
Accepted Manuscript

SLA based healthcare big data analysis and computing in cloud network

Prasan Kumar Sahoo, Suvendu Kumar Mohapatra, Shih-Lin Wu

PII: S0743-7315(18)30245-4
DOI: https://doi.org/10.1016/j.jpdc.2018.04.006
Reference: YJPDC 3869

To appear in: J. Parallel Distrib. Comput.

Received date : 1 December 2017
Revised date : 4 March 2018
Accepted date : 6 April 2018

Please cite this article as: P.K. Sahoo, S.K. Mohapatra, S.-L. Wu, SLA based healthcare big data
analysis and computing in cloud network, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.04.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jpdc.2018.04.006

1. SLA based healthcare big data analytic architecture is designed to

process both batch and streaming patient data in Spark platform.

2. Ranking of patient’s data based on SLA, patients health condition,

disease severity and emergency situation is made to improve the

processing speed.

3. Efficient data distribution mechanism is designed to allocate both

batch and streaming data among the Spark worker nodes.

4. Priority based job allocation algorithm is designed to allocate jobs

with minimum inter-network latency and processing time.

5. Probabilistic Semi-Naive Bayes algorithm is designed to analyze and

predict the future health condition of the patients taking inter-

dependency among healthcare parameters. Besides, a dimension reduction

algorithm is designed to reduce the input healthcare parameters for

improving accuracy of prediction.

*Highlights (for review)

SLA Based Healthcare Big Data Analysis and

Computing in Cloud Network

Prasan Kumar Sahooa, Suvendu Kumar Mohapatrab, Shih-Lin Wua,∗

aDept. of Computer Science and Information Engineering, Chang Gung University,
Kwei-Shan, 333, Taiwan (ROC)

bIndustry 4.0 Implementation Center, National Taiwan University of Science and
Technology, Keelung Rd., Da’an Dist., Taipei City 106, Taiwan (R.O.C.)

Abstract

Large volume of multi-structured and low-latency patient data are generated
in healthcare services, which is challenging task to process and analyze within
the Service Level Agreement (SLA). In this paper, a Parallel Semi-Naive
Bayes (PSNB) based probabilistic method is used to process the healthcare
big data in cloud for future health condition prediction. In order to improve
the accuracy of PSNB method, a Modified Conjunctive Attribute (MCA)
algorithm is proposed for reducing the dimension. Emergency condition of
the patient is considered by setting a global priority among the patients and
an Optimal Data Distribution (ODD) algorithm is proposed to position both
batch and streaming patient data into the Spark nodes. Further, a Dynamic
Job Scheduling (DJS) algorithm is designed to schedule the jobs efficiently
to the most suitable nodes for processing the data taking SLA into account.
Our proposed PSNB algorithm provides better accuracy of 87.8% for both
batch and streaming data, which is 12.8% higher than the original Naive-
Bayes (NB) algorithm and can conveniently be employed in various patient
monitoring applications.

Keywords: Big Data, cloud computing, healthcare, spark.

∗Corresponding author.
Email addresses: pksahoo@mail.cgu.edu.tw (Prasan Kumar Sahoo),

suvendukm@mail.ntust.edu.tw (Suvendu Kumar Mohapatra), slwu@mail.cgu.edu.tw
(Shih-Lin Wu)

Preprint submitted to Journal of Parallel and Distributed Computing March 3, 2018

*

1. Introduction

Digital revolution such as Internet of Things (IoT) [1], Wireless Body
Networks (WBNs) [2], Big Data [3] and Cloud Computing [4] enables the
day-to-day living style easier and better. Big Data deals with extremely
large data sets having four different characteristics including Volume, Va-
riety, Velocity and Veracity. Besides, ceaseless streams of healthcare data
are generated in large volume by ubiquitous smart devices such as smart
phone, pulse oximeters and body sensors on real-time patient monitoring.
Under the existing solution methods, it is very difficult to analyze and pro-
cess both streaming and batch data together in a single platform within the
deadline. As a result, the first problem is how to reduce the dimension of
the health parameter for better accuracy. The second problem is how to
find the dependencies among the healthcare parameters and priority of the
patients based on the influential parameters. Thirdly, which appropriate
method can be used for analysis and processing of those multi-structured,
low-latency patient data with higher accuracy and efficiency. By considering
above-mentioned issues, Big Data analysis, and processing are two major
challenges in the sizable healthcare industry.

In data analysis, various classification [5], clustering [6] and predictive
analytic [7] algorithms are used based on the input and output data sets.
However, many of those tools are outdated [8] as they are unable to han-
dle large volume of multi-structured healthcare data sets. Specifically, in
healthcare, the patient data are not only large in volume but also are gener-
ated with a tremendous speed, which requires an advanced platform for both
analysis and processing. Also, the health condition of a patient is always
related with some uncertain factors based on the clinical parameters. For
probabilistic approach, Naive Bayes (NB) [9] is the best and most popular
algorithm due to its efficiency. However, NB algorithm can be applied only
on the independent data sets, which is not suitable for healthcare big data as
most of the data have dependency among multiple parameters. Hence, the
Semi-Naive Bayes (SNB) [10] algorithm can be used, which allows certain
degree of dependency on input parameters.

In healthcare applications, missing of any SLA [11] has highest impact on
emergency patient data analysis due to the severity of the disease. The emer-
gence of Big Data demands a distributed environment with parallel and fast
computation. Hence, many big data processing platforms such as Hadoop
[12] and Apache Storm [13] are mostly used for batch and streaming data

2

processing, respectively. However, the Storm platform is found to be time-
consuming with low throughput [14] for processing both batch and streaming
data altogether. Healthcare data normally contain both streaming and batch
data [15] for analysis and processing. Therefore, Apache Spark [16] can be
used as our processing platform to process and analysis of both streaming
and batch data altogether in a single API, which is time efficient. In Spark,
Resilient Distributed Datasets (RDDs) [17] are used for efficient data sharing
during parallel computation, which can enhance the overall system through-
put.

Cloud computing is the most promising technology used in healthcare
for distributed storage and processing of patient data with help of virtual-
ization. Though, some analytic models such as BStream [18] are proposed
for the bursty input and over-provisioning by using internal cloud to an ex-
ternal one, it is limited to the processing time, fault and straggler tolerance
during execution [14] as Storm model is used for the processing. Therefore,
it is highly essential to employ a suitable resource scaling and management
scheme in Spark environment to satisfy the SLA. In [19], authors primarily
focus on the Data Center network traffic prediction. However, the traffic pre-
diction for an external cloud is not considered by the authors, which can affect
both network utilization and congestion. Therefore, Inter-cloud Data center
(ID) and External-cloud Data center (ED) are incorporated into a single en-
vironment to handle and process the colossal amount of both streaming and
batch data within the SLA. The external cloud is adopted for hard deadline
based jobs and load balancing in the internal cloud to satisfy the SLA.

Inefficient scheduling of jobs in the worker nodes may lead to failure of
processing within SLA [20]. Hence, it is essential to schedule the jobs to
the most suitable nodes for processing by minimizing the job completion
time and satisfying the SLA in a multi-cloud environment. In this paper,
we address all the above issues to mitigate the processing delay with low
network latency and satisfy the SLA in a multi-cloud environment, which
has significant improvement on patient data analysis and processing.

Rest of the paper is organized as follows. Related works on big data
analytic and processing are discussed In Section 2. Problem formulation
of our work is given in Section 3. Healthcare data processing mechanism
is presented in Section 4. A probabilistic Big Data analytic mechanism is
proposed in Section 5. Performance evaluation of our proposed models is
given in Section 6 and concluding remarks are made in Section 7.

3

2. Related Work

A comprehensive study has been carried out on healthcare big data anal-
ysis, processing and dimension reduction using various distributed parallel
processing methods. In [21], authors discuss the recent developments in
healthcare big data. In [10], Backward Sequential Elimination and Join-
ing (BSEJ) method is proposed for applying the dependencies in classifying
instances. However, the time and space complexity is very high for BSEJ al-
gorithm. In [22], a dimension reduction method is proposed for the improved
image registration of high-dimensional data, which combines both image pair
and detailed texture. In [23], a dimension reduction mechanism is introduced
by the authors, where pruning is done based on the information gain ratio
of the decision tree to improve the accuracy of the proposed PRF algorithm.
However, the tree building time is so high, which increases exponentially with
increase in height of a tree. Hence, a Modified Conjunctive Attribute (MCA)
algorithm is proposed in our work for dimension reduction of the healthcare
data to improve the accuracy of Semi-Naive Bayes (SNB) algorithm.

In Big Data processing, Storm [13] is commonly used for near real-time
streaming processing. Mostly, Storm platform is found costly in terms of pro-
cessing time and communication delay due to different frameworks. Hence,
the in-memory, cluster computing Spark [24] Streaming platform is used as
our processing model for the near-real time streaming and batch healthcare
data processing. In any parallel processing environment, data locality is one
of the most important performance bottlenecks as missing of any partitions
of the data block during execution leads to processing delay. In [25], a data-
locality-aware scheduler is proposed for guaranteeing the data locality. In
[26], splitting and combination algorithm for skew intermediate data blocks
(SCID) method is proposed for data placements in Spark environment to
improve load balancing for reduce tasks. However, SCID method takes more
time as sampling and sorting are performed. Even, the intermediate re-
sults are fetched from a specific bucket, which lead to a bottleneck situation.
Hence, an adaptive Optimal Data Distribution (ODD) algorithm is proposed
in this paper to overcome the above data locality issues.

