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Big data analytics architecture design—an application in manufacturing 

systems 

Abstract 

Context: The rapid prevalence and potential impact of big data analytics platforms have sparked an interest 

amongst different practitioners and academia. Manufacturing organisations are particularly well suited to benefit 

from data analytics platforms in their entire product lifecycle management for intelligent information 

processing, performing manufacturing activities, and creating value chains. This requires re-architecting their 

manufacturing legacy information systems to get integrated with contemporary data analytics platforms. A 

systematic re-architecting approach is required incorporating careful and thorough evaluation of goals for data 

analytics adoption. Furthermore, ameliorating the uncertainty of the impact the new big data architecture on 

system quality goals is needed to avoid cost blowout in implementation and testing phases. 

Objective: We propose an approach to reason about goals, obstacles, and to select suitable big data solution 
architecture that satisfy quality goal preferences and constraints of stakeholders at the presence of the decision 

outcome uncertainty. The approach will highlight situations that may impede the goals. They will be assessed 

and resolved to generate complete requirements of an architectural solution. 

Method: The approach employs goal-oriented modelling to identify obstacles causing quality goal failure and 

their corresponding resolution tactics. It combines fuzzy logic to explore uncertainties in solution architectures 

and to find an optimal set of architectural decisions for the big data enablement process of manufacturing 

systems.  

Result: The approach brings two innovations to the state of the art of big data analytics platform adoption in 

manufacturing systems: (i) A systematic goal-oriented modelling for exploring goals and obstacles in integrating 

manufacturing systems with data analytics platforms at the requirement level and (ii) A systematic analysis of 

the architectural decisions under uncertainty incorporating stakeholders’ preferences. The efficacy of the 

approach is illustrated with a scenario of reengineering a hyper-connected manufacturing collaboration system 

to a new big data architecture.  

Keywords: big data, big data analytics platforms, manufacturing systems, goal-oriented modeling, fuzzy logic 

1 Introduction 
Product lifecycle management is a data intensive process comprising market analysis, product design, 

development, manufacturing, distribution, post-sale, and recycling (Stark, 2015). The process 

involves a variety of voluminous data, e.g. customers’ comments on social media, product functions, 
product configuration, and failure incidences reported by installed sensors to monitor parameters of 

environment and products. Manufacturing organisations view such data as a valuable business asset to 

achieve good performance and to reduce cost in the product lifecycle. They also regularly seek to 

increase their productivity using new advanced information technologies that place further demand on 
their data processing storage requirements such as Internet of Thing (IoT) and radio-frequency 

identification (RFID) tags in their daily production. For example, Toyota automotive company equip 

cars with smart sensors and continuously collecting data about its locks, location, ignitions, and tyres 
which can be later used by the manufacturer assembly. Continuous product innovations lead to further 

product data generation coupled with a great diversity of types, sources, meaning, and format.  

Given its increasing volume and variety, manufacturing data is increasingly difficult to process using 

common manufacturing data platforms be they computer aided design (CAD), supply chain 

management (SCM) manufacturing execution system (MES), or enterprise resource planning (ERP). 
Indeed, the high volume, velocity, variety, veracity, and value adding data requirement all point to the 

need to complement manufacturing systems with big data platforms (McAfee, Brynjolfsson, & 

Davenport, 2012). New platforms such as Apache Hadoop, Google’s Dremel, or S4 are promising 
ways forward to address the abovementioned processing complexity (Lycett, 2013). They provide a 

support for capturing, processing, and visualising large volume of data sets that organisational 

systems may have collected over the years.  
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Taming big data has the potential added benefit to analyse real-time data across different phases of 

product lifecycle management from receipt of a customer’s order, identifying promising customers, 
collecting variable data about the quality of raw material, selecting a detailed design, procuring, 

selecting suppliers and outsourcing policies, and product warehousing, maintenance, recycling, and to 

identifying labor errors have been discussed (Li, Tao, Cheng, & Zhao, 2015), (Protiviti, 2017), 

(Waller & Fawcett, 2013), (Bi & Cochran, 2014), (Dubey, Gunasekaran, Childe, Wamba, & 
Papadopoulos, 2016).  

Compared to others fields such as electronic commerce, financial trading, health care, and 

telecommunication, the manufacturing field seems to be slow in pace in adoption big data analytics 

platforms in their business processes (Li et al., 2015). This could be attributed to the high capital costs 

associated with manufacturing systems which automate, process, and integrate data flows between 
one or more above phases and typically composed of a number of software systems, machines, 

transportation devices, and so on (Camarinha-Matos, Afsarmanesh, Galeano, & Molina, 2009). 

Nevertheless, manufacturing organisations recognise the value of big data analytics and the fact that 
their adoption failure poses a risk to their operating and financial performance (Protiviti, 2017). 

Gartner reports that 60 percent of big data projects fail to get piloting and production due to reasons 

such a lack of adequate IT skill set, inability to understand stakeholders requirements in utilising data 
analytics, and disparate legacy systems (Gartner, 2015), (Wegener, 2013). Thence, reluctance of 

manufactures in moving to these platforms is unsurprising. Some are also still figuring out what kind 

of data is worthy for advanced data analytics and which stage of product lifecycle management is 

suitable to utilise big data analytics platforms (Govindarajan, Ferrer, Xu, Nieto, & Lastra, 2016), (S. 
Jha, Jha, O'Brien, & Wells, 2014), (Bi & Cochran, 2014).  

