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Highlights

• Automated design of Genetic Programming classification algorithms is

presented.

• Automated design uses a genetic algorithm and grammatical evolution.

• The approach is trained and tested using real-world binary and multi-class

data.

• Grammatical evolution designed classifiers perform better for binary clas-

sification.

• Genetic algorithm designed classifiers perform better for multi-classification.
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Abstract

Genetic Programming(GP) is gaining increased attention as an effective method

for inducing classifiers for data classification. However, the manual design of a

genetic programming classification algorithm is a non-trivial time consuming

process. This research investigates the hypothesis that automating the design

of a GP classification algorithm for data classification can still lead to the induc-

tion of effective classifiers and also reduce the design time. Two evolutionary

algorithms, namely, a genetic algorithm (GA) and grammatical evolution (GE)

are used to automate the design of GP classification algorithms. The classifi-

cation performance of the automated designed GP classifiers i.e. GA designed

GP classifiers and GE designed GP classifiers are compared to each other and

to manually designed GP classifiers on real-world problems. Furthermore, a

comparison of the design times of automated design and manual design is also

carried out for the same set of problems. The automated designed classifiers

were found to outperform manually designed classifiers across problem domains.

Automated design time is also found to be less than manual design time. This

study revealed that for the considered datasets GE performs better for binary
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classification while the GA does better for multiclass classification. Overall the

results of the study are in support of the hypothesis.

Keywords: Genetic programming; Genetic algorithm; Grammatical evolution;

Automated design; Classification.

1. Introduction

Data classification, is one of the most widely studied domains of research in

machine learning. Many real-world tasks can be viewed as classification prob-

lems. Classification is the process of associating an object to a class (label) based

on the features describing that object. Classification is generally performed by5

classifier models. Classification usually involves two phases a learning (training)

phase and a testing phase. A classifier model is induced by a classification algo-

rithm during training and its classification accuracy is evaluated during testing.

Evolutionary algorithms(EAs) are one of the methods that have gained

prominence in the induction of classifiers, particularly genetic programming10

(Espejo et al. (2010)Freitas (2003)). Genetic programming(GP) is a population

based algorithm that models Darwin's theory of evolution(Koza (1992)). For a

number of reasons GP has proved to be effective in the induction of classifiers.

The tree representation used by GP allows it flexibility to evolve classifiers that

model numerous problems(Espejo et al. (2010)). For example GP can be con-15

figured to represent decision trees, association rules or discriminant functions.

GP like most EAs is a parameterized algorithm and it has been shown that

the effectiveness of such algorithms depends on their configuration (Eiben and

Smit (2011)). Algorithm configuration is a design process that involves deter-

mining numerical parameter values, selecting categorical parameters and setting20

the control flow that would lead to the algorithm finding an optimal (or near

optimal) solution to the problem at hand. According to Kramer and Kacprzyk

(2008) to manually configure an EA that yields effective results, considerable

algorithm design experience is necessary. However Hutter (2009) argues that

even with the necessary experience manual design is a tedious non-trivial task25
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susceptible to human bias. Furthermore, the search space for possible param-

eter values is large and only a subset of the design decisions are considered

during manual design. Parameter values and flow control options are consid-

ered using trial runs in an iterative trial and error approach. Montero and Riff

(2014) argue that inexperienced designers add more parameters than are neces-30

sary during manual design leading to unnecessarily complex algorithms. They

also point out that a lot of man hours are required for manual design and ide-

ally the algorithm designer should have expert knowledge of the domain being

considered, however this is not always possible. Parameter control and tuning

methods have been proposed in literature (Dobslaw (2010); Eiben et al. (1999);35

Eiben and Smit (2011)) with no method being universally adopted (Karafotias

et al. (2015)).

In a previous study (Nyathi and Pillay (2017)) we showed the effectiveness

of using a genetic algorithm (GA)(Goldberg and Holland (1988)) to automate

the design of a GP classification algorithm for data classification. In this study40

a comparison of the automated design of GP classification algorithms using a

GA and grammatical evolution (GE) (Ryan et al. (1998)) is carried out. A

GA and GE are used to automate the design of GP classification algorithms.

GA and GE are individually used to search for a GP configuration that should

result in GP evolving the best classifier for a specific classification problem.45

Throughout this paper the use of the word configuration refers to algorithm pa-

rameter values (numerical and/or categorical) and the algorithm control flow.

The best classification accuracies of the classifiers evolved using the GA and

GE algorithms are compared to each other and to those of manually designed

classification algorithms for the considered problem instances. The study finds50

that automated designed classifiers significantly outperform manually designed

classifiers for problems instances considered across domains and perform equiv-

alently for a specific domain. In addition automated design time is shown to be

less than manual design time. Hence, the contributions of this study are:

• The study investigates the feasibility of using a GA and GE for automating55
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the design of GP classification algorithms for data classification and shows

the effectiveness of automated design over manual design.

• The study compares the performance of using a GA to GE for automated

design. It is shown that there is no significant difference in performance

between the two EAs and either can be used for the design of GP classi-60

fication algorithms. Although for the considered datasets GE is found to

perform better on binary problems while the GA is found to be better on

multiclass problems, the differences are not significant.

• The study also shows that the use of automated design leads to a reduction

in man-hours for the design process.65

This paper is structured as follows. Section 2 presents the background of

the study outlining GP and the application of GP as a classification algorithm

for data classification. The use of a GA and GE in automated design are also

discussed in this section. Section 3 presents a brief overview of how GP, the GA

and GE are related in the proposed approach. Section 4 outlines the manual70

design approach of GP classification algorithms, while Section 5 describes the

automated design approach using the GA and GE implemented in this study.

Experimental settings and a description of the experiments carried out are out-

lined in Section 6. Section 7 presents the results and analysis of the results.

Finally Section 8 provides the conclusion of the study and discusses possible75

future work.

2. Background

2.1. Classification

Classification is a supervised machine learning method (Pappa and Freitas

(2009)). In supervised learning the features with their corresponding class labels80

are provided and the training process entails learning the classes based on the

features. During the training phase the classification algorithm has access to the

class labels. After training the evolved classifiers should be able to generalize
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and assign unseen objects to their respective classes correctly, this is a measure

of the predictive accuracy of the classifier Han et al. (2011). The procedure is to85

accept an input vector of features x and assign it to a specific class label y from

a given number of classes. The number of correctly identified input instances

divided by the total number of problem instances is used as a measure of how

well the classifier performs and is known as the accuracy. A problem instance

may have two classes in which case it is a binary classification problem or there90

may be more than two classes and then it is a multiclass classification problem.

A number of methods used to induce classifiers have been proposed and for a

comprehensive survey the reader is referred to Phyu (2009). In this study we

consider the induction of classifiers using genetic programming.

2.2. Genetic programming95

Genetic programming is an EA that generally encodes individuals using

syntax trees. However, since Koza's original tree based GP, a number of re-

search studies have proposed other forms of encoding GP individuals (Poli et al.

(2008)). Generally a generational GP algorithm follows the following process.

An initial population of GP individuals is randomly created and their individ-100

ual fitness is evaluated using a predefined fitness function. A tree generation

method is selected for initial population generation. Koza (1992) proposed

three methods for initial population generation, these are the full method, grow

method and the ramped half-and-half method. If the algorithm’s termination

condition is not met individuals of the current population are selected using a105

selection method, to act as parents for the generation of individuals (offspring)

for the next population. Tournament selection is the most commonly used se-

lection method for GP (Espejo et al. (2010)). Genetic operators (crossover and

mutation) are applied to the parents to generate offspring. The GP crossover

operator normally operates by exchanging randomly selected subtrees from each110

of two selected parents to create two offspring. The mutation operator is applied

on a selected parent where a randomly generated subtree replaces a randomly

selected subtree in the parent tree thus creating an offspring. The initial pop-
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ulation is replaced by a population of offspring. In GP each genetic operator

is used to create a specified number of offspring for the new population unlike115

in some evolutionary algorithms like GAs where a new population is evolved

by first applying crossover and then mutation may be applied to each offspring

(Eiben et al. (2003)). The iteration from one population to the next is known

as a generation and during each generation the fitness of each individual in the

population is evaluated. This process proceeds iteratively until a termination120

condition is met and the individual with the best fitness is returned. GP uses a

set of predefined functions and terminals to construct individuals.

2.3. Data classification and GP

Generally when used as a classification algorithm GP uses supervised learn-

ing. GP firstly randomly initializes a population of classifiers and evaluates their125

fitness by applying each classifier to a given problem. These classifiers are then

improved gradually as they are evolved from generation to generation (learning)

until a stopping criterion is met. The best returned classifier at the end of the

evolution process is then applied to unseen instances (testing) of the given prob-

lem. Accuracy, which is obtained by dividing the number of correctly classified130

instances by the total number of instances is the most widely used fitness func-

tion to evaluate classifiers. Other fitness functions have been proposed based on

the metrics obtained from the confusion matrix (Han et al. (2011)). One of the

advantages of using GP as a classification algorithm is the tree representation

used by GP individuals. Tree data structures are considered to be very general135

and therefore flexible. This flexibility allows them to be adaptable to a wide

range of domains. Arithmetic, logical and decision trees are the most commonly

evolved classifiers in GP (Espejo et al. (2010)). GP evolves one of three types

of classifiers namely arithmetic classifiers, logical classifiers and decision tree

classifiers. For the rest of this paper the term classifier is used in reference to140

one of the three mentioned types of GP evolved classifiers.
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2.3.1. GP for binary classification

In binary classification two classes are involved and the objective is to assign

objects as belonging to one class or the other. Archetti et al. (2006) used the

arithmetic tree type to classify the bioavalability of a molecule using features145

of its chemical structure. The function set consisted of mathematical opera-

tors while the terminal set contained attributes from the dataset. A threshold

value was predefined to discriminate between the two classes. If the numerical

output from a classifier was less than the threshold value then the input was

associated with one class or else the other class. The root mean square error150

(RMSE) of accuracy was used as the fitness function. The GP classification

algorithm performed well when compared to support vector machines (SVM)

and artificial neural networks. Johnson et al. (2000) used arithmetic trees to

classify objects based on their spectral characteristics. The function set con-

tained mathematical operators and the terminal set consisted of attributes from155

the dataset. As in the previous study RMSE of accuracy was used as the fitness

function. The classification results obtained from applying GP were found to be

better than those obtained from applying artificial neural networks and partial

least squares(PLS) to the same dataset. Le-Khac et al. (2016) used arithmetic

trees in the classification of financial data. The evolved classifiers were trained160

and tested on 2 datasets selected from the UC Irvine (UCI) machine learning

repository (Blake and Merz (1998)). Each dataset contained financial records.

The function set consisted of mathematical operators while the terminal set

contained attributes from the dataset. Two fitness functions based on the con-

fusion matrix were proposed. The proposed system was compared to six other165

classification algorithms and the GP algorithm performed better than some of

the classifiers.

A study was presented by Loveard and Ciesielski (2001) that used logical

trees to perform binary classification on problems from the medical domain.

Three datasets were selected from the UCI repository to train and test the170

GP evolved classifiers. For each problem the function set contained logical
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operators and the terminal set had attributes from the dataset. Accuracy was

used as the fitness function. Similarly Eggermont et al. (1999) used logical

trees to classify data from 2 datasets selected from the UCI dataset repository.

