
 

Accepted Manuscript

Risk based Security Enforcement in Software Defined Network

Bata Krishna Tripathy, Debi Prasad Das, Swagat Kumar Jena,
Padmalochan Bera

PII: S0167-4048(18)30191-3
DOI: 10.1016/j.cose.2018.07.010
Reference: COSE 1372

To appear in: Computers & Security

Received date: 5 March 2018
Revised date: 1 July 2018
Accepted date: 24 July 2018

Please cite this article as: Bata Krishna Tripathy, Debi Prasad Das, Swagat Kumar Jena,
Padmalochan Bera, Risk based Security Enforcement in Software Defined Network, Computers &
Security (2018), doi: 10.1016/j.cose.2018.07.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cose.2018.07.010
https://doi.org/10.1016/j.cose.2018.07.010


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Risk based Security Enforcement in Software Defined Network

Bata Krishna Tripathya,∗, Debi Prasad Dasb, Swagat Kumar Jenaa, Padmalochan Beraa

aIndian Institute of Technology Bhubaneswar, India
bNational Institute of Technology Rourkela, India

Abstract

Software Defined Network (SDN) paradigm provides intelligent and efficient management
of different network control functions (NF) depending on changes in traffic behavior, ser-
vice providers’ requirements and application context. However, the logical centralization
of controllers’ functions opens up challenges towards enforcing security perimeter over the
underlying network and the assets involved. In this paper, we propose a risk assessment
model for pro-active secure flow control and routing of traffic in SDN. The proposed model
determines threat value of different SDN entities by analyzing vulnerability and exposure
with respect to Common Vulnerability Scoring System (CVSS). The risk of a given traffic is
calculated as cumulative threat values of the SDN entities that guides the flow and routing
control functions in generating secure flow rules for the forwarding switches. The efficacy of
the proposed model is demonstrated through extensive case studies of an enterprise network.

Keywords: Software Defined Network (SDN), Network control functions (NF), Common
Vulnerability Scoring System (CVSS), vulnerability, exposure, threat, risk

1. Introduction

Software Defined Networking (SDN) is an emerging networking paradigm that allows
intelligent and efficient management of network control functions. It allows execution of dif-
ferent network control functions as a logically centralized controller by decoupling them from
the underlying forwarding network [1] consisting of various network devices, e.g., switches,
routers, access points, etc. The controller provides better flexibility and configuration con-
trol to the users with easy and on-demand dynamic configuration of the network and its
resources [2]. The SDN model shown in Figure 1 provides several benefits over the traditional
network such as (i) Simple and reliable network, (ii) Programmability feature, (iii) Flexible
device configuration and troubleshooting, and (iv) Virtualization of the network. Due to
these extensive features, Software Defined Networking has attained significant attention to
research community starting from academics to industries and has several applications in
ranging from data centers to wide area networking, cloud computing, Internet of Things,
Mobile Ad hoc Networking, cellular networking, etc. [3].

∗Corresponding author: Bata Krishna Tripathy
Email addresses: bt10@iitbbs.ac.in (Bata Krishna Tripathy), debi.das@itron.com (Debi Prasad

Preprint submitted to Elsevier July 30, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 1: A model of Software Defined Networking

Software Defined Networking (SDN) enables efficient service provisioning to end users
from various enterprise applications based on Service Level Agreements (SLAs) and dynamic
requirements in terms of policies by maintaining the global view of the network. Among
various SDN enabled communication protocol, the majority of the SDN applications imple-
ment OpenFlow protocol [48] to support necessary interaction between the controllers and
the switches as OpenFlow is a vendor-independent standard and hence allows for interoper-
ability between heterogeneous networking devices.

Despite the advantages provided by SDN, various performance and security challenges
have been major concerns since its evolution. The performance and security issues those
need to be addressed for efficient deployment of SDN are the management of complex policies

Das), skj11@iitbbs.ac.in (Swagat Kumar Jena), plb@iitbbs.ac.in (Padmalochan Bera)

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in a simple interface, networking delay, lack of standardized interfaces between SDN layers,
load balancing, packet scheduling, etc. In addition, there exist various open problems to
utilize the benefits of SDN [5]. The most important problems lie in: (i) usable, reliable and
efficient network service offerings [6]; (ii) extensible control function execution platform with
the change in network size and requirements [7]; and (iii) end-to-end security enforcement
to network services. The thrust of this paper is to provide a seamless solution for enforcing
end-to-end security in SDN.

A number of security solutions have been contributed by the research communities to ad-
dress these security issues. These vary from access control mechanisms to encryption-based
authentication schemes. On the other hand, a number of security approaches have been
proposed to enhance the SDN framework using middlebox architectures. In addition, few
researchers focus on developing Intrusion Detection System and Intrusion Prevention Sys-
tem to ensure security in SDN. Whereas other classes of researchers aim at different aspects
of security approaches such as developing a secure flow specification language, inspecting
packet level threats, certificate authentication etc. to detect various attacks such as Denial
of Service, Spoofing, Man-in-the-middle attacks, etc.

However, the state-of-art SDN security solutions do not provide an end-to-end secure
flow of packets across the network segments by assessing the behavior of the traffic with
respect to different SDN components as the internal architecture of SDN as well as the
heterogeneous policy rules enforced by distributed policy enforcing servers impose several
security challenges.

In the next subsection, we discuss the challenges of security enforcement in SDN with a
motivating example.

1.1. Motivation

The open user-control, ubiquitous execution of network functions and centralized control
management introduce various security threats in different levels of Software-defined network
architecture. The major security challenges in SDN are demonstrated with an example here.

Figure 2 shows an SDN environment for a segment of an enterprise network. Here, the
Network Application Server (AP) generates network access control and flow configuration
policies based on requirements and those policies are realized dynamically in the corre-
sponding network control functions. At the Northbound interface (controller-application
interface), security challenges with respect to giving permission to alter the network policies
to an application may cause harm to the whole network. In this scenario, there is a potential
possibility of AP being compromised as it is exposed to external users. This might lead to
altering the policy rules for the network functions. As a result, the network functions might
be realized incorrectly that may allow propagation of various attacks across the network.
These attacks can extend to Denial of Service (DoS), code injection, and hidden tunnel.

Now, consider the scenario, where the flow control function is driven by the rules gen-
erated from Network Application Server (AP) and Network Management Server (NMS). In
such ubiquitous computing scenarios, there is a possibility of conflicts amongst the flow rules
generated by these servers. This, in turn, might cause compromising the NMS by the AP
leading to security and performance violations in the network.

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 2: A Security Threat Scenario

The controller generates appropriate flow entries from the set of network policy rules
and pushes them into the flow tables. An SDN cannot distinguish the flow entry of a newly
generated application from an older one. So, there is a possibility that a new network policy
generated by an application server can bypass and override the security policy predefined
by the security administrator.