It has been a long-standing acknowledgement that a poor system upgrade with a new technology can 

have far reaching consequences in later stages that are costly to rectify. This continues to be 

permeating theme in adoptions of big data analytics platforms in manufacturing systems. Particularly, 

these may involve many competing goals, e.g. security, performance, reliability, scalability, 
maintainability, and the development cost. There are also unforeseen risks. As articulated by Protiviti: 

“Manufacturers should have clear and easily definable goals. As a part of that planning process, 

companies need to determine whether the systems they have in place will achieve the desired results 
and/or what enhancements might be required” (Protiviti, 2017). Manufacturing also tend to have their 

own goals and preferred competitive dimensions with respect to taking advantages of data analytics 

platforms to augment their systems (Wang, Xu, Fujita, & Liu, 2016). A system architect, who is 

responsible to the design high-level big data enabled solution architecture, should meticulously 
specify goals of multiple stakeholders, analyse potential risks, and make a right balance among 

operationalisation of the goals in adopting these technologies (Lee, Kao, & Yang, 2014) (Wang et al., 

2016). For example, using a poor big data visualisation technology may negatively affect 
performance, scalability, and real-time data processing coming from sensors. The choice of a data 

mining algorithm to process sensor data across the product line may also impact the real-time 

performance of control systems. An early stage analysis of big data adoption goals gives an 
opportunity in exploring countermeasures to tackle probable risks in advance rather than drowning in 

narrow aspects of these technologies.  

Furthermore, uncertainties about the impact of decisions on data analytics adoption goals are 

unavoidable, as in any other adoption endeavors. That is, a lack of complete knowledge about the 

actual consequences of architectural decisions is a fact. For instance, the raw feedback data generated 
by online customers about produced cars that are processed by data analytics platforms may produce 

some uncertainties in terms of the interpretation of data. The choice of a data visualisation technique 

may have an uncertain impact on the reliability of other generated diagnostic reports about a product 

due to inherent uncertainties of data sources. On the other hand, the system architect is still expected 
to make right choices in such uncertain circumstances. The quest for a risk-aware early stage analysis 

of big data adoption in making critical and uncertain decisions remains a top priority as highlighted in 

(Pal, Meher, & Skowron, 2015) and (C. P. Chen & Zhang, 2014).  

This paper provides an approach aiding system architects for goal-obstacle analysis of big data 

solution architectures and selecting architectural decisions using imperfect information. It provides a 
step-by-step goal-obstacle analysis process to address uncertain risks. It then produces a complete set 



  

3 
 

of requirements, ranks candidate architectures based on the fuzzy logic, and ultimately to find an 

optimum architecture. The contributions of the paper are thus two folds: (i) providing a goal-oriented 
approach for reasoning about architectural requirements at the early stage of adoption (ii) dealing with 

uncertainty about the impact of integrating data analytics platforms on manufacturing systems which 

can be unforeseen at the requirement time. It should be noted that the approach is applicable outside 

the context of manufacturing. The emphasis of the validation and the exemplars are manufacturing, 
however the goal modelling and obstacle resolution approach can be easily applied to other contexts 

(Fahmideh & Beydoun, 2018). 

The rest of this article is organised as follows: Section 2 provides the background of this study 

including a motivating scenario and fundamental concepts used in the proposed approach. Section 3 

details the approach. Section 4 illustrates the approach in an exemplar scenario of re-architecting a 
legacy car manufacturing system to utilise data analytics platforms. Section 5 outlines other related 

studies. Finally, Section 6 summarises the article with a discussion of limitations and future research 

directions.  

2 Background 

2.1 A motivating scenario of moving manufacturing systems to data 

analytics platforms 
We adopt and extend an exemplar reengineering scenario of a hyper-connected manufacturing 
collaboration system (HMCS) (Lin, Harding, & Chen, 2016). HMCS provides a platform to enable 

several partners of Toyota car manufacturing to collaborate and to share knowledge about car 

products and parts across the product line. At the core of the HMCS architecture, a data Extract-Load-

Transform (ELT) processes and integrates data streams from multiple manufacturing parties and 
different types of databases including those storing data coming from sensors in the product line or 

from buyers. The process has a middleware layer that includes rules and logic for mapping data 

between different formats. An additional data stream comes from the online Toyota buyer 
conversations that appear in social media, such as Twitter, posts, Internet server logs, and blogs. This 

stream provides feedback on recent purchase experiences, warranty claims, repair orders, service 

reports and others which can be used to uncover actionable trends and to generate appropriate early-
warning signals to the manufacturing process. The stream is increasingly voluminous and it generates 

millions of items per day.  

The heterogeneity of data sources and the large volume of data strain the ETL. It often becomes a 

bottleneck and incapable of identifying all patterns and generating statistical reports. To resolve this, 

the IT department of Toyota aims to deploy multiple data analytics platforms. The aim is to  enable 
extraction and management of both sources of data, i.e. internal manufacture parties and the 

unstructured data in the online Toyota buyer conversations. A system architect is appointed 

specifically to design a solution to upgrade and integrate the ETL with services offered by the data 

analytics platforms. An immediate concern of the architect is a cost benefit analysis of the adoption of 
the platforms evaluating the risks and mapping the way forward. The following questions are 

pertinent to the system architecture: What are ETL system quality goals? How these may be positively 

or negatively affected if data analytics platforms are utilised? Will higher ETL performance be 
attainable in all circumstances? What obstacles are likely to occur during and after re-engineering 

ETL to data analytics platforms and what are their severity? What countermeasures can be added in 

advanced to negate such obstacles and do they have any side effects? Answering these questions is a 

challenging task as it involves reasoning with a long chains of ‘what-if’ scenarios and their uncertain 
impacts on goals given by the stakeholders of HMCS. Additionally, these impacts are even imprecise 

and may be hard to quantify. Human judgments are often too vague for using exact numerical values, 

let alone in an early stage of a solution architecture design. 

