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Highlights 

 Electroencephalogram signal classification is performed using universum learning. 

 Support vector machine classifier uses prior information from interictal signals. 

 Many feature extraction techniques are used for comparing the algorithms. 

 Universum support vector machine is used first time for seizure classification. 
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Abstract 

Support vector machine (SVM) has been used widely for classification of electroencephalogram 

(EEG) signals for the diagnosis of neurological disorders such as epilepsy and sleep disorders. SVM 

shows good generalization performance for high dimensional data due to its convex optimization 

problem. The incorporation of prior knowledge about the data leads to a better optimized classifier. 

Different types of EEG signals provide information about the distribution of EEG data. To include 

prior information in the classification of EEG signals, we propose a novel machine learning approach 

based on universum support vector machine (USVM) for classification. In our approach, the 

universum data points are generated by selecting universum from the EEG dataset itself which are the 

interictal EEG signals. This removes the effect of outliers on the generation of universum data. 

Further, to reduce the computation time, we use our approach of universum selection with universum 

twin support vector machine (UTSVM) which has less computational cost in comparison to traditional 

SVM. For checking the validity of our proposed methods, we use various feature extraction techniques 

for different datasets consisting of healthy and seizure signals. Several numerical experiments are 

performed on the generated datasets and the results of our proposed approach are compared with other 

baseline methods. Our proposed USVM and proposed UTSVM show better generalization 

performance compared to SVM, USVM, Twin SVM (TWSVM) and UTSVM. The proposed UTSVM 

has achieved highest classification accuracy of 99 % for the healthy and seizure EEG signals. 

Keywords: Universum, interictal, support vector machine, twin support vector machine. 
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1. Introduction 

Electroencephalogram (EEG) signal classification is a major challenge in the field of machine learning 

and signal processing. EEG is widely used non-invasive technique for the detection of various types of 

brain disorders such as epileptic seizures and sleep disorders. In epilepsy, the extent of disease ranges 

from partial to generalized seizures which are reflected in their respective EEG. The different types of 

EEG signals are shown in fig. 2. For the better feature extraction and classification of EEG signals, 

several signal processing techniques have been used by researchers. Among the various feature 

extraction techniques, wavelet transform is one of the frequently used methods. In wavelet transform, 

the frequency domain features are extracted from the signal with good localization in time which is in 

contrast to the Fourier transform where the signal analysis is done mainly in the frequency domain. In 

wavelet analysis, the approximation and decomposition coefficients are used to form the feature vector 

as shown in fig. 3. The different families of wavelet are used for specific type of signals to get better 

characteristics of that signal. Adeli et al. (2003) proposed a computer aided diagnosis (CAD) method 

for epilepsy using discrete wavelet transform (DWT). They used Daubechies wavelet with db-4 as the 

mother wavelet for the feature extraction. Rosso et al. (2005) used orthogonal decimated discrete 

wavelet transform (ODWT) for detecting maturational changes associated with childhood absence 

epilepsy. Ocak (2008) performed the classification of EEG signals using wavelet packet analysis and 

genetic algorithm. Daubechies wavelet-2 is used for the classification of five different EEG signals 

(Guler & Ubeyli, 2005). Subasi and Gursoy (2010) used principal component analysis (PCA), linear 

discriminant analysis (LDA) and independent component analysis (ICA) for the feature extraction, and 

support vector machine (SVM) for classification. 

The proper selection of classification techniques is very crucial for the automated diagnosis of 

patients having neurological diseases. Among the various classification algorithms, support vector 

machines (SVMs) (Cortes and Vapnik, 1995) have emerged as a powerful classification technique. 

SVM solves a convex optimization problem which leads to a globally optimal solution. This is in 

contrast to artificial neural network (ANN) that suffers from the problem of local minima. SVM also 

has a lower VC (Vapnik-Chervonenkis) dimension that enables it to classify high dimensional data 

with less optimizing parameters. Many researchers have used SVM in the classification of EEG 

signals (Ma et al., 2016) and for the diagnosis of neurological diseases like epilepsy (Liu et al., 2012, 

Nicolaou, & Georgiou, 2012, Zavar, & Rahati, 2011). Guo et al. (2011) performed the classification of 

mental tasks from the analysis of EEG signals using SVM. Least squares support vector machine 

(LSSVM) (Suykens & Vandewalle, 1999) is used in (Li & Wen, 2009, Bajaj & Pachori, 2012, Sharma 

& Pachori, 2015, Joshi & Pachori, 2014) for the detection of epilepsy. LSSVM is used for 
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classification of EEG signal with a clustering based approach (Li & Wen, 2011). For multiclass 

classification of EEG signals, Guler and Ubeyli (2007) proposed a support vector machine based 

model and showed that SVM gives better classification accuracy for EEG signals as compared to 

probabilistic neural network (PNN) and multilayer perceptron neural network (MLPNN). 