The authors proposed a weighted fitness function. The output of the evolved175

classifiers were classes. After training and testing the results from the proposed

classification algorithms were compared to those obtained from applying 4 other

classification algorithms to the considered datasets. When configured to model

decision trees the GP algorithm function set consists of attributes from the

dataset and the terminal set contains the classes. The classifier is evaluated from180

the root downwards in a top down process. Koza was the first to propose the

induction of decision trees using GP (Koza (1991)). Khoshgoftaar et al. (2003)

proposed a GP classification algorithm to evolve decision trees that classified

software quality. An average of the misclassification error and tree size was

used as the fitness function. The function set contained attributes from the185

dataset while the terminal set consisted of two classes. The proposed system

was compared to a standard GP system and the decision tree evolving algorithm

was found to perform as well as the standard GP.

2.3.2. GP for multiclass classification

Multiclass classification involves categorizing more than two classes. Munoz190

et al. (2015) consider multiclass classification using GP a more complex task

than binary classification. They argue that GP does not perform very well when

compared to other state of the art methods for multiclass classification. However

a number of multiclass methods using GP have been proposed. Kishore et al.

(2000) presented an approach which converted an n class problem into n binary195

classification problems. The system was run once for each class while the other

n-1 classes were grouped together. A mixture of arithmetic and logical trees was

used. This is generally referred to as binary decomposition. Bojarczuk et al.

(2000) used arithmetic trees to apply binary decomposition in the classification

of pathogens. Muni et al. (2004) proposed an approach where an individual200

consisted of the same number of arithmetic trees as the number of classes,
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so for a 3 class problem an individual consisted of 3 arithmetic trees. Zhang

and Ciesielski (1999) introduced the idea of numerical boundaries representing

classes. A numerical range is predefined for each class for example class 0 = [

<0], class 1 = [0 - 5] and class 3 = [ >5 ]. If for example a numerical output value205

from a classifier is 3, then the object is in class 1. The approach is generally

known as the static class boundary determination (SCBD) method. Variants of

this method were later proposed where the ranges are dynamically determined

during the evolution process( Zhang and Smart (2004)). Loveard and Ciesielski

(2001) and Espejo et al. (2010) present a survey of using GP as a classification210

algorithm.

2.4. Genetic algorithms

A GA is a stochastic algorithm used to solve optimization and search prob-

lems. Individuals in a GA population represent possible solutions to a problem

being solved. Each individual is usually encoded as a linear genome struc-215

ture. A basic genetic algorithm first randomly creates an initial population of

individuals. The fitness of each individual in the population is evaluated. A se-

lection method is used to select individuals from the current population to act

as parents and undergo crossover and mutation to create offspring for the next

generation. The complete population may be replaced by a new population of220

offspring or the least fit individuals in the current population may be replaced

by the offspring. This process continues iteratively until a predefined stopping

criterion is met and the algorithm terminates. The best solution based on fit-

ness is returned. Goldberg (2006) provides a detailed presentation of genetic

algorithms.225

2.5. Grammatical evolution

Grammatical Evolution (GE) is a grammar based form of GP (Poli et al.

(2008)). Grammatical evolution was first proposed by Ryan et al. (1998). It

uses a grammar to map a GE genotype to a phenotype. A grammar G can be
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represented by the four-tuple <N, T, P, S>, where N represents a set of non-230

terminals, T a set of terminals, P a set of production rules that map the elements

of N to T and S (a member of N ) the start symbol. GE draws inspiration

from molecular biology where a sequence of genetic material, deoxyribonucleic

acid (DNA)(genotype) is translated into a protein which defines characteristics

of a phenotype. A more detailed comparative analysis of GE and the biological235

process is outlined by Ryan et al. (1998). An individual in GE is encoded as a

chromosome of variable length binary strings. Each gene of the chromosome is

an 8 bit binary string and is referred to as a codon. An individual (genotype)

is used to map the start symbol S to terminals by reading and converting each

codon to its decimal value from which an appropriate production rule is selected240

by using the following mapping function:

Rule = (codon decimal value)%(Noof production rules) (1)

A derivation tree (phenotype) is evolved by iterating and mapping through the

sequence of codons. If the iteration process reaches the end of the sequence of

codons before the derivation tree is evolved the procedure continues by looping

to the start of the codon sequence, a process called wrapping. The fitness of the245

phenotype is evaluated by applying it to a problem at hand.

The next section presents a brief overview of work that uses GAs and GE

for automated design.

2.6. Automated design using GAs and GE

Applying metaheuristics such as evolutionary algorithms to a problem do-250

main requires various design decisions which are usually done manually and are

quite time consuming. Design decisions include:

1. Determining the parameters for an approach, e.g. population size, genetic

operator probabilities in evolutionary algorithms (Eiben et al. (1999)).

2. Determining the operators to use, e.g uniform crossover, one-point crossover255

and two-point crossover in genetic algorithms (Karafotias et al. (2015)).
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3. Determining the control flow of an approach, this involves determining

the order in which processes of the approach should occur, e.g crossover

followed by mutation (Dobslaw (2010)).

4. Creating new construction heuristics-construction heuristics are often used260

with metaheuristics to solve a problem. These are rules of thumb that are

usually manually derived. This involves automating the creation of these

heuristics (Burke et al. (2010)).

5. Creating new operators, e.g mutation operator in an evolutionary algo-

rithm or the shaking process for variable neighborhood search (Hong et al.265

(2013)).

These decisions usually require expert knowledge and hence cannot be made by

a researcher who would like to apply a metaheuristic to a particular application

domain. For these reasons there has been a large scale initiative to automate

these design decisions (Hutter et al. (2007); Ansótegui et al. (2009); López-270

Ibánez and Stutzle (2012)). The aim is two fold. Firstly automating the design

process will relieve the researcher from this laborious task. Secondly, this will

provide a researcher without expert knowledge with an off-the-shelf tool which

can be applied to any application domain. This paper focuses on the automated

design of genetic programming to evolve classifiers.275

To the best of our knowledge currently there are no methods that automate

the design of genetic programming classification algorithms. However there

have been proposals to automate the design of classification pipelines (Olson

et al. (2016a,b); Pappa (2017)). A pipeline is a sequence of processes or steps

that are required to perform classification. For example the following steps280

can be considered as a pipeline: preprocessing the dataset, feature selection,

classification algorithm selection, parameterization and data post processing.

The research presented in this paper is different from pipeline automation in

that the automation of the design of the classification algorithm that induces

classifiers is proposed while the automation of pipelines proposes to automate285

the selection of classification algorithms from a pool of given algorithms. Hence
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the presented overview focuses on the studies that use genetic algorithms and

grammatical evolution to design other metaheuristics. The design decisions

taken or made resulted in a configuration for a metaheuristic.

Souffriau et al. (2008) used a steady-state genetic algorithm to evolve con-290

figurations for an Ant Colony Optimization (ACO) metaheuristic to solve the

orienteering problem, a form of the traveling salesman problem. In this study

only design decision 1 (parameter values) listed above was considered for the

configurations. The chromosome was composed of real numbers. Each gene

of the chromosome represented a specific parameter of the ACO metaheuristic.295

Stochastic universal selection was used with uniform crossover and random bit

mutation. The GA was used to search for parameter values that yielded the

best ACO solution to solve the problem at hand. The effectiveness of each

ACO was measured using a fitness function. The best parameters evolved from

training were compared to manually tuned ACO algorithms by applying them300

to unseen instances of the orienteering problem. ACO algorithms configured

with GA evolved configurations performed better than those manually tuned.

Diosan and Oltean (2007) used a GA to evolve configurations for evolutionary

algorithms. The configurations automated design decisions 1, 2 and 3. Uni-

form crossover was used with gaussian mutation and tournament selection. The305

best EAs from the configurations were tested on function optimization problems

and the results were competitive when compared to other approaches to solve

function optimization methods.

Tavares and Pereira (2012) presented an approach which used a GE frame-

work to evolve Ant Colony Optimization(ACO) configurations. The GE gram-310

mar specified design decisions 1, 2 and 3 for ACO algorithms. Single point

crossover, integer flip mutation, elitism and tournament selection were used.

To evaluate the effectiveness of the proposed framework the automatically con-

figured ACO algorithms were trained and tested on the Traveling Salesperson

Problem. The results were compared to human designed ACO algorithms. The315

presented results indicated that the automatically configured ACO algorithms

performed better than human manual designed algorithms. Lourenço et al.
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(2012) proposed the use of grammatical evolution for the evolution of evolu-

tionary algorithms for the Royal Roads Functions. The grammar was used to

automatically design an EA i.e. it specified design decisions 1, 2 and 3. Sin-320

gle point crossover, bit flip mutation and tournament selection were used. The

evolved EAs were trained and tested on Royal Roads Functions and they were

found to perform the same as manually designed EAs. Lourenço et al. (2013)

presented a hyper-heuristic framework for the evolution of EAs to solve the

knapsack problem. The framework used GE to design the EAs automating de-325

sign decision 1, 2, and 3 for each EA. Single point crossover, bit flip mutation

and tournament selection were used. The evolved EAs were found to perform

well on unseen problem instances when compared to other methods. Drake et al.

(2013) also presented a hyper-heuristic framework which uses GE to design a

local search method, namely the Variable Neighborhood Search (VNS). The330

GE grammar automated design decision 1, 2, 3, 4 and 5 for the VNS. Crossover

and mutation were used with tournament selection. The GE evolved VNS was

tested on instances of the Vehicle Routing Problem.

3. Overview of the proposed approach

In the proposed approach an evolutionary algorithm, in this case a GA(or335

GE), is used to make design decisions and evaluate different GP designs. The

GA(GE) simulates an algorithm designer as it searches through the GP design

space for the best GP configuration. Each member of a GA(GE) population

encodes a GP configuration and a set of classification problems is used to evalu-

ate each GP configuration. The evaluation is carried out by using the GA(GE)340

evolved GP configuration to configure GP which is then applied to a given clas-

sification problem. There is no link between the GA and GE, each algorithm is

used to configure GP classification algorithms as illustrated in Figure 1.
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Figure 1: Automated design overview

The following sections 4 and 5 describe the manual GP design and automated

GP design approaches used in this study.345

4. Manual GP

This section outlines the manual design of the generational Genetic Program-

ming classification algorithm used in this study. Each individual is a classifier

induced by the GP algorithm. Each individual can be one of three types of clas-

sifiers either an arithmetic tree classifier, logical tree classifier or decision tree350

classifier. The type of classifier is determined by the contents of the function

and terminal sets.