In [27], a sub-task scheduling framework ”Millipedes” is proposed for
Yet Another Resource Negotiator (YARN) including MapReduce and Spark,
where each subtask is allocated to the nodes by the local scheduler depend-
ing on the resource usage. However, there is no consideration of overall job
completion as the total jobs need to be finished within a certain deadline, i.e.

4

SLA. In [28], a job scheduling algorithm is proposed by the authors, where
jobs are assigned to the nodes based on data locality using delay schedul-
ing. However, scheduling of priority jobs with SLA is not considered in the
existing schedulers. In [29], a scheduling mechanism is proposed for
MapReduce jobs. However, the impact of distort data set on the
execution time of jobs is not considered by the scheduler. In [30],
a distributed scheduling algorithm is designed to schedule the real-
time skewed MapReduce jobs. However, a high performance over-
head is incurred due to repartitioning and prediction of partition
size.

In [31], a detailed feature analysis of big data schedulers is ad-
dressed, where scheduler latency is found to be the most impor-
tant performance characteristic of the scheduler. In [32], a balanced
resource scheduling mechanism is proposed to minimize the resource cost in
multi-cloud environment. However, the communication time is higher in a
multi-cloud environment, which induces the processing delay for healthcare
patient data. Almost, all existing models have higher processing time for the
healthcare prioritized jobs in an emergency condition. Hence, a Dynamic
Job Scheduling (DJS) algorithm is proposed to address the key underlying
issues such as processing of batch and streaming data based on priority of
the jobs.

Prediction models play a vital role for future disease prediction upon
analyzing the large volume of healthcare data. In [33], authors propose the
disease prediction model by using different types of artificial neural networks
(ANNs). However, ANN has higher processing latency as random weights
are associated with each layer during the training of the model. Any small
change in the input data set has a visible impact on the model that results
the unstable output. A predictive model is proposed in [34] by using the
ECG features and Naive Bayes classifier for ventricular arrhythmia disease.
However, the clinical data sets such as blood pressure, chest pain, etc. are not
considered as the input parameters. Moreover, the dependency among the
input parameters cannot be considered in the Naive Bayes classifier. Hence,
a Parallel Semi-Naive Bayes (PSNB) based probabilistic method is planned
in this paper for healthcare Big Data analysis.

2.1. Motivation and Contributions

Most of the data analytic and processing mechanisms are prone to delay
when the input data volume and velocity are very high even though the inter-

5

dependencies among the input healthcare parameters are not considered.
Hence, it is highly essential to design a dynamic analytic algorithm for both
batch and realtime healthcare Big Data. Basically, for processing real-time
streaming data, Apache Storm is used. However, processing of both batch
and streaming data is found to be time consuming with low throughput as
two different APIs are used by Storm. In the medical application, some
emergency patients data need to be processed in priority basis. To the best
of our knowledge, no work considers the current health condition, disease
severity, emergency factor and SLA level altogether to process the healthcare
big data in a priority basis. Hence, priority of the patient’s emergency data
is considered along with the above constraints to process the data in Spark
platform.

Furthermore, processing delay occurs during job scheduling. In Spark,
FIFO and FAIR schedulers are available for concurrent queries. Basically,
FIFO is the default scheduler in Spark for standalone mode and first job is
executed with highest priority over all other jobs. However, the first execu-
tion of large processing time has significant delay impact on the subsequent
job executions. To overcome the FIFO problem, FAIR scheduler is intro-
duced in Spark 0.8 version, which is the best scheduler in multi-processing
environment. All the jobs are executed in a Round Robin manner in FAIR
scheduler, where all jobs get an equal chance for execution. However, the
FAIR scheduler does not consider the resource constraints such as process-
ing core, available memory, network bandwidth and CPU utilization of the
workers, which lead to delay in total job completion time. Thus, the existing
scheduling mechanisms cannot be applied to emergency patient streaming
data analysis in healthcare environment. Hence, a DJS algorithm is pro-
posed to schedule both prioritized batch and streaming data. The major
contributions of our work can be summarized as follows.

• SLA based healthcare big data analytic architecture is designed to pro-
cess both batch and streaming patient data in Spark platform.

• Ranking of patient’s data based on SLA, patients health condition, dis-
ease severity and emergency situation is made to improve the processing
speed.

• Efficient data distribution mechanism is designed to allocate both batch
and streaming data among the Spark worker nodes.

6

• Priority based job allocation algorithm is designed to allocate jobs with
minimum inter-network latency and processing time.

• Probabilistic Semi-Naive Bayes algorithm is designed to analyze and
predict the future health condition of the patients taking inter-dependency
among healthcare parameters.

• Algorithm is designed to reduce dimension of the input healthcare pa-
rameters for improving accuracy of prediction.

3. Problem Formulation

Let us consider a hybrid healthcare multicloud environment, where h
number of hospitals are present in a set H = {H1, H2, ..., Hh}. Each hospital
is coupled with different users such as doctors, outpatients and Body Area
Networks (BAN) patients as shown in Fig. 1. Here, the outpatients are
referred to as the patients who attend the hospital for treatment without
staying there for treatment. Similarly, BAN patients are referred to as the
chronic disease patients with smart sensors to monitor their health conditions
round the clock. All the users act as the data sources of healthcare Big Data
platform.

Figure 1: Proposed data source and processing model in multicloud.

7

3.1. System Model

Let, d be the number of doctors present in a set Dh
i , where i = {1, 2, ..., d}

of hth hospital, ∀h ∈ H. Thus, Dh
i = {Dh

1 , D
h
2 , ..., D

h
d}, ∀i ∈ D. For example,

D3
2 represents the doctor 2 that belongs to the hospital 3. Let, p be the

numbers of outpatients present in hth hospital which can be represented in
a set P h

i where, P h
i = {P h

1 , P
h
2 , ..., P

h
p }, ∀i ∈ P and ∀h ∈ H. For example,

P 2
1 represents the patient 1 in hospital 2. In addition to the outpatients,

BAN patients are also available with chronic disease and also registered in a
hospital. Similarly, let b be the number of BAN patients present in a set Bh

i ,
where Bh

i = {Bh
1 , B

h
2 , ..., B

h
b }, ∀i ∈ B, ∀h ∈ H. For example, B3

3 represents
the BAN patient 3 that belongs to the hospital 3. For simplicity, it is assumed
that the doctors, outpatients and BANs belong to a particular department
in the hospital.

In our study, total N number of geo-distributed data centers are consid-
ered where both internal and external cloud data centers are included. In our
proposed model, an external cloud is adopted for processing of hard deadline
based jobs if unable to accommodate in internal cloud which results faster
processing and load balancing. In this hybrid model, let m be the number
of Inter-cloud Data center (ID) and n be the number of Exter-cloud Data
center (ED) are present for healthcare data storage and processing. The
ID and ED sets can be represented as ID = {ID1, ID2, ..., IDm} and ED
= {ED1, ED2, ..., EDn}, respectively. Hence, N = {{ID1, ID2, ..., IDm} ∪
{ED1, ED2, ..., EDn}}. Let, ℓ be the number of gateways are connected with
h number of hospitals for data transmission and the gateway set can be repre-
sented as G = {G1, G2, ..., Gℓ}. Those m number of IDs are connected with
ℓ number of user-side gateways and n number of EDs for data transmission.
The user generated data and requests are redirected by the gateways Gi to
any IDj or EDk in multi-cloud, where i ∈ G, j ∈ ID and k ∈ ED.

3.2. Proposed Spark Architecture

In this subsection, a healthcare big data analytic and processing archi-
tecture is proposed for both streaming and batch data using multi-cloud (ID
and ED) Spark platform as shown in Fig. 2. All healthcare data are col-
lected from different users such as doctors, outpatients and BAN patients.
Basically, the Request Handler is responsible for interaction and handling of
the data and computation intensive queries. Hence, a Request Handler is
used in our proposed model for handling data and query. The collected data
are categorized as either batch or streaming type based on their arrival rates

8

Figure 2: Proposed Spark architecture for streaming and batch data processing.

(λ). In Spark Streaming, the patient data and upcoming analysis requests
are divided into small RDDs objects and channeled into different parallel
streams based on their λ, block (βL) and batch (βA) intervals. Let us con-
sider a cardiac patient and an orthopedic patient, where data of the Cardiac
patient are generated much faster as compared to an Orthopedic patient as
Cardiac related to the ongoing observation of the hearts i.e. streaming data
and Orthopedic is related to the periodic observation or batch data. In this
example, streaming and batch data are channelized into stream 1 and 2, re-
spectively. Similarly, the jobs queued into the streams based on the priority
of the patients are handled by the Request Handler. Before execution of any
job in the IDs or EDs, the Estimator (Ξ) must calculate the required pro-
cessing time (T P) and required memory (ξR) of the job during the profiling
phase.

In this healthcare scenario, some emergency patients exist, where priori-
tized jobs such as the data analysis of the Intensive Care Unit (ICU) patients
and the doctors query during any operation are also executed continuously.
Therefore, the emergency patient jobs are prioritized based on the SLA, cur-
rent health conditions (α), disease severity (ψ) and emergency factor (ε).
Hence, the patient’s health condition analysis must be finished within the
SLA which refers to the hard deadline. Similarly, some batch jobs are ex-
ecuted on the large volume of healthcare data such as any chronic disease
patients historical data analysis which can tolerate some admissible time de-
lay known as a soft deadline. In this situation, hard deadline based jobs get
higher priority than soft deadline based jobs.