Weston et al. (2006) proposed a universum support vector machine (USVM) to give prior 

information to the classifier about the distribution of data. The universum data points do not belong to 

any of the classes and lie within an  insensitive tube between the two classes. This approach is also 

called as ‘learning through contradiction’. In USVM, along with the hinge loss it involves an 

insensitive loss function. This universum based approach has been applied to various real world 

applications. Long and Tang (2016) performed the classification of investor sentiments using 

universum support vector machine. Gao et al. (2008) used universum SVM for prediction of 

translation initiation in proteins. They used two approaches for selecting the universum: one is based 

on uniform distribution of noise and other using random averaging of the data points. Hao and Zhang 

(2013) proposed an ensemble universum support vector machine for the detection of Alzheimer’s 

disease from brain imaging data by using the patients with mild cognitive impairment (MCI) as the 

universum. Text classification is also performed using universum data (Liu et al., 2016). 

The major challenge with universum based approach is the proper selection of universum data 

points. In Weston et al. (2006), the universum data is selected based on similarity of digits in digit 

classification. For example, digit ‘3’ is chosen as universum for classifying ‘5’ and ‘8’ since its shape 

is similar to both ‘5’ and ‘8’. Chapelle et al. (2008) presented an analysis for the selection of proper 

universum data. In (Bai & Cherkassky, 2008), universum samples are generated for classification of 

faces using the random averaging approach where the average of the pixels of two faces is used as the 

universum. In (Chen & Zhang, 2009), an in-between-universum (IBU) approach is proposed for the 

proper selection of universum. The practical conditions for choosing the universum data are given in 

(Cherkassky, Dai, 2009, Cherkassky et al., 2011). In the recent decade some nonparallel SVMs such as 

generalized eigenvalue proximal support vector machine (GEPSVM) (Mangasarian & Wild, 2006) and 

twin support vector machine (TWSVM) (Jayadeva et al, 2007) are proposed to reduce the 

computational complexity of standard SVM. Inspired by the work of TWSVM, some scholars 

proposed variants of TWSVM (Kumar & Gopal, 2009, Shao et al., 2011, Qi et al., 2013, Tanveer, 

2015a,b, Wang et al., 2015, Khemchandani et al., 2016, Tanveer et al., 2016, Xu et al., 2017) to 

improve the performance and reduce the computational complexity of TWSVM. TWSVM is used for 

the first time in this work for the classification of seizure EEG signals,. Qi et al. (2012) proposed a 

universum twin support vector machine (UTSVM) to reduce the computational complexity of USVM 

and used the random averaging approach for universum selection. Xu et al. (2016) also used the 

random averaging scheme for selecting the universum data. Since the random averaging approach 
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suffers from the effect of outliers, the method of generation of universum data depends solely on the 

type of application and is currently an area of research. 

Motivated by the work on universum support vector machine in (Long & Tang, 2016, Gao et 

al., 2008, Hao & Zhang, 2013), we propose a novel approach of selecting the universum in the 

classification of EEG signals for seizure detection.  Since universum based support vector machines 

have not been used for the classification of EEG signals, we also present an application of USVM and 

UTSVM for EEG signals. For the classification of EEG signals in the healthy and seizure (ictal) 

classes, the interictal EEG signals are chosen as the universum which corresponds to the EEG 

recording for the time period in between the seizures in a patient with epilepsy. Our approach of EEG 

classification is tested for different datasets that are generated using various feature extraction 

techniques, and the results are compared with other existing methods. 

In this work, all vectors are taken as column vectors. The inner product of two vectors is 

represented by: ba t  where a and b  are the vectors of n dimensional real space nR , and ta  is the 

transpose of a . ||a||  
and |||G|  

represent the 2-norm of a vector a  and a matrix G  respectively. e  

denotes the vector of ones of dimension .m  I  represents the identity matrix of appropriate size. 

The rest of this paper is organized as follows: Section 2 discusses the formulations of USVM 

and UTSVM. Section 3 elaborates our proposed approach of USVM and UTSVM. Several numerical 

experiments are performed on the datasets generated from EEG signals using different feature 

extraction techniques for the discussed and proposed approach in section 4. Finally, section 5 gives the 

conclusions and possible future directions. 

2. Related Work 

 In this section, we briefly review USVM and UTSVM. For detailed description, the interested 

readers are referred to (Weston et al., 2006, Qi et al., 2012).  

2.1 Universum Support Vector Machine 

In case of USVM (Weston et al., 2006), the universum data points are used to provide prior 

knowledge about the distribution of data. The universum data is used as a constraint to lie within an 

 insensitive tube between the margins of the SVM hyperplane. The formulation of USVM is 

written as follows: 
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,0iξ ,0j ,1,...,mi  ||21 u,...,j  ,      (1) 

where uCC  and 
 
are the penalty parameters,  ,   are slack variables, 

pn R    R :  is the 

mapping to higher dimension where np  ,  is the tolerance value for the universum, m  is the total 

number of samples and u  is the total number of universum points. 

In the optimization problem of USVM we take the set of universum points twice with target 

values as 1  and 1 . 

The Lagrangian of the objective function (1) is given as 
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where   , ,  
and   are the Lagrange multipliers. 