Furthermore, there may be vulnerable applications running in end hosts, controllers, and
switches leading to various state-of-art attacks. In addition, the attack paths may be created
across the network segment as the switches along the traffic route may have various open
ports. In some cases, the network traffic containing malware, trojan or spams originating
from corrupted hosts (due to vulnerabilities) might result in compromised network functions
that can be manifested as different end-point attacks in the networks.

However, the existing security solutions for SDN do not support analyzing the behavior
of the traffic with respect to different SDN components that may lead to various vulnera-
bilities and risks which may have a huge impact on the organizational assets. Therefore, an
appropriate security enforcement mechanism needs to be introduced to pro-actively analyze
the risks of traffics and creating strong isolation between the network functions. The main

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

objective of this paper is to provide an end-to-end security mechanism for SDN. The major
contribution of our work lies in developing a novel network security enforcement function
for SDN based on risk assessment.

The proposed security function determines threat value of different SDN entities by
analyzing vulnerability and exposure with respect to Common Vulnerability Scoring System
(CVSS) [39]. The risk of a given traffic is calculated as cumulative threat values of the SDN
entities that guides the flow controller in generating secure flow rules for the forwarding
switches.

The remainder of the paper is organized as follows. In Section 2, we discuss the relevant
works related to the security enforcement mechanisms in SDN. In Section 3, we present an
overview of our proposed security enforcement functions for SDN briefly. In Section 4, we
discuss the Risk Analyze function in detail, that assesses the risk of different SDN entities
with respect to a given traffic request. Then, we evaluate our proposed security enforcement
functions with a case study in Section 5. Finally, we conclude the paper in Section 6.

2. Related Work

Software Defined Network simplifies network deployment and operation along with pro-
viding a programmable platform for managing enterprise and carrier networks. However,
with the introduction of open interfaces in SDN and knowledge of protocols in different
Application programming interfaces, the door is thrown open to the attackers. A number
of research works have been contributed in the area of security enforcement in Software
Defined Networking environment.

The research communities focus on exploiting SDN to improve network security with
dynamic detection and mitigation of suspicious activity in a network. Kreutz et al. [4] in
2013 reported that the centralized nature of controller and the network programmability
scope introduce new threats in SDN. Mehdi et al. [9] propose the implementation of SDN
to provide better security in terms of intrusion detection in a small enterprise environment.
OpenSAFE [10] addresses security issues for an arbitrary direction of traffic with a novel
flow specification language, namely ALARMS. FRESCO [11] presents a security application
development framework with different security enabled modular functions that implement
python based flow monitoring and threat detection functions. FleXam [15] facilitates packet
level inspection to detect and mitigate security threats like botnet and worm propagation.

In addition, various security issues of SDN itself have attracted the research communi-
ties. NICE [16] secures OpenFlow Applications using intrusion detection with the help of
attack graphs based analytical models. However, such path exploration approaches do not
cope well with extensible applications. FlowChecker [17] exploits FlowVisor [18] to detect
inconsistencies in policies from multiple applications or the multi-controller environment.
FLOVER [19] deals with conflicting flow entries with predefined network policies using as-
sertion sets and modulo theories. FortNOX [20] resolves conflicts in flow entry installation
with role-based and signature-based authentication.

Another class of researchers aims at developing encryption approach based security solu-
tions for SDN. The authors in [27] proposed an Identity-Based Cryptography (IBC) protocol

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

based mechanism for ensuring secure southbound and east/west-bound communication in a
multi-domain distributed SDN environment. The work [28] presented a security solution in
which the controller provides network information only for authorized programs through a
safe REST API [30] based on the NTRU algorithm [29] and the NSS digital signature [31].
By analyzing various threats originating from different SDN layers, the literature [32] pre-
sented a different SDN security framework based on attribute-based encryption that enables
an improved access control method. Another work [33] developed a different authentication
scheme by using the Elliptic Curve Cryptography on the basis of PKI certificate verification
for ensuring a secure communication in distributed controller environment.

Gabriel et al. [21] proposed a technique for handling Distributed Denial of Service
(DDoS) attack in an SDN environment, by assessing risk through the means of a cyber-
defense system. HiFIND [8] is a highly secured technique that prevents SDN platform from
DDoS attacks for high-density data packets providing protection to customers and service
provider. SN-SECurity Architecture (SN-SECA) [22] presents a formal security framework
that integrates and validates different security parameters in the SDN/NFV design and
implementation. The work in [25] presented a detect and defense control function called as
SDN sEcure COntroller (SECO) to protect against Denial of Service (DoS) attack originating
from switches or hosts. SECO uses the switch port statistics performance and the attack
source positioning feature from the global view of the network for this purpose. The authors
in [26] proposed a security scheme for SDN that consists of different components, i.e., a
mapping algorithm, take-over process, synchronization messages, heartbeat messages, and
protective mode to prevent against DoS attack.

Avant guard in literature [12] uses connection migration and actuating triggers as security
features to provide security between the forwarding and control plane along with improving
the response rate of the controller to the forwarding plane traffic requests. The authors in
[14] proposed a model to analyze the potential threats when data plane communicates with
the controller using the OpenFlow protocol using STRIDE [13] and attack trees to detect
various attacks. The authors in [23] proposed a different approach to analyze and model
Forwarding and Control planes Separation Network Structure (FCSNS) in SDN based on
STRIDE [13], Petri net, and Attack tree models. In another work, Controller DAC [24] pre-
sented a controller-independent dynamic access control scheme to ensure protection of SDN
controllers against malicious access by applications through different APIs (east/westbound
and north/southbound).

On the other hand, few researchers focused on developing security middle-boxes for
SDN execution platform accomplishing its programmability feature. Slick framework [36]
presents a centralized controller for implementing and migrating functions onto customized
middle-boxes allowing applications for routing security requirements based traffic request.
FlowTags architecture [37] is another minimally modified middle-box that interacts with an
SDN controller through a FlowTags (traffic flow information embedded in packet headers)
Application Programming Interface (API). Another work, the SIMPLE policy enforcement
layer [38] requires no modification to middlebox or SDN in contrast to [36] and [37]. However,
middlebox security solutions incur significant overhead for security enforcement in SDN.

However, the state-of-art security mechanisms don’t ensure end-to-end security enforce-

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ment with the systematic analysis of real-time and heterogeneous traffic, and assessment of
the behavior of different SDN entities. Our proposed network security enforcement functions
will effectively and efficiently address these problems.

In the next section, we present an overview of our proposed security enforcement mech-
anism for SDN.

3. Proposed Security Enforcement Framework for SDN

This section presents our proposed SDN security enforcement framework. We pro-
pose a novel security enforcement function called Risk Analyze that along with the pol-
icy control functions: Trust Verify, Policy Conflict Resolve, and Policy Consistency Check
[34] provides end-to-end security in SDN. Here, the main emphasis of the paper is on the
Risk Analyze function. Figure 3 shows the overall architecture of the SDN control functions
and the process of traffic flow through these functional modules. The proposed security
enforcement functions are briefly discussed in following subsections.