Algorithm 1 .Generational Genetic Programming Algorithm

1: Create initial population

2: while termination condition not met do

3: Calculate fitness of all individuals

4: Select fitter individuals for reproduction

5: Apply genetic operators to selected individuals

6: Replace the current population with the offspring

7: end while

8: return best individual

Using the algorithm flow presented in Algorithm 1 the following sections

describe the processes involved in the manual GP algorithm.
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4.1. Function set and terminal set355

A function set and a terminal set need to be pre-defined to enable in-

dividuals to be constructed by the GP algorithm. Therefore for each tree

type a function set and terminal set need to be defined. The function sets

are defined as follows; arithmetic tree = { +,-,*,/(protected) }, logical tree =

{AND,OR,EQUAL,DIFFERENT,NOT} and decision tree ={ attributes from360

fitness cases }. Similarly terminal sets were defined as follows; arithmetic and

logical trees = { attributes from fitness cases } and decision trees = {class 0,class

1} for binary class problems while the number of classes increase to a value de-

termined by the number of classes in a multiclass problem. Static class boundary

determination is used for multi-classification problems with the boundaries set365

as follows:

a) three classes: Class1[-inf,-1], Class2[-1,1], Class3[1,inf]

b) four classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,inf]

c) five classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,4], C5[4,inf]

d) six classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,4], C5[4,8], C6[8,inf]370

e) seven classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,4], C5[4,8],

C6[8,10] C7[10,inf]

f) eight classes: Class1[-inf,-1], Class2[-1,1], Class3[1,2], Class4[2,4], C5[4,8],

C6[8,10] C7[10,12] C8[12,inf]

4.2. Fitness function375

In this study predictive accuracy is used as the fitness function. The predic-

tive accuracy of each individual is evaluated as the sum of all correctly classified

fitness cases divided by the total number of fitness cases. The fitness is assigned

as a percentage.

4.3. Stopping criteria380

A stopping criteria needs to be defined for a GP algorithm. Two stopping

criteria, maximum number of generations and maximum fitness are defined. If
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the maximum number of generations is reached or the predictive accuracy is

the maximum possible (100%) then the algorithm will terminate and the best

classifier will be returned.385

4.4. Initial population generation

The first step of the algorithm is to create an initial population of GP in-

dividuals. Individuals are created by randomly selecting elements from a com-

bination of the respective function and terminal sets outlined in section 4.1.

The function set and terminal set used corresponds to the tree type chosen for390

the individuals i.e arithmetic trees, logical trees or decision trees. The ramped

half-and-half method is used for initial tree generation and the fitness of each

individual in the population is evaluated. Figure 2 outlines examples of a (a)

logical GP tree (b) arithmetic GP tree and (c) decision tree.

(a) logical tree (b) arithmetic tree

(c) decision tree

Figure 2: Example of GP individuals

4.5. Selection395

Tournament selection is used to select individuals from the current popula-

tion to act as parents for the creation of offspring for the next generation. A
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fixed number of individuals t are randomly selected from the population and

the individual with the best fitness from the t individuals is returned.

4.6. Application of genetic operators400

In this study two genetic operators, namely crossover and mutation are used

to create offspring. GP creates offspring either by crossover or mutation unlike

in a GA where offspring are first created by crossover and then mutated. GP

requires that an application rate be specified for each operator and this deter-

mines the number of offspring evolved by that operator. For example if the405

population size is set as 200 and the crossover rate is 80% and mutation is 20%

then crossover will create 160 offspring while mutation creates 40 offspring.

Figure 3: crossover operation

4.6.1. Crossover

Crossover uses tournament selection to select two parents. In each of the

parents a node is randomly selected and this becomes the crossover point. The410

subtrees, referred to as crossover fragments, rooted at these crossover points are

exchanged thereby creating two new offspring. The offspring are added to the

new population. A crossover point is randomly selected in parent 1 resulting in

fragment 1. Similarly in parent 2 random selection of a crossover point results

in fragment 2. The two fragments are exchanged resulting in offspring 1 and415

offspring 2. The depth of offspring produced by the crossover operation must
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not exceed a stipulated offspring depth limit, if they do exceed the depth limit

the trees are pruned. Figure 3 illustrates the single point crossover process used

in this study.

Figure 4: mutation operation

4.6.2. Mutation420

Grow mutation is the mutation operator used during regeneration for this im-

plementation. Tournament selection is used to select a parent from the current

population to undergo mutation. Grow mutation randomly chooses a terminal

node and replaces it with a randomly generated subtree. A maximum mutation

depth parameter is predefined to limit the size of the subtrees produced by the425

mutation operator. If this parameter is exceeded the subtree is pruned until it

meets the required size. After the mutation operation the produced offspring is

added to the new population. Figure 4 illustrates the mutation process.

4.6.3. Termination

The process is repeated from generation to generation until one of the stop-430

ping criteria outlined in section 4.3 is met. The classifier with the best training

accuracy across all generations is returned and applied to the test data and the

accuracy result is returned.

5. Proposed automated design

In this section the proposed automated design approach is presented. The435

design decisions, together with their possible values considered in this study
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are outlined. A detailed description of the proposed automated design ap-

proaches,using a GA and GE are also presented in this section.

5.1. GP design decisions

To design a GP classification algorithm a number of design decisions have440

to be made. The following is an outline of the design decisions considered in

this study.

5.1.1. Determination of parameter values

A GP classification algorithm contains both categorical and numerical pa-

rameters that need to be specified. The parameters and possible values that445

can be assigned to each design decision are outlined as follows:

1. Categorical parameters

(i) Tree type The three commonly used tree types by GP for data clas-

sification algorithms are arithmetic trees, logical trees and decision

trees (Banzhaf et al. (1998)). These are the three options available450

for this design decision.

(ii) Initial population generation method

Initial population generation will be performed using either the full

method, grow method or ramped half-and-half method. These are

the three methods available for this design decision(Poli et al. (2008)).455

(iii) Fitness function

Accuracy is the most commonly used fitness function to evaluate

the quality of classifiers. There have been proposals in literature

(Le-Khac et al. (2016)) for fitness functions to use more than one

criteria to evaluate classifiers. Five fitness functions are available for460

this design decision. These are based on the confusion matrix and

are outlined as follows:

(a) Accuracy

Accuracy is the rate of correctly classified instances and is de-
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fined by the following equation:465

accuracy =
tp + tn

tp + tn + fp + fn
(2)

where tp(tn) refers to true positives(true negatives) and fp(fn)

false positives (false negatives).

(b) F-measure

F-measure is a widely used metric for evaluating classifiers (Es-

pejo et al. (2010)). This metric is evaluated using sensitivity =470

tp/(fn + tp) and specificity=tn/(fp + tn) (Hand (1997)) and is

given by the following equation:

f = 2 ∗ (
sensitivity ∗ specificity
sensitivity + specificity

) (3)

(c) Weighted accuracy

A number of studies have proposed weighted fitness functions.

Bhowan et al. (2010) used a fitness function that sums the true475

positive rate (50%) and the true negative rate (50%). For this

fitness function a similar approach is adopted where accuracy

and f-measure are weighted and defined as follows:

weightedacc = 0.5 ∗ accuracy + 0.5 ∗ f-measure (4)

(d) Random weighted accuracy

This fitness function is similar to the weighted accuracy, the dif-480

ference is that the weight of the contribution of accuracy and

f-measure are randomly set before evaluation. The function is

defined by the following equation:

weightedrand = rand ∗ accuracy + (1− rand) ∗ f-measure (5)

(e) True positive rate

This is the rate of correctly classified positive instances of the485

problem.

tpr =
tp

tp + fn
(6)
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For multiclass problems accuracy is used as the fitness function.

(iv) Selection method

From the survey of literature (Poli et al. (2008),Banzhaf et al. (1998))

the two commonly used selection methods for GP are, fitness pro-490

portionate selection and tournament selection.

(a) Fitness proportionate

In fitness proportionate individuals are selected with a proba-

bility that is directly proportional to their fitness values (Sastry

et al. (2014)).495

The selection of an individual proceeds as follows;

i) evaluate the probability, pi of selecting each individual in

the population:

pi =
fi∑n
k=1fk

(7)

where n is the population size and fi is the fitness of an

individual.500

ii) calculate the cumulative probability, qi for each individual

using the following equation:

qi =
∑i

k=1
pk (8)

iii) choose a uniform random number rand between 0 and 1.

iv) if rand <q1 the first individual is selected or else the indi-

vidual xi such that qi−1 <rand <= qi is selected.505

v) Steps iii) and iv) are repeated n times to create n candidates

in the mating pool.

An individual is randomly selected from the mating pool to be

a parent.

(b) Tournament selection510

Tournament selection is implemented as outlined in section 4.5.

2. Numerical parameters
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(a) Population size

Research has been carried out on data classification problems using a

wide range of population sizes of GP individuals such as 50 in (Bandar515

et al. (1999)), 100 in (Olson et al. (2016b)), 200 in (Papagelis and

Kalles (2001)), 300 in (Moore and White (2007)), 400 in (Macedo

et al. (2016)), 500 in (Basgalupp et al. (2009)) and up to as high

as 5000 in (Aitkenhead (2008)). Three population size values 100,

200 and 300 will be available for this parameter. These values are520

deemed to adequately represent the search space.

(b) Maximum initial tree depth

Maximum initial tree depth is used to limit the size of initial trees.

Garcia et al. (2008) specified a maximum initial tree depth of 17 for

predicting protein networks while Aitkenhead (2008) set this param-525

eter to be 2 for evolving decision trees. The maximum initial tree

depth parameter value is randomly assigned from the range [2-15] for

arithmetic trees and logical trees and [2-8] for decision trees.

(c) Tournament size

The tournament selection method requires a tournament size value.530

Le-Khac et al. (2016) used a tournament size of 3, while Muni et al.

(2006) used a tournament size of 10. A number of studies in the lit-

erature (Jabeen and Baig (2011); Teredesai and Govindaraju (2004);

Sakprasat and Sinclair (2007)) used values in the range [2-10]. Tour-

nament size is randomly assigned any value in the range [2-10].535

(d) Maximum offspring depth

Offspring created by both crossover and mutation can grow expo-

nentially and a maximum size restriction has to be specified. This

parameter is known as maximum offspring depth. Li et al. (2005)

used a value of 17 for maximum offspring depth while Zhao (2007)540

set the value to 30 in their approach. We specify the range [2-15] for

arithmetic and logical trees and [2-8] for decision trees.
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(e) Mutation depth

The mutation operator has a mutation depth parameter which is used

to control the size of the subtree created by the mutation operator.545

Wieloch (2013) used a value of 5. The value for the mutation depth

will be any value in the range [2-6].

(f) Termination

Two termination criteria are defined, desired fitness and maximum

number of generations. If the desired outcome is met i.e 100% ac-550

curacy or maximum number of generations, the algorithm will ter-

minate. Muni et al. (2006) used a value of 30 generations, Tsakonas

(2006) and Olson et al. (2016b) used 100 generations while Le-Khac

et al. (2016) set the maximum number of generations to 1000. We

specify the range [50-200] for setting the value of the maximum num-555

ber of generations.

5.1.2. Determination of genetic operators

Genetic operators are used to evolve the next generation of individuals from

the current population. The most commonly used genetic operators by GP for

data classification are crossover and mutation (Espejo et al. (2010)). Three560

genetic operators namely, crossover, mutation and creation are presented for

this design decision.

1. Crossover

This crossover operator follows the same process as described in section

4.6.1.565

2. Mutation

Grow mutation and shrink mutation are commonly used by GP for clas-

sification (Jabeen and Baig (2010)). For this design decision grow muta-

tion and shrink mutation are the mutation operator options implemented.

Shrink mutation replaces a subtree with a randomly selected terminal570

(Angeline (1996)). Grow mutation is implemented in same manner as

presented in section 4.6.2.
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3. Creation

This operator replaces the current population with a new population. Ge-

netic material from the previous population is not used in the regeneration575

of new individuals.

To evolve the next generation a combination of the genetic operators is used.