The dual formulation of USVM after applying the KKT conditions is written as 
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2.2 Universum Twin Support Vector Machine 
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In UTSVM (Qi et al., 2012), two smaller quadratic programming problems (QPPs) are solved 

instead of one large QPP as in the case of USVM. This makes UTSVM computationally efficient in 

comparison to USVM. The universum data points are added in the constraints of each QPP.  

Let us consider the input matrices 1X  and 2X  
having size np and nq respectively where 

p is the number of data points of ‘class 1’ and q is the number of data points belonging to ‘class 2’. U  

is the matrix representing the universum data points of size nr . The total number of data samples is 

qpm  with r  universum points and n  is the dimension of each data point. 

The nonlinear UTSVM comprises of the following pair of minimization problems: 
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Lagrange multipliers. 

The Wolfe duals of Eq. (6) and (7) are obtained by applying the KKT necessary and sufficient 

conditions as 
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To avoid the ill-conditioning in the calculation of inverse 
1)( -tSS and

1)( -tTT , we add a 

regularization term δ I  to the matrices in (10) and (11) as 
1)( -t ISS   and 

1)( -t ITT  to make them 

positive definite where δ  is a small positive value.  

For a data point
nRx , it is assigned to a class '  ' i  on the basis of the following decision 

function 

                  class |bw,Dx|Ki ii
tt  )(min  

for 1,2i  .                           (12) 

  Among the various algorithms used for the classification of EEG signals, SVM is the most 

widely used technique. This is due to its better generalization performance for various kinds of data as 

compared to algorithms like ANN which suffers from the problem of locally minimal solution. Many 

researchers have used SVM as a classification technique for the classification of EEG data. However, 
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there is no prior information about the distribution of data in the formulation of SVM. As a result of 

this, the classifier is trained in the same manner for all types of datasets without having the knowledge 

about the data distribution. On the other hand, universum learning provides this prior information to 

the SVM classifier so that the hyperplane separating the classes aligns itself according to the 

distribution of data. Moreover, the twin SVM based approach has the advantage of being insensitive to 

class imbalanced data (Jayadeva et al., 2017) in comparison to traditional SVM and LSSVM. So, 

UTSVM gives the advantage of prior information with less training time as compared to SVM with 

less sensitivity to class imbalanced data. Also, our proposed approach of selecting the universum from 

the interictal EEG signals gives proper prior information without getting affected by outliers as 

compared to other techniques like random averaging of data points. 

  LSSVM is also used by many researchers for the classification of EEG signals since it solves a 

system of linear equations and therefore is more efficient in terms of computational time as compared 

to SVM. Our universum based approach takes more training time than the traditional methods due to 

the addition of more data points i.e, universum in the constraints of the optimization problem. 

3. Proposed approach 

 In many of the classification approaches for EEG signals, the prior information about the 

distribution of EEG data is not used. Due to this, the classification techniques are not able to give 

better generalization performance even if the most efficient feature extraction technique is used. The 

universum based approach actually gives some prior information in the construction of the classifier. 

So we used a universum based approach with support vector machine to classify the EEG signals. 

Further, in the datasets generated from the EEG signals, many data points behave as outliers, 

especially in case of seizure signal as shown in fig. 4 and 5. Consequently, the traditional approach of 

universum based support vector machine based on random averaging is not so efficient in giving the 

prior information. The outlier data points affect the generation of the universum points in the random 

averaging approach which leads to incorrect classification. 

 Our approach of universum support vector machine (USVM) takes the universum points from 

the EEG dataset itself. We take the interictal or seizure free signals from the EEG dataset (Andrzejak 

et al., 2001) as the universum. Since the variation of the signal in the seizure free state comes in 

between the variation of healthy and seizure EEG signals, this gives the required prior information to 

the support vector machine classifier in a more efficient manner. Moreover, there are no outliers in the 

universum data since our universum data is not generated from the training data and thus there is no 

effect of noise from the training data. A comparison of our proposed approach with the traditional 

random averaging scheme is illustrated in fig. 4 and 5 where the universum data points of our 

proposed approach lie in between the two classes. 
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 Further, we use our approach with universum twin support vector machine (UTSVM) which is 

a more efficient technique in terms of computational complexity. A brief illustration of our 

methodology is given in fig. 1. 

 

          Figure 1: Proposed approach 

The steps involved in our proposed approach for classification of EEG signals are as follows: 

(i)  Choose a feature extraction technique and extract the features from the training data consisting 

of healthy and seizure data points. 

    (ii) Extract the features from the universum points which are taken from seizure free dataset. 

 (iii) Reduce the dimension of the feature vector using PCA (Wagner, 2012) and class discriminatory       

ratio (CDR) (Bartlett et al., 2002). 

 (iv) Train the model using training data with the universum. 

  (v) Test the model by using steps (ii) and (iii) and the classifier. 

  In this work, different feature extraction techniques are used to extract the appropriate features 

from the datasets such as principal component analysis (PCA), independent component analysis (ICA) 

and wavelet transform with different families of wavelet such as db1, db2, db4, db6 and Haar wavelet. 