The collected patient data are placed in the local cache memory (ξc) of
the worker nodes by the master node based on the availability of the storage
space. Even, if some data blocks are not fit in ξc, then those extra blocks

9

are transferred to the secondary memory (ξs) of the worker within the data
center. Similarly, the jobs are also assigned to the Spark worker nodes by the
Spark master in the IDs, if the estimated time is within the SLA. Otherwise,
the Spark master estimates the T P and ξR of the EDs by considering the
data transfer time (T τ). It is assumed that there is no data transfer time
within the IDs. This profiling phase of the job is executed on both batch
and streaming type data sets. Zookeeper is used to update and manage
the resources between IDs and EDs. Eventually, the jobs are assigned to
the most suitable worker nodes by the Spark master which having minimum
processing time based on the previous estimation Ξ. Finally, the output
of the jobs from IDs and EDs are combined together to produce the final
output and send back to the users for better patient care.

4. Healthcare Big Data Computation

Big Data computation is a major aspect for any data intensive applica-
tions due to agile and immense data volume. In our Big Data processing, the
healthcare patients data and their associated jobs are processed in parallel
and distributed fashion on Spark platform. Before any data analysis, the
data must be placed on the worker nodes to achieve the data locality, which
has great impact on the execution time. To achieve the best locality for both
batch and streaming data, an ODD algorithm is proposed and discussed in
this section. Besides, the analytical jobs must be executed efficiently with-
out violating the SLA by considering the resource constrained such as CPU,
memory and network bandwidth. Hence, a DJS algorithm is explained in
this section by considering the resource constrained and priority of the jobs.
In patient monitoring, some emergency patients may arrive based on their
current health status, disease severity and emergency condition. Hence, a
GPS algorithm is proposed to prioritize the patient data and jobs based on
the health conditions. The symbols for healthcare big data computa-
tion are listed in the Table 1.

4.1. Global Priority Setting

In this section, the global priority of the patient is decided by considering
the SLA, current health condition (α), disease severity (ψ) and emergency
factor (ε). Let, ρϕmin and ρϕmax be the minimum and maximum range for
each health parameter (ϕ), respectively. In healthcare domain, doctors
rely on the value of clinical outcomes of the health parameters as

10

Table 1: Symbols and description for healthcare big data computation.

Symbols Description Symbols Description
α Current health condition ψ Disease severity

ε Emergency factor ϕ Health parameter

∆ Admissible range of each ϕ ω Weight

ρϕ
min Minimum range of ϕ f Priority function

ρϕ
max Maximum range of ϕ γ Priority coefficients

λ Arrival rates Γ Global priority

βL Block interval βA Batch interval

ζ Number of jobs δ Number of data blocks

X Number of workers assigned for
streaming processing

Y Number of workers assigned for
batch processing

ξ Storage memory η Size of each data block

Ξ Estimator C Number of CPU cores

T τ Transfer time TE Job execution time

ϖ Transferred packet size ∂ Data transmission rate

LD Link distance SP Propagation speed

QL Queue length Λ Job scheduling function

an evidence of the disease. As investigated in [35], stage IIa in
high risk (IIaHR) and low risk (IIaLR) colon cancer patients is
identified based on the pathological features. It is observed that
maximum diameter of a tumor in IIaLR group is < 4 cm, whereas
the tumor diameter in IIaHR group is > 4 cm. Similarly, age, Body
Mass Index (BMI), Hemoglobin, etc. can have different level of
severity and therefore, we generalize the disease risk of a patient
by assigning α, ψ, and ε. For example, Eosinophil is a parameter for the
patient, i.e. ϕ = Eosinophil, where the normal range is ρEosinophilmin = 0 to
ρEosinophilmax = 5. During the priority setting, α, ψ and ε are set based on the
value of ρϕmin and ρϕmax. If value of ϕ is within the range of ρϕmin and ρϕmax, α
is set as αN , ψ is set as ψL and ε is set as εN , where αN , ψL and εN are the
values of normal condition for α, ψ and ε, respectively. Similarly, in another
situation, if value of ϕ lies within ρϕmin −∆ and ρϕmax +∆ from the normal
ranges, then α is set as αS, ψ is set as ψH and ε is set as εN , where αS, ψH

and εN are the serious, high and no emergency condition values for α, ψ and
ε, respectively. Here, ∆ is the admissible range of each ϕ for each patient P .
In case of an emergency condition, α, ψ and ε are set as αS, ψV and εE for

11

the patients, where ψV represents very high disease severity and the value of
ϕ is lower or higher than ρϕmin −∆ and ρϕmax + ∆ with emergency condition.
If multiple parameters and their impact on disease severity are
considered, variance and correlation among the parameters should
be calculated for the analysis. Based on the correlation value as
High or Low, severity and emergency factors can be assigned. In
this paper, the threshold values are generalized as they vary from
one disease to another. These threshold values can be set by the
analyst by examining the priority of the patient from the clinical
outcomes. Further, a weight (ω) is calculated based on α and ψ in the
initial step of GPS algorithm as shown in Eq. 1.

ωi(t) = αi(t) ∗ ψi(t) (1)

After determining ω, the global priority function is evaluated to calcu-
late the priority among the patients and their associated jobs (analysis and
queries). In this study, the logistic function is used as the priority function
(f(ωi(t))) for evaluation as shown in Eq. 2.

f(ωi(t)) =
SLAi(t)

1 + e−ωi(t)∗ε(t) (2)

In our analysis, three types of priority coefficients are considered to stabi-
lize the global priority, i.e. High (γH), Medium (γM) and Low (γL) as shown
in Eq. 3.

γ =





γH # For High Priority
γM # For Medium Priority
γL # For Low Priority

(3)

Further, the global priority Γ is calculated based on value of γ and f(ω)
as given in Eq. 4.

Γ(t) =
γ(t)∑
γ(t)

∗ f(ω(t)) (4)

The step by step procedures of priority calculation are shown in Algorithm
1. Let us consider an example to explain the priority setting algorithm of
the jobs among different patients. In this example, let P1, P2 and P3 be the
patients having jobs J1, J2 and J3, respectively. Let, the SLA values are same
for P1 and P2. However, it is different for the patient P3. For example, the

12

SLA value for P1 and P2 is 5 seconds, whereas P3 has 6 seconds. Similarly,
the value of γH , γM and γL are set to be 2, 1 and 0, respectively. According
to the priority algorithm, the values of αi, ψi and εi are set for each patient
i. In this healthcare scenario, there will be three cases of priority such as
High, Medium and Low.

4.1.1. Case 1: High Priority

The priority for a patient is considered to be high, if and only if current
health condition of a patient is serious and disease severity along with emer-
gency factor is large for which γ is set as γH . For example, let P1 be a serious
patient with high value of disease severity and emergency situation such that
value of α1, ψ1 and ε1 is 0.2, 0.2 and 0.1, respectively. Hence, the weighted
factor ω1 is calculated based on the above conditions and is found to be 0.04.
Therefore, the priority function f(ω1) is calculated as 2.50. Eventually, value
of Γ1 is calculated based on Eq. 4 and is found to be 1.66.

4.1.2. Case 2: Medium Priority

A patient’s data is considered to be medium priority if current health
condition is serious, disease severity is high and emergency factor is small for
which γ is set as γM . In this case, let P2 be the patient with high disease
severity such that value of α2, ψ2 and ε2 is 0.9, 0.2 and 1, respectively.
Hence, the weighted factor ω2 is calculated based on the above conditions
and is found to be 0.18. Therefore, the priority function f(ω2) is calculated
as 2.73. Eventually, the value of Γ2 is found to be 0.91.

4.1.3. Case 3: Low Priority

A patient’s data is set to be low priority if current health condition is
normal, disease severity is low and emergency factor is also small for which γ
is set as γL. In this case, let P3 be the patient with normal health condition
and low disease severity such that value of α3, ψ3 and ε1 is 0.9, 0.9 and 1,
respectively. Hence, the weighted factor ω3 is calculated as 0.81 and the
priority function f(ω3) is calculated as 4.16. The value of Γ3 is found be 0.

It is to be noted that the priorities are arranged in descending order of
the values of Γ. In this example, order of the priorities is Γ1, Γ2 and Γ3. It
is observed that the priority decreases if value of α, ψ, ε and SLA increases
and vice-versa. For example, Γ3 has a lower priority as values of α, ψ, ε and
SLA are higher as compared to the value of Γ1 and Γ2. This GPS algorithm
can be implemented on all patients and their associated jobs. In case of

13

Algorithm 1 Global Priority Setting (GPS) Algorithm

Require: αi(t) : Current health condition of ith patient at time t.
ψi(t) : Disease severity of ith patient at time t.
εi(t) : Emergency factor of ith patient at time t.
SLA : SLA value (in time) for processing of the jobs.
ϕi : be the number of health parameters of ith patient.
ρϕmin : Minimum range of ϕi.
ρϕmax : Maximum range of ϕi.
∆ : The admissible range of ϕi over the normal range.

Ensure: Γi(t) : The global priority of the patient at time t.
Notations: αSi (t) : Serious health condition of ith patient at time t.
αNi (t) : Normal health condition of ith patient at time t.
ψVi (t) : Disease severity is very high of ith patient at time t.
ψHi (t) : Disease severity is high of ith patient at time t.
ψLi (t) : Disease severity is low of ith patient at time t.