3.1. Trust Verify

In SDN, different network application servers and management servers generate pol-
icy rules for different network applications dynamically as per the requirements. The
Trust Verify function [34] checks the following properties of the policy enforcing servers
and certifies them.

• The certificate has been issued by a valid certificate authority (CA).

• The certificate has not been expired (or been revoked).

• The names listed in the certificate match the domain names.

In addition, it performs verification of PKI (Public Key Infrastructure) certificate and
trust of the links (interfaces/ports). Hence, the Trust Verify function ensures defense against
security violations through any compromised application or management server. The de-
tailed algorithm is demonstrated in our previous work [34].

3.2. Policy Conflict Resolve

Policy Conflict Resolve function [34] detects the potential conflicts between the hetero-
geneous policy rules received by SDN control plane using pattern matching and resolves
them by using the concept of rule override. The override function uses artificial intel-
ligence based algorithms to resolve the conflicts between heterogeneous policies. The Pol-
icy Conflict Resolve function manages these heterogeneous conflicts by prioritizing the levels
of administrators in correspondence to different Application and Management Servers based
on their roles. For example, a Network Management Server (NMS) usually has higher pri-
ority than an Application Server (AP) to serve the traffic as per the requirements. Hence,
policy rules set by NMS overrides the policy rules set by AP. The detailed algorithm is
presented in our previous work [34].

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: Proposed Risk based Security Enforcement Framework for SDN

3.3. Policy Consistency Check

SDN platform supports dynamic changes in the application layer by different adminis-
trators in the form of requirements or high-level Service Level Agreements (SLAs). The
changes may be due to altering existing policies, adding or removing policies, installing or
removing applications, etc. So, if any policy is modified in the application layer, it must be
reflected in the flow tables of the data plane switches in order to adapt to the changes in
requirements and to allow correct propagation of traffic across the network.

The Policy Consistency Check function proposed in our previous work [34] detects the
inconsistency between the application layer and data layer. It checks the satisfiability of the

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

existing flow rules in the SDN switches and the updated conflict-free policy rule sets. This
process is triggered by any change in the Policy repository and at each packet arrival in the
SDN switches.

3.4. Risk Analyze

The three secure control functions, i.e., Trust Verify, Policy Conflict Resolve, and Pol-
icy Consistency Check compositely enable secure and efficient policy enforcement in SDN.
However, there is possibility of security breaches due to misconfigurations, vulnerabilities,
and backdoors in different entities (i.e., compromised end hosts, compromised switches and
compromised controller). Our proposed Risk Analyze first extracts threat models for dif-
ferent entities for a given traffic request considering vulnerability and exposure of each of
the entities. Then, it calculates the overall risk of the corresponding traffic involved using
the weighted sum of the threat values and criticality of the traffic request. The calculated
risk measures for the related traffic are fed to the routing and flow control functions for
generating correct routing and flow rules. This will ensure secure flow and routing of traffic
in SDN.

We have already discussed the three policy control functions, i.e., Trust Verify, Pol-
icy Conflict Resolve, and Policy Consistency Check in details in our previous work [34].
The main thrust of this paper lies in developing Risk Analyze function that ensures end-to-
end security for a given traffic request in SDN environment. The next section describes our
proposed Risk Analyze function in detail.

4. Risk Analyze: The Risk Assessment Function for SDN

This section explains our proposed risk assessment model for SDN using the Risk Analyze
function in detail. Our proposed Risk Analyze function considers the following parameters
in order to assess the risk of various types of traffic.

(a) Vulnerability : It is defined as a software and hardware level weakness in the
network entities, which may allow an attacker to reduce the information assurance of the
entities and the underlying network [40]. We use Common Vulnerability Scoring System
(CVSS) [39] for defining vulnerability of the network entities.

(b) Exposure : It is defined as the state or condition of a network being unprotected
and open to the risk of suffering the loss of information [41]. We determine the threat of a
network entity as the ratio of the potentially unprotected portion of the entity to the total
entity size.

(c) Threat : Threats are potential events for vulnerabilities that might lead to expo-
sure of the network and adversely impact the organizational assets [42]. Vulnerability and
exposure of an entity are used to determine its threat value.

(d) Risk : It is a qualitative measure of potential security threat and its impact on the
network [43].

The Common Vulnerability Scoring System (CVSS) [39] plays an important role for risk
assessment of the network entities in order to ensure secure flow of traffic across the network

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

segment. The proposed risk assessment module uses a data structure called vulnerability
database for this purpose. The vulnerability database is a local repository (offline) stored
in the controller and is periodically updated with the recent Common Vulnerability Score
(CVS) values of the applications or protocols or services running in different SDN compo-
nents or entities (controller, end hosts, and switches). The CVS values are computed by
extracting necessary metrics from online National Vulnerability Database (NVD) [44] using
a script (python).

The recent vulnerability values available in NVD are in XML format which contains two
standard scores: V2 and V3 in the form of Common Vulnerability and Exposure (CVE)
measures. The detailed process of parsing CVE values from NVD and storing in local
vulnerability database as CVS values inside the controller is explained in Figure 4. It
is to be noted that in the vulnerability database, there exists exactly one entry of CVS
value for an application with its version and the Operating System platform as it is the
updated CVSS value of the application parsed from NVD’s recent XML file using the script.
The structure of an entry in the vulnerability database is <Application/service/protocol,
V ersion, Operating system, CV S value>.

Figure 4: Parsing CVE values from NVD and storing as CVS values in local vulnerability database for risk
assessment

Generally, the V3 standard is an improvement over V2 standard as V3 considers the
context of attacker’s access rights to read/write/execute to exploit the vulnerability and
physical manipulation of the affected components. Hence, our proposed risk assessment
module uses the V3 version of CVE as its CVS value for necessary risk assessment for secure
processing and flow a given traffic request. However, for some older vulnerabilities there
exist only V2 values in NVD. In such case, the CVS value for a vulnerability is calculated

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in two steps from the available V2 metrics in NVD as discussed below.

(i) Step 1 - Transformation of V2 metrics:
In order to compute the overall vulnerability value, CVSS considers certain metrics
which define the hardware, software and network level vulnerabilities. The V2 version
differs from the V3 version in terms of the metrics and their values considered for overall
vulnerability score computation. However, for some older vulnerabilities, V3 value is
not available in the NVD. In this scenario, the CVS value for a vulnerability in our
solution is estimated from the V2 metrics available in the XML file by appropriately
transforming the metrics and their values as shown in Table 1. The transformation is
performed as per the CVSS V2 and V3 standards [45], [46].

These metrics after the transformation process are then used for the necessary CVS
computation in the proposed mechanism. The estimation of CVS value for a vulnera-
bility is performed as explained below in the subsequent step.