Towards designing a big data solution architecture, we offer an approach that explicitly relates 

manufacturing system high-level quality goals to potential obstacles, highlights architectural 
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requirements in addressing them and assesses their impact on stakeholders’ goals, calculates the 

uncertainty of the various impacts, and finally shortlists candidate architectures satisfying the goals. 

2.2 Goal-oriented requirement modeling 
Goal-oriented reasoning approaches such as KAOS and i* are means for the elicitation, elaboration, 

and analysis of system requirements (Yu & Mylopoulos, 1994). We choose KAOS (Keep All Objects 

Satisfied) modelling framework. It defines two components: (i) a modeling language including 
concepts such as goal, obstacle, agent, operation, and domain objects and (ii) a method specifying a 

series of steps to elaborate and analyse goals (Van Lamsweerde, 2009). In this article, we only use to 

concepts goal and obstacles as defined in the following.  

A goal is a prescriptive statement of intention that a system should satisfy through the cooperation of 

agents. A goal has a name and a specification expressed using natural or formal languages. The 
specification defines what the goal means and its satisfaction conditions. Goals may range from high-

level business objectives to fine-grained technical ones. All goals are continuously refined into sub-

goals until all sub-goals can be assigned to a single agent, i.e. a user or a system component. In this 
article, we refer to common system quality goals such as performance, security, and maintainability. 

The method part of the KAOS framework provides a process to create a goal model through a 

hierarchical refinement process.  

A goal which is stated without considerations of unexpected conditions in a real environment that may 

cause their failures is considered an optimistic goal (Letier, 2001; van Lamsweerde & Letier, 2000).  
Taking a more realistic and a deeper look, it is prudent to consider these conditions and to construe 

them as obstacles. Obstacles are duals of goals in the sense that as goals represent desired conditions, 

obstacles represent undesirable conditions (Letier, 2001) that should be systematically and 
concomitantly identified. They need to be assessed and tackled via defining resolution tactics at an 

early stage of a system development to identify any needs to modify the goals  (Letier, 2001). As 

such, in KAOS, resolving obstacles includes steps for generating and selecting alternatives to resolve 

obstacles. Selection of a subset of decision alternatives satisfying goals faces a multi-criteria decision 
making problem (MCDM) with the possibility of different priority of goals in a view of stakeholders 

needs. Any uncertainty in selecting options may also occur in terms of a range of impacts that options 

may have on goals. It is often the case that stakeholders may express such impacts qualitatively or 
using imprecise measures because their judgements are unavoidably vague and indescribable with 

exact numerical values. For example, the impact of choosing a data mining algorithm for processing 

data coming from sensors might be expressed in linguistic terms or a range of values rather than a 

crisp and single number. Subsequently, each decision alternative may fall within a range. Comparing 
two decision alternatives with overlapping in their impact on goals is not easy. There is often a need 

to consider trade-offs amongst various alternatives. Whilst MCDM frameworks can help in 

comparing, prioritising, and selecting the most suitable resolution tactics, they do not reflect the 
uncertainty in human thinking style. Fuzzy logic can better handle the uncertainty. For instance, 

expressions such high performance or low cost become usable. We make a synergy between the 

KAOS approach and fuzzy logic to cope with various sources of uncertainties in integrating 
manufacturing systems with data analytics platforms.  

2.3 Fuzzy set theory 
Fuzzy set theory analogises human judgment at the presence of proximate information and uncertainty 

in decision making (Zadeh, Fu, & Tanaka, 2014). Whilst classic sets define crisp values, fuzzy sets 
shows groups of data with boundaries that are not crisp. This provides a better capability to resolve 

real-world problems, which unavoidably involve imprecise and noisy parameters. Accordingly, 

linguistic expression of variables is the central aspect of fuzzy logic where general terms such a very 
large, large, medium, small, too small are used to represent a range of numerical values.  

The fuzzy set, originally proposed by Zadeh, is defined as follows (Zadeh et al., 2014): In a universe 
of discourse U, a fuzzy subset A is characterised by a membership function F where each member of 

x ∊ U is associated with a number of F in the internal [0,1], denoting the membership of x in A. The 

impact linearly decreases from very low to very high. This range of impact is represented using a 
triangular fuzzy value (Pedrycz, 1994). For example, the choice of a particular data mining algorithm 
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for processing sensor data may have Very High positive impact on the overall system performance. 

Such values may be available from statistical data of similar architecture designs in other systems, 
system architect’s experience, or expert judgment.  

The ability to quantitatively analyse alternatives in a big data solution architecture manufacturing 
systems can be achieved via representing uncertain parameters as fuzzy numbers which belong to 

fuzzy sets. Instead of showing the anticipated impact of an architectural decision alternative on system 

quality goals as a discrete point, we represent such impact as a range of values. This is more aligned 
with human judgment in conceptualisation and representation of uncertainty.  