1: Initialize ωp(t) = 0;
2: Γp = {};
3: for each patient p in P do
4: if ρϕmin ≤ ϕi ≤ ρϕmax then
5: αN = αi, ψ

L = ψi and εN = εi;
6: else if ρϕmin −∆ ≤ ϕi ≤ ρϕmax + ∆ then
7: αM = αi, ψ

M = ψi and εN = εi;
8: else
9: αH = αi, ψ

H = ψi and εE = εi;
10: end if
11: The weights (ω) is calculated based on Eq. 1;
12: The priority function (f(ω)) is evaluated based on Eq. 2;
13: if αi(t) = αSi (t) && ψi(t) = ψVi (t) && εi(t) = εE then
14: Set γ as γH based on Eq. 3 ;
15: else if αi(t) = αSi (t) && ψi(t) = ψHi (t) && εi(t) = εN then
16: Set γ as γM based on Eq. 3 ;
17: else
18: Set γ as γL based on Eq. 3 ;
19: end if
20: Calculate the global priority Γi(t) based on Eq. 4;
21: Arrange the patients in descending order of Γi(t);
22: end for
23: Return Γi(t);

14

same priority label for multiple patients is found, a random selection can be
performed . Hence, the data and jobs are queued based on the global priority
of the patients for scheduling and processing without violating the SLA.

4.2. Optimal Data Distribution

The main objective of optimal data distribution mechanism is to allocate
both batch and streaming data blocks efficiently among the Spark worker
nodes. Spark streaming supports mini batches of data sets as input.
Based on the arrival rate, we divide the input data into batches and
streaming jobs, which is supported by Spark DStream, a sequence
of RDDs [36].

It is assumed that the patient data are alighted with different arrival rates
(λ). Initially, λi is checked for each i-th patient’s incoming record. If the
patient data arrival rate is continuous and high (For example, 10pkts/sec)
with less packet size (For example, 10mb/pkt), those data are treated as the
streaming data sets. The streaming data arrival rate can be symbolized as
λSi for ith patient. Likewise, if the data arrival rate is low (For example,
5pkts/sec) with large packet size (For example, 100mb/pkt), those data are
treated as the batch data sets. The batch data arrival rate can be symbolized
as λBj for jth patient. By taking the advantages of Spark platform, the
streaming and batch data are dispatched in parallel by using multiple streams
to the Spark workers. Once the input data are segregated as batch and
streaming data sets, the Block interval (βL) and Batch interval (βA) are set
for each type of patient data. By adjusting βL and βA, the total number of
jobs (ζ) can be calculated to know the overall throughput of the system. The
definition of βL, βA and ζ are described as follows.

Definition 1. Block interval (βL): The block interval is defined as the
interval at which the data are received by the Spark streaming receivers and
are chunked into blocks of data before storing in the Spark nodes.

Definition 2. Batch interval (βA): The batch interval is defined as the
interval in which mini-batches are received by the Spark master, where mini-
batches are the combination of multiple data blocks.

Definition 3. Total # of jobs (ζ): The total number of jobs per stream
per batch can be defined as the ratio of the batch interval (βA) and block
interval (βL).

15

In the Spark model, the number of blocks in each mini-batch determines
the number of ongoing jobs to execute on the worker nodes. Let, βSL and
βSA be the block and batch interval of the streaming data, respectively. For
example, βSL and βSA are set to be 100ms and 1 second, respectively. Let,
ζS be the total number of jobs that can be executed on the streaming data

sets. Hence, ζS can be evaluated as
βS

A

βS
L
. In this example, ζS can be executed

as 1000ms/100ms, which is 10. Similarly, let βBL and βBA be the block and
batch interval for batch type data sets, respectively. For example, βBL and
βBA are set to be 1000ms and 5 seconds, respectively. Let, ζB be the total
number of jobs that can be executed on batch type data sets. Hence, ζB can

be calculated as
βB

A

βB
L

. In this example, ζB can be executed as 5000ms/1000ms,

which is 5. If the numbers of jobs are less than the numbers of cores per CPU
within a Spark worker node, an underload situation occurs. To balance this
situation, the number of jobs can be increased by reducing the block intervals
of each job for the batch intervals. It is to be noted that the data size is
same within the mini-batches (batch intervals). However, it can be
changed in the next batch intervals based on each block size and
incoming job size. The computation of the assigned jobs is same
within the batch interval βA. However, it can be changed in the
next interval based on the availability of resources such as CPU
and memory.

Data placement is a major determinant of the performance of Spark jobs.
For that reason, the data blocks are placed in such a way that most of the jobs
can achieve data locality during the execution. In our work, an Optimal Data
Distribution (ODD) algorithm is proposed for better data locality and faster
execution of the jobs. The complete steps of our proposed ODD algorithm
are shown in Algorithm 2. In our Spark model, the workers are divided into
two different groups within the data centers. Let X and Y be the number of
workers assigned for streaming and batch data processing, respectively. The
basic difference between the streaming and batch worker is the processing
capability and memory size. The streaming workers are having less ξc and
high processing capability whereas the batch workers are having high ξc than
the streaming workers. Let, δ(t) be the total number of data blocks coming
from the set ℜ after applying MCA algorithm at time t. Moreover, out of
those δ(t) blocks, δS and δB number of streaming and batch data blocks need
to be placed on the respective workers for better performance in terms of less
T P , where δ(t) = δS(t) + δB(t). Besides, each βSA and βBA must fit in the

16

Algorithm 2 Optimal Data Distribution (ODD) Algorithm

Require: δ(t) : Total number of data blocks coming at time t.
λi(t) : Data arrival rate for ith patient at time t.

Ensure: Optimal placement of each data block δ at time t.
Notations:
λSi (t) : Streaming data arrival rate for ith patient at time t.
λBi (t) : Batch data arrival rate for ith patient at time t.
ξSLR and ξSBR : Required memory of streaming and batch data.
X : Set of workers assigned for streaming job processing.
Y : Set of workers assigned for batch job processing.

1: δ(t) = δS(t) + δB(t);
2: for each data block δi do
3: if λi = “HIGH” && “CONTINUOUS” then
4: δS = i; # For streaming data.
5: else
6: δB = i; # For batch data.
7: end if
8: Calculate βSL , βBL , βSA, and βBA intervals;

9: Evaluate ζS =
βS

A

βS
L
;

10: Evaluate ζB =
βB

A

βB
L

;

11: Separate X for streaming and Y for batch data processing nodes;
12: Calculate ξSLR and ξSBR based on Eq. 5;
13: if ξSLR ≤ ξSc then
14: Assign δSi into ξSc of streaming worker [i] ∈ X;
15: else
16: Assign δSi into ξSs of streaming worker [i] ∈ X;
17: end if
18: if ξBLR ≤ ξBc then
19: Assign δBi into ξBc of batch worker [i] ∈ Y ;
20: else
21: Assign δBi into ξBs of batch worker [i] ∈ Y ;
22: end if
23: end for

17

streaming (ξSc) and batch (ξBc) local cache, respectively. The required cache
memory is calculated based on the input data blocks as given in Eq. 5 to
store the data sets.

ξSR(t) = δS ∗ ηS

ξBR (t) = δB ∗ ηB

}
(5)

Where, ξSR and ξBR are the total required memory for storage of incoming
streaming and batch data, respectively. In Eq. 5, ηS and ηB are the size of
each streaming and batch data blocks, respectively.

The required memories, ξSR and ξBR must fit in ξSc and ξBc , respectively.
However, if ξSR and ξBR are not fit in ξSc and ξBc , then the remaining data
blocks are sent to the streaming (ξSs) and batch (ξBs) secondary memory of
the worker nodes. In another scenario, if the data blocks are large in volume
and cannot be accommodated in a single worker node, then the remaining
blocks are placed in another local worker node. Basically, the received RDDs
are automatically cleared after execution in Spark streaming. However, the
persisted RDDs are used to store the RDDs in local memory for future use
and accessible to outside the streaming application.

4.3. Dynamic Job Scheduling

In this section, a Dynamic Job Scheduling (DJS) mechanism is proposed
for Apache Spark platform to minimize the processing time without violating
SLA. To the best of our knowledge, priority based patient job scheduling in
Spark platform is the first work in healthcare domain. Prior to the schedul-
ing, GPS algorithm is executed to prioritize the patient and their related
jobs. The data related to the prioritized patients are placed onto the worker
nodes by using our proposed ODD algorithm. Hence, the DJS algorithm is
applied on those prioritized jobs for placement. Specifically, a profiling based
analytic model is designed to minimize the job completion time. Here, the
profiling phase is offline before the real execution. This ensures the
reduction of waiting time of the jobs. Once a job is submitted to
the Spark framework, the Estimator (Ξ) receives the profiling in-
formation and uses the DJS and analytic model for the processing
purpose. First of all, the near optimal processing time and required
memory are calculated by the estimator for the sample jobs in the
profiling phase. Let, ΞCPU and Ξξ be the processing and memory estima-
tor for the sample jobs, respectively. Later stage of the DJS algorithm, all

18

other jobs are scheduled and placed on the Spark worker nodes by comparing
the profiling results. Since, Streaming and Batch jobs are considered in our
analysis, profiling is done differently based on the types of jobs. Irrespective
of the job types, the estimator ΞCPUij and ΞCPUij can be expressed as given
in Eq. 6, where the processing time estimator of ith job is scheduled either in
jth worker node of IDs or kth worker node of EDs, where j ∈ XID and k ∈
XED.