(ii) Step 2 - Calculation of CVS values:
The CVS value for a vulnerability is determined from the desired metrics obtained in
the previous step, using the standard equations for the overall V3 version of CVSS
computation [46] with optimization in order to minimize the overhead of the CVS
computation process. The procedure of the overall CVS value calculation is illustrated
in Figure 5.

The entities of the Software Defined Network architecture might be the potential sources
of vulnerabilities in the network [35]. In this paper, we have considered the following SDN
entities for risk assessment.

• compromised end hosts

• compromised switches

• compromised controller

In our Risk Analyze function, we extract threat models for different entities with respect
to a given traffic request using vulnerability and exposure analysis of those entities. Then,
the overall risk of a given traffic request is calculated as cumulative threat values of the SDN
entities and criticality of the traffic request.

The following subsections illustrate the threat model and the risk assessment model for
different entities of Software Defined Network.

4.1. Threat model for SDN Entities

This subsection presents the threat model for different SDN entities for a specific traffic
request. The threat associated with different SDN entities are modeled using the vulnera-
bility and exposure of the entities as follows.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Transformation of V2 metrics and their values for CVS computation

V2 metric Value Transformed metric Value

Base metrics

Exploitability group

Access vector

Local: 0.395

Attack Vector

Local: 0.55

Adjacent network: 0.646 Adjacent: 0.62

Network: 1.0 Network: 0.85

Access complexity

High: 0.35

Attack complexity

High: 0.44

Medium: 0.61 Medium: 0.62

Low: 0.71 Low: 0.77

Authentication

Multiple: 0.45

Privileges Required

High: 0.27

Single: 0.56 Low: 0.62

None: 0.704 None: 0.85

Impact group Confidentiality, Integrity, and Availability

None: 0.0

Confidentiality, Integrity, and Availability

None: 0.0

Partial: 0.275 Low: 0.22

Complete: 0.66 High: 0.56

Temporal metrics

Exploitability

Unproven: 0.85

Exploitability

Unproven: 0.91

Proof-of-concept: 0.9 Proof-of-concept: 0.94

Functional: 0.95 Functional: 0.97

High: 1.0 High: 1.0

Remediation level

Official fix: 0.87

Remediation level

Official fix: 0.95

Temporary fix: 0.90 Temporary fix: 0.96

Workaround: 0.95 Workaround: 0.97

Unavailable: 1.0 Unavailable: 1.0

Report confidence

Unconfirmed: 0.90

Report confidence

Unknown: 0.92

Uncorroborated: 0.95 Reasonable: 0.96

Confirmed: 1.0 Confirmed: 1.0

Environmental metrics

General Modifiers

Collateral Damage Potential

None: 0

Attack Vector

None: 0

Low (light loss): 0.1 Physical: 0.2

Low-medium: 0.3 Local: 0.55

Medium-high: 0.4 Adjacent network: 0.62

High (catastrophic loss): 0.5 Network: 0.85

Target Distribution

None: 0

Attack complexity

None: 0

Low: 0.25 Low: 0.77

Medium: 0.75 Medium: 0.62

High: 1.0 High: 0.44

Impact subscore modifier Confidentiality, Integrity, and Availability requirements

Low: 0.5

Confidentiality, Integrity, and Availability requirements

Low: 0.5

Medium: 1.0 Medium: 1.0

High: 1.51 High: 1.5

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 5: CVS computation of vulnerabilities from the transformed metrics in case of nonavailability of V3
value in NVD

4.1.1. Threat Model for an end host

The threat level of an end host is modeled using the vulnerability and exposure of the
host. The model is presented as follows.

(i) Vulnerability of an end host : A number of vulnerable applications such as FTP,

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

RSH, nmap etc may be running in an end host for processing a specific traffic request. The
vulnerability of an end host Vh is calculated as the average of the Common Vulnerability
Scores (CVS) of all the applications running on the host extracted from the vulnerability
database, i.e.,

Vh =
1

10
∗
∑k

i=1CV Si
k

(1)

where hε{x, y}. Here, x and y are the source and destination hosts respectively. CV Si
is the Common Vulnerability Score of the ith application running in the host h, and k is the
number of applications running in the host. The average value of the CVS of all applications
is divided by 10 in order to normalize the value of Vh to 1 as the CVS of the applications
lie between 0 to 10.

(ii) Exposure of an end host : The exposure of an end host Eh is determined con-
sidering the number of hosts that may be affected because of the vulnerability in the target
end host. Hence, it is computed as,

Eh =
n

N
(2)

where n is the number of hosts communicating with the target host and N is the total
number of hosts in the network.

(iii) Threat value of an end host : Threat value of an end-host τh is calculated as
a product of vulnerability and the exposure of the end host for a traffic request t. Mathe-
matically it is defined as follows.

τh = Vh ∗ Eh (3)

τh lies between 0 and 1. τh = 1 indicates the entity has high risk of being compromised.
Similarly, we can define threat model for switches and controller with respect to a given

traffic request.

4.1.2. Threat Model for a switch

The threat model for an SDN switch is assessed using its vulnerability and exposure
analysis as follows.

(i) Vulnerability of a switch : The vulnerability of a switch Vs is determined as
the ratio sum of the Common Vulnerability Scores(CVS) of the protocols running on the
switch. For example, protocols are Multiprotocol Label Switching (MPLS) protocol, Label
Distribution Protocol (LDP), etc. Our model can flexibly accommodate any new protocol
used in switches. Mathematically, it is determined as,

Vs =
1

10
∗
∑q

i=1CV Si
q

(4)

where CV Si is the Common Vulnerability Score of the ith protocol running on the switch
s (0 ≤ CV Si ≤ 1), and q is the number of protocols running on the switch s. Similar to

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

determining the value of Vh, the ratio sum of the CVS of all protocols running on the switch
is divided by 10 so as to normalize the value of Vs to 1.

(ii) Exposure of a switch : Exposure of a switch Es is defined using the probability of
malfunctioning involved with an active connection and total number of ports on that switch.
Es is calculated as,

Es =
xp ∗ (1− x)P−p

P
(5)

where p is the number of active connections, P is the total number of ports on the switch
and x is the probability of an active port getting malfunctioned. For standard ports, i.e.,
[0-1023], x is varied between 0 and 0.5. On the other hand, for various application specific
non-standard ports, 0.5 < x ≤ 1. For example, for running FTP application on standard
ports such as 989 and 990, we use x = 0.3 whereas for running the same FTP application
on a non-standard port such as 4901, we consider x = 0.6.

(iii) Threat value of a switch : Vulnerability and exposure of a switch are used to
determine its threat value. Threat value τs of a switch s is determined as,

τs = Vs ∗ Es (6)

In addition, the proposed model determines the threat value of a traffic route. An access
route r(x, y) is defined as a sequence of switches < s1, s2, ..., sm > from source host x to
destination host y in the network, where Interface(si, si+1) = T and reachable(x, y) = T .
Threat value τr of the route r associated to a traffic t is calculated using the threat values
of the switches along that route as follows.