4. Numerical Experiments 
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In this section, numerical experiments are performed for the classification of EEG signals of 

healthy state and seizure. The EEG dataset is taken from (Andrzejak et al., 2001) which is available 

online. The dataset consists of five sets viz. Z, O, N, F and S. Each set contains 100 single-channel 

EEG signals sampled at a sampling rate of 173.61 Hz and of 23.6 seconds duration. The sets Z and O 

are surface EEG recordings of five healthy volunteers with eyes open and closed respectively. The sets 

N and F are recordings of five patients in the interictal state and the region of recording is the 

hippocampal formation of the opposite hemisphere of the brain in N and the epileptogenic zone in F. 

The set S is for the ictal state consisting of seizure recordings from all the recording sites exhibiting 

ictal activity. The mode of EEG recording is intra-cranial for N, F and S.  For all the EEG signals, 

same 128-channel amplifier system is used with an average common reference. 

In the numerical experiments, the training and testing set consists of 50 samples each, chosen 

from the sets Z, O and S each containing 100 samples. In our proposed approach, the universum is 

chosen from the set N which contains the interictal EEG signals. For the cross-validation, we use 

interleaving of samples in the training data from the two classes for all the datasets. For feature 

extraction, various techniques are applied including principal component analysis (PCA), independent 

component analysis (ICA) and wavelet transform. In case of wavelet transform, several families of 

wavelets are applied with different levels of decomposition as used in the available literature. Discrete 

wavelet transform (DWT) is implemented using different families of wavelet on specific levels of 

decomposition. The set of the approximation and decomposition coefficients is taken as the feature 

vector. The level of decomposition is set at level-3 for Daubechies wavelet- db2, db4 and Haar 

wavelet. For db1 and db6 wavelets level-2 decomposition is used. In case of ICA and wavelet 

transform, PCA is applied for the dimension reduction. The implementation of ICA is same as in 

(Bartlett et al., 2002) (ICA Architecture1). The class discriminatory ratio (CDR) is used to sort the 

PCA components and to choose the most relevant PCA components. To check the effectiveness of our 

proposed method, the results of our proposed method for universum are compared with the SVM, 

LSSVM and USVM with random averaging scheme. In case of UTSVM, we made a comparison with 

TWSVM and UTSVM with random averaging. 

All computations were carried-out on a PC running on Windows 10 OS with 64 bit, 3.60 GHz 

Intel® core
TM

 i7-7700 processor having 16 GB of RAM under MATLAB R2008b environment. 

MOSEK optimization toolbox (http://www.mosek.com) is used to solve the formulations of SVM, 

USVM, TWSVM and UTSVM. For nonlinear case, we used Gaussian kernel 











2

22

1
exp),( babak


 where vector mRba , and   is the kernel parameter. 

 The value of the parameters uCCCC  21  is taken from the set }10 ,...,10{ 55  for all the 

cases. For USVM, proposed USVM, UTSVM and proposed UTSVM, the number of universum 
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samples i.e. u  is taken from the set }40 ,30 ,20 ,10{  
and   is chosen by varying values from the set

}7.0 ,6.0 ,5.0 ,3.0 ,2.0 ,1.0{ . For the selection of the optimal parameters, 5-fold cross-validation is used. 

In our proposed approaches, universum is selected from the set N of the EEG database and for the 

existing universum methods random averaging is used for generating the universum data. The value of 

  is calculated as per the following formula (Tsang et al., 2006) in all the methods, 






N

ji

ji xx
N 1,

2

2
||||

1


 

 where ix represents each data point and N is the total number of data points. 

For all the datasets, the number of attributes are decided on the basis of two factors, (a) 

variance accounted for (Wagner, 2012) and (b) class discriminatory ratio (CDR). The approach of 

calculating CDR of components is taken from (Bartlett et al., 2002) as 

within

betweenr



 , 

where   

c

i

between xx
2

i       is the variance of the ''c  class means and 

  

c

i

c

j

between xx
2

jij       

 

is the sum of the within class variance of all the ''c  classes. 

The plots for variance and CDR are shown in fig. 6 and fig. 7 for Z & S dataset using PCA and 

ICA respectively. In fig. 8, the generalization performance of the proposed approach for UTSVM is 

compared with the random averaging approach for Z&S using PCA, O&S using PCA, O&S using ICA 

and O&S using wavelet feature extraction technique. 

The results for all the proposed and baseline methods are shown in terms of prediction 

accuracy and training time in Table 1 & Table 3. One can observe from Table 1 that our proposed 

approach outperforms USVM with random averaging, LSSVM and SVM in terms of accuracy. It can 

be observed in Table 2 that LSSVM performs better than SVM and USVM.  

From Table 3, it is evident that our proposed approach is showing better generalization 

performance for almost all the datasets as compared to TWSVM and UTSVM. In terms of training 

time, our proposed approach is comparable with respect to the existing universum based methods. It is 

also noticeable from Table 1 and 3 that the universum based approaches take more computation time 

as compared to traditional algorithms such as SVM, LSSVM and TWSVM. This additional time is due 

to the incorporation of universum data points which can be traded for the generalization performance. 