Each combination has a specific application rate of a genetic operator. The

genetic operator combinations are presented as follows:

(a) Crossover and mutation580

Usually a higher crossover application rate is recommended and values found

in the literature (Tsakonas and Dounias (2002), Le-Khac et al. (2016))

for the crossover application rate range from 60% to 90%. Johansson and

Niklasson (2009) used a mutation rate of 1% to evolve decision trees while

Tsakonas (2006) applied shrink mutation at a rate of 60%. For this combi-585

nation the application rates are randomly obtained from the range of [0%

- 100%]. For example if crossover is randomly assigned an application rate

of 71% the mutation application rate is assigned a value of 29%. The sum

of the crossover application rate and mutation application rate should add

up to 100%.590

(b) 100% crossover

This combination regenerates the whole population using only crossover.

Estrada-Gil et al. (2007) used 0% mutation in classifying medical data.

Although combination (a) can achieve this crossover rate the probability of

it being selected is very low (1%) and therefore it is explicitly presented as595

an option.

(c) 100% mutation

This combination regenerates a new population using mutation only. Simi-

lar to 100% crossover this value of the mutation rate can be set by combi-

nation a) but the probability is also low therefore it is explicitly presented600

as an option.
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(d) Crossover and mutation preset rates

This combination makes available a range of rates which are multiples of

10. A pair will be randomly selected from the range and both crossover

and mutation are applied using the selected rates. The range is defined as605

follows (crossover, mutation)[10,90 ; 20,80 ; 30,70 ; 40,60 ; 50,50 ; 60,40

; 70,30 ; 80,20 ; 90,10]. For example if the first pair is selected the new

generation will be evolved by 10% crossover and 90% mutation.

(e) 100% Mutation and (rand%)crossover

This combination applies 100% mutation to the current population and then610

a random rate of crossover in the range of [0% - 100%] is applied to the new

population.

(f) 100%Crossover and (rand%)mutation

This combination applies 100% crossover to the current population and then

a random application rate of mutation in the range [0% - 100%] is applied615

to the new population.

(g) Creation

This option is used to replace the current population with a new population.

5.1.3. Determination of control flow

Control flow620

This design decision determines the order in which processes of the algorithm

occur. After initial population generation a combination of genetic operators

outlined in section 5.1.2 are randomly chosen to evolve the next generation.

One of two options will be selected for this design decision. The control flow

can be fixed or random. If the control flow is set to fixed a selected combination625

of genetic operators will be used for regeneration until the termination of the

algorithm. If the selection is random a different combination of genetic oper-

ator is randomly chosen to evolve each subsequent generation until algorithm

termination.

The next section presents the Genetic Algorithm used to automate the design630

of a Genetic Programming classification algorithm. The term configuration in
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this study is used to refer to a set of values for all the design decisions of the

GP classification algorithm.

5.2. GA for automated design

A GA individual is a GP classification algorithm configuration. The GA635

searches for a configuration that will yield the best classifier. GA individuals

undergo crossover and mutation, producing new GP configurations. The fitness

of each GA individual is evaluated by applying the configuration on a GP clas-

sification problem and the returned classification accuracy is the fitness of the

GA individual. This process is repeated from generation to generation until the640

maximum number of specified generations is met. The generational GA used is

outlined in Algorithm 2.

Algorithm 2 .Generational Genetic Algorithm

1: Create initial population

2: Calculate fitness of all individuals

3: while termination condition not met do

4: Select fitter individuals for reproduction

5: Recombine individuals

6: Mutate individuals

7: Evaluate fitness of all individuals

8: Generate a new population

9: end while

10: return best individual

Each of the processes depicted in Algorithm 2 are described in the following

sections. Table 1 summarizes the options for the different design decisions for

the GP classification algorithm described in the previous section.645
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# Design Decision Range of possible values

0 tree type 0 - arithmetic, 1 - logical, 2 - decision

1 population size 100, 200, 300

2 tree generation 0- full, 1- grow, 2- ramped half and half

3 initial tree depth 2 - 15 (decision tree 2 -8)

4 max offspring depth 2 - 15 (decision tree 2 -8)

5 selection method 0 - fitness proportionate, 1 - tournament selection

6 selection size 2 - 10

7 reproduction rates 0 - 100 crossover (mutation = 100-crossover)

8 mutation type 0 - grow mutation,1 - shrink mutation,

9 max mutation depth 2 - 6

10 control flow 0 - fixed 1 - random

11 operator combination 0 - 6

12 fitness type 0 - 4

13 number of generations 50 - 200 (multiclass - 50,100,200)

Table 1: Design decisions and range of values

5.2.1. Initial population generation

Each element of the population is a fixed length chromosome representing

the design decisions that need to be made for the GP classification algorithm.

Each gene represents one of the design decisions listed in Table 1. Figure 5

outlines the structure of a GA individual. A chromosome is made up of 14650

genes, labeled from g0 to g13.

Figure 5: GA chromosome

Gene values are encoded as integer values. Integer values are used to encode

design options for a design decision. The first gene of the chromosome g0 rep-

resents the type of tree to be used i.e arithmetic tree, logical tree or decision

tree. The second gene g1 represents the population size parameter while g2655

represents the tree generation method. Maximum tree depth is represented by

g3, offspring tree depth by g4, selection method by g5, tournament size by g6,
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reproduction rates by g7, mutation type by g8, mutation depth by g9, genetic

operator combinations by g10, control flow by g11, fitness function by g12 and

g13 number of generations.660

The first step of a GA algorithm is the initial population generation. A fixed

number of chromosomes are randomly created. Each gene of a chromosome is

assigned a value randomly chosen in the range listed in Table 1. For example

g0 can be randomly assigned a value of 1, from Table 1 the value 1 represents

logical trees for that design decision. If g1 is assigned a value of 100 then the665

population size for GP is 100 individuals. This random assignment occurs for

all the genes from g0 to g13 for all the chromosomes.

Figure 6: GA individual

Figure 6 is an example of a typical GA individual for this application.

5.2.2. Fitness evaluation and selection

The fitness of each GA individual is evaluated by applying the configuration670

to a GP classification problem. GP classification consists of two phases, a

training phase and testing phase. During the training phase thirty runs of a

GP classification algorithm configured using the GA configuration is performed

using a training set. The best evolved classifier from the thirty runs is then

applied to a test set resulting in a test accuracy result. The result of the testing675

phase is used as the fitness of the GA configuration. Fitness proportionate is

used to select parents as described in section 5.1.1.

5.2.3. Elitism

Elitism involves copying a specified number of the fittest individuals from

the current population into the next generation. This concept is adopted in this680

implementation of the GA.
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5.2.4. Crossover

Uniform crossover is implemented in this study. This method uses the

crossover rate to consider two selected individuals for crossover. During the

crossover process genes are considered individually based on a probability known685

as a swapping probability (Sastry et al. (2014)). Given two individuals parent 1

and parent 2 and assuming the swapping probability is set as 0.5 the crossover

proceeds as follows: a random number r between 0 and 1 is chosen. If r is

equal or greater than 0.5 the value of the first gene of offspring 1 is assigned

the same value as the first gene of parent 1 and the first gene of offspring 2 is690

assigned the same value as the first gene of parent 2. If the value of r is less

than 0.5 the value of the first gene of offspring 1 is assigned the value of gene

1 of parent 2 and the value of the first gene of offspring 2 is assigned the same

value as the first gene of parent 1. This process is repeated until all the genes

of the offspring chromosomes are assigned values. The offspring are then added695

to the new population. If crossover does not take place as determined by the

crossover rate the two selected parents are added to the next population.

Figure 7: GA crossover

Figure 7 is an illustration of the uniform crossover process, parent 1 and

parent 2 are crossed over resulting in offspring 1 and offspring 2. The values of

genes 1,2,3,5,6,8,10,11 and 12 of offspring 1 are obtained from parent 1 while700

values for genes 0,4,7,9 and 13 are obtained from parent 2.

5.2.5. Mutation

The mutation operator considers each gene of a given individual for mutation

based on the mutation rate (Eiben et al. (2003)). For each gene of an individual
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a random number r between 0 and 1 is chosen. If the mutation rate is equal705

or greater than r that gene is mutated by randomly assigning it a value from

the range of possible values stipulated in Table 1 for that gene. If the mutation

rate is less than r that gene is not mutated and the process moves to consider

the next gene of the individual. This process proceeds in this manner for all

genes of an individual. After application of the mutation operator the individual710

is added to the new population. The fitness of all the individuals in the new

population are then evaluated.

Figure 8: GA mutation

Figure 8 illustrates the mutation operation applied to individual 1. Genes

0,1,5 and 13 have been mutated.

5.2.6. Termination715

The algorithm proceeds from generation to generation until a preset number

of generations have been completed then the algorithm terminates. The indi-

vidual with the best fitness is returned. This is the individual that is the best

GP classification configuration for the problem considered.

5.3. GE for automated design720

This section outlines the Grammatical Evolution approach used to automate

the design of GP classification algorithms.

In this study GE is used to determine the 1) genetic operators 2) parame-

ter values and 3) control flow for GP. The generational GE algorithm used is

outlined in Algorithm 3.725
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Algorithm 3 .Grammatical Evolution

1: Create an initial population of variable length binary strings

2: Map via a BNF grammar

a) binary strings to expression using production rules

3: Evaluate fitness

4: do while {termination condition not met}
5: Select fitter individuals for reproduction

6: Recombine selected individuals

7: Mutate offspring

8: Evaluate fitness of offspring

9: Replace all individuals in the population with offspring

10: end while

11: return best individual

5.3.1. Initial population generation

Each element of the population is a variable length chromosome of codons.

Each codon is an 8 bit binary string. Individuals of the initial population are

generated by randomly creating codons. The length of each individual of the

initial population lies in the range 14-16 codons and is randomly created during730

initial population generation. The number of individuals created for the initial

population is specified by the population size parameter.

5.3.2. Mapping

Figure 9 depicts the grammar used. The grammar specifies possible values

of both categorical and numerical parameters required by a GP classification735

algorithm. Genetic operator combinations and control flow options are also

defined. Each GE individual is mapped to a GE phenotype which represents

a GP configuration. To map an individual the binary strings are converted to

integer values. Mapping starts from the first leftmost integer value (codon) of

the GE chromosome. Using equation 1 the modulus of each codon is evaluated740
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and used to select appropriate production rules. If the selected production rule

contains non-terminals the leftmost non-terminal is expanded first. If there is

only one production rule a codon value is not used and the rule replaces the

non-terminal. This process continues until all non-terminals are converted to

terminals.745

Figure 9: Grammar- automated design

Given the following codon sequence 10,215,30,48,7,8,220,30,40,73,5,11,21,112,32

a typical mapping process is presented as follows:

Starting with the start symbol there is only one production rule which maps to

the non-terminal <gp−parameters> therefore a codon value is not used. The

first codon value 10 is used to translate the non-terminal <gp−parameters> to750

select one of three production rules using the mapping function this results in

10 % 3 = 1 7→ logical(<tree−gen>).

The second production rule is selected. This option defines the tree type

design decision and specifies logical trees. The rule contains a non-terminal

<tree−gen> which needs to be translated. The next codon 215 is used to trans-755
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late the non-terminal and results in the following selection:

215 % 3 = 2 7→ logical (ramped half-and-half(<params>))

The selected production rule specifies the tree generation method to be used by

GP. There is also a non-terminal in the selected rule which requires mapping.

