
|(u>i zt)2 − (u>j zt)

2|
= c1

2
|(ui + uj)

>zt(ui − uj)>zt|
≤ c1G1M

2||ui − uj||,
(54)

and290

c2|(1 + u>i ẑt)+ − (1 + u>j ẑt)+|
= c2|(ui − uj)>ẑt|
≤ c2M ||ui − uj||,

(55)

respectively. Therefore, there is a constant G2 = G1 + c1G1M
2 + c2M satis-291

fying (51).292

Second, from ut+1 = ut − 1
t
∇t, it is easy to obtain293

ut+1 = u1 −
t∑
i=1

1
i
∇t, t = 1, 2, . . . , T. (56)

Thus, for 1 ≤ i < j ≤ T ,294

||ui − uj|| = ||
j−1∑
t=i

1
t
∇t|| ≤

j−1∑
t=i

1
t
G2. (57)

As T = km1 = km2, for all u ∈ Rn, 1
T

T∑
t=1

ft(u) = f(u). Note that f(u) is295

the objective of TWSVM. Based on (51) and (57), we have296

f(uT )− 1
T

T∑
t=1

ft(ut)

= 1
T

T∑
t=1

(ft(uT )− ft(ut))

≤ 1
T

T∑
t=1

G2||uT − ut||

≤ G2
2(T−1)
T

≤ G2
2.

(58)
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Finally, by using Theorem 3.3, we reach the conclusion immediately.297

If m1 6= m2, we can modify the sampling rule to obtain the same result298

as that in Corollary 3.1.299

Corollary 3.2. Assume that the conditions stated in Corollary 3.1 are sat-300

isfied, but m1 6= m2. Suppose that T = kd(m1,m2), where k > 0 is an301

integer, and d is the least common multiple of m1 and m2. The sample in X1302

is selected kd/m1 times at random, and that in X2 is selected kd/m2 times303

at random. Then,304

(i) f(uT ) ≤ f(u∗) +G2(G1 + ||u∗||+G2) + 1
2T
G2

1(1 + lnT );305

(ii) given any ε > 0, for a sufficiently large T , f(uT ) ≤ f(u∗) +G2
2 + ε.306

Note that for all u ∈ Rn, 1
T

T∑
t=1

ft(u) = f(u). The proof of the above307

corollary is similar to that of Corollary 3.1.308

As the inequality f(u∗) ≤ f(uT ) always holds, the above two corollaries309

provide the approximations of u∗ by uT . If the sampling rule is not as stated310

in these corollaries, these upper bounds no longer hold. However, Kakade311

and Tewari [11] have shown a way to obtain similar bounds with a high312

probability.313

4. Experiments314

In the experiments, we compared our SGTSVM to SVM [4], PEGASOS315

[29], and TWSVM [10, 33] applied to several artificial and publicly available316

datasets. All methods were implemented on a PC with an Intel Core Duo317

processor (3.4 GHz) with 4 GB of RAM.318

4.1. Benchmark datasets319

For application to the benchmark datasets, SVM, PEGASOS, TWSVM320

and our SGTSVM were implemented in Matlab. The corresponding SGTSVM321

Matlab source code is available at http://www.optimal-group.org/Resources/322

Code/SGTSVM.html.323

First, we consider the similarity between TWSVM and SGTSVM. These324

two methods were implemented on the “cross planes” dataset, where TWSVM325

was superior [10]. Fig. 3 shows the proximal lines on the dataset. It is clear326

that the two proximal lines obtained by SGTSVM are similar to those ob-327

tained by TWSVM; hence, TWSVM and SGTSVM can precisely capture the328
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Figure 3: Results of TWSVM and SGTSVM on the “cross planes”, where the black solid
lines are w>1 x + b1 = 0 and w>2 x + b2 = 0.

Table 1: The mean accuracy (%) and standard deviation of TWSVM and SGTSVM
attained by 10-fold cross validation.