3 The approach 
Our approach, as shown Figure 1, has two steps: In the first step, high-level goals of adopting data 
analytics platforms are identified. Their operational alternatives and potential corresponding obstacles 

are then identified and assessed. Obstacles that are deemed to be severe are resolved through 

generating resolution tactics. Step 1 engages the stakeholders and iterates over the sequence of 

refinements akin to the one described in (Lim & Finkelstein, 2012). In the second step of the 
approach, the impact on data analytics adoption goals is analysed to optimise the chances of success 

in goal achievement. The overall output of the approach as shown in Figure 1 is a set of solution 

architectures, ranked on the basis of likelihood of satisfying specified quality goals. One final selected 
architecture from this set gets later incorporated to reengineer the existing manufacturing systems to 

data analytics platforms. To illustrate the details the steps, the scenario presented in Section 2.1 is 

used as an exemplar in what follows. 

 
Figure 1. Proposed approach 

3.1 Step 1. Analysing goal-obstacle of data analytics solution architecture  
The first step is based on KAOS modelling framework and uses the notation shown in Table 1. Step 1 

includes these two sub-steps:   

(i) Step 1.1. Specifying data analytics adoption goals targeting by data analytics platforms 
and possibly decision alternatives to operationalise the goals, 

(ii) Step 1.2. Analysing data analytics adoption obstacles for identifying goal failure causes, 
assessing their likelihood and criticality of consequence, defining resolution tactics and 

decision alternatives. This is a mitigation step aiming at reducing the likelihood of the 

obstacles occurring or eliminating it altogether.  

 

Table 1. Notations used for the goal modelling 

Modelling element Definition Graphical notation 

Root (overall goal) 
The overall goal of adopting data analytics platforms 

contributing to systems.    
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Goal 
A quality goal that is expected to be satisfied via utilising 

data analytics platforms.  

Obstacle 
A technical/none-technical exceptional situation/condition 

preventing the goal satisfaction.  
 

Architectural 

decision  

A generic architectural solution either to operationalise a 

goal or to tackle an obstacle.  

 

Architectural 

decision alternative 

A technique, tool, or technology taking to operationalise 

an architectural decision.  

  

Like many IT projects that are inherently conducted cooperatively by a team, the rationale for 

embedding modeling within the approach is to broaden stakeholder participation (e.g. system 
architect, developers, and users) in the entire goal analysis. This will enable appropriate 

documentation and argumentation surrounding goals, obstacles, architectural decision alternatives and 

to coordinate the design effort, and to ensure convergence to potential architectures. The following 

subsections provide technical details of Step 1. 

Step 1.1 Specifying data analytics adoption goals. Seven goals are set for the integrating ETL with 
data analytics platforms (Figure 2): g1.Achieve [Processed social media weekly under expected time], 

g2.Achieve [Processed sensor data under expected time], g3.Achieve [Improved availability], 

g4.Achieve [Maintained interoperability with other big data platforms], g5.Achieve [Improved data 

visualisation], g6.Achieve [Maintained data security on big data platforms], and g7.Achieve 
[Increased unstructured data storage capacity].  

 
Figure 2. Goals of integrating ETL with data analytics platforms 

ETL databases is rapidly growing in size and reaching several terabits of data collected by sensors in 

the product line. An unlimited data storage capacity is required. The system architect documents the 

specification of goal g7.Achieve [Increased unstructured data storage capacity] as follows: 

Goal g7.Achieve [Increased unstructured data storage capacity] 

Category scalability goal 

Definition Batches of data records from manufacture product line provided by installed sensors 

should be captured and stored continuously. These records consist of data monitored by robots 

about assembling Toyota parts in the production line. 

Quality Variable storageSize: Batch → Size  

Definition The required capacity in storing records of data collected by sensors in a working day. 

Sample Space The set of daily cars is assembled and delivered to the end of the product line. 

Objective Functions At least one gigabyte of records (e.g. images, events, logs, and errors) are 

generated at the end of a working day. The database should be able to store this volume. 

For the goal g1.Achieve [Processed social media weekly under expected time], the following 
definition is documented:  
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Goal g1.Achieve [Processed social media weekly under expected time] 

Category performance goal 

Definition Relevant data of buyers experience should be collected from Twitter, posts, Internet 
server logs, and blogs and then be processed every week and results be available on Monday at 

12am. This data from customers can be in the form of feedback or complaints, maintenance 

requests, part orders, or product comparisons.  

Quality Variable ProcessedTime: Batch → Time 

Definition The required capacity to storage sensor data at the end of the day. 

Sample Space The set of daily cars that are assembled on the product line and delivered. 

Objective Functions The processing of all the collected data and generating reports should be 
started from 12 am on Saturday and finished at midnight on Sunday. 

Goals are operationalised through different architectural decisions, i.e. tactics, techniques, and 
technologies. As shown in Figure 3, to realise the goal g7.Achieve [Increased unstructured data 

storage capacity], the system architect considers five mainstream big data storages namely 

a17.MongoDB, a18.Accumulo, a19.HBase, a20.Cloudant, and a21.BigTable. Likewise, to implement 
the goal g1.Achieve [Processed social media weekly under expected time], both technologies 

d1.scheduler and d2.social media data processing can be used where each has different alternatives to 

be employed (Figure 3).   