However there is only one rule for the non-terminal <params> and this is di-760

rectly assigned without using a codon value.

logical (ramped half-and-half (<popSize>,<itree−depth>,< maxOffspring−depth>,

<selection>, <sel−size>,<reprod−rates>, <mut−type>,<maxMutation−depth>,

<reprod−seq>, <operator−pool>, <fitnes−type>, <generations>))

The next non-terminal to be mapped is <popSize> using the codon value 30 and765

this results in : 30 % 3 = 0 7→ logical (ramped half-and-half (100,<itree−depth>,<

maxOffspring−depth>, <selection> ,<sel−size>, <reprod−rates>, <mut−type>,

<maxMutation−depth>, <reprod−seq>, <operator−pool>, <fitnes−type>, <generations>))

This specifies the population size and assigns the value 100. This process con-

tinues translating all non-terminals to terminals using the codon values. Figure770

10 illustrates the complete mapping process. The left side of Figure 10 identifies

the current step, the middle is the genotype to phenotype mapping at that step

and the right side identifies the production rule evaluated from the codon value

to translate the next non-terminal. The resulting mapping (phenotype) is given

as follows775

logical (ramped half-and-half (100,8,2,fitnessProportionate,24 ,grow, 2,random,0,1,50))

This GE phenotype is then interpreted into a GP configuration as listed in Table

2.
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Figure 10: Genotype-phenotype mapping
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Parameter# Value

tree type logical

population size 100

tree generation method ramped half and half

initial tree depth 8

max offspring depth 2

selection method fitness proportionate

crossover rate 24 (mutation = 100-crossover = 76)

mutation type grow

mutation depth 2

control flow random

operator combination crossover-mutation

fitness function F−measure

number of generations 50

Table 2: GE evolved GP parameter settings

5.3.3. Fitness evaluation

The fitness of each individual is evaluated by using the phenotype to con-780

figure a GP classification algorithm and applying it to a classification problem.

Training and testing are carried out in the same way as described for the GA

in section 5.2.2. Accuracy for the test set is used as the fitness for the GE

genotype.

5.3.4. Selection785

Tournament selection is used to select parents as described in section 4.5.

5.3.5. Elitism

In order to preserve fitter individuals elitism is used. A percentage of the

fittest individuals from the current generation are copied to the next generation.

5.3.6. Crossover790

Two parents are selected using tournament selection. A crossover probabil-

ity rate is used to determine if the crossover operation should be applied. If

crossover is to take place recombination of the selected parents is performed
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using single point crossover (Holland (1992)). In single point crossover a ran-

dom number r in the range [1, l -1](where l is the length of the chromosome )795

is chosen to be the crossover point. The genes before the crossover point are

collectively referred to as the head of the parent and those after the tail. Since

variable length chromosomes are used, in this case l is the length of the shortest

of the two selected parents. The parents are split at the crossover point and

they exchange tails. Figure 11 illustrates single point crossover. Parent 1 is an800

individual consisting of 14 codons while parent 2 consists of 15 codons.

Figure 11: single point crossover

The randomly selected crossover point is indicated by the bold vertical line.

The two parents exchange tails resulting in offspring 1 and offspring 2. Although

Figure 11 shows each codon as an integer value the crossover operator can be

applied to either the binary strings or integer values. For this study crossover805

is applied to binary strings. If crossover does not take place as determined by

the crossover probability rate the two selected parents are added to the next

population.

5.3.7. Mutation

Bit mutation is applied to the offspring produced by the crossover operator810

(Eiben et al. (2003)). Each bit of the binary string codon is considered for

mutation based on the mutation probability. For each bit of each binary string

in the chromosome a random number between 0 and 1 is chosen. If the selected

number is less that the mutation probability the bit is flipped i.e. if the bit has

a value of 1 it is changed to 0 and if has a value of 0 it is changed to 1. After815
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mutation the chromosome is added to the new population.

5.3.8. Termination

The algorithm proceeds from generation to generation until a preset number

of generations have been completed then the algorithm terminates. The indi-

vidual with the best fitness is returned. This is the individual with the best GP820

classification configuration for the problem considered.

6. Experimental settings

This section describes the experimental setup used to evaluate the automated

design approach. Firstly the data used in the experiments is presented followed

by a description of the experiments carried out. The performance of classifiers825

evolved by manual design and automated design are compared using binary

class and multiclass classification problems.

6.1. Datasets

Well known publicly available datasets with a varied number of attributes

and records are selected from the UCI machine learning repository. The se-830

lected datasets contain real-world data from various domains this, will allow

the evaluation of the proposed methods ability to generalise across domains.

Each dataset is randomly split into a 70% training set and 30% test set. Addi-

tionally the effectiveness of the proposed approach tailored to a specific domain

namely intrusion detection is evaluated using the NSL-KDD 99+20% dataset835

(Tavallaee et al. (2009)).

• Binary datasets

Eleven binary datasets are considered and these are listed in Table 3.
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dataset # attributes # numeric #nominal # instances

australian credit data 14 8 6 690

appendicitis 7 7 0 106

breast cancer (Ljubljana) 9 0 9 277

cylinder band 19 19 0 365

diabetes(pima) 8 8 0 768

german credit data 20 7 13 1000

heart disease 13 13 0 270

hepatitis 19 19 0 80

liver disease(Bupa) 6 6 0 345

mushroom 22 0 22 5644

tictactoe 9 0 9 958

Table 3: Summary of binary datasets

• Multiclass datasets

Table 4 contains a listing of the 11 multiclass datasets selected.840

dataset # attributes # numeric #nominal # instances # classes

balance 4 4 0 625 3

post-operative 8 0 8 87 3

car 6 0 6 1728 4

lymphography 18 3 15 148 4

cleveland 13 13 0 297 5

page-block 10 10 0 5472 5

dermatology 34 34 0 358 6

flare 11 0 11 1066 6

glass 9 9 0 214 7

zoo 16 0 16 101 7

ecoli 7 7 0 336 8

Table 4: Summary of multiclass datasets

• NSL-KDD dataset

A set of 6 datasets are created from the NSL-KDD 99+20% computer

security dataset. This dataset contains training and testing subsets and

each record consists of 42 feature attributes including a class label. The
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label of each record is one of five main classes namely i) normal ii) denial845

of service (dos) iii) probe iv)user to root (u2r) v) remote to local (r2l).

The set of 6 datasets is created by grouping the records based on their

classes (Chareka and Pillay (2016)). This is achieved as follows:

a) set 1 -normal + rest (dos,probe,u2r,r2l)

b) set 2 -dos + rest (normal,probe,u2r,r2l)850

c) set 3 -probe + rest (normal,dos,u2r,r2l)

d) set 4 -u2r + rest (dos,probe,normal,r2l)

e) set 5 -r2l + rest (dos,probe,u2r,normal)

f) set 6 -five distinct classes (normal,dos,probe,u2r,r2l)

Each dataset consists of 5000 training instances and 2000 test instances.855

6.2. Manual design of GP

Experiments are conducted on binary and multiclass problems these are

outlined as follows.

6.2.1. Binary class experiments

For each dataset three experiments, experiment 1, 2 and 3 are conducted860

using manually designed GP classification algorithms. Tree type is used to

distinguish between the experiments. Experiment 1 uses arithmetic trees, ex-

periment 2 uses logical trees and experiment 3 uses decision trees. For each

experiment parameter tuning is carried out using trial runs. In a similar ap-

proach to that carried out by Rouwhorst and Engelbrecht (2000) and Ma and865

Wang (2009) parameter tuning is carried out for each dataset listed in Table 3.

The tuning process is performed using the commonly used values for GP classifi-

cation algorithms outlined in section 5 as the starting point. For each parameter

an iterative approach is followed where one parameter is varied at a time while

keeping the others constant. Trial runs are performed for each parameter value.870

The final parameter value is obtained from the trial run that achieves the high-

est predictive accuracy. This process is repeated for the next parameter until all
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parameters have been tuned. From parameter tuning a population size of 300

is found to adequately represent the search space. The algorithm terminates

when the maximum predictive accuracy has been achieved or when the maxi-875

mum number of generations have occurred. Three hundred generations is found

to be adequate to achieve algorithm convergence on the considered datasets.

This value is set as the maximum generation for all manual experiments. The

initial tree depth parameter is tuned for values in the range from 2 to 20 while

the maximum offspring depth parameter range is from 4 to 30 for arithmetic880

and logical trees and 4 to 10 for decision trees. The selection size range of 2

to 20 is used. It is recommended that the crossover application rates should be

higher than the mutation application rate (Koza (1992)). Following this recom-

mendation the application rate for crossover was considered in the range 50% to

90% and the mutation range 50% to 10%. The mutation depth is tuned in the885

range 2 to 10. For the three manual experiments tournament selection is used

as the selection method, which is the most common selection method used for

GP (Blickle and Thiele (1996); Espejo et al. (2010)). Initial tree generation is

performed using the ramped half-and-half method (Garcia-Almanza and Tsang

(2006); Johansson and Niklasson (2009)) and grow mutation (Zhao (2007); Ma890

and Wang (2009))is used as the mutation operator. Predictive accuracy is used

as the fitness function.

The tuned parameter values for each dataset are presented in Table 5, Table

6 and Table 7. The first column of each table represents a parameter and

subsequent columns are the datasets indexed as follows: i-australian credit, ii-895

appendicitis, iii-breast cancer, iv-cylinder band, v-diabetes ,vi-german credit, vii-

heart, viii-hepatitis, ix-liver disease, x-mushroom and xi-tictactoe.

• Experiment 1 (Arithmetic trees)

Experiment 1 uses the following mathematical operators in the function

set ={ +,-,*, /(protected)} and attributes from the dataset are used for900

the terminal set.

• Experiment 2 (Logical trees)
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parameter dataset

i ii iii iv v vi vii viii vix x xi

pop size 300 300 300 300 300 300 300 300 300 300 300

init tree depth 8 8 3 3 8 6 8 4 7 8 5

max offsp depth 10 10 10 15 10 10 10 12 15 10 10

selection size 4 12 4 4 4 4 8 4 8 12 4

crossover rate 60 90 80 60 60 70 70 65 85 60 90

mutation rate 40 10 20 40 40 30 30 35 25 40 10

mutation depth 5 6 6 6 6 6 4 8 4 4 6

number of gens 300 300 300 300 300 300 300 300 300 300 300

Table 5: Arithmetic parameter values

Experiment 2 uses the following logical operators in the

function set ={AND,OR,EQUAL,DIFFERENT,NOT} and attributes from

the dataset are used for the terminal set.

parameter dataset

i ii iii iv v vi vii viii vix x xi

pop size 300 300 300 300 300 300 300 300 300 300 300

init tree depth 8 8 4 2 4 3 6 3 8 6 4

max offsp depth 10 10 12 10 10 10 10 10 10 12 12

selection size 8 8 8 4 4 4 4 8 8 8 4

crossover rate 80 85 60 60 70 80 80 80 70 80 60

mutation rate 20 15 40 40 30 20 20 20 30 20 40

mutation depth 5 4 5 6 6 4 4 6 5 6 6

number of gens 300 300 300 300 300 300 300 300 300 300 300

Table 6: Logical parameter values

905

• Experiment 3 (Decision trees)