ΞCPUij = TEij , i ∈ ζ, j ∈ XID, # Data in IDs

ΞCPUik = TEik + T τik, i ∈ ζ, k ∈ XED, # Data in EDs

}
(6)

Where, TEij is the ith job execution time on jth worker node in IDs when
data locality is achieved. Similarly, TEik and T τik are the execution and transfer
time, respectively on kth worker node in EDs when the data locality is not
achieved within the IDs or the estimated execution time is greater than the
SLA, i.e. TEij > SLAi. T

E
ij and TEik are calculated as deduced in Eq. 7.

TEij =
(ζT − ζE) ∗ T ζi

βAi ∗ Cj

TEik =
(ζT − ζE) ∗ T ζi

βAi ∗ Ck





(7)

Where, ζT and ζE are the total and already executed streaming jobs,
respectively. Here, T ζi is the execution time, which is defined as
the time taken by the ith job to be processed in a specific worker
node. βAi is the batch interval of ith job. In this equation, Cj and Ck are the
number of CPU cores present in jth and kth node of ID and ED, respectively.
Conversely, if the node cannot achieve data locality in the IDs or the TEij is
higher than the SLA, then the job must be moved to the EDs for execution.
Hence, the additional network traffic delay is occurred. The additional traffic
delay T τik for ith jobs can be expressed as given in Eq. 8.

T τik =
ϖ

∂
+
LDk
SPk

+
QLk

λi
(8)

Where, ϖ is the transferred packet size, ∂ is the data transmission rate
and λi is the data arrival rate of ith job. LDk, SPk and QLk are the link
distance, propagation speed and queue length of the network, respectively
for the worker node k ∈ XED. Further, the estimator for the required cache

19

memory Ξξi of ith job is estimated as expressed in Eq. 9, which is same for
both IDs and EDs.

Ξξi = δi ∗ η (9)

Where, δi is the numbers of data blocks needed to be processed for ith

jobs and η is the size of each data block.
Upon determining the values of ΞCPU and Ξξ in the profiling phase, the

final job assignment is performed based on the values of the profiling pa-
rameters. In our analysis, ζ is channelized to the workers by the Request
Handler. Λ(ζ) is the job scheduling function for the prioritized jobs as de-
fined in Eq. 10.

Λ(ζi) =





Assigned to node XID
j ← ζi

If (ΞCPUij ≤ SLAi && Ξξi ≤ ξcj)
Assigned to node XED

k ← ζi
If (TEij > SLAi && ΞCPUik ≤ SLAi

&& Ξξi ≤ ξck)
Reject Otherwise

(10)

Where, ith job ζi needs to be placed in jth Spark worker node in the IDs,
i.e. XID

j . Here, ΞCPUij is the estimation time for processing ith job in jth

Spark worker, which needs to be less than or equal to the SLAi. Further, the
required memory Ξξi for ith job must satisfy the local cache ξcj of jth Spark
worker node. Hence, the ith job is placed in jth Spark worker if and only if it
satisfies both CPU and memory requirements. However, if the TEij is greater
than the SLAi due to heavy load in node j, the ith job must be executed in
EDs to satisfy the SLAi. Therefore, T Pi is increased due to occurrence of the
data transfer time (T τik) from kth node. Eventually, the ith job is scheduled
in kth Spark worker of ED, if the processing time and memory satisfy the
SLA. The complete steps of DJS is presented in Algorithm 3.

5. Healthcare Big Data Analysis

In healthcare Big Data analysis, we intend to predict the future disease
of the patient based on their health parameters. In a medical environment,
the immense volume of patient physiological data are generated with high
dimensions. In fact, out of all the data sets, only few dimensions of data have
very high impact on the disease prediction. Hence, a dimension reduction

20

Algorithm 3 Dynamic Job Scheduling (DJS) Algorithm

Require: SLA : SLA value (in time) for processing of the jobs.
Ensure: Schedule each job ζi dynamically on Spark workers.
1: for for each patient p in P do
2: Γ(t): Execute GPS();
3: Execute ODD();
4: Arrange the patients in descending order of Γi(t);
5: end for
6: for each job ζi do
7: Estimate ΞCPUi for ith job as in Eq. 6;
8: Estimate Ξξi for ith job as shown in Eq. 9;
9: end for

10: if ΞCPUqi ≤ SLAi && Ξξq ≤ ξci then
11: Assign Λ(ζi) to ID worker node XID

q as in Eq. 10;
12: else if TEi > SLAi && ΞCPUik ≤ SLAi && Ξξk ≤ ξci then
13: Assign Λ(ζi) to ED worker node XED

k as in Eq. 10;
14: else
15: Reject;
16: end if
17: Return Λ(ζ);

21

Table 2: Symbols and description for healthcare big data analysis.

Symbols Description Symbols Description
p Number of patients Υ Class label of the disease

MΦ Health parameter matrix MCL Class matrix

Count Counter variable of the class υ Class label

Ω Threshold ℜ Reduced set of the parameters

ℵ Tuple Θ Class probability

µ Mean value σ2 Variance

℘ Conditional probability E Evidence

is awfully essential to minimize the data volume and maximize the accu-
racy of the outcomes. For example, let us consider a patient that belongs to
the Cardiology department, where the disease severity is different for each
individual with the same number of health parameters. Therefore, in our pro-
posed work, we are interested to find the most influential parameters with
respect to the disease within a specific department. Hence, those most influ-
ential health parameters with respect to the disease are selected based on our
proposed MCA dimension reduction algorithm. Later, the future disease of
the patients are predicted by using our PSNB prediction algorithm based on
those influential parameters instead of considering all collected health param-
eters for analysis. Moreover, dimension reduction and disease prediction are
two major components in our proposed healthcare Big Data analysis. The
symbols for healthcare big data analysis are listed in the Table 2.

5.1. Dimension Reduction

Prior to the data analysis, the high dimensional input data are reduced to
a finite set by using dimension reduction mechanism [37]. In our healthcare
environment, p number patients present in a hospital, where each patient
belongs to a specific department ∀p ∈ P . Each patient is associated with
a class label with respect to the disease (Pp,Υυ). Let, Υ be the class label
set, where υ number of class labels present, i.e. Υi = {Υ1,Υ2, ...,Υυ}. For
example, ΥCard be the class for heart patients, where c can be a heart disease
Yes or No, i.e. ΥCard = {ΥY es,ΥNo}. Here, num represents the class label
for heart patient as shown in Fig. 3 Input Data, where 0 represents no heart
disease, 1, 2 and 3 represent the heart disease with different severity. Let, ϕ be
the numbers of health parameters present in a set Φ for each patient Pi, where
Φi = {Φ1,Φ2, ...,Φϕ}. Before predictive analysis, the health parameters (Φ)

22

Figure 3: Example of execution of MCA algorithm.

of pth patient are presented in the form of a health parameter matrix (MΦ
p)

as given in Eq. (11).

MΦ
p =

(Φ1 Φ2 . Φϕ

Pp (Pp,Φ1) (Pp,Φ2) . (Pp,Φϕ)
)

(11)

Besides, total p numbers of patients are available, where p ∈ P with ϕ
number of health parameters. The health parameters are stored in class
matrix (MCL

p) as given in Eq. (12).

MCL
p =




Φ1 Φ2 . Φϕ

P1 (P1,Φ1) (P1,Φ2) . (P1,Φϕ)
P2 (P2,Φ1) (P2,Φ2) . (P2,Φϕ)
.
Pp (Pp,Φ1) (Pp,Φ2) . (Pp,Φϕ)


 (12)

Let us consider an example, where a patient from the Cardiology(Crd) de-
partment has 14 different parameters related to the heart disease [38]. For
example, p number of Cardiology patients have multiple heart disease pa-
rameters. Now, the class matrix MCLCrd

p can be represented as given below.

23

MCLCrd
p =




Age Sex cp trestbps . thalach

P1 62 1 1 145 . 145
P2 68 1 4 132 . 160
.
Pp 70 2 2 156 . 139




In this example, 1 and 0 in Sex column represent the male and female
patients, respectively. Similarly, cp type can be represented as 1: typical
angina, 2: atypical angina, 3: non-anginal pain and 4: asymptomatic pain
and other health parameters hold their respective values. It is very tedious
task to consider all ϕ number of parameters for a heart patient, where some
of them are irrelevant to the disease. Hence, we remove some parameters
considering only the most influential parameters using our MCA algorithm.
MCA algorithm is applied only once in the initial phase of the
analysis as the most influential parameters are fixed for a specific
department. However, it is re-executed for analysis once a new
parameter is added to the list. MCA algorithm has four identical steps
as shown in Fig. 3, i.e. Preprocessing, count the occurrence of class label,
attribute pruning based on the threshold and conjunct the parameters based
on the highest count value.

Initially, all ϕ number of health parameter attributes are taken as input
for our proposed MCA algorithm, where ∀ϕ ∈ Φ. In the preprocessing phase,
all ϕ number of original attribute values are transformed into an annotated
format to represent the severity of that particular health parameter. For
example, the CP value 1 is transformed to Low for patient number 1 in the
first step of the MCA algorithm as shown in Fig. 3. In the next step of MCA
algorithm, the class label occurrence for each attribute is counted based on
the annotated format values. Let, Count be the counter variable to count
the class label υ occurrence for each parameter ϕ, where ∀υ ∈ Υ and ∀ϕ ∈ Φ
as shown in Eq. (13).

Countϕυ =

p∑

i=1

ϕ∑

j=1

υ∑

k=1

count[MCL[i][j][k]] (13)

For example, the Count value is 4 for class label No of Low cheat pain pa-
rameter. In the third step of MCA algorithm, attribute pruning is performed
based on a threshold (Ω) value, which is decided by the lower frequency
value. For example, the threshold value is set as 2 in this heart disease case.