LSSVM takes very less computation time since it solves a system of linear equations. It is noticeable 

in Table 1 and 3 that the existing universum based approaches viz. USVM and UTSVM which use 
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random averaging for universum have not performed better than the other algorithms. This is because 

the seizure data contains noisy data points and thus the generated universum data do not reflect the 

distribution of data. On the other hand, our proposed approach of selecting the universum from the 

interictal EEG signals gives better accuracy in most of the datasets since there is no effect of noise 

which justifies its applicability for classification of seizure and healthy EEG signals. 

One can notice from Table 1 that our proposed approach has not performed better for all the 

datasets. So, we analyze the comparative performance of our proposed approach with the existing 

approaches. The average ranks of SVM, LSSVM, USVM and proposed USVM on the basis of 

accuracy is shown in Table 2. One can notice from Table 2 that the average rank of our proposed 

USVM is lowest among all the methods. We perform the Friedman test with the corresponding post-

hoc test (Demsar, 2006) for the statistical comparison of the performance of the 4 algorithms using 14 

datasets. We assume all the methods are equivalent under null hypothesis. The Friedman statistic is 

computed as 

,
4

)1(

)1(

12 2
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22
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where k  is the number of methods and N

 

is the number of datasets. 
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where FF  is the distribution according to the F -distribution with )39,3()133,3(   degrees of 

freedom with 4 methods and 14 datasets. The critical value of )39 ,3(F  is 8451.2  for the level of 

significance at 05.0 . Since the value of 8451.24633.16 FF  so we reject the null hypothesis. 

For pair-wise comparison of methods, we perform the Nemenyi post-hoc test. The significant 

difference between the methods is checked by computing the critical difference (CD) at 10.0p

which should differ by at least 1179.1
146

)14(4
291.2 




. 

The differences between the average ranks of SVM, LSSVM and USVM with proposed 

USVM are )8214.11.17863(  , )1428.11.17863214.2(   and )3214.21.17865.3( 

respectively.  Since, for all the methods, the difference of ranks is greater than 1179.1  so we conclude 

that our proposed USVM is significantly better than SVM, LSSVM and USVM. 
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The accuracy values are shown with the training time for the proposed UTSVM with TWSVM 

and UTSVM in Table 3. One can observe that our proposed UTSVM has shown better generalization 

performance in most of the cases. Table 4 shows the average ranks of TWSVM, UTSVM and 

proposed UTSVM based on accuracy values. Our proposed UTSVM has the lowest rank among all the 

methods. We further performed the Friedman statistics with the corresponding post-hoc test to find the 

significant difference between TWSVM, UTSVM and proposed UTSVM. The Friedman statistic is 

computed using Table 4 under null hypothesis as: 

9996.12
4

)13(3
)1.21432.42862.3571(

)13(3

1412 2
2222 











 





F  

266.11
9996.12)13(14

9996.12)114(





FF  

Since the value of FF  
is more than the critical value of )26,2(F  i.e. 3690.3  for the level of 

significance at 05.0 . Thus we reject the null hypothesis. Further, the pair-wise comparisons are 

performed by using the Nemenyi post-hoc test. The difference between the methods should be more 

than the critical difference (CD) at 10.0p , calculated using the critical value as

7756.0
146

)13(3
052.2 




. 

The difference between the average ranks of our proposed UTSVM with TWSVM and 

UTSVM are )1428.11.21433571.2(   
and )2143.11.21434286.2(   

which are greater than

7756.0 . Hence, the performance of our proposed UTSVM is significantly better than TWSVM and 

UTSVM. It is noticeable from Table 2 and 4 that our proposed UTSVM is showing highest 

generalization performance as compared to the existing methods. The highest accuracy for Z & S is 

obtained as 99 % in the case of ICA feature extraction with our proposed UTSVM. For O & S, the 

highest accuracy is found with ICA feature extraction technique using our proposed UTSVM. 

The accuracy value for different selections of number of universum points is shown in fig. 8 

for (a) Z&S using PCA, (b) O&S using PCA, (c) O&S using ICA and (d) O&S using wavelet (db4) 

feature extraction technique. It can be seen that in all the cases our proposed approach is giving higher 

accuracy in comparison to the traditional approaches. Also the effect of outliers is clearly visible in fig. 

8 (c) and (d) for the random averaging approach where the accuracy decreases for some sets of the 

universum. This justifies our selection of the universum. 

Fig. 9 illustrates the accuracy comparison of different algorithms for the classification of 

seizure and non-seizure data using different feature extraction techniques. In fig. 10, the insensitivity 

performance of our proposed approach of USVM is shown for the parameters C and  . It can be 

observed that the proposed USVM gives high accuracy for higher values of C and . The insensitivity 
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performance of our proposed approach with UTSVM is shown in fig. 11. It is evident from fig. 11 that 

our proposed UTSVM gives better generalization performance for lesser values of C and  . 