 
Figure 3. Operationalisation of the goals through architectural decisions and related implementations  

Step 1.2. Analysing data analytics adoption obstacles. Normally, goals neglect unexpected 

situations that may cause their failures in operational environment (Letier, 2001; van Lamsweerde & 
Letier, 2000). As mentioned earlier, these situations are referred to as obstacles. They should be 

systematically identified, assessed, and mitigated against. This may lead to goal model elaboration. If 

goals are not threatened by any obstacles, the system architect can skip this step and proceed to Step 2 
(detailed in Section 3.2). An iterative identify-assess-resolve cycle for the obstacle analysis is required 

as follows (steps 1.2.1 to 1.2.3).  

Step 1.2.1. Identifying data analytics adoption obstacles. Obstacles may originate from intrinsic 

characteristics of data analytics platforms or their operations. The system architect uses domain 

information to iteratively refine the goal model identifying obstacles and any sub-obstacles (Letier, 
2001). In the scenario, the candidate data store technologies for the operationalisation of goal 

g7.Achieve [Increased unstructured data storage capacity] may obstruct the goal g4.Achieve 

[Maintained interoperability] (Figure 4). The reason is that existing ETL’s databases are relational. 

These are not compatible with no-SQL schema-free data storages such as a17.MongoDB, 
a18.Accumulo, a19.HBase, a20.Cloudant, and a21.BigTable. Converting thousands of line of 

complex T-SQL codes defined in ETL to this type of big data storages is not a simple task. In other 

words, the alternative technologies raise the obstacle o1.Incompatibility of ETL and big data storages. 
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This obstacle is further decomposed into sub-obstacles o1.1.Incompatible datatypes, 

o.1.2.Incompatible data operations, and o.1.3.Incompatible APIs. Data analytics platforms leverage 
cloud computing servers which are often vulnerable to issues such as bandwidth capacity bottleneck, 

performance variability or scaling latency, and security (Agrawal, Das, & El Abbadi, 2011). Given 

that, the partial goal model in Figure 5 represents probable obstacles against the goals that are 

identified by the system architect. 

 
Figure 4. Obstacles to goal Achieve [Maintained interoperability with other big data platforms] in the case of 

using big data store technologies  

Step 1.2.2. Assessing data analytics adoption obstacles. The identified obstacles from Step 1.2.1 are 
assessed to generate a new set of architectural requirements. The criticality of the obstacles is judged 
based on their impact on the goals. Qualitative and quantitative techniques can be employed to 

perform this step. However, our approach employs a common qualitative technique, Risk Analysis 

Matrix (Franklin, 1996). This technique specifies the likelihood of an obstacle using a qualitative 

scale ranging from Almost Certain, Likely, Possible, Unlikely, and Rare. It also indicates the obstacle 
consequence as Insignificant, Minor, Moderate, Major, and Catastrophic. The risk of an obstacle is 

defined as the product of its occurrence and severity, i.e. Risk = Likelihood × Consequences. 

Estimating this risk relies on the availability of domain information sources such as statistics from 
manufacturing systems, existing accounts on data analytics platforms, or the system architect’s 

judgement. The system architect may conduct a voting technique involving all stakeholders to assess 

the probability occurrence and severity of obstacles. A risk matrix highlights the risk zone as shown in 
Table 2. For instance, the risk of an obstacle might be considered as moderate (M), however, it is still 

tolerable. Whilst a High and Extreme obstacle may necessitate a countermeasure. The values 

represented in Table 2 are exemplar values.      
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Figure 5. Identified obstacles to goals  

 

Table 2. Risk matrix for obstacle assessment  

 Consequence severity 

Likelihood Insignificant Minor Moderate Major Catastrophic 

Almost Certain H H E E V 

Likely M H H E V 

Possible L M H E E 

Unlikely L L M H E 

Rare L L M H H 

V: Very extreme risk, E: Extreme risk; H: High risk; M: Moderate risk; L: Low risk 

Step 1.2.3 Resolving data analytics adoption obstacles. Obstacles deemed with severe risk should 
be resolved. This requires generating new architectural decision alternatives and selecting suitable 

alternatives amongst them. We employ eight generic and platform independent KAOS’s obstacle 
resolution tactics: goal substitution, agent substitution, obstacle prevention, goal weakening, obstacle 

reduction, goal restoration, obstacle mitigation, and do-nothing (Letier & Van Lamsweerde, 2004; 

van Lamsweerde & Letier, 2000). These are operators on a goal model to refine it to new or existing 
modified goals, assumptions, and responsibility assignments. They are defined as follows.   

(i) Substitute goal defines a new alternative goal which is still contributable by data analytics 
platforms in a way that the obstacle is no longer present. Consider the performance goal g1.Achieve 

[Processed social media weekly under expected time] obstructed by the obstacle Social media size 

exceeds processing speed time. An instance of accommodating this tactic is to collect and process data 
daily instead of weekly based.  

(ii) Substitute data analytics platform removes the occurrence of an obstacle by replacing the 
responsibility for an obstructed goal to a new platform. For example, the obstacle o5.Sensor data 

processing exceeds expected time can be removed via transferring the assigned goal from an 

overloaded server to another server with lower workload. 