24

The parameters are deleted whose Count values are less than the thresh-
old. For example, the Count value is zero for Yes label of Low chest pain,
which is deleted from the list. Further, the conjunction is carried out for
all possible combinations and compute the joint Count value. The highest
Count value is considered as the most influential parameters with respect to
the disease. The most influential parameters are selected for the prediction
purpose by discarding all other health parameters as they have less influence
on the occurrence of the disease. For example, CP and ECG jointly provide
the Count value as 7 for No class label and 10 for Yes class label, which is
highest among all other joint parameters. Hence, in this example, CP and
ECG are considered as the input for predictive analysis. Finally, the most
influential parameters are stored in a reduced set ℜ, where ℜ < MCL, which
is the output of our MCA algorithm by which we can reduce the dimension of
the health parameters. The formal steps of the MCA algorithm is described
in Algorithm 4.

5.2. Prediction of Heart Disease

Recently, most of the data analysis methods lack adequate functionality
to predict the future health condition of a patient accurately as the health-
care data have many conditional dependencies and uncertainty. Hence, a
probabilistic predictive model is designed here to predict the future disease
condition of the patients. Basically, the predictive modeling can be Super-
vised, Unsupervised or Semi-supervised, where the class label is known for
Supervised learning. Similarly, the class label is unknown for Unsupervised
learning. In some cases, the class label is known for a specific data set, i.e.
training data and unknown for other data sets, which are Semi-supervised
learning. In our analysis semi-supervised learning is used as the class la-
bel, which is known for some existing patients and is unknown for the new
patients, which needs an accurate prediction.

The Naive Bayes model has popularity due to its accuracy and efficiency
as compared to other state-of-art algorithms. In order to improve the ac-
curacy and make the model more realistic for healthcare, Semi-Naive Bayes
model is adopted to overcome the problems of the Naive Bayes model. The
Semi-Naive Bayes model allows certain degree of dependency among the in-
put parameters and has different distribution mechanism for future estima-
tion of the parameters. Basically, Gaussian distribution is used for continuous
data, where the continuous incoming values (patients) are associated with

25

Algorithm 4 MCA Algorithm

Require: MCL : The health parameters class matrix with the class label.
Ensure: ℜ : Reduced parameter set.

Notations:
1: Ω = Threshold;
2: Ψ[] = {Ψ1, Ψ2, ..., Ψψ};
3: Φ[] = {Φ1, Φ2, ..., Φϕ};
4: Υ[] = {Υ1, Υ2, ..., Υυ};
5: Count[i][j][k] = 0;
6: Transform each Mij into an annotated format based on Class Label and

severity;
7: for each patient p in P do
8: for each parameter ϕ in Φ do
9: Calculate the Countϕυ value for each class label based on Eq. (13);

10: end for
11: end for
12: if Count[p][ϕ][υ] < Ω then
13: Discard Φϕ;
14: else if Count[p][ϕi, ϕj][υ] < Ω then
15: Discard Φϕi,ϕj

, where i ̸= j;
16: Otherwise, ℜ = {Φϕi,ϕj

};
17: end if
18: Return ℜ;

26

each class (Heart disease class) in a Gaussian manner. Therefore, Gaussian
distribution is used in our healthcare scenario for Semi-Naive Bayes.

Let, a Tuple (ℵ) exists for each patient such that ℵ = ⟨P,Υ⟩, where a class
label Υυ is assigned to each patient Pp, i.e. ∀υ ∈ Υ and ∀p ∈ P . Further, the
class probability (Θ(Υ|ϕ)) is predicted for any unlabeled patient p. Θ(Υ|ϕ)
is evaluated by calculating different sub-steps such as mean (µϕ), variance
(σ2

ϕ) and conditional probability (℘). Further, µυϕ is calculated for each class
label Υυ, where ∀υ ∈ Υ, which is expressed in Eq. (14).

µυϕ =
1

ϕp

ϕ∑

ı=1

p∑

ȷ=1

MCL
p [ı][ȷ] (14)

After the mean calculation, the variance (σ2
ϕ) is evaluated for entire cluster

matrix as expressed in Eq. (15).

σ2
ϕ =

1

p

ϕ∑

ȷ=1

p∑

ı=1

(P υ
ı ϕȷ − µυϕ)2 (15)

Further, the conditional probability for each class with respect to the
parameters (℘(υ|ϕ)) is calculated using Gaussian Semi-Naive Bayes model
as shown in Eq. (16).

℘(υ|ϕ) =
1√

2πσ2
e

(
−(ϕυ

p−µυ
ϕ)2

2σ2

)

(16)

where, ϕυp is the input value for the attribute ϕ of the class υ that belongs
to pth patient. Furthermore, the probability (Θ(υ|ϕ)) of the class (υ) for the
patient p is calculated using equation Eq. (17).

Θ(υ|ϕ) = arg max
υi

(
℘(υi)

ϕ∏

j=1

℘(υi|ϕi, ϕj)
E

)
(17)

Where E is the evidence described in Eq. (18).

E =
υ∑

i=1

ϕ∏

j=1

℘(υi|ϕj), where i ̸= j. (18)

Let us continue the example as discussed in dimension reduction section.
After dimension reduction, the reduced parameters are kept in the reduced

27

set ℜ. In our example, CP and ECG are two input attributes present in ℜ
as our training set, where ℜ = {CP,ECG}. Let, ΥCard be the heart disease
class for heart patients, where ΥCard = {υY es, υNo}. Further, the mean value
is calculated separately for all Yes and No patients i.e. µY esCP , µY esECG, µNoCP and
µNoECG. Afterward, the variance is evaluated for both CP and ECG parameter
of the class Yes and No, i.e. σY es

2

CP , σY es
2

ECG, σNo
2

CP and σNo
2

ECG. Further, the condi-
tional probability (℘) is calculated for individual and conjuncted CP, ECG of
Yes and No class, i.e. ℘(Y es|CP), ℘(Y es|ECG), ℘(No|CP), ℘(No|ECG),
℘(Y es|(CP,ECG)) and ℘(No|(CP,ECG)). Eventually, Θ(Y es) and Θ(No)
probabilities are calculated for each patient in the training phase. Finally,
testing is performed to predict the class label of an unknown patient, i.e. Υu,
where CP and ECG values are 4 and 2, respectively. Θ(Y esu) and Θ(Nou)
are calculated and the class is assigned based on the maximum value. Here,
value of Θ can be negative, greater than or less than 1 as probability den-
sity is used rather than a probability for continuous values of CP and ECG.
The value of Θ(Y esu) is larger than Θ(Nou) as shown in Fig. 4. Hence, the
patient having heart disease for respective CP and ECG values can have
necessary medications as prescribed by the doctors.

Figure 4: Prediction Example

The SNB is executed on the Spark Platform in a parallel and distributed
manner. The PSNB algorithm is designed to improve the accu-
racy and reduce the execution time by taking the advantages of
both Bayesian network and Spark parallelism. In the first stage
of the PSNB algorithm, the dependant and independent Direct
Acyclic Graph (DAG) are created based on the Bayesian influence

28

Algorithm 5 PSNB Algorithm

Require: ℜ : Reduced parameter set.
Ensure: Θ(υ|ϕ) : Predicted class probability.
1: ssc = spark.StreamingContext();
2: for each patient p in P do
3: for each parameter ϕ in ℜ do
4: Design the dependant and independent DAGs;
5: Load RDDs = spark.read.load(DAGs);
6: RDDData = ssc.parallelize(RDDs);
7: flatmapOp = RDDData.flatmap{
8: Calculate the mean (µϕ) using Eq. (14);
9: Calculate variance (σ2

ϕ) using Eq. (15);
10: Calculate conditional probability (℘) using Eq. (16);
11: }
12: predictionOp = map(flatmapOp){
13: Calculate the class probability (Θ(υ|ϕ)) using Eq. (17);
14: }
15: end for
16: end for
17: action = spark.write.save(Θ(υ|ϕ));
18: Return action and Θ(υ|ϕ);

29

network. Since, some influential parameters exist in the system,
an influencal DAG is created. Similarly, all other DAGs are cre-
ated based on the dependant and independent parameters. In the
next stage, the DAGs are assigned to the Spark RDD objects for
parallel execution. In the next stage, the mean (µϕ), variance (σ2

ϕ) and
the conditional probability (℘) are executed in the Transformation: flatmap
function of the PSNB algorithm. In the subsequent step of PSNB algorithm,
the class probability (Θ(υ|ϕ)) is predicted using the Transformation: map
function of Spark by using previous output of µϕ, σ

2
ϕ and ℘. Finally, the

prediction output is stored using Action: Save function for the users in the
PSNB algorithm. Both flatmap, and map jobs are executed on appropriate
Spark worker nodes based on the DJS algorithm for each prioritized patient.
The formal steps of PSNB algorithm is described in Algorithm 5.

The time complexity of Naive Bayes (NB) algorithm is O(pR),
where p is the number of patients and R is the number of reduced
parameters present in the reduced set ℜ. The time complexity
of the MCA algorithm is O(pϕ), where ϕ is the number of health
parameters for each patient. Hence, the total time complexity of
our proposed PSNB algorithm is O(pR + pϕ).