5. Conclusions 

 On the basis of the experimental results, it can be stated that our universum based approach 

gives better generalization performance for the classification of EEG signals as compared to the 

existing approaches. Our method of selection of universum points has proved to be a promising 

approach for the classification of healthy and seizure EEG signals. Also, the effect of outliers on the 

universum is reduced by using the universum from the EEG dataset itself i.e., the seizure free EEG 

signal. The distribution of interictal (seizure free) signals provides prior information about the 

distribution of healthy and seizure signals and also lies in between the two classes. Based on the 

experimental results, it is evident that universum twin support vector machine (UTSVM) is better in 

comparison to other support vector machine algorithms for EEG signal classification. Among the 

different feature extraction techniques, ICA shows the best results using our proposed approach with 

99 % accuracy. 

The proposed work also gives a comparison of the different SVM based algorithms for the 

classification of EEG signals. It is evident from the experimental results that other variants of SVM 

such as TWSVM and UTSVM give good generalization and computational performance and are 

applicable for the classification of EEG signals. The universum based SVM approach needs to be 

applied to other diseases which are diagnosed using EEG signals with the proper selection of 

universum. In future, our universum based approach of EEG classification can be improved in terms of 

computational time. Our proposed universum based approach can be extended to multiclass 

classification of EEG signals using EEG datasets generated with different feature extraction 

techniques. 
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Dataset 

(Train size, Test size) 

Feature Extraction 

Method 

SVM 

    Accuracy (%) 

         ) ,( C
 

       Time (s)
 

LSSVM 

  Accuracy (%) 

                   ) ,( C
 

 Time (s)
 

USVM 

 Accuracy (%) 

 ),,,( u   C   

 Time (s)
 

Proposed USVM 

Accuracy (%) 

 ),,,( u   C   

 Time (s)
 

Z & S 

(100 50, 100 50) 
PCA 

69 

(10^2, 21180.7) 

0.09954 

73 

(10^5, 21180.7) 

0.03017 

69 

(10^2, 21180.7, 0.2, 15) 

0.17169 

77 
(10^3, 21180.7, 0.3, 15) 

0.16816 

Z & S 

(100 15, 100 15) 
ICA 

80 

(10^3, 69.919) 

0.09963 

79 

(10^4, 69.919) 

0.02733 

81 
(10^3, 69.919, 0.2, 10) 

0.14142 

79 

(10^2, 69.919, 0.1, 10) 

0.13958 

Z & S 

(100 50, 100 50) 
Wavelet (db4) 

69 

(10^2, 21415.9) 

0.09859 

73 

(10^5, 21415.9) 

0.02984 

69 

(10^2, 21415.9, 0.1, 10) 

0.14816 

76 
(10^4, 21415.9, 0.3, 10) 

0.14314 

Z & S 

(100 50, 100 50) 
Wavelet (Haar) 

69 

(10^2, 21196.3) 

0.10009 

72 

(10^4, 21196.3) 

0.0295 

69 

(10^3, 21196.3, 0.2, 30) 

0.25236 

84 
(10^4, 21196.3, 0.7, 30) 

0.25148 

Z & S 

(100 50, 100 50) 
Wavelet (db2) 

69 

(10^2, 21315.9) 

0.10182 

73 

(10^5, 21315.9) 

0.02925 

69 

(10^2, 21315.9, 0.1, 10) 

0.14347 

76 
(10^4, 21315.9, 0.5, 10) 

0.14183 

Z & S 

(100 50, 100 50) 
Wavelet (db6) 

69 

(10^2, 21503.3) 

0.09742 

71 

(10^2, 21503.3) 

0.03005 

69 

(10^2, 21503.3, 0.1, 10) 

0.14553 

77 
(10^4, 21503.3, 0.5, 10) 

0.14177 

Z & S 

(100 50, 100 50) 
Wavelet (db1) 

69 

(10^2, 20956.4) 

0.09981 

74 

(10^5, 20956.4) 

0.031 

69 

(10^2, 20956.4, 0.1, 10) 

0.14285 

78 
(10^4, 20956.4, 0.1, 10) 

0.14328 

O & S 

(100 50, 100 50) 
PCA 

72 

(10^1, 20400) 

0.10182 

69 

(10^2, 20400) 

0.02975 

67 

(10^3, 20400, 0.1, 40) 

0.32457 

75 
(10^1, 20400, 0.3, 40) 

0.30981 

O & S 

(100 50, 100 50) 
ICA 

72 

(10^2, 105.268) 

0.10174 

74 

(10^5, 105.268) 

0.03955 

72 

(10^3, 105.268, 0.3, 20) 

0.2129 

76 
(10^2, 105.268, 0.6, 20) 

0.18707 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

O & S 

(100 30, 100 30) 
Wavelet (db4) 

71 

(10^1, 20139.2) 

0.09831 

71 

(10^1, 20139.2) 

0.0284 

70 

(10^2, 20139.2, 0.1, 40) 

0.32568 

75 
(10^1, 20139.2, 0.3, 40) 

0.31293 

O & S 

(100 50, 100 50) 
Wavelet (Haar) 

70 

(10^2, 19800.4) 

0.10273 

70 

(10^2, 19800.4) 

0.04194 

69 

(10^3, 19800.4, 0.2, 40) 