(iii) Prevent obstacle introduces new assertions to the goal model preventing the obstacle occurrence 

via applying some factors or doing things in particular way. For instance, consider the security 
obstacle o8.Malicious attack by tenants obstructing the goal g6.Achieve [Maintained security of 

sensor data] (Figure 6). An application of this tactic is to encrypt the batch data collected from 

sensors prior storing them on big data storages. As such, batch data cannot be read or processed by 
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malicious tenants that are in performing on the same cloud servers. The system architect considers 

three architectural decision alternatives o31.Obfuscate data, o30.Redact data, and o32.Mask data. 
Furthermore, to prevent the occurrence of obstacles o1.1.Incompatible datatypes and 

o.1.2.Incompatible data operations, architecture decisions a25.Adapt data and a26.Develop adaptor 

are considered. It should be noted that employing architecture decision alternatives may cause another 

set of obstacles against goals. For instance, on the one hand the system architect considers a25.Adapt 
data and a26.Develop adaptor. On the other hand, these alternatives may negatively influence the 

goal g2.Achieve [Processed sensor data under expected time]. These dependencies are modelled in 

Step 2 of the approach described in Section 3.2.  

(iv) Reduce obstacle introduces agents such as human or servers to behave in certain ways to lessen 

the occurrence likelihood of an obstacle. Consider the obstacle o5.Sensor data exceeds expected 
processing time to the goal g2.Achieve [Processed sensor data under expected time]. An example of 

applying this tactic is to reduce server workload by prioritising upcoming data that are sent by sensors 

installed in the product line. The data from highly important sensors that are collected and processed 
take precedence over those sensors providing supplementary data or do not need a real-time 

processing. In addition, to reduce the likelihood occurrence of the root obstacle o4.Performance 

variability of big data platform, the architectural decision is a23.Refine network topology. Finally, as 
mentioned earlier, data analytics platforms may be vulnerable to issues such as server latency as 

represented by the obstacle o3.Big data analytic platform latency (Figure 6). To reduce this, the 

architectural decision a22.Acquire more resources (e.g. virtual machines) is chosen.  

(v) Weaken goal suggests degrading the goal definition to make it more liberal and relaxed in a way 

that the obstruction no longer occurs. This can be applied in two ways: 

-relaxing assumptions of an obstructed goal so that its original form does not needs to be 

satisfied in all situations. The goal g2.Achieve [Processed sensor data under expected time] 
obstructed by o5.Sensor data size exceeds expected processing time is modified to one that the 

goal is not required to be satisfied in all situations, particularly when data analytics server is not 

in its fully capacity.  

-relaxing the required level of goal satisfaction condition, meaning that there is no further need 

to full satisfaction. One example of applying this tactic to goal g2.Achieve [Reduced processing 
social media weekly under expected time] is to soften its definition to maximum acceptable time 

to be achieved by increasing the time/date, i.e. quality variable processedTime.  

(vi) Restore goal and mitigate obstacle are two tactics usable when the avoidance of all obstacles is 

too costly and tolerating or mitigating consequences of obstacles becomes more practical. In the goal 

restoration tactic, the system architect adds a new restoration goal that prescribes restoration 
mechanisms for situations when the obstacle impedes the goal. For the obstacle mitigation, the system 

architect adds a new goal to attenuate the consequences of the obstacle actually occurring. The tactic 

intends to achieve a weaker satisfaction of an obstructed goal. In the discussed scenario, the goal 

g3.Achieve [Improved availability] is obstructed by the obstacle o6.Cloud transient fault as data 
analytics platforms leveraging cloud might be temporarily unavailable due to reasons such as network 

traffic or server workload. An implementation technique to mitigate this obstacle is a27.Retry 

connection in the system architecture assuring a weaker version of the goal by specifying next 
retrying to connect to the server when transient faults occur. Figure 6 shows the goal model after 

introducing resolution tactics.  

(vii) Do nothing accepts the risk of an obstacle occurrence. 
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Figure 6. Decision alternatives for handling obstacles 

The generated architectural decision alternatives either operationalise goals or tackle obstacles. They 

form a solution space of different architectures that can be used to integrate ETL with data analytics 

platforms. Selecting a suitable solution architecture is a challenging task which is systematically dealt 

in Step 2 of the proposed approach.  

As the last note for this step, we believe the scale of an architecture analysis scenario determines 
whether adopting normative models, like the one presented in this research, necessitates. While an ad-

hoc approach for requirement analysis and possible solution architecture is applicable for small-scale 

projects with a limited number of goals/risks and stakeholder participant, a systematic and 

communicative presentation layers for specifying notations and model refinements is useful for large-
scale projects with multiple goals, potential obstacles, and possible resolution tactics.  

3.2 Step 2. Exploring uncertainties in big data solution architecture 
This step explores candidate solution architecture. The variables that are used in this step presented in 
Table 3. 

Table 3. Symbols used in exploring uncertainty for step 2 

Symbols Definition 

g A goal 

G Set of goals 

a An alternative to operationalise/implement an architectural decision 

A Set of implementation alternatives to operationalise an architectural decision  

d A architectural decision  

D Set of architectural decisions  

   
If an decision alternative is selected then  
   is 1, otherwise it is 0 

     A candidate solution architecture including its architectural decision alternatives 

AS All possible solution architectures based on all architectural decision alternatives 

        Contribution (positive/negative) of an alternative a on a goal g 
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          The total value of a solution architecture with respect to a specific goal g 