6. Performance evaluation

Performance of our proposed algorithms is evaluated in a Spark
cluster that comprises one Master and 10 Worker nodes. The sim-
ulation results are compared with the existing methods. Out of 10
Worker nodes, 5 nodes are used in the IDs and another 5 nodes are
used in the EDs to reveal the performance in the real-world sce-
narios. The Spark Master is installed in Asus Rack server (RS700-X7/PS4)
with Ubuntu 14.04 LTS Operating System, Intel Xeon(R) CPU ES-2620v2
2.10GHz x 12 CPU, 16GB memory and 1 TB storage configuration. All
workers are installed in commodity hardware with Ubuntu 14.04 LTS Oper-
ating System, Intel Core i7-6700 CPU 3.40GHz x 8 CPU, 8GB memory and
1 TB storage configuration. Apache Ambari is used as the data platform
management tool for the cluster provisioning, maintenance and management
irrespective of the clusters. The major components of Apache Ambari are
Hadoop 2.7.1, Spark 1.5.2., HDFS, YARN 2.7 and ZooKeeper 2.3.4, Scala
2.10.4. In our experimental setup, two nodes are considered in ID and an-
other two nodes are used for implementing the ED.

30

Figure 5: Average prediction accuracy.

To manifest the prediction accuracy of our proposed PSNB algorithm,
experiments are performed and compared with the state-of-art algorithms.
The heart disease data sets are taken as input for our PSNB algorithm col-
lected from the UCI machine learning repository [38]. The average accuracy
of PSNB algorithm for both batch and streaming data are shown in Fig. 5.
Initially, the average accuracy is low for all the comparative algorithms when
the number of patients are less than 100. As the number of patient increases,
the average prediction accuracy is increased gradually and has a convergence
trend of all these algorithms. The average accuracy of PSNB prediction is
12.8% higher than that of original NB algorithm and is 23.8% higher than
ANN algorithm when the number of patients is equal to 300. Therefore, it
is observed that the PSNB algorithm accuracy is improved significantly and
the trend continues for the rest of the patients.

31

Figure 6: Average processing time for different cluster size.

In our observation, processing or job completion time is an important
parameter to observe the efficiency of the algorithm as shown in Fig. 6. In our
proposed model, the job completion time is defined as the sum of scheduling,
execution and transfer time of the jobs on different nodes within ID and ED.
It is observed that the average job completion time of our proposed model is
less than Hadoop YARN [39] and Bstream [18], respectively when the number
of nodes are high in ID and ED. For small number of nodes, the processing
time of the proposed model is just above the Btream, though it is less than
the Hadoop YARN. However, increase in the number of nodes does
not enhance the processing time due to sparse data and as it needs
more time for execution. The saturation point for job completion
time is achieved after 7 number of nodes. Therefore, the processing
time is directly proportional to the scheduling, execution and data transfer
time.

The average execution time of the job is shown in Fig. 7. For small
data size, i.e., less than 0.40GB (∼= 400 MB), the execution times
of Bstream is less than the proposed model as a fixed amount of
time is required for the Spark cluster’s setup and configuration. Ini-
tially, the Batch and Block intervals are decided for the incoming data sets,
which take some time to find the optimum case. However, a noticeable
execution time gap is observed for the larger data size > 0.40GB,
and the trend continues until it reaches up to 1 GB. Hence, our
proposed model has lower execution time than Bstream and Hadoop YARN

32

for large data sets as most of the jobs achieve data locality in IDs and EDs.
Moreover, the Spark based healthcare big data processing platform has sig-
nificant strength over Bstream and YARN due to in-memory and parallel
execution of the jobs.

Figure 7: Average execution time for different data size.

Figure 8: Priority function evaluation for different SLAs.

The priority of the jobs are decided by the priority weight function (f(w))

33

as shown in Fig. 8, where SLA, current health condition, disease severity and
emergency factor of a patient are taken as input for the evaluation. It is
clearly observed that the value of f(w) is increased with the increase in SLA.
The f(w) value is found to be 501 for 1000 as value of SLA, where α, ψ
and ϵ values are 0.2, 0.2 and 0.1, respectively, which has the highest priority.
Similarly, for same SLA value, with different α, ψ and ϵ values such as 0.9,
0.9, and 0.9, f(w) is calculated as 674, which has the lowest priority. The
medium priority is evaluated as 540 when value of α, ψ and ϵ is 0.2, 0.8, and
0.9, respectively. For lower values of α, ψ and ϵ the condition of the patient is
critical. Hence, the lower value of f(w) is considered as the highest priority.

In Fig. 9, the violation of SLA for different priority jobs in ID and ED is
displayed. The numbers of violations of low priority jobs are higher than the
high priority jobs as the high priority jobs are executed earlier in order. Even
the number of violations are further reduced by incorporating the EDs during
heavy load. For instance, 6 and 3 numbers of low priority jobs are failed to
satisfy the SLA during execution of 50 jobs in only ID and ID with ED,
respectively. However, less numbers of high priority jobs are failed such as 2
and 1 out of total 50 number of jobs, executed in only ID and ID with EDs,
respectively. Hence, the throughput of the system is increased by considering
both ID and ED in the cloud.

Figure 9: Violation of SLA for different priority jobs in ID and ED.

In Fig. 10, the speedup of the proposed model is viewed for different clus-

34

Figure 10: Speedup comparison of Proposed model with BStream and YARN.

ter size and is compared with the existing data processing models. The
speedup is calculated by taking the ratio of execution time of the stan-
dalone and cluster mode. By considering the in-memory, parallel execution
in cloud-based Spark platform, the speedup of our proposed model tends to
increase with the increase in the number of worker nodes. For instance,
the speedup of our proposed model almost touches to 0.6 and 1.8
as compared to Storm and YARN, respectively, when the number
of worker nodes is equal to 7. Thereafter, there is a saturation on
the speedup even though the number of node is increased to 10.
Hence, our proposed model can process the patient data speedily within the
SLA.

As shown in Fig. 11, the communication cost of the proposed
model is evaluated with respect to Spark-MLRF [23]. It is ob-
served that the shuffle write of the proposed model is less than
that of Spark-MLRF and it outperforms for more number of nodes.
For instance, if the number of worker nodes is increased from 1 to
10, the shuffle write of Spark-MLRF is increased from 75MB to
420MB. However, the shuffle write of the proposed model is in-
creased slowly from 10.5MB to 80MB, which becomes steady with
the increase in the number of worker nodes. This is due to the
data locality achieved by the ODD mechanism. There is a signifi-
cant reduction of data communication overhead and therefore, our
proposed model outperforms as compared to other parallel pro-

35

Figure 11: Communication using shuffle write.

cessing models.

7. Conclusion

In this work, SLA based healthcare big data analysis and computing
model is proposed, where both batch and streaming patient data are ana-
lyzed in ID and ED environment. A PSNB method is proposed for health-
care Big Data analysis and a MCA algorithm is also designed for dimension
reduction to improve the accuracy of PSNB algorithm. Besides, a GPS algo-
rithm is proposed to prioritize the emergency jobs of the patients. To achieve
data locality, an ODD algorithm is proposed in this paper. To improve the
execution time of the prioritized jobs, a DJS algorithm is proposed that sat-
isfies the SLA. Implementation results show that our forefront healthcare big
data analytic model and proposed algorithms have outperformed in terms of
accuracy and overall job completion time. The proposed model can be con-
veniently employed in various medical applications specifically for emergency
patient data processing and analysis.

Acknowledgment

This work is partly supported by Ministry of Science and Technology
(MOST), Taiwan under the grant number 106-2221-E-182-014, 105-2221-E-
182-050 and 105-2221-E-182-043.

36

References

[1] N. Kaur, S. K. Sood, An energy-efficient architecture for the internet of
things (IoT), IEEE Systems Journal PP (99) (2015) 1–10.

[2] S. K. Mohapatra, P. K. Sahoo, S.-L. Wu, Big data analytic architecture
for intruder detection in heterogeneous wireless sensor networks, Journal
of Network and Computer Applications 66 (2016) 236 – 249.

[3] M. D. Assuno, R. N. Calheiros, S. Bianchi, M. A. Netto, R. Buyya,
Big data computing and clouds: Trends and future directions, Journal
of Parallel and Distributed Computing 79-80 (Supplement C) (2015) 3
– 15, special Issue on Scalable Systems for Big Data Management and
Analytics.

[4] M. M. Al-Sayed, S. Khattab, F. A. Omara, Prediction mechanisms for
monitoring state of cloud resources using markov chain model, Journal
of Parallel and Distributed Computing 96 (Supplement C) (2016) 163 –
171.

[5] D. Singh, D. Roy, C. K. Mohan, Dip-svm : Distribution preserving
kernel support vector machine for big data, IEEE Transactions on Big
Data 3 (1) (2017) 79–90.

[6] N. Bharill, A. Tiwari, A. Malviya, Fuzzy based scalable clustering algo-
rithms for handling big data using apache spark, IEEE Transactions on
Big Data 2 (4) (2016) 339–352.

[7] P. K. Sahoo, S. K. Mohapatra, S. L. Wu, Analyzing healthcare big data
with prediction for future health condition, IEEE Access 4 (2017) 9786–
9799.

[8] S. Ramirez-Gallego, S. Garcia, H. Mourino-Talin, D. Martinez-Rego,
V. Bolon-Canedo, A. Alonso-Betanzos, J. M. Benitez, F. Herrera, Dis-
tributed entropy minimization discretizer for big data analysis under
apache spark, in: 2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 2, 2015,
pp. 33–40.

[9] B. Tang, H. He, P. M. Baggenstoss, S. Kay, A bayesian classification ap-
proach using class-specific features for text categorization, IEEE Trans-
actions on Knowledge and Data Engineering 28 (6) (2016) 1602–1606.