0.32389 

75 
(10^1, 19800.4, 0.3, 40) 

0.31326 

O & S 

(100 50, 100 50) 
Wavelet (db2) 

68 

(10^2, 20074.4) 

0.09935 

69 

(10^2, 20074.4) 

0.03094 

67 

(10^2, 20074.4, 0.1, 40) 

0.31621 

75 
(10^1, 20074.4, 0.3, 40) 

0.31399 

O & S 

(100 50, 100 50) 
Wavelet (db6) 

69 

(10^1, 19984.8) 

0.09922 

70 

(10^2, 19984.8) 

0.02976 

69 

(10^2, 19984.8, 0.1, 40) 

0.31894 

77 
(10^0, 19984.8, 0.1, 40) 

0.31528 

O & S 

(100 50, 100 50) 
Wavelet (db1) 

71 

(10^1, 20412.5) 

0.10013 

69 

(10^2, 20412.5) 

0.03019 

68 

(10^2, 20412.5, 0.3, 40) 

0.32286 

76 
(10^0, 20412.5, 0.1, 40) 

0.31789 

Table 1: Performance comparison of proposed USVM with SVM, LSSVM and USVM for classification of seizure and healthy EEG signals using 

Gaussian kernel. 
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Dataset 
Feature Extraction 

Method 
SVM LSSVM USVM 

Proposed 

USVM 

Z & S PCA 3.5 2 3.5 1 

Z & S ICA 2 3.5 1 3.5 

Z & S Wavelet (db4) 3.5 2 3.5 1 

Z & S Wavelet (Haar) 3.5 2 3.5 1 

Z & S Wavelet (db2) 3.5 2 3.5 1 

Z & S Wavelet (db6) 3.5 2 3.5 1 

Z & S Wavelet (db1) 3.5 2 3.5 1 

O & S PCA 2 3 4 1 

O & S ICA 3.5 2 3.5 1 

O & S Wavelet (db4) 2.5 2.5 4 1 

O & S Wavelet (Haar) 2.5 2.5 4 1 

O & S Wavelet (db2) 3 2 4 1 

O & S Wavelet (db6) 3.5 2 3.5 1 

O & S Wavelet (db1) 2 3 4 1 

Average Rank 3 2.3214 3.5 1.1786 

Table 2: Average ranks of SVM, LSSVM, USVM and proposed USVM on classification accuracy for seizure and 

healthy EEG signals using Gaussian kernel. 
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Dataset 

(Train size, Test size) 

Feature 

Extraction 

Method 

TWSVM 

Accuracy (%) 

          ) ,( C
 

Time (s)
 

UTSVM 

Accuracy (%) 

),,,( u   C 
 

Time (s)
 

Proposed UTSVM 

Accuracy (%) 

),,,( u   C 
 

Time (s)
 

Z & S 

(100 50, 100 50) 
PCA 

82 

(10^-5, 21180.7) 

0.0191 

89 

(10^0, 21180.7, 0.7, 30) 

0.02529 

90 
(10^1, 21180.7, 0.1, 30) 

0.02599 

Z & S 

(100 15, 100 15) 
ICA 

94 

(10^0, 69.919) 

0.01607 

95 

(10^-2, 69.919, 0.6, 10) 

0.01804 

99 
(10^-5, 69.919, 0.1, 10) 

0.01756 

Z & S 

(100 50, 100 50) 

Wavelet 

(db4) 

82 

(10^-5, 21415.9) 

0.01805 

78 

(10^1, 21415.9, 0.3, 30) 

0.02533 

91 
(10^1, 21415.9, 0.1, 30) 

0.02509 

Z & S 

(100 50, 100 50) 

Wavelet 

(Haar) 

79 

(10^-5, 21196.3) 

0.01819 

80 

(10^0, 21196.3, 0.6, 20) 

0.02217 

88 
(10^1, 21196.3, 0.1, 20) 

0.02255 

Z & S 

(100 50, 100 50) 

Wavelet 

(db2) 

82 

(10^-5, 21315.9) 

0.01854 

89 

(10^0, 21315.9, 0.7, 30) 

0.02468 

90 
(10^1, 21315.9, 0.1, 30) 

0.0251 

Z & S 

(100 50, 100 50) 

Wavelet 

(db6) 

80 

(10^-5, 21503.3) 

0.01813 

81 

(10^0, 21503.3, 0.7, 20) 

0.022 

87 
(10^1, 21503.3, 0.1, 20) 

0.02306 

Z & S 

(100 50, 100 50) 

Wavelet 

(db1) 

80 

(10^-5, 20956.4) 

0.01832 

89 
(10^0, 20956.4, 0.7, 30) 

0.02431 

88 

(10^1, 20956.4, 0.1, 30) 

0.0256 

O & S 

(100 50, 100 50) 
PCA 

79 

(10^-4, 20400) 

0.01826 

80 

(10^-4, 20400, 0.6, 40) 

0.02571 

84 
(10^-2, 20400, 0.6, 40) 

0.02601 

O & S 

(100 50, 100 50) 
ICA 

94 

(10^0, 105.268) 