τr =

∑m
i=1 τsi
m

(7)

where m is the number of switches in the access route r. The threat value of a route lies
between 0 and 1.

4.1.3. Threat Model for network controller

The threat model for an SDN controller is evaluated using the vulnerability and exposure
analysis of the control functions in the SDN control plane as follows.

(i) Vulnerability of a controller : A controller may run various network control
functions such as Load Balancing, Analysis Engine, Control-Plane MainApp, etc. Hence,
the vulnerability Vc of a controller c is estimated using the mean of Common Vulnerability
Score (CVS) of the control functions running on it. If CV Si is the Common Vulnerability
Score of the ith control function running on the controller c, and j is the number of protocols
running on the controller c, then Vc is calculated as,

Vc =
1

10
∗
∑j

i=1CV Si
j

(8)

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Similar to equation (1) and (4), Vc is normalized so that its value lies between 0 and 1 as
the CVS of the control functions running the controller lie between 0 to 10. The proposed
model can be extended to include any new control functions.

(ii) Exposure of a controller : Exposure of a controller Ec is defined as the ratio
between the number of dependent network functions (l) (as execution of the control functions
depend on the output of other control functions) and the total number of network functions
(L). Mathematically, it is calculated as,

Ec =
l

L
(9)

(iii) Threat value of a Controller : Threat value of a controller τc for a given traffic
request t is determined as the product of its vulnerability and exposure measures, i.e.,

τc = Vc ∗ Ec (10)

The threat value of a controller lies between 0 and 1.
The following subsection illustrates the Risk Analyze that calculates the risk for a given

traffic request as the cumulative threat values of the different SDN entities.

4.2. Risk Analyze

Our proposed risk assessment model first evaluates threat model for different SDN entities
as discussed in the previous subsection. Then, the overall risk measure τt of a given traffic t
is calculated as the cumulative threat values of the end hosts, access route and the control
functions involved. Algorithm 1 presents the risk assessment procedure associated with a
traffic.

Algorithm 1 uses weights: wx, wy, wr, and wc for source host x, destination host y, access
route r, and the controller c respectively in order to consider the criticality of each SDN
entity. wr is the sum of weights of all the switches < s1, s2, ..., sm > along the route r.

wr = ws1 + ws2 + ...+ wsm (11)

These weights are selected based on criticality of the nodes and should be chosen such
that their sum must be equal to 1. i.e.,

wx + wy + wr + wc = 1 (12)

Total threat value τt associated with a traffic t always lies between 0 and 1.
The threat value (τt) associated to a traffic t and its criticality (It) are used to define the

risk (Rt) of the traffic. The criticality of the traffic can be High (H), Medium (M) or Low
(L). The criticality of a traffic depends on the impact of the traffic in a specific application
context. For example, in a Banking application, transactions have high impact and hence
have High importance whereas the generation of logs has medium impact leading to Medium
importance. On the other hand, simple query processing has low impact in the context and
hence have low importance. So, we consider three different traffic criticality levels; i.e.,
High(H), Medium(M) and Low(L) respectively for these three types of traffic.

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1 Risk Analyze Algorithm

1: procedure Risk Analyze
2: for each traffic t do
3: analyze packet header
4: Entity set E= {x, y, r, c} and Route

r={s1, s2, ..., sm}
5: for each entity i ∈ E - {r} do
6: find Vi
7: find Ei
8: calculate τi=Vi*Ei
9: end for

10: for each switch s ∈ r do
11: find Vs
12: find Es
13: calculate τs=Vs*Es
14: end for
15: calculate τr=

∑m
i=1 τsi
m

16: calculate τt= wx*τx + wy*τy
+ wr*τr + wc*τc

17: end for
18: end procedure

The mapping function for assessing the risk of a specific traffic is expressed as:

f : τt × It −→ Rt (13)

Table 2 shows the Risk assessment model of SDN with respect to the criticality of the
traffic and threat level with respect to the specific traffic. For example, if criticality of a
traffic is High(H) and its threat value is 5.5, then the risk associated with the traffic is
High(H).

Table 2: Risk Assessment Model of SDN

Traffic Criticality
Total Threat Value

6 0.39 0.4 to 0.69 ≥ 0.7

H M H C

M L M H

L L L M

Note: C- Critical, H - High, M - Medium and L - Low

The calculated risk measures determined by the proposed Risk Analyze function, are
used in the flow and routing control functions to extract an optimal route with minimal

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

risk for the given traffic request. This process is executed recursively until an optimal route
with minimal risk is found. Then, the flow rule with this route and other flow attributes are
populated in the flow tables of corresponding forwarding switches.

In the next section, we demonstrate our proposed security enforcement function with an
extensive case study of an SDN based enterprise network.

5. Experimental Results: Case Study

This section presents the performance of our proposed security enforcement functions
with a case study. Figure 6 shows a segment of an SDN based large enterprise network
with four subnets corresponding to different departments, i.e., Research and Development
(R & D), Finance, Sale, and Customer Relationship (CR). The underlying SDN platform
executes a set of control functions such as Wireshark, mainApp, OpenSSL, etc. inside the
controller. The end hosts run applications FTP, RSH, nmap etc. In addition, the switches
run protocols, e.g., MPLS, LDP, etc.

Figure 6: A segment of an Enterprise Network

The requirements on various network traffic are stated as follows:
Req1: All outbound traffic from CR department should go through Proxy server (PS).
Req2: All traffic from employees of R & D working outside should be served through

Virtual Private Network (VPN) with high Bandwidth.
Req3: Any incoming traffic to R & D and Finance should be forwarded through policy

check and security compliance.
Req4: Any outbound traffic from R & D and Finance should guarantee high bandwidth

and availability.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Req5: Customers should be able to communicate to CR through a secure channel and
remote shell service (RSH). Let they connect through port number 8091.

Req6: The employees of Finance and Sale should perform file transfer or transaction with
proper authentication.

Req7: All traffic related to financial transaction from Finance to employees of R & D
should be authenticated.

In order to process the traffic requests with respect to these requirements, the SDN
controller must ensure secure flow of traffic across the network segment. The next subsec-
tion presents the efficacy of our proposed risk assessment model with different test cases
considering the above-mentioned requirements.

5.1. Efficacy of the Security Control Functions

We have implemented our proposed security enforcement control functions in mininet
simulator [47] with OpenFlow controller [48], [49]. We have generated different traffic
with varying traffic rates from 10 traffic per sec (TPS) to 100 traffic per sec (TPS). Our
proposed functions Trust Verify, Policy Conflict Resolve, Policy Consistency Check, and
Risk Analyze are applied on these traffic to generate secure flow and routing control rules.