Dataset TWSVM† SGTSVM† TWSVM] SGTSVM]

Cross Planes 96.05±0.70 97.71±0.41 99.01±2.24 98.51±2.15
Australia 86.87±0.38 87.34±0.13 87.10±0.43 85.21±0.16
Creadit 85.78±0.32 85.72±0.23 86.71±0.33 85.21±0.45
Hypothyroid 98.21±0.09 97.28±0.01 98.08±0.09 98.07±0.03

†linear case;]nonlinear case.
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data distribution, and thus, both of them obtain good classifiers. To mea-329

sure the similarity quantitatively, 10-fold cross validation [5] was used on the330

“cross planes” and several UCI datasets (http://archive.ics.uci.edu/331

ml/index.php, e.g., the Australia dataset that includes 690 samples with 14332

features, the Creadit dataset that includes 690 samples with 15 features, and333

the Hypothyroid dataset that includes 3, 163 samples with 25 features). The334

linear TWSVM, SGTSVM, and their nonlinear versions were implemented,335

with the Gaussian kernel K(x, y) = exp{−µ||x− y||2} being used for nonlin-336

ear versions. We ran TWSVM and SGTSVM 10 times and report the mean337

accuracy and standard deviation in Table 1. The differences in the mean338

accuracy values are at most 2% between the two methods, implying that339

the classifiers obtained by TWSVM and SGTSVM do not have significant340

differences.341

The following test compares the optimums between TWSVM and SGTSVM342

together with SVM and PEGASOS. The optimums f1 of (11) and f2 of (12)343

in TWSVM and f of (4) were calculated and compared to those of each344

iteration in SGTSVM and PEGASOS run on these datasets. Parameters c1,345

c2, c3, c4 and µ were fixed at 0.1. Fig. 4 shows results from the linear clas-346

sifiers, while Fig. 5 corresponds to the nonlinear case. In Figs. 4 and 5, the347

horizontal axis denotes the iteration of SGTSVM and PEGASOS, while the348

vertical axis denotes the objectives of these methods. Due to the objectives349

of TWSVM and SVM being constant, they are denoted by the horizontal350

dashed lines, while the objectives of SGTSVM and PEGASOS for each iter-351

ation are denoted by the solid lines in these figures. It can be observed that352

the number of iterations needed for our SGTSVM to converge to TWSVM353

varies with the dataset. For instance, the linear SGTSVM converges to354

TWSVM after 20 iterations in Fig. 4 (a), while convergence appears in Fig.355

4 (b) after 180 iterations. Generally, SGTSVM converges to TWSVM after356

150 iterations on these datasets for both linear and nonlinear cases. However,357

PEGASOS does not converge to SVM within 200 iterations, indicating that358

our SGTSVM converges much faster than PEGASOS. Moreover, the objec-359

tives of PEGASOS fluctuate within 200 iterations; hence, PEGASOS needs360

to run many more iterations to obtain a stable solution, while the same does361

not apply to SGTSVM.362

4.2. Artificial datasets363

Second, we test the stability of SGTSVM compared to PEGASOS on364

several artificial datasets. One hundred datasets were generated randomly,365
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Figure 4: Results of linear TWSVM and SGTSVM applied to the four datasets, where
the vertical axis denotes the objectives of f1 and f2.

with each containing 10, 000 samples in R, where 5, 000 negative samples366

were from a normal distribution N(−2, 1) and 5, 000 positive ones were from367

N(2, 1). The best classification point is at zero. We applied PEGASOS and368

SGTSVM to the 100 datasets and obtained 100 classifiers, as shown in Fig.369

6, where the numbers in the upper right corner represent the mean of the370

classifiers and their standard deviation (parameters c in PEGASOS and c1,371

c2, c3 and c4 in SGTSVM were fixed at 0.1). It is clear that our SGTSVM372

obtains a much more compact set of classification lines than does PEGASOS.373

The mean line of SGTSVM is at −0.0016, which is closer to zero and has374

a smaller standard deviation than that for PEGASOS. To investigate the375

effect of sampling, PEGASOS and SGTSVM were applied to the above 100376

datasets with restricted sampling (i.e., some possible SVs from the negative377

samples in SVM and the samples close to these SVs were made invisible to378

sampling). Fig. 7 shows the results of PEGASOS and SGTSVM, where379

the dashed line denotes that the samples in the corresponding range are380

invisible to sampling. Fig. 7 shows that the classification lines obtained381

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10 20 30 40 50 60 70 80 90 100 110 120