0.01699 

90 

(10^-1, 105.268, 0.6, 10) 

0.01823 

95 
(10^-1, 105.268, 0.1, 10) 

0.01942 

O & S 

(100 30, 100 30) 

Wavelet 

(db4) 

84 
(10^-3, 20139.2) 

0.01822 

78 

(10^0, 20139.2, 0.2, 20) 

0.02271 

84 
(10^-3, 20139.2, 0.1, 20) 

0.02236 

O & S 

(100 50, 100 50) 

Wavelet 

(Haar) 

82 
(10^-3, 19800.4) 

0.01874 

79 

(10^0, 19800.4, 0.3, 10) 

0.02041 

82 
(10^-3, 19800.4, 0.1, 10) 

0.01991 

O & S 

(100 50, 100 50) 

Wavelet 

(db2) 

83 
(10^-3, 20074.4) 

0.01829 

78 

(10^-1, 20074.4, 0.5, 10) 

0.02005 

83 
(10^-3, 20074.4, 0.1, 10) 

0.02022 

O & S 

(100 50, 100 50) 

Wavelet 

(db6) 

80 

(10^-4, 19984.8) 

0.02598 

77 

(10^0, 19984.8, 0.3, 40) 

0.02778 

85 
(10^-2, 19984.8, 0.7, 40) 

0.02615 

O & S 

(100 50, 100 50) 

Wavelet 

(db1) 

84 
(10^-3, 20412.5) 

0.01862 

79 

(10^-1, 20412.5, 0.5, 10) 

0.02023 

84 
(10^-3, 20412.5, 0.1, 10) 

0.02013 

Table 3: Performance comparison of proposed UTSVM with TWSVM and UTSVM for classification of 

seizure and healthy EEG signals using Gaussian kernel. 
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Dataset 
Feature Extraction 

Method 
TWSVM UTSVM Proposed UTSVM 

Z & S PCA 3 2 1 

Z & S ICA 3 2 1 

Z & S Wavelet (db4) 2 3 1 

Z & S Wavelet (Haar) 3 2 1 

Z & S Wavelet (db2) 3 2 1 

Z & S Wavelet (db6) 3 2 1 

Z & S Wavelet (db1) 3 1 2 

O & S PCA 3 2 1 

O & S ICA 2 3 1 

O & S Wavelet (db4) 1.5 3 1.5 

O & S Wavelet (Haar) 1.5 3 1.5 

O & S Wavelet (db2) 1.5 3 1.5 

O & S Wavelet (db6) 2 3 1 

O & S Wavelet (db1) 1.5 3 1.5 

Average Rank 2.3571 2.4286 1.2143 

Table 4: Average ranks of TWSVM, UTSVM and proposed UTSVM on classification accuracy for 

seizure and healthy EEG signals using Gaussian kernel. 
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        Figure 2: EEG signals of healthy control, interictal (seizure free) and ictal (seizure) state. 

 

 

 

                           
 

Figure 3: Discrete wavelet decomposition of EEG signal at 3
rd

 level of decomposition using Daubechies-4 

wavelet. 
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Figure 4: Distribution of data points of set Z set as healthy control, S as seizure using PCA up to 3 principal 

components in (a) for proposed method i.e., using N (seizure free) data points as universum and in (b) random 

averaging is used for generating the universum. 

 

 

           
 

 

         (a)          (b) 

 

Figure 5: Distribution of data points of set Z set as healthy control, S as seizure using ICA up to 3 principal 

components (PCs) in (a) the proposed approach using seizure free data points as universum and (b) universum 

data points generated using random averaging. 
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Figure 6: (a) Variance of data points (b) class discriminatory ratio vs. number of PCA components for Z & S 

dataset using PCA feature extraction technique. 
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Figure 7: (a) Variance of data points (b) class discriminatory ratio vs number of PCA components for Z & S 

dataset using ICA feature extraction technique. 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
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              (c)                          (d)   

 

Figure 8: Performance comparison of proposed approach for UTSVM with the random averaging method on 

(a) Z&S using PCA, (b) O&S using PCA, (c) O&S using ICA and (d) O&S using wavelet (db4) feature 

extraction technique. 
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          Figure 9: Accuracy comparison for classification of EEG signals using different algorithms with Gaussian 

kernel. SVM based algorithms for classification on (a) Z&S and (b) O&S datasets, and TWSVM based 

algorithms on (c) Z&S and (d) O&S datasets using different feature extraction techniques. 
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  (a) Z&S with Haar             (b) Z&S with db4 

 

 
 

 (c) O&S with db1        (d) O&S with db4 

 

Figure 10: Insensitivity performance of proposed USVM for classification of seizure and healthy EEG signals 

to the user specified parameters ),(  C  using Gaussian kernel. 
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 (a) Z&S with ICA                                                              (b) Z&S with db4 

 

 
 

              (c) O&S with PCA       (d) O&S with db4 

 

Figure 11: Insensitivity performance of proposed UTSVM for classification of seizure and healthy EEG signals 

to the user specified parameters ),(  C  using Gaussian kernel. 