In order to process the traffic requests as per the above-mentioned requirements, our
proposed risk assessment model first extracts the CVS scores or values of various related
applications, protocols, and services running in different layers of the network from local
vulnerability database. Table 3 shows the CVS scores of some of the applications, protocols,
and services running in different components of the SDN environment under test with their
vulnerability details. For example, OpenSSL v1.0.2b is a network control function running
in the controller and has CVS score 5.9 that leads to confidentiality violation. On the other
hand, nmap service running on end host with Android 6.1 Operating system has CVS score
7.8 and has impact like DoS attack, Arbitrary controller code execution. Similarly, LDP is
a protocol running on an OpenFlow switch has CVS value 7.5.

Based on the CVS Score of the related applications, protocols and services with respect
to a given traffic request the Risk Analyze function determines the threat model for different
SDN entities. The overall threat value is calculated as the cumulative threat values of the
SDN entities. Finally, the risk of the specific traffic request is determined with respect to the
final threat value and the criticality of the traffic. These risk measures guide the flow and
routing controller to decide the flow rules (routing path along with other flow attributes) to
be populated in the flow tables of the switches.

Table 4 shows the results of Risk Analyze function for few sample traffic requests taken
as test cases. For example, the traffic request t1 associated to Req1 has medium risk with
route r1 and low risk with route r2. Hence, the routing path decided by the flow and routing
control function is r2. Similarly, the traffic request t2 associated to Req2 has high risk with
route r1 and medium risk with route r2. Therefore, the route r2 is chosen for traffic t2. The
abbreviations used in the Table 4 are as follows.

• C- Critical, H - High, M - Medium, and L - Low.

• CR - Customer Relationship, and R & D - Research and Development,

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Common Vulnerability Score (CVS) of applications/services/protocols

Applications/
Services/
Protocols

version Operating
System

Bug details CVE id (online
NVD) [44]

Vulnerabilities CVS (local
Vulnerability
database)

OpenSSL 1.0.2b Cisco
NX-OS
6.0

Internal bug - “error
state” mechanism
with direct call
of SSL read() or
SSL write() functions

CVE-2017-
3737

Confidentiality viola-
tion

5.9

Wireshark 2.2.11 Cisco
NX-OS
6.0

Internal bug - improper
use of new line char-
acters in File read line
function

CVE-2017-
17935

DoS attack 7.5

RSH -NA- Linux compatibility with
fileio.c in Vim 8.0.10

CVE-2017-
17087

Obtaining root/admin
privileges

5.5

SSL -NA- Linux Lack of server’s host
name verification with
subjectAltName field
in X.509 certificate

CVE-2017-
1000209

man-in-the-middle at-
tack, spoofing

5.9

VPN -NA- Linux Bug in the web-based
management interface
of Cisco Adaptive
Security Appliance
(ASA) Software

CVE-2017-
12265

Arbitrary web script
injection

6.1

nmap -NA- Android
6.1

elevated privilege vul-
nerability in System
Server in Android

CVE-2016-
6707

DoS attack, Arbitrary
controller code execu-
tion

7.8

FTP Light
FTP
v1.1

Windows Buffer overflow in
the “writelogentry”
function

CVE-2017-
1000218

DoS attack, Arbitrary
controller code execu-
tion, and Obtaining
root/admin privileges

9.8

MPLS -NA- Cisco
NX-OS
6.0

Bug in Cisco Carrier
Routing System (CRS)
5.1 for processing IPv6-
over-MPLS packets

CVE-2016-
6401

DoS attack, Arbitrary
web script injection

5.3

LDP -NA- Cisco
NX-OS
6.0

infinite loop due to
a bug in print-lldp.c
function of LLDP
parser of tcpdump
4.9.1

CVE-2017-
12997

DoS attack, Malicious
code execution

7.5

MainApp -NA- Cisco
NX-OS
6.0

hardcoded credentials
for TELNET and SSH
sessions

CVE-2016-
1329

Obtaining root/admin
privileges

9.8

• AS - Access Switch, DS - Distribution Switch, CS - Core Switch, BR - Border Router,
FW - Firewall, IDS- Intrusion Detection System, PS - Proxy Server, and DNS - Domain
Name Server.

Table 5 shows the statistics of the output of the proposed security enforcement functions

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Result of the Risk Analyze function

Traffic Criticality Route Risk Selected
Route

t1 ⇔ Req1 L
r1: CR-AS3-DS1-CS0-FW -BR-Internet M

r2

r2: CR-AS3-DS1-IPSec-CS1-PS-BR-Internet L

t2 ⇔ Req2 M
r1: Internet-BR-CS1-PS-DS0-AS0-R&D H

r2

r2: Internet-BR-FW -CS0-DNS-IDS-DS0-AS0-R&D M

t3 ⇔ Req3 H
r1: Internet-BR-CS1-DS0-Finance H

r2

r2: Internet-BR-FW -CS0-DNS-IDS-DS0-Finance M

t4 ⇔ Req4 M
r1: R&D-AS0-DS0-IDS-CS0-DNS-FW -BR-Internet H

r2

r2: R&D-AS0-DS0-CS1-PS-BR-Internet M

t5 ⇔ Req5 L
r1: Internet-BR-CS1-PS-IPSec-DS1-AS3-CR M

r2

r2: Internet-BR-FW -CS0-DNS-DS1-AS3-CR L

t6 ⇔ Req6 H
r1: Finance-AS1-DS0-IDS-CS0-DS1-AS2-Sales H

r2

r2: Finance-AS1-DS0-CS1-IPSec-DS1-AS2-Sales M

t7 ⇔ Req7 H
r1: Finance-AS1-DS0-IDS-AS0-R&D M

r1

r2: Finance-AS1-DS0-AS0-R&D C

in SDN with respect to the total number of traffic requests. The abbreviations TREQ, CNF,
BLK, CONS, RISK in the table indicate the number of traffic requests, number of conflicts
detected and resolved, number of applications blocked, number of inconsistencies identified
between existing flow rules and updated policy rules, and number of risks mitigated respec-
tively. Our previous work [34] already discusses the number of conflicts detected, potential
compromised applications blocked, and the number of inconsistencies resolved for a specific
traffic request. In this paper, we determine the number of potential risks associated with a
given traffic request. The number of risks in this context means the number of vulnerabilities
determined to have either one of the risk values: Low, Medium, High or Critical associated
with a specific traffic request. There can be more than one vulnerabilities related to a given
traffic request in this case. While finding the overall vulnerability of end hosts, switches and
controllers respectively in the equations 1, 4 and 8 for a specific traffic request, we maintain
a data structure to keep track of the individual vulnerabilities associated to the applications
with their risk levels. The same is reported with their impact with respect a specific traffic
request and the risks of different levels are mitigated appropriately.