The function set of experiment 3 consists of attributes from the dataset

while the terminal set constitutes of classes(class 0 and class 1).
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parameter dataset

i ii iii iv v vi vii viii vix x xi

pop size 300 300 300 300 300 300 300 300 300 300 300

init tree depth 2 2 2 3 3 2 2 2 4 3 2

max offsp depth 5 4 5 5 5 5 4 5 5 5 5

selection size 8 8 4 4 4 4 4 4 4 4 8

crossover rate 80 70 70 80 70 80 70 70 70 70 80

mutation rate 20 30 30 20 30 30 30 30 30 30 20

mutation depth 3 3 3 3 3 3 4 3 4 4 3

number of gens 300 300 300 300 300 300 300 300 300 300 300

Table 7: Decision tree parameter values

6.2.2. Multiclass experiments

The same three experiments conducted for binary classification are con-910

ducted for multiclass classification problems. However for multiclass problems

the standard approach(Barros et al. (2013)) of determining parameter values

for one problem domain and using them on all problems is followed. Param-

eter tuning using trial runs is performed in a similar manner as described in

section 6.2.1. Table 8 outlines the parameters and values used for multiclass915

classification.
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parameter arithmetic logical decision tree

population size 300 300 300

tree generation ramped half-and-half ramped half-and-half ramped half-and-half

initial tree depth 3 3 2

max offspring depth 8 10 5

selection method tournament tournament tournament

tournament size 8 10 8

crossover rate 80 90 70

mutation rate 20 10 30

mutation type grow grow grow

mutation offspring depth 6 8 4

fitness function accuracy accuracy accuracy

maximum generations 300 300 300

Table 8: GP settings - multiclass classification

6.2.3. Experiments on NSL-KDD

Parameter tuning is carried out for the NSL-KDD datasets for experiment

1, 2 and 3 and the obtained parameter values are listed in Table 9.

parameter arithmetic logical decision tree

population size 300 300 300

tree generation ramped half-and-half ramped half-and-half ramped half-and-half

initial tree depth 4 3 2

max offspring depth 10 8 8

selection method tournament tournament tournament

tournament size 8 10 8

crossover rate 80 70 90

mutation rate 20 30 10

mutation type grow grow grow

mutation offspring depth 6 10 8

fitness function accuracy accuracy accuracy

maximum generations 200 200 200

Table 9: Parameter values - NSL-KDD
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6.3. Automated design of GP920

Trial runs are conducted to establish parameter settings for both the GA

and GE algorithms. The GA algorithm for automated design is termed autoGA

and the automated GE is termed autoGE.

6.3.1. AutoGA

A population size of 20 is found to adequately represent the search space.925

Uniform crossover is used at an application rate of 80%. The mutation rate is

set to 10% using bit mutation. In order to preserve good configurations elitism

is applied at a rate of 10% i.e. 10% of the best individuals of the current

population is copied into the next generation. Fitness proportionate is used

as the selection method. Fifty generations is found to be an adequate value930

for convergence. Table 10 summarizes the parameter settings for the autoGA

approach.

parameter value

population size 20

selection method fitness proportionate

Uniform crossover rate 80%

Bit mutation rate 10%

Elitism 10%

fitness function accuracy

maximum generations 50 (30 for NSL-KDD)

Table 10: autoGA settings

6.3.2. AutoGE

The autoGE algorithm is configured with a population size of 20 using single

point crossover with a probability rate of 85% and bit mutation with a proba-935

bility rate of 5%. Elitism is set at a rate of 10%. The selection method used

is tournament selection with a size of 4. The size of chromosomes in the initial

population is randomly selected in the range of 14 to 16 with a codon size of 8

bits. Thirty generations is set as the termination criterion. Table 11 summarizes

the parameter settings for the autoGE approach.940

44



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

parameter value

Population size 20

Selection method tournament (size 4)

Single point crossover rate 85%

Bit mutation rate 5%

Elitism 10%

fitness function accuracy

Individual size 14-16

Wrapping yes

Maximum generations 30

Table 11: autoGE settings

AutoGA and autoGE use the same function and terminal sets as the manual

design configuration. The specification of the computer used to develop the

software is as follows: Intel(R) Core(TM) i7-6500U CPU @ 2.6GHz with 16GB

RAM running 64 bit Linux Ubuntu. The simulations were performed using

the CHPC (Centre for High Performance Computing) Lengau cluster. Java 1.8945

was used as the software development platform on the Netbeans 8.1 Integrated

Development Environment.

7. Results and analysis

This section presents the results obtained from conducting the outlined ex-

periments. The results obtained from applying the autoGA and autoGE al-950

gorithms are compared to each other and to those obtained from the manual

design approach.

7.1. Binary datasets

7.1.1. Training and testing

Table 12 presents the training and testing results. Each row indicates a955

dataset while each column is the applied algorithm. The results are the best

training fitness ± standard deviation (at the 95% percentile confidence interval)
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and the test accuracy of the best training individual ± standard deviation over

thirty independent runs for each algorithm.

dataset arithmetic logical decision tree autoGA autoGE

aus credit training 0.89±0.01 0.91±0.01 0.86±0.01 0.89±0.01 0.91±0.01
testing 0.83±0.01 0.84±0.01 0.85±0.01 0.88±0.01 0.86±0.01

appendicitis training 0.97±0.02 0.89±0.02 0.89±0.02 0.95±0.02 0.95±0.02

testing 0.84±0.03 0.78±0.03 0.85±0.03 0.91±0.03 0.94±0.03
breast cancer training 0.98±0.01 0.97±0.01 0.94±0.02 0.98±0.01 0.99±0.01

testing 0.97± 0.02 0.93±0.03 0.90±0.04 0.97±0.02 0.98±0.02
cylinder band training 0.74±0.01 0.77±0.01 0.64±0.01 0.75±0.01 0.80±0.04

testing 0.66±0.01 0.68±0.01 0.69±0.01 0.75±0.01 0.74±0.01

diabetes (pima) training 0.78±0.07 0.78±0.07 0.69±0.07 0.75±0.01 0.74±0.04

testing 0.64±0.01 0.75±0.01 0.69±0.01 0.70±0.07 0.60±0.01

german credit training 0.76±0.06 0.76±0.06 0.73±0.06 0.85±0.07 0.86±0.07
testing 0.65±0.01 0.65±0.01 0.65±0.01 0.68±0.01 0.66±0.05

heart disease training 0.92±0.01 0.94±0.01 0.79±0.01 0.87±0.01 0.95±0.01
testing 0.77±0.02 0.64±0.02 0.44±0.01 0.72±0.02 0.81±0.08

hepatitis training 0.98±0.03 0.98±0.03 0.88±0.02 0.93±0.02 0.98±0.03
testing 0.67±0.03 0.75±0.03 0.75±0.03 0.75±0.03 0.88±0.02

liver disease training 0.80±0.01 0.73±0.01 0.62±0.01 0.80±0.01 0.76±0.01

testing 0.64±0.01 0.64±0.01 0.44±0.01 0.71±0.01 0.65±0.01

mushroom training 0.86±0.00 0.86±0.00 0.60±0.00 0.88±0.00 0.88±0.00
testing 0.78±0.00 0.75±0.00 0.66±0.00 0.81±0.00 0.81±0.00

tictactoe training 0.87±0.07 0.84±0.07 0.72±0.07 0.94±0.07 0.99±0.00
testing 0.73±0.01 0.76±0.01 0.65±0.01 0.86±0.01 0.98±0.01

averages training 0.87±0.03 0.86±0.02 0.76±0.03 0.87±0.02 0.89±0.02
testing 0.74±0.01 0.74±0.02 0.69±0.02 0.79±0.02 0.81±0.02

Table 12: Training and Testing Results for Binary Data sets

On 5 of the 11 datasets, autoGE trained better than the other algorithms and960

tied on 3 datasets. The autoGA algorithm tied on 2 datasets, while the manually

designed arithmetic algorithm trained well on 1 dataset and tied on 3 datasets.

The logical tree algorithm tied on 3 datasets. From the testing results both the

autoGE and autoGA algorithms tested better on 4 datasets each and tied on

1 while logical algorithms tested well on 1 dataset. The statistical significance965

of the testing accuracy results is evaluated using the non-parametric Friedman

test with a post-hoc Bonferroni-Dunn test for pairwise comparison as proposed
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by Demšar (2006) for comparing multiple classification algorithms on multiple

datasets. The testing results are ranked with the best performing algorithm

assigned a rank of 1 and the least a rank of 5. If algorithms tie the affected970

positions are averaged amongst the algorithms in the tie. Average rankings are

calculated and presented in Table13.

algorithm arithmetic logical decision autoGA autoGE

average rank 3.818 3.590 4 1.818 1.772

position 4 3 5 2 1

Table 13: Average Ranks

AutoGE and autoGA rank first and second respectively, followed by the log-

ical tree algorithm. The arithmetic tree algorithm and decision tree algorithm

rank fourth and fifth respectively. Using the average ranks the F statistic is975

evaluated to FF = 9.70. With 5 algorithms and 11 data sets, FF is distributed

according to the F distribution with 5 -1 = 4 and (5-1)*(11-1) = 40 degrees

of freedom. The critical value of F(4,40) for α = 0.05 is 2.608 and since FF

>F0.05(4,40)(9.70 >2.608) the null-hypothesis which states that all the algo-

rithms perform equivalently is rejected. Using the two-tailed Bonferroni-Dunn980

test a pairwise comparison is carried out between the best performing manual

design algorithm, in this case the logical algorithm, and the automated designed

algorithms. The critical value q0.05 for 5 classifiers is 2.498 therefore the critical

difference CD is evaluated to:

CD = 2.498 ∗
√

5 ∗ 6

11 ∗ 6
= 1.68 (9)

The difference between the average rank of the logical tree algorithm and au-985

toGE is 1.82 and the difference between the logical tree algorithm average and

autoGA is 1.78. Both these values are greater than the CD (1.68) value which

suggests that the performance of the automated designed algorithms are signifi-

cantly better than the manually designed algorithms for the considered datasets.

However the difference in performance between autoGA and autoGE is found990

to be not significant. Although autoGA is found to perform better across all
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datasets with a test average of 81% while autoGA averages 79%.

7.1.2. Configurations

Table 14 outlines the best configurations for the binary datasets evolved by

the automated design approach for each dataset. The first column represents the995

parameters in the configuration and the subsequent columns are the parameter

values for each dataset indexed as follows: i-australian credit, ii-appendicitis, iii-

breast cancer, iv-cylinder band, v-german credit, vi-heart, vii-hepatitis, viii-liver

disease, ix-mushroom, x-mushroom and xi-tictactoe. The last column xii is an

average of the manually tuned parameters.

parameter dataset

i ii iii iv v vi vii viii vix x xi xii

tree type 0 0 0 2 1 0 1 0 0 0 1 -

pop size 200 200 100 300 200 200 300 200 200 100 200 300

tree gen method 2 0 0 2 0 0 0 0 2 1 0 2

init tree depth 8 8 7 3 6 8 4 3 8 8 5 5

max offsp depth 10 9 6 5 5 8 8 9 11 6 3 9

selection method 0 0 1 0 0 1 1 0 0 1 0 1

selection size - - 6 - - 6 8 - - 3 - 6

crossover rate 21 80 89 31 33 6 56 77 60 84 46 70

mutation type 1 0 1 1 1 0 1 1 0 1 0 0

mutation depth 5 2 5 3 5 3 2 3 4 6 3 4

control flow 0 0 1 1 0 1 1 0 1 0 0 0

operator comb 3 0 2 2 2 1 1 5 5 1 1 0

fitness function 0 0 3 0 0 1 1 3 3 1 3 0

number of gens 55 200 200 161 109 200 100 170 138 50 200 300

Table 14: Binary class autoDesigned configurations

1000

The logical tree algorithm ranks better than arithmetic tree algorithms.