Iteration

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

O
b

je
c
ti

v
e

f
1
 of TWSVM

f
1
 of SGTSVM

f
2
 of TWSVM

f
2
 of SGTSVM

f of SVM

f of PEGASOS

(a) Cross planes

10 20 30 40 50 60 70 80 90 100

Iteration

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

O
b

je
c
ti

v
e

f
1
 of TWSVM

f
1
 of SGTSVM

f
2
 of TWSVM

f
2
 of SGTSVM

f of SVM

f of PEGASOS

(b) Australia

10 20 30 40 50 60 70 80 90 100

Iteration

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

O
b

je
c
ti

v
e

f
1
 of TWSVM

f
1
 of SGTSVM

f
2
 of TWSVM

f
2
 of SGTSVM

f of SVM

f of PEGASOS

(c) Creadit

20 40 60 80 100 120 140 160

Iteration

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

O
b

je
c
ti

v
e

f
1
 of TWSVM

f
1
 of SGTSVM

f
2
 of TWSVM

f
2
 of SGTSVM

f of SVM

f of PEGASOS

(d) Hypothyroid

Figure 5: Results of nonlinear TWSVM and SGTSVM applied to the four datasets, where
the vertical axis is the same as that in Fig. 4.

by PEGASOS belong to two regions, while SGTSVM obtains a compact382

region. Thus, this result indicates that the possible SVs significantly influence383

PEGASOS, while SGTSVM is comparatively reliant on the data distribution.384

According to Figs. 6 and 7, PEGASOS always results in a mean classification385

line further from zero and with a larger standard deviation than SGTSVM.386

Therefore, SGTSVM is more stable than PEGASOS on these datasets with or387

without the restricted sampling. To further show the classifiers’ stability, we388

recorded the classification accuracies (%) of PEGASOS and SGTSVM on one389

of the 100 datasets. PEGASOS and SGTSVM were applied 100 times to this390

dataset, with parameters set as before, and the two methods were iterated391

200 times. The accuracies of these methods are reported in Fig. 8. According392

to Fig. 8, the accuracies of SGTSVM are in the range of [99.0, 99.5], while393

the values for PEGASOS are within [96.5, 99.5], indicating that SGTSVM is394

more stable than PEGASOS from the perspective of the classification result.395

Although PEGASOS obtains the highest accuracy in this test, SGTSVM396

obtains a higher accuracy than PEGASOS in most cases.397
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Figure 6: Results of PEGASOS and SGTSVM applied to 100 artificial datasets, where
the 100 vertical black solid lines are the final classifiers.
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Figure 7: Results of PEGASOS and SGTSVM applied to 100 artificial datasets, where
the 100 vertical black solid lines are the final classifiers, and the samples along the dashed
line are invisible to sampling.
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Figure 8: Accuracies of PEGASOS and SGTSVM applied to a normally distributed
dataset, where each method was implemented 100 times.
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Figure 9: Results of PEGASOS and SGTSVM applied to a normally distributed dataset,
where each method was implemented 10 times. The horizontal axis shows the iteration
count, while the vertical axis represents the classification location.
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Figure 10: The number of iterations and running time of PEGASOS and SGTSVM on a
normally distributed dataset, where each method was implemented 100 times.