The efficacy of our proposed security functions is evaluated in terms of execution time
with varying traffic rate. Figure 7 shows the execution time for different security enforce-
ment functions. In our previous work [34], we already observed that, the execution time of
Trust Verify and Policy Consistency Check functions almost remains constant with increase

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Output of Proposed Security Enforcement Functions

TREQ CNF BLK CONS RISK

15 5 3 2 25

30 16 3 2 40

50 30 10 12 70

100 60 20 25 160

in traffic rate. On the other hand, the execution time of Policy Conflict Resolve function
increases quadratically with the increase in traffic rates as reported in [34]. This is due to in-
crease in the number of policy and flow control rules with the increase in traffic rate. In this
paper, we evaluate the execution time of Risk Analyze function and report that it increases
almost linearly with the increase in traffic rate. This is due to the use of a fixed threat model
with a specific number of parameters used (vulnerability, exposure, traffic criticality).

Figure 7: Execution time of the proposed Network Security Functions w.r.t. traffic rate

It is observed that the overall execution time of our proposed security enforcement func-
tions lies within 2 seconds for traffic rate of 100 TPS which imply that these functions
incur less overhead and is considerably reasonable for any kind of network. Our proposed
functions incorporated in the SDN control plane ensures end-to-end secure transmission
of packets across the network control execution environment and thereby strengthens the
security perimeter over the underlying network.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In future, we plan to extend our proposed security enforcement functions for heteroge-
neous network environments with varying requirements and application context. In addi-
tion, sensitivity analysis will be incorporated in the proposed security solution as it helps
in identifying the sources of the vulnerabilities in the system. Sensitivity [50] is mathemat-
ically defined as the ratio of the number of correctly predicted vulnerabilities those may be
potentially exploitable to the number of actually exploitable vulnerabilities.

6. Conclusion

The Software Defined Network (SDN) paradigm might suffer from various security threats
due to its inherent characteristics such as open user-control, ubiquitous execution of network
functions and centralized control management. In this paper, a risk assessment model is
proposed where the core component, i.e., the Risk Analyze function analyzes the risk of a
specific traffic request based on the threat models of related SDN entities. Then, these risk
values are communicated to flow and routing control function for generating secure flow
rules with no or minimal risk. The proposed security solution enables a pro-active end-to-
end security assessment of the traffic requests and accordingly ensures a secure flow and
routing process. The efficacy of our proposed functions has been evaluated through a case
study of an enterprise network and the results have been reported. In future, the proposed
security mechanism will be enhanced with appropriate sensitivity analysis to find out the
potential sources of the vulnerabilities. In addition, the security functions will be verified
with varying requirements and context.

References

[1] Nishtha, M. Sood, Software defined network-Architectures, in Proceedings of 2014 International Con-
ference on Parallel, Distributed and Grid Computing (PDGC), pp. 451-456, December 2014.

[2] Ghodsi et al., Intelligent design enables architectural evolution, in Proceedings of 10th ACM Workshop
Hot Topics in Networks, Article No. 3, pp. 1-6, 2011.

[3] A. Kumar, S. Jain, U. Naik et al., BwE: flexible, hierarchical bandwidth allocation for WAN distributed
computing, in Proceedings of the ACM Conference on Special Interest Group on Data Communication
(SIGCOMM ’15), pp. 1-14, London, UK, August 2015.

[4] D. Kreutz, F. Ramos, and P. Verissimo, Towards secure and dependable software-defined networks, in
Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking,
pp. 55-60, 2013.

[5] M. Jammal et al., Software defined networking: State of the art and research challenges, Computer
Networks, Elsevier, vol. 72, pp. 74 - 98, 2014.

[6] D. Kreutz et al., Software-Defined Networking: A Comprehensive Survey, Proceedings of the
IEEE,—Vol. 103, No. 1, pp. 14-76, January 2015.

[7] Metzler, Research: Understanding Software-Defined Networks, Information Week Reports, pp.
125, October 2012. [Online] Available: http://reports.informationweek.com/abstract/6/9044/Data-
Center/research-understanding-software-defined-networks.html.

[8] Z. Li, Y. Gao, and Y. Chen, HiFIND: A high-speed flow-level intrusion detection approach with DoS
resiliency, Comput. Netw., vol. 54, no. 8, pp. 1282-1299, 2010.

[9] S. A. Mehdi, J. Khalid, and S. A. Khayam, Revisiting traffic anomaly detection using software defined
networking, in Recent Advances in Intrusion Detection. Springer, pp. 161-180, 2011.

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[10] J. R. Ballard, I. Rae, and A. Akella, Extensible and scalable network monitoring using opensafe,
Proc.INM/WREN, 2010.

[11] S. Shin et al., FRESCO: Modular composable security services for software-defined networks, in Pro-
ceedings of Network and Distributed Security Symposium, 2013.

[12] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, AVANT-GUARD: Scalable and vigilant switch flow
management in software-defined networks, in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
pp. 413-424, Berlin, Germany, 2013.

[13] H. Shawn, L. Scott, O. Tomasz, S. Adam, Uncover Security Design Flaws Using The STRIDE Approach,
Mar. 2015. [Online]. Available: http://msdn.microsoft.com/en-gb/magazine/cc163519.aspx

[14] R. Kloti, V. Kotronis, and P. Smith, OpenFlow: A security analysis, in Proc. 21st IEEE Int. Conf.
Netw. Protocols (ICNP), pp. 1-6, Gttingen, Germany, 2013.

[15] S. Shirali-Shahreza and Y. Ganjali, Efficient Implementation of Security Applications in OpenFlow
Controller with FleXam, in 21st IEEE Annual Symposium on High-Performance Interconnects. IEEE,
pp. 49-54, 2013.

[16] M. Canini, et al., A NICE way to test OpenFlow applications, in Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, 2012.

[17] E. Al-Shaer and S. Al-Haj., Flowchecker: configuration analysis and verification of federated OpenFlow
infrastructures, in Proceedings of the 3rd ACM workshop on Assurable and Usable Security Configu-
ration, 2010.

[18] R. Sherwood et al., Flowvisor: A network virtualization layer, OpenFlow Switch Consortium, Tech.Rep,
2009.

[19] S. Son et al., Model Checking Invariant Security Properties in OpenFlow. [Online]. Available:
http://faculty.cse.tamu.edu/guofei/paper/Flover-ICC13.pdf.

[20] P. Porras et al., A security enforcement kernel for OpenFlow networks, in Proceedings of the first
workshop on Hot topics in software defined networks, ACM, pp. 121-126, 2012.

[21] Gabriel et al., Achieving DDoS Resiliency in a Software Defined Network by Intelligent Risk Assess-
ment Based on Neural Networks and Danger Theory, 15th International Symposium on Computational
Intelligence and Informatics, IEEE, pp. 319-324, 2014.

[22] D. V. Bernardo and B. B. Chua, Introduction and Analysis of SDN and NFV Security Architecture
(SN-SECA), 2015 IEEE 29th International Conference on Advanced Information Networking and Ap-
plications, Gwangiu, pp. 796-801, 2015.

[23] L. Yao, P. Dong, T. Zheng, H. Zhang, X. Du and M. Guizani, Network security analyzing and modeling
based on Petri net and Attack tree for SDN, 2016 International Conference on Computing, Networking
and Communications (ICNC), pp. 1-5, Kauai, HI, 2016.