   The weight of the goal g from stakeholders’ point of view 

     A threshold to goal g  

      A constraint for the cost of solution architecture 

     A goal g which is expected to be maximised 

     A goal g which is expected to be minimised 

       Fuzzy cost of the alternative a 

                Ranking index of solution architecture i with total value     

Step 2.1. Representing uncertain impact of decision alternatives on goals. We define variable D as 
a set of architectural decisions. Recall from Step 3.1, the choice for the operationalisation of goal 

g7.Achieve [Increased unstructured data storage capacity] through different big data stores is an 

example of such a decision (Figure 6). Each architectural decision d   D, itself, may have alternatives 

for operationalisation, which is specified using set   . For instance, the decision on big data storage 

has five alternatives, namely: a17.MongoDB, a18.Accumulo, a19.HBase, a20.Cloudant, and 
a21.BigTable (Figure 6). As mentioned in Step 3.1, an architectural decision d and its implementation 

alternatives    can be derived using resolution tactics. In the scenario, the architectural decision 

prevent obstacle is used to handle the obstacle o8.Malicious attack by tenants. The system architect 

assumes three different implementation alternatives a30.Redact data, a31.Obfuscate, and a32.Mask 
data for this architectural decision. This set of implementation alternatives for the decision prevent 

obstacle is defined as A =        . The solution space (SS), is a set of all possible alternatives of 

architectural decisions and their associated implementation techniques. Thus, SA is represented as 
follows:  

                  ∊        ∊       ∊                ∊        ∊          ∊               ∊             

Therefore, with respect to Figure 6, the size of the solution space in the current scenario is 

5*5*4*4*3*3*1*1*3 = 10800 potential alternative architectural solutions. 

For an implementation alternative a   A and goal g   G, we define         which specifies the 

contribution/impact of the alternative a on the goal g. The symbol   indicates that the contribution is 

a fuzzy number. To represent a fuzzy impact, our approaches uses Triangular fuzzy numbers (TFNs) 

(Pedrycz, 1994). TFNs are widely used to represent the approximate value range of linguistic 
variables. A triangular fuzzy number is represented by A = (w, y, z) where the parameters w, y, and z, 

respectively, show the smallest possible value, the most promising value, and the largest possible 

value describing a fuzzy event. TFN linear membership function  A is defined by: 

       

 
 
 

 
 
   

   
           

   

   
             

                         

  

We divide the goal satisfaction into five levels: Very low (VL), Low (L), Medium (M), High (H), and 
Very high (VH) as shown in Table 4. The numerical range for the goal value and the membership 

function are respectively presented in Table 5 and Figure 7. 
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Table 4 Linguistic variables used to show the impact of operationalisation alternatives on quality goals 

Level Satisfaction value 

Very low (VL) 0 and less than 1  

Low (L) Between 0 and 2  

Medium (M) Between 1 and 3  

High (H) Between 2 and 4  

Very high (VH) 3 and more than 3  

 

Figure 7. Impact of an implementation alternative on a goal 

 

Table 5. Triangular membership functions for the linguistic variables 

         

   

   
           

           
                     

         
       

 
 
 

 
 
   

   
           

   

   
             

                         

  

 

       

 
 
 

 
 
   

   
           

   

   
             

                         

  

 

                       

   

   
           

   

   
            

                         

  

 

         

   

   
           

                         
                         

  

 

  

For example, given the impact of implementation alternative a8.Python NLTK, i.e. a8, on the goal 
g2.Achieve [Processed sensor data under expected time], i.e. g2, is crisp number 3, the fuzzy 

representation for the goal satisfaction is: 

                                                                                           

Step 2.2 Calculating solution architecture value. This is determined at two levels. Firstly, the fuzzy 

aggregation of selected implementation alternatives’ contributions to a specific goal g in a given 

architecture arch   SS is defined through equation (i): 

                                (i) 

Note that in (i), for each implementation alternative a   A, we consider a binary decision variable   , 

indicating whether an alternative is chosen, i.e.   =1, or not chosen, i.e.   =0. To calculate equation 
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(i), we utilise Mamdani fuzzy inference technique (Mamdani, 1974). For example, given the impact of 

selected 32 operationalisation alternatives on g2.Achieve [Processed sensor data under expected 

time], the value of a solution architecture in terms of g2 is computed using the fuzzy rules presented 

in Table 6.   

Table 6. An excerpt of fuzzy rules for determining the obtained value for a goal 

g2.Achieve [Processed sensor data under expected time]in a given solution 

architecture 

 a1  a2  a3  a4  … a32       

If VH and VH and VH and  and … H then H 

If VH and VH and VH and  and … VH then VH 

If VH and VH and VH and  and … VH then VH 

If VH and VH and VH and  and … VH then VH 

If VH and VH and VH and  and … VH then VH 

… … … … … … … … … … … … … 

The same fuzzy rules are applied for other goals g2 to g7. Next, the total value of a given solution 

architecture arch   SS is the aggregation of attained fuzzy values for all goals. This is defined via 

equation (ii):   

         =                      (ii) 

Again fuzzy rules are defined to determine the total value of a solution architecture based on the fuzzy 

values of goals as shown in Table 7. 

Table 7. An excerpt of fuzzy rules for determining the value of a given solution architecture 

 
g1  g2  g3  g4  g5  g6  g7            

If VH and VH and VH and VH and VH and VH and H then H 

If VH and VH and VH and VH and VH and VH and VH then VH 

If VH and VH and VH and VH and VH and VH and VH then VH 

If VH and VH and VH and VH and VH and VH and VH then VH 

If VH and VH and VH and VH and VH and VH and VH then VH 

… … … … … … … … … … … … … … … … 

The same fuzzy rules are applied for other candidate solution architecture. Our aim is to find an arch 

  SS with highest value of         . 