However from both tables the arithmetic tree classifiers are configured in 7

of the 10 datasets including the one tie while logical tree classifiers are used in

3 datasets and decision trees classifiers are configured once. The expectation is

for logical trees to constitute the majority of the configurations. This seems to1005

indicate that automated design is able to perform a wider search than human

design resulting in better configurations which use arithmetic tree classifiers for
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the considered datasets. A population size of 200 is used on 7 datasets, 300 on

2 datasets and 100 on 2 datasets. Experienced human evolutionary algorithm

designers prefer the ramped half-and-half method for initial population gener-1010

ation, however from the automatically generated configurations this method is

only used 3 times with the full method selected more frequently and used 7

times while the grow method is used once. Initial tree depth is set to a value

in the range of [5-8] in 8 configurations while 3 configurations have values less

than 5. Maximum offspring depth is set to values in the range [5-11] in all1015

configurations with the exception of 1 configuration in which the value is set to

3. Tournament selection is used as the selection method 4 times with fitness

proportionate selected 7 times. On the 4 occasions that tournament selection is

used the tournament size is set to a value of 6 twice, 8 and 3 once each. Six de-

signs use fixed genetic operator application rates. Of those 6 only 1 configuration1020

for appendicitis used the initially set application rate of 80% crossover and 20%

mutation. The other 5 of the 6 are configured as follows; 2 used 100% crossover,

1 used 100% mutation, 1 used the preset rates and 1 used 100% crossover and

then random mutation. Shrink mutation was selected in 7 configurations while

4 configurations used grow mutation. Maximum mutation depth values are set1025

in the range [2-6] across the configurations. Three fitness functions of the possi-

ble 5 are used, namely accuracy, f-measure and weightedrand. Accuracy is used

in 4 configurations, weightedrand in 4 configurations and f-measure in 3 config-

urations. Maximum generations are configured within the range of [100 - 200]

generations except for one configuration which uses 55 generations.1030

7.1.3. Design times

The time taken for the manual design of GP classification algorithms for

the values outlined in section 6.2.1 ranged from 8 - 10 days for each dataset.

This included performing trial runs. Each day constituting approximately 10

man hours on average. Taking for example the time taken to tune for the1035

initial tree depth parameter value from the range 2 to 20. There are 19 possible

values to consider and assuming a 30 minutes execution time for a particular
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GP algorithm trial run, it takes approximately 9 hrs to consider all 19 values.

From Table 15 the average design time across all datasets performed by autoGA

is 29.38 hrs, with a minimum time of 16 hrs and a maximum of 36.39 hrs for1040

the mushroom dataset. While autoGE averaged approximately 21 hrs with a

minimum of 12hrs and a maximum of 28 hrs hrs. The automated design times

are shorter than the manual design times and as argued by Hutter et al. (2007)

automated design liberates the algorithm designer to attend to other tasks.

Automated design takes less time than manual design because of the wide search1045

space for parameter values. This combined with the trail runs which have to be

performed for each parameter value tested. The tedious nature of this approach

leads to humans resorting to intuition and bias.

dataset autoGA autoGE

aus credit 36.02 20.18

appendicitis 16.26 17.48

breast cancer 32.22 19.02

cylinder band 34.46 28.16

diabetes (pima) 30.25 27.15

german credit 35.12 21.28

heart disease 25.43 18.21

hepatitis 16.36 12.21

liver disease 26.54 14.09

mushroom 36.39 27.39

tictactoe 34.12 22.34

average 29.38 20.69

Table 15: design times(hrs)

7.2. Multiclass datasets

7.2.1. Training and testing1050

Table 16 presents the training and testing results. For each dataset the first

row represents the best training result and the second row represents the best

testing accuracy for each algorithm.

From the results the autoGA algorithm trained well on 5 of the 10 datasets

and tied on 2 datasets, while the autoGE algorithm trained well on 3 datasets1055

and tied on 3 datasets. The arithmetic tree algorithm tied on 2 datasets and the
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dataset arithmetic logical decision tree autoGA autoGE

balance training 0.76 ±0.02 0.84±0.03 0.69±0.03 0.99±0.03 0.92±0.02

testing 0.81±0.03 0.76±0.03 0.68±0.06 0.98±0.01 0.92±0.03

post-operative training 0.81±0.04 0.29±0.04 0.76±0.04 0.80±0.04 0.86±0.04
testing 0.61±0.09 0.25±0.09 0.71±0.09 0.75±0.09 0.64±0.09

car training 0.83±0.02 0.23±0.02 0.83±0.02 0.83±0.02 0.83±0.02
testing 0.40±0.03 0.18±0.03 0.64±0.04 0.66±0.04 0.46±0.04

lymphography training 0.85±0.06 0.84±0.06 0.79±0.05 0.92±0.06 0.86±0.06

testing 0.73±0.07 0.76±0.07 0.78±0.07 0.82±0.07 0.78±0.07

cleveland training 0.62±0.06 0.21±0.05 0.61±0.07 0.67±0.06 0.60±0.06

testing 0.53±0.09 0.17±0.07 0.48±0.07 0.57±0.07 0.55±0.07

page-blocks training 0.95±0.04 0.96±0.04 0.51±0.04 0.97±0.04 0.97±0.04
testing 0.55±0.03 0.57±0.03 0.38±0.03 0.60±0.03 0.59±0.03

demartology training 0.77±0.05 0.35±0.06 0.67±0.06 0.75±0.08 0.88±0.06
testing 0.67±0.08 0.38±0.06 0.57±0.08 0.69±0.08 0.78±0.08

flare training 0.71±0.03 0.38±0.03 0.75±0.03 0.76±0.03 0.75±0.03

testing 0.68±0.05 0.43±0.05 0.67±0.05 0.67±0.04 0.71±0.04
glass training 0.63±0.07 0.49 ±0.07 0.57±0.07 0.59±0.07 0.65±0.07

testing 0.24±0.09 0.19±0.09 0.45±0.09 0.53±0.09 0.24±0.09

zoo training 0.87±0.07 0.62±0.07 0.84±0.07 0.86±0.07 0.87±0.07
testing 0.81±0.09 0.56±0.09 0.72±0.09 0.81±0.09 0.81±0.09

ecoli training 0.84±0.05 0.77±0.05 0.71±0.05 0.88±0.05 0.64 ±0.06

testing 0.61±0.08 0.40±0.08 0.31±0.08 0.90±0.05 0.43±0.09

averages training 0.79±0.05 0.54±0.05 0.70 ±0.05 0.82±0.05 0.80 ±0.05

testing 0.60±0.07 0.42 ±0.06 0.58±0.06 0.73±0.06 0.63±0.06

Table 16: Multiclass Training and Testing Results

decision tree algorithm tied on 1 dataset. The testing accuracy results show that

the autoGA algorithm tests well on 9 of the 12 datasets and ties on 1 dataset.

The autoGE algorithm tests well on 2 datasets and ties on 1 while the arithmetic

tree algorithm ties on 1 dataset. The testing results are ranked and the average1060

ranks are calculated and presented in Table 17. Based on the average ranks the

algorithm arithmetic logical decision autoGA autoGE

average rank 3.364 4.409 3.545 1.409 2.273

position 3 5 4 1 2

Table 17: Average Ranks

autoGA algorithm is the best performing algorithm followed by the autoGE. The
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arithmetic tree algorithm ranks third, the decision tree algorithm and logical

tree algorithm rank fourth and fifth respectively. Using the non-parametric

Friedman’s test and Bonferroni-Dunn test the significance of the differences are1065

evaluated. Using the average ranks the F statistic is evaluated to FF = 12.10.

The critical value of F(4,44) for α = 0.05 is 2.608 and since FF >F0.05(4,36)

(12.10 >2.608) the null-hypothesis which states that all the algorithms perform

equivalently is once again rejected. Using the Bonferroni-Dunn critical value for

5 classifiers at the 95% level the critical difference is evaluated to be 1.83. The1070

difference between the average rank of autoGA and the average rank of the best

performing manual design algorithm (arithmetic tree algorithm) is found to be

statistically significant. The difference in performance of the autoGE algorithm

and arithmetic algorithm is not statistically significant. The differences between

the automated designed algorithms is also found not to be significant although1075

autoGA is found to be evolving classifiers which achieve higher accuracies on

average across all datasets with an average of 73% while autoGE has an average

of 63%.

7.2.2. Configurations

Table 18 presents the configurations used by the best testing automated de-1080

sign algorithms. The datasets are indexed as follows: i-balance, ii-post operation,

iii-car, iv-lymphography, v-cleveland, vi-page blocks, vii-dermatology, viii-flare,

ix-glass, x-ecoli and xi-manual averages. From the 10 configurations 8 use the

arithmetic tree type and 2 use the logical tree type. A population size value of

300 is used in 4 of the 10 configurations and values of 200 and 100 are each used1085

3 times. The full tree generation method is used 7 times while the preferred

method by manual algorithm designers the ramped half-and-half method is used

only twice and the grow method is also used once. The initial tree depth param-

eter values are set to values in the range [4-10] yet the possible values range from

2 to 15. The maximum offspring depth values are set to values within the range1090

[6-12] yet the possible values range from 2 to 15. Tournament selection is used

in 8 configurations and fitness proportionate in 2 configurations. Tournament
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selection size values are set in the range of 2 to 9.

parameter dataset

i ii iii iv v vi vii viii ix x xi

tree type 0 0 0 1 0 1 0 0 0 0 -

pop size 300 100 100 300 300 200 200 200 300 100 300

tree gen method 1 0 0 0 0 0 0 0 2 2 2

init tree depth 6 10 9 8 4 8 5 6 4 5 3

max offsp depth 9 8 10 12 10 12 6 6 6 10 8

selection method 1 0 1 1 1 1 1 1 0 1 1

selection size 9 - 2 8 8 7 2 4 - 7 9

crossover rate 82 80 27 18 36 78 81 51 77 69 80

mutation type 0 0 0 1 1 1 1 1 0 1 0

mutation depth 6 6 5 2 6 6 4 4 2 3 6

control flow 1 0 0 0 1 0 0 0 1 1 0

operator comb 3 3 1 1 3 1 2 3 3 0 0

fitness function 0 0 0 0 0 0 0 0 0 0 0

number of gens 200 200 50 200 50 200 100 200 100 50 300

Table 18: Multiclass autoDesigned configurations

Crossover is set at a higher rate than mutation in 6 configurations, while

mutation is set higher on 3 configurations. On 1 configuration crossover and1095

mutation are set to 51% and 49% respectively. The normal approach with

manual design is to set the crossover rate to a higher value than the mutation

rate. Grow mutation is used in 4 configurations while shrink mutation is used

in the other 7 configurations. The maximum mutation depth values are set to

values in the range [2-6]. Five configurations use random preset rates while 31100

configurations use 100% crossover and 1 configuration uses 100% mutation. A

maximum generation value of 200 is used 5 times, 100 used twice and a value

of 50 is used 3 times.