[24] Y. Tseng, M. Pattaranantakul, R. He, Z. Zhang and F. Nat-Abdesselam, Controller DAC: Securing
SDN controller with dynamic access control, 2017 IEEE International Conference on Communications
(ICC), pp. 1-6, Paris, 2017.

[25] S. Wang, K. G. Chavez and S. Kandeepan, SECO: SDN sEcure COntroller algorithm for detecting and
defending denial of service attacks, 2017 5th International Conference on Information and Communi-
cation Technology (ICoIC7), pp. 1-6, Melaka, 2017.

[26] W. Etaiwi, M. Biltawi, and S. Almajali, Securing Distributed SDN Controllers against DoS Attacks,
2017 International Conference on New Trends in Computing Sciences (ICTCS), pp. 203-206, Amman,
2017.

[27] Jun-Huy Lam, Sang-Gon Lee, Hoon-Jae Lee, and Y. E. Oktian, Securing distributed SDN with IBC,
2015 Seventh International Conference on Ubiquitous and Future Networks, pp. 921-925, Sapporo,
2015.

[28] S. B. H. Natanzi and M. R. Majma, Secure northbound interface for SDN applications with NTRU
public key infrastructure, 2017 IEEE 4th International Conference on Knowledge-Based Engineering
and Innovation (KBEI), pp. 0452-0458, Tehran, 2017.

[29] J. Hoffstein, J. Pipher, J. H. Silverman, NTRU: A Ring-Based Public Key Cryptosystem, Algorithmic
Number Theory, ANTS, Lecture Notes in Computer Science, Springer, pp. 267-288, 1998.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[30] S. M. Sohan, F. Maurer, C. Anslow and M. P. Robillard, A study of the effectiveness of usage exam-
ples in REST API documentation, 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 53-61, Raleigh, NC, 2017.

[31] J. Hostein, J. Pipher, J. H. Silverman, NSS: The NTRU Signature Scheme, 2000.
[32] Y. Shi, F. Dai, and Z. Ye, An enhanced security framework of software defined network based on

attribute-based encryption, 2017 4th International Conference on Systems and Informatics (ICSAI), pp.
965-969, Hangzhou, 2017.

[33] S. B. H. Natanzi and M. R. Majma, Secure distributed controllers in SDN based on ECC public key in-
frastructure, 2017 International Conference on Electrical and Computing Technologies and Applications
(ICECTA), pp. 1-5, Ras Al Khaimah, 2017.

[34] B. K. Tripathy et al., A Novel Secure and Efficient Policy Management Framework for Software Defined
Network, IEEE 40th Annual Computer Software and Applications Conference, IEEE, pp. 423-430, 2016.

[35] A. S. Prasad, D. Koll and X. Fu, On the Security of Software-Defined Networks, Fourth European
Workshop on Software Defined Networks, Bilbao, pp. 105 - 106, 2015.

[36] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford, A Slick Control Plane for
Network Middleboxes, Open Networking Summit, 2013. [Online]. Available: http://nextstep-
esolutions.com/Clients/ONS2.0/ pdf/2013/research track/poster papers/nal/ons2013-nal51.pdf

[37] S. Fayazbakhsh, V. Sekar, M. Yu, and J. Mogul, FlowTags: Enforcing Network-Wide Policies in the
Presence of Dynamic Middlebox Actions, in Proceedings of the second workshop on Hot topics in
software defined networks. ACM, 2013.

[38] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, SIMPLE-fying Middlebox Policy
Enforcement Using SDN, ACM SIGCOMM, August 2013.

[39] Mell P., Scarfone K. and Romanosky S., Common Vulnerability Scoring System, Security & Privacy,
IEEE, Vol 4, Issue 6, pp. 85 - 89, December 2006.

[40] Vulnerability (Computing), Wikipedia, [online].
Available: https://en.wikipedia.org/wiki/Vulnerability (computing)

[41] Exposure, [online]. Available: http://www.businessdictionary.com/definition/exposure.html
[42] Threat (Computer), Wikipedia, [online]. Available: https://en.wikipedia.org/wiki/Threat (computer)
[43] Cybersecurity Risk: A Thorough Definition, Bitsight, [online].

Available: https://www.bitsighttech.com/blog/cybersecurity-risk-thorough-definition
[44] National Vulnerability Database (NVD), [online]. Available: https://nvd.nist.gov/
[45] A Complete Guide to the Common Vulnerability Scoring System Version 2.0, [online]. Available:

https://www.first.org/cvss/v2/guide
[46] Common Vulnerability Scoring System v3.0: Specification Document, [online]. Available:

https://www.first.org/cvss/specification-document
[47] Mininet Documentation, GitHub. [Online].

Available: https://github.com/mininet/mininet/wiki/Documentation
[48] OpenFlow White Paper, [Online]. Available: http://archive.OpenFlow.org/
[49] OpenFlow Specification, [Online]. Available: http://archive.OpenFlow.org/
[50] A. A. Younis and Y. K. Malaiya, Comparing and Evaluating CVSS Base Metrics and Microsoft Rating

System, 2015 IEEE International Conference on Software Quality, Reliability and Security, pp. 252-261,
Vancouver, BC, 2015.

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TBata Krishna Trpathy is a PhD student in School of Electrical Sciences, Indian Insti-
tute of Technology Bhubaneswar, India. He received his M Tech degree from Indian Institute
of Technology Kharagpur, India in 2014. He has completed his B Tech from Institute of
Technical Education and Research, Bhubaneswar, India in 2007. He has expertise in Mobile
Ad hoc Networking, Software Defined Networking, and Network Security.

Debi Prasad Das has received his B Tech degree from National Institute of Technology
Rourkela, India in 2017. He was working as an intern at Indian Institute of Technology
Bhubaneswar, India in summer and winter vacations during B Tech. He is currently placed
in Itron American Technology company, Bangalore, India as a Software Engineer. He has
expertise in Software Defined Networking and Network Security.

Swagat Kumar Jena is a Project in School of Electrical Sciences, Indian Institute
of Technology Scholar Bhubaneswar, India. He received his M Tech degree from Indian
Institute of Technology Kharagpur, India in 2014. He has completed his B Tech from
Seemanta Engineering College, Jharpokharia, India in 2008. He has expertise in Internet of
Things, Wireless Sensor Network, and Network Security.

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TPadmalochan Bera received his PhD from Indian Institute of Technology Kharagpur,
India in 2011. He completed his ME degree from West Bengal University of Technology,
Kolkata, India and his BE from Jadavpur University, Kolkata, India in 2001. He is cur-
rently working as an Assistant Professor in School of Electrical Sciences, IIT Bhubaneswar,
India. He has expertise in Network and Cyber Physical Systems Security, Software Defined
Networking, Cloud Computing, Formal Verification and optimization.

27