Note that in tables 6 and 7, the number of fuzzy rules can be dramatically increased if the there are 

many goals, architectural decisions, and operationalisation alternatives. Given the fact that 
stakeholders may have different emphasises on the quality goals, some fuzzy rules can be removed 

from tables 6 and 7. In doing so, for each goal g   G, we assign a numeric value between      [1..10] 

that shows the degree of priority of the goal in view of stakeholders. As such, for goals with low 

priority, there is no need to write fuzzy rules. 

Step 2.3. Specifying solution architecture constraints. A goal may have a certain constraint that has 

to be satisfied, e.g. the constraint for g2.Achieve [Processed sensor data under expected time] is 

expected to be less than 40 millisecond. A constraint for a goal g, represented by      , defined 

through equation (iii): 

                          (iii) 

                           

In accepting/rejecting a solution architecture, its cost is also an important constraint, which is shown 

using      and defined using equation (iv): 

                           (iv) 

       shows the fuzzy cost of the decision alternative a. Constraints on goals and cost are defined 

regarding project context in which they are applied. 
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Step 2.4. Comparing solution architectures. Given the obtained values for            we can 

compare solution architectures. Between two architectures       and            ,         is more 

desirable if:                        .This is a fuzzy comparison of two fuzzy ranges of possible 

values for two solution architectures resulting in the one with a better range. For this, we employ 

Chen’s method (S.-H. Chen, 1985) where it defines the concepts of fuzzy maximising and minimising 

sets expressed using equations (v) and (vi): 

       =                   
      (v)        

       =                   
          (vi)  

In equations (v) and (vi),      = sup      
      and      = inf      

      and k > 0 are real 

numbers. Using these two sets, left and right utility of a fuzzy number    ,  
    architecture solution, is 

defined as:  

L (          = sup min                         x    

R (          ) = sup min                        x    

Given that, the ranking index for      solution architecture is obtained using the equation (vii): 

                = ½ (R (          ) + 1 - L (          )   (vii) 

Step 2.5. Finding the optimum solution architecture. Finding an architecture optimising quality 

goals is a typical multi-objective optimisation problem under some constraints (H.-J. Zimmermann, 
1978). A solution architecture is considered optimal if it maximises quality goals and satisfies 

imposed constraints which is, in fact, defined as a linear programming problem through equation 

(viii):  

Maximize           subject to the constraint equations (iii) and (iv)       (viii) 

(viii) maximises the cumulative value of architectures by selecting a combination of alternatives 
resulting in the highest architecture value under equations (iii) and (iv) to avoid constraint violation.  

4 Application exemplar 
The scenario of integrating ETL with data analytics platforms (Section 2.1) is used to examine the 
proposed approach. Tables 8 shows the goals for reengineering that are elaborated into architectural 

decisions, operationalisation alternatives. They collectively form a space of possible solution 

architectures for exploration. 
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 Table 8. Goals, architectural decisions, and operationalisation alternatives 

Goal Architectural decision Operationalisation alternative 

g1. Achieve [Processed social media weekly under expected time] 

d0. Substitute goal Not applicable (the goal definition is refined) 

d1. Social media data processing a8.Python NLTK 

a6.Gate 

a7.Lexalytics Sentiment Toolkit 

a5.AeroText 

d2.Scheduler a1.Fair scheduler 

a2.Capacity scheduler 

a3.Delay scheduler 

a4.Matchmaking scheduler 

g2. Achieve [Processed sensor data under expected time] 

d3. Real-time stream processing 

a9.SQLStream 

a10.Storm 

a11.StreamCloud 

d6. Reduce obstacle data analytic platform latency a22.Acquire more resources 

d7. Reduce obstacle Performance variability of data analytics 
platform 

a23.Refine network topology 

d8. Substitute data analytics platform Not applicable 

d9. Reduce obstacle sensor data exceeds expected processing time a24.Prioritizing sensor data processing  

g3. Achieve [Improved availability] 

d10. Restore goal for obstacle cloud transient fault a27.Retry connection 

d11. Restore goal  a29.Eventual Consistency 

a28.Weak Consistency 

a30.Timeline Consistency 

g4. Achieve [Maintained interoperability with other big data platforms] 
d12. Prevent obstacle a25.Adapt data 

d13.Prevent obstacle a26.Develop adaptor 

g5. Achieve [Improved data visualisation] d4. Data visualisation 

a16.Google chart 

a15.Tableau 
a14.Data-driven  
a13.document 
a12.Fusion chart 

g6. Achieve [Maintained data security on big data platform] d14.Prevent obstacle a30.Redact data 

a32.Mask data 

a31.Obfuscate data 

g7. Achieve [Increased unstructured data storage capacity] d5. Big data storage 

a17.MongoDB 

a18.Accumulo 

a19.HBase 

a20.Cloudant 

a21.BigTable 
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Through collaboration with the stakeholders, the system architect specifies the impact of 

operationalisation alternatives on the goals. She used linguistic variables shown in Table 4 and 
triangular fuzzy membership functions defined in Step 2 (Section 3.2). The complexity of selecting 

decision alternatives to generate a proper solution architecture in the goal model (Figure 6) is revealed 

when the system architect is faced with a large number of goals and decision alternatives. The 

scenario follows 7 goals that are expected to be satisfied. Table 9 shows 32 different 
operationalisation alternatives in total where for each decision only one alternative can be selected. 

The numbers in Table 9 are a part of the exemplar of stakeholders reflecting on the impact of decision 