7.2.3. Design times

Table 19 outlines the automated design runtimes for each algorithm per1105

dataset. Similarly to binary classification the man-hours taken to manually

design multiclass classification GP algorithms is approximately 80 hrs.

With regards to automated design, autoGA averages 24.26 hrs with a max-
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dataset autoGA autoGE

balance 17.13 15.39

post-operative 13.21 8.28

car 33.41 23.08

lymphography 16.15 12.50

cleveland 25.17 17.18

page blocks 46.35 42.11

dermatology 14.31 6.24

flare 36.12 21.08

glass 15.08 18.43

zoo 12.33 7.52

ecoli 33.25 18.18

Avg runtime 24.26 17.27

Table 19: Design times

imum of 46.35 hrs for the page blocks dataset and a minimum of 12.33 hrs for

the zoo dataset. AutoGE averages 17.27 hrs with a maximum of 42.11 hrs for1110

the page block and a minimum of 7.52 hrs for the zoo dataset.

7.3. NSL-KDD dataset

7.3.1. Training and testing

dataset arithmetic logical decision tree autoGA autoGE

normal training 0.97±0.03 0.96±0.03 0.92±0.03 0.98±0.02 0.98±0.02
testing 0.97±0.03 0.96±0.04 0.92±0.06 0.96±0.04 098±0.02

dos training 0.99±0.01 0.97±0.02 0.92±0.04 0.99±0.01 0.99±0.01
testing 0.90±0.02 0.96±0.03 0.93±0.02 0.98±0.01 0.99±0.01

probe training 0.99±0.01 0.98±0.02 0.91±0.04 0.98±0.02 0.98±0.02

testing 0.99±0.01 0.95±0.04 0.91±0.06 0.98±0.03 0.98±0.03

u2r training 0.99±0.01 0.99±0.01 0.99±0.01 1.00±0.00 0.99±0.01

testing 0.99±0.01 0.99.±0.01 0.98±0.01 1.00±0.00 0.99±0.01

r2l training 0.98±0.02 0.98±0.02 0.98±0.02 0.98±0.02 0.99±0.01
testing 0.98±0.02 0.98±0.01 0.98±0.02 0.98±0.02 0.99±0.01

multi training 0.81±0.02 0.68±0.02 0.59 ±0.02 0.82±0.02 0.72 ±0.02

testing 0.75±0.02 0.80 ±0.03 0.66±0.03 0.81±0.02 0.70±0.03

averages training 0.96±0.02 0.93±0.02 0.89±0.03 0.96±0.01 0.94±0.02

testing 0.93±0.02 0.94±0.03 0.90±0.03 0.96±0.02 0.94±0.02

Table 20: Training and Testing Results security data

Table 20 outlines the training and testing results for the proposed approach

on the security domain datasets used in this study. From the table autoGA1115
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trains well on 2 datasets and ties on 2, autoGE trains well on 1 dataset and ties

on 2 datasets. The arithmetic tree algorithm trains well on 1 dataset and ties on

1 dataset. The autoGA and arithmetic algorithm achieve the best training aver-

age across all datasets. The autoGE tests well on 3 datasets, autoGA on 2 and

the arithmetic algorithm on 1. Across all datasets autoGA has the best testing1120

average. The average ranks are calculated and presented in Table 21. From the

algorithm arithmetic logical decision autoGA autoGE

average rank 2.92 3.167 4.583 2.25 2.083

position 3 4 5 2 1

Table 21: Average Ranks

rankings autoGE ranks first followed by autoGA. The statistical significance of

the differences of the testing results are evaluated using the Friedman test on the

average ranks. The F statistic is evaluated to be Ff = 3.27 and this is greater

than the critical value for F(4,20) given as 2.87. This leads to the rejection of the1125

null hypothesis and using the Bonferroni-Dunn test the critical difference at the

95% level is evaluated to be 2.28. The differences of the ranks between the auto

designed algorithms and the best performing manual algorithm, arithmetic tree

algorithm is not greater than the critical difference therefore the differences in

performance between the automated designed algorithms and the best manual1130

algorithm are not statistically significant. The autoGA algorithm has the best

testing average across all datasets.

7.3.2. Configurations

Table 22 presents the GP configurations used to evolve the the best classifiers

by the automated design approach. Arithmetic tree type are used in 4 of the1135

5 configurations. A population size parameter value of 200 is set 3 times and

100 twice. The grow tree generation method is used 3 times while ramped half-

and-half and the full method are used once each. Initial tree depth is set at

values between 4 and 8. Maximum offspring depth is set in the range 3-10. The

fitness proportionate selection method is used once while tournament selection1140
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is used 4 times with a selection size set in the range 3-5. Crossover rates are

set to higher values than mutation rates in 3 configurations. Grow mutation

is used 3 times while shrink mutation is used twice with mutation depths set

in the range 2 to 6. Control flow is set to random twice. A 100% crossover is

applied on three configurations and across all configurations predictive accuracy1145

is used as the fitness function. Three configurations are set to terminate after

100 generations and 2 after 50 generations.

parameter parameter values

normal dos u2r r2l multi avg manual

tree type 0 0 1 0 0 -

pop size 100 100 200 200 200 300

tree gen method 1 2 0 1 1 2

init tree depth 5 4 8 5 4 3

max offsp depth 6 3 9 10 8 9

selection method 1 1 0 1 1 1

selection size 4 3 - 4 5 9

crossover rate 24 25 58 52 82 80

mutation type 0 0 0 1 1 0

mutation depth 4 2 6 2 6 8

control flow 0 1 1 0 0 0

operator comb 0 1 1 1 0 0

fitness function 0 0 0 0 0 0

number of gens 100 100 100 50 50 200

Table 22: NSL-KDD autoDesigned configurations

7.3.3. Design times

The manual design times are similar to those presented in sections 7.1.3

and 7.2.3 as the same approach is followed for the manual design for the NSL-1150

KDD datasets. Table 23 presents the automated design times for the proposed

approach on the security datasets. From the table the autoGA averaged longer

design times averaging 56 hours while the autoGE averaged 53 hours. On the

autoGA algorithm the dos dataset had the longest design time of approximately

67 hours. The lowest design time was achieved on the u2r dataset. For the1155

autoGE algorithm the highest duration recorded was approximately 59 hours.
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dataset autoGA autoGE

normal 50.40 56.55

dos 66.42 51.89

probe 59.49 50.20

u2r 49.21 58.68

r2l 52.54 49.52

multi 61.32 54.33

avg 56.56 53.52

Table 23: Design times

7.3.4. Comparison with other GP Approaches

Table 24 presents a comparison of the testing accuracies achieved by the

automated design approach proposed in this study to those of other GP ap-

proaches. It is not possible to directly compare performances with other meth-

dataset autoDesign GP approaches

aus credit data 0.88 0.89(Ong et al. (2005))

appendicitis 0.94 0.86(Cano et al. (2017))

breast cancer 0.98 0.72(Bojarczuk et al. (2004))

cylinder band 0.75 0.79(Cano et al. (2017))

diabetes 0.70 0.69(Espejo et al. (2005))

german credit data 0.68 0.86(Le-Khac et al. (2016))

heart 0.81 0.72(Jabeen and Baig (2011))

hepatitis 0.88 0.81 (Barros et al. (2013))

liver disease 0.71 0.68 (Jabeen and Baig (2011))

mushroom 0.81 0.94(Espejo et al. (2005))

tictactoe 0.86 0.74(Espejo et al. (2005))

balance 0.98 1.00(Zhou et al. (2003))

post-operative 0.75 0.77(Font et al. (2011))

car 0.66 0.92(Zhou et al. (2003))

lymphography 0.82 0.82(Al-Madi and Ludwig (2013))

cleveland 0.57 0.55(Berlanga et al. (2010))

page blocks 0.60 0.90(Berlanga et al. (2010))

dermatology 0.78 0.87(Al-Madi and Ludwig (2013))

flare 0.71 0.67(Berlanga et al. (2010))

glass 0.53 0.60(Zhou et al. (2003))

zoo 0.81 0.95(Zhou et al. (2003)

ecoli 0.90 0.82 (Iba et al. (2009))

normal(nsl-kdd) 0.98 0.99(Mukkamala et al. (2004))

dos(nsl-kdd) 0.99 1.00(Mukkamala et al. (2004))

probe(nsl-kdd) 0.98 0.99(Mukkamala et al. (2004))

u2r(nsl-kdd) 0.99 0.99(Mukkamala et al. (2004))

r2l(nsl-kdd) 1.00 0.99(Mukkamala et al. (2004)

Table 24: Comparison of auto design to other GP approaches
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ods as different experimental settings may have been used. However this com-1160

parisons serves as a performance estimation for the automated design approach

proposed in this study. The comparison reveals that the automated designed

classifiers are able to achieve a performance that is comparable to other GP

methods.

8. Conclusion1165

This study investigated the feasibility of automating the design of GP clas-

sification algorithms for data classification using a genetic algorithm and gram-

matical evolution. A GA and GE were used to evolve configurations for GP. The

effectiveness of automated design is tested on a varied set of real-world problems

selected from the UCI dataset repository and on the NSL-KDD dataset. The1170

automated designed configurations were used to evolve GP algorithms that pro-

duce classifiers that perform binary classification and multiclass classification.

The results of predictive accuracy and design times of the GA and GE were

compared to each other and to those of manual design. The results showed that

for the selected UCI binary class problems, on average across all datasets the1175

predictive accuracy of GP classifiers evolved using configurations designed by

GE is higher than those designed by a GA and manual design. The predictive

accuracy of GP classifiers evolved by both the GA and GE were shown to be sta-

tistically significantly higher than the predictive accuracy of manually designed

GP classifiers. However the differences between the GA and GE were not statis-1180

tically significant and either algorithm was found to be suitable for automated

design. Both the GA and GE were found to have less design times than manual

design although the GA on average had a higher design time than GE. For the

selected UCI multiclass instances the GA was found to be better than both GE

and manual design. The performance of the GA was statistically significantly1185

better than the manual design but not statistically significantly better than GE.

On average GE had higher predictive accuracies across all multiclass datasets

than manual design however, the differences were not statistically significant.
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The design times of both the GA and GE were less than the manual design time.

Grammatical evolution took less design time than the GA. On the NSL-KDD1190

dataset the result that GA and GE performed better than manual design was

not statistically significant although the GA achieved higher testing accuracies

on average. The automated design time for both algorithms was less than the

manual design time on the NSL-KDD dataset.

Overall automated design was found to be effective for the design of GP1195

classification algorithms for data classification. For the considered datasets GE

was found to be effective for binary classification and the GA for multiclass

classification. The study shows that automating the design of GP classification

algorithms evolves classifiers that are able to produce higher predictive accura-

cies than manual design, therefore reducing the need for manual design hence1200

allowing the human designer to attend to other tasks. This approach also en-

ables those with limited knowledge in the design of GP classification algorithms

to have an off-the-shelf tool to enable them to perform classification.

Future work will involve a study into the re-usability of the evolved configu-

rations for a given class of problems. We also intend to test this method on other1205

domains such as financial forecasting. Both the GA and GE are parameterised

algorithms which are currently manually designed in the proposed approach.

This raises questions for further research on whether automated design of the

GA (or GE ) can improve classification accuracies. Also of interest will be an

investigation into the theoretical aspects of the influence of the design space1210

(GA/GE) on the solution space. In the future we also intend on making an

automated design tool available.
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