Finally, we test the convergence of PEGASOS and SGTSVM. A dataset398

containing 20, 000 samples in R was generated randomly, with 10, 000 nega-399

tive samples being from a normal distribution N(−2, 1) and 10, 000 positive400

ones being from N(2, 1). PEGASOS and SGTSVM were implemented 10401

times, and each method was iterated 1, 000 times. The current classification402

locations for various iterations are reported in Fig. 9, where the horizontal403

axis shows the iteration count, and the vertical axis represents the classifica-404

tion location. Fig. 9 shows that (i) the initially selected samples do not affect405

either PEGASOS or SGTSVM after iterating 150 times; (ii) after iterating406

100 times, the classification locations of the two methods center around zero,407

and the error is less than 0.1; and (iii) PEGASOS obtains a higher error408

than SGTSVM after iterating 800 times, which is important, indicating that409

PEGASOS converges slower than SGTSVM. To explore convergence more410

precisely, PEGASOS and SGTSVM were implemented 100 times, and each411

method was terminated based on the solution error parameter tol (more de-412

tails about tol can be found in Algorithms 3.1 and 3.2). Parameter tol was413

selected from {10i|i = −1,−2, . . . ,−6}, and the corresponding number of414

iterations and the time cost are reported in Fig. 10. It is clear from Fig. 10415

that our SGTSVM converges faster than PEGASOS if tol ≤ 10−3. Moreover,416

if one needs a smaller solution error, such as tol = 10−4 or tol = 10−5, PEGA-417

SOS would need approximately 10 times as many iterations as SGTSVM, and418

the ratio of required iterations would be 100 if tol = 10−6 (thus, the learn-419

ing times of PEGASOS and SGTSVM differ by more than a hundredfold).420

Therefore, SGTSVM converges much faster than PEGASOS.421
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Table 2: The details of large scale datasets.

Dataset Name No. of samples Dimension Ratio
(a) Skin 245,057 3 0.262
(b) Gashome 928,990 10 0.578
(c) Susy 5,000,000 18 0.844
(d) Kddcup 4,898,432 41 0.248
(e) Gas 8,386,764 16 0.077
(f) Hepmass 10,500,000 28 1.000

4.3. Large scale datasets422

To test the feasibility of these methods on large scale datasets, we ran423

SVM, PEGASOS, and SGTSVM on six large scale datasets (http://archive.424

ics.uci.edu/ml/index.php). Table 2 shows the details of the large scale425

datasets, where Ratio is the ratio of the number of samples in the positive426

class to that in the negative class. Each dataset is split into two subsets, with427

one (including 90% of samples) used for training and the other (including 10%428

of samples) for testing. SVM was implemented by Liblinear [6], while PEGA-429

SOS and SGTSVM were implemented by software programs written in the430

C language. The corresponding software programs can be downloaded from431

http://www.optimal-group.org/Resources/Code/SGTSVM.html. For the432

nonlinear SGTSVM, the reduced kernel [16] was used, and the kernel size433

was fixed at 100.434

First, let us test the influence of parameter tol on PEGASOS and SGTSVM.435

These methods were implemented on large scale datasets, with tol selected436

from {10i|i = −1,−2, . . . ,−6} and other parameters fixed at 0.1. The test-437

ing accuracy and the learning time are reported in Fig. 11. A comparison438

of Fig. 11 (a), (c) and (e) shows that our SGTSVM (including the linear439

and nonlinear cases) is more stable than PEGASOS if tol ≤ 10−4. To select440

a high accuracy with an acceptable learning time from Fig. 11, tol is set to441

10−6 for PEGASOS and to 10−4 for SGTSVM.442

Then, we use these datasets to compare SVM and PEGASOS to our443

SGTSVM at fixed tol. The methods’ accuracy values are shown in Table 3,444

where the validation accuracy is obtained by 5-fold cross validation on the445

training subset, and the testing accuracy is obtained for the testing subset.446

Parameters c in SVM and PEGASOS and c1, c2, c3 and c4 in SGTSVM were447

selected from {2i|i = −8,−7, . . . , 1}, and the Gaussian kernel parameter µ448
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Figure 11: The accuracy and learning time of PEGASOS, the linear SGTSVM (†), and
the nonlinear SGTSVM (]) on six large scale datasets. The dashed box corresponds to
the chosen parameter tol.
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Table 3: The results for the large scale datasets.