37

[10] F. Zheng, G. Webb, A comparative study of semi-naive bayes methods in
classification learning, in: Proceedings of the Fourth Australasian Data
Mining Conference (AusDM05), University of Technology, Sydney, 2005,
pp. 141–156.

[11] A. Amokrane, R. Langar, M. F. Zhani, R. Boutaba, G. Pujolle, Greens-
later: On satisfying green slas in distributed clouds, IEEE Transactions
on Network and Service Management 12 (3) (2015) 363–376.

[12] H. Alshammari, J. Lee, H. Bajwa, H2hadoop: Improving hadoop perfor-
mance using the metadata of related jobs, IEEE Transactions on Cloud
Computing (99).

[13] T. Li, J. Tang, J. Xu, Performance modeling and predictive scheduling
for distributed stream data processing, IEEE Transactions on Big Data
2 (4) (2016) 353–364.

[14] M. Zaharia, An Architecture for Fast and General Data Processing
on Large Clusters, Association for Computing Machinery and Morgan;
Claypool, New York, NY, USA, 2016.

[15] F. Zhang, J. Cao, S. U. Khan, K. Li, K. Hwang, A task-level adap-
tive mapreduce framework for real-time streaming data in healthcare
applications, Future Generation Computer Systems 43-44 (2015) 149 –
160.

[16] K. Hildebrandt, F. Panse, N. Wilcke, N. Ritter, Large-scale data pollu-
tion with apache spark, IEEE Transactions on Big Data PP (99) (2017)
1–1.

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing, in: Presented as
part of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), USENIX, San Jose, CA, 2012, pp. 15–28.

[18] S. Kailasam, P. Dhawalia, S. J. Balaji, G. Iyer, J. Dharanipragada,
Extending mapreduce across clouds with bstream, IEEE Transactions
on Cloud Computing 2 (3) (2014) 362–376.

38

[19] S. Kang, B. Veeravalli, K. M. M. Aung, Dynamic scheduling strategy
with efficient node availability prediction for handling divisible loads in
multi-cloud systems, Journal of Parallel and Distributed Computing 113
(2018) 1 – 16.

[20] H. Chen, F. Z. Wang, Spark on entropy: A reliable efficient scheduler
for low-latency parallel jobs in heterogeneous cloud, in: 2015 IEEE 40th
Local Computer Networks Conference Workshops (LCN Workshops),
2015, pp. 708–713.

[21] J. Andreu-Perez, C. C. Y. Poon, R. D. Merrifield, S. T. C. Wong, G. Z.
Yang, Big data for health, IEEE Journal of Biomedical and Health In-
formatics 19 (4) (2015) 1193–1208.

[22] M. Xu, H. Chen, P. K. Varshney, Dimensionality reduction for reg-
istration of high-dimensional data sets, IEEE Transactions on Image
Processing 22 (8) (2013) 3041–3049.

[23] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, K. Li, A parallel
random forest algorithm for big data in a spark cloud computing envi-
ronment, IEEE Transactions on Parallel and Distributed Systems 28 (4)
(2017) 919–933.

[24] J. Archenaa, E. A. M. Anita, Interactive Big Data Management in
Healthcare Using Spark, Springer International Publishing, Cham, 2016.

[25] Y.-C. Kao, Y.-S. Chen, Data-locality-aware mapreduce real-time
scheduling framework, J. Syst. Softw. 112 (C) (2016) 65–77.

[26] Z. Tang, X. Zhang, K. Li, K. Li, An intermediate data placement algo-
rithm for load balancing in spark computing environment, Future Gen-
eration Computer Systems.

[27] K. Wang, Z. Bian, Q. Chen, Millipedes: Distributed and set-based sub-
task scheduler of computing engines running on yarn cluster, in: High
Performance Computing and Communications (HPCC), IEEE 17th In-
ternational Conference on, 2015, pp. 1597–1602.

[28] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
I. Stoica, Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling, in: Proceedings of the 5th European

39

Conference on Computer Systems, EuroSys ’10, ACM, New York, NY,
USA, 2010, pp. 265–278.

[29] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica, Improving
mapreduce performance in heterogeneous environments, in: Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, USENIX Association, Berkeley, CA, USA,
2008, pp. 29–42.

[30] N. Zaheilas, V. Kalogeraki, Real-time scheduling of skewed mapreduce
jobs in heterogeneous environments, in: 11th International Conference
on Autonomic Computing (ICAC 14), USENIX Association, Philadel-
phia, PA, 2014, pp. 189–200.

[31] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell,
M. Jones, P. Michaleas, A. Prout, A. Rosa, J. Kepner, Scalable system
scheduling for HPC and big data, Journal of Parallel and Distributed
Computing 111 (2018) 76 – 92.

[32] B. Lin, W. Guo, N. Xiong, G. Chen, A. V. Vasilakos, H. Zhang, A
pretreatment workflow scheduling approach for big data applications in
multicloud environments, IEEE Transactions on Network and Service
Management 13 (3) (2016) 581–594.

[33] C.-H. Weng, T. C.-K. Huang, R.-P. Han, Disease prediction with differ-
ent types of neural network classifiers, Telematics and Informatics 33 (2)
(2016) 277 – 292.

[34] N. Bayasi, T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, M. Is-
mail, Low-power ecg-based processor for predicting ventricular arrhyth-
mia, IEEE Transactions on Very Large Scale Integration (VLSI) Systems
24 (5) (2016) 1962–1974.

[35] S. Francesco, B. Alberto, C. F. C.M., F. Valeria, T. Flavio, R. Riccardo,
R. Gianluca, C. Claudio, M. Claudio, D. Domenico, P. Roberto, Tumor
size as a prognostic factor in patients with stage IIa colon cancer, The
American Journal of Surgery 215 (1) (2018) 71 – 77.

[36] Spark streaming programming guide (2017).
URL https://spark.apache.org/docs/latest/streaming-programming

-guide.html

40

[37] M. Deshpande, G. Karypis, Using conjunction of attribute values for
classification, in: Proceedings of the Eleventh International Conference
on Information and Knowledge Management, CIKM ’02, ACM, New
York, NY, USA, 2002, pp. 356–364.

[38] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml

[39] C. Xu, R. Goldstone, Z. Liu, H. Chen, B. Neitzel, W. Yu, Exploiting
analytics shipping with virtualized mapreduce on hpc backend storage
servers, IEEE Transactions on Parallel and Distributed Systems 27 (1)
(2016) 185–196.

41

Suvendu Kumar Mohapatra received B.Tech degree from Biju

Pattnaik University, India, in June 2008, the M.Tech degree from IIIT, Bhubaneswar, in June

2010 and PhD degree in the department of Electrical Engineering, Division of Computer Science

and Information Engineering, Chang Gung University, Taiwan. He is currently an Assistant

Professor in Industry 4.0 implementation center of National Taiwan University of Science and

Technology, Taiwan. His research interests include the areas of Big Data Analysis with cloud:

Medical big data analysis, Prediction, Optimization and Machine Learning.

Prasan Kumar Sahoo received Master of Science in Mathematics

from Utkal University, India in 1994 and Master of Technology in Computer Science from

Indian Institute of Technology (IIT), Kharagpur, India in 2000. He received the first PhD in

Mathematics from Utkal University, India, and second PhD in Computer Science and

Information Engineering from National Central University, Taiwan in 2002 and 2009,

respectively. He is currently a Full Professor in the department of Computer Science and

Information Engineering and Director of International Cooperation Center of Chang Gung

University, Taiwan. He was Associate Professor in the department of Information Management,

Vanung University, Taiwan and has worked in the Software Research Center of National Central

University, Taiwan. His current research interests include Big Data analytic, Cloud Computing

and Cyber-physical Systems. He is an Editorial Board Member of International Journal of

Vehicle Information and Communication Systems (IJVIC) and has served as the Program

Committee Member of several IEEE and ACM conferences. He is Senior Member, IEEE and

was Program Chair of ICCT, 2010.

*Author Biography & Photograph

Shih-Lin Wu received the B.S. degree in Computer Science from

Tamkang University, Taiwan, in June 1987 and the Ph.D. degree in Computer Science and

Information Engineering from National Central University, Taiwan, in May 2001. Since 2000,

He joined the Department of Computer Science and Information Engineering, Chang Gung

University. He is Full Professor (2015 preset) and Chairman (2016 present) at the Department of

Computer Science and Information Engineering, Chang Gung University. His current research

interests include mobile communications, wireless networks, wireless ad hoc networks, and

intelligent robots. He serves as a member of editor board of Telecommunication Systems,

Journal of Positioning and ISRN Communications. He was a Guest Editor of International

Journal of Pervasive Computing and Communications 2007, a Program Chair of Mobile

Computing 2005, a Program Chair of International Workshop on Data Management in Ad Hoc

and Pervasive Computing 2009, a Co-Chair of International High Speed Intelligent

Communication 2009, and a Co-Chair of International Symposium on Bioengineering 2011, a

General Chair of Mobile Computing 2012, a Co-Chair of International High Speed Intelligent

Communication and International Conference on Computational Problem-Solving 2013, a

Special Session Chair of International Conference on Advanced Robotics and Intelligent

Systems 2014, a Special Session Chair of International Conference on Telecommunication

Systems Management 2014, and a Program Chair of International Computer Symposium 2016,.

Several of his papers have been chosen as Selected/Distinguished papers in international

conferences. Dr. Wu is a member of the IEEE and the Phi Tau Phi Society.