Dataset SVM PEGASOS SGTSVM† SGTSVM]

Skin validation(%) 78.87 82.46 85.23 84.70
245,057×3 testing(%) 84.28 85.39 87.70 85.34
Gashome validation(%) 49.11 70.09 67.50 74.49
919,438×10 testing(%) 82.57 72.85 76.09 89.13
Susy validation(%) 78.41 54.11 76.14 69.90
5,000,000×18 testing(%) 78.52 56.44 75.09 68.61
Kddcup validation(%) * 96.39 95.24 93.19
4,898,432×41 testing(%) * 96.42 97.45 99.20
Gas validation(%) * 69.77 89.73 92.60
8,386,764×16 testing(%) * 50.54 92.45 92.86
Hepmass validation(%) * 80.63 80.80 82.18
10,500,000×28 testing(%) * 80.84 81.10 79.59

†linear case; ]nonlinear case; ∗out of memory.

Table 4: The optimal parameters of SVM, PEGASOS and SGTSVM.

Dataset SVM PEGASOS SGTSVM† SGTSVM]

c c c1 = c3, c2 = c4 c1 = c3, c2 = c4, µ
2i 2i 2i, 2j 2i, 2j, 2k

Skin validation -1 -6 0,-5 -6,-5,-3
testing -1 -4 1,-6 -1,0,-9

Gashome validation 0 -6 -4,-5 -3,-5,-2
testing -1 -1 -8,-7 -8,-1,-2

Susy validation 1 0 -2,-6 -3,-1,-4
testing 0 -7 -1,-3 -3,-3,-3

Kddcup validation NA -6 -8,-4 0,-3,-4
testing NA -2 -8,-4 -6,-1,-8

Gas validation NA -1 -4,0 -1,-1,-6
testing NA 1 -3,1 -4,-8,-6

Hepmass validation NA 0 -1,-2 -4,-1,-3
testing NA 0 0,-2 -4,-2,-3

†linear case; ]nonlinear case.
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Figure 12: The learning time of SGTSVM, PEGASOS and Liblinear with the optimal
parameters on large scale datasets.

in the nonlinear SGTSVM was selected from {2i|i = −10,−9, . . . ,−1}. For449

simplicity, we also set c1 = c3 and c2 = c4 in SGTSVM. The optimal param-450

eters are shown in Table 4. Table 3 clearly shows that our SGTSVM obtains451

the highest accuracy on 9 groups of comparisons and performs as well as452

SVM and PEGASOS on the other 3 groups. However, SVM performs much453

worse than SGTSVM on the Gashome dataset and cannot be applied to three454

much larger datasets. Though PEGASOS can be applied to these datasets,455

it performs much worse than SGTSVM on the Susy and Gas datasets. To456

further compare the learning time of these methods, we report the time for a457

single run in Fig. 12 with the optimal parameters. It is clear that SGTSVM458

(including the linear and nonlinear cases) is much faster than the others.459

Thus, our SGTSVM is comparable to SVM and PEGASOS on these large460

scale datasets. In addition, the software implementations of SGTSVM and461

PEGASOS need much less RAM than does Liblinear (the software implemen-462

tation of SVM). In particular, Liblinear needs to store the entire training set463

in RAM, while PEGASOS and SGTSVM only store a subset related to the464

iteration. Due to the required memory of Liblinear increasing with the size465

of the dataset, the method tends to run out of memory with the increasing466

data size, while PEGASOS or SGTSVM does not.467
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5. Conclusion468

An insensitive stochastic gradient twin support vector machine (SGTSVM)469

has been proposed. This method is less sensitive to sampling than PEGA-470

SOS while having better convergence and approximation. The experimental471

results have shown that our method has a better performance and a higher472

training speed than PEGASOS and LIBLINEAR. For practical convenience,473

the corresponding SGTSVM source code (including programs in Matlab and474

the C language) have been uploaded to http://www.optimal-group.org/475

Resources/Code/SGTSVM.html. The possibilities for future research include476

designing a special sampling for SGTSVM to obtain a better performance477

and applying SGTSVM to big data problems.478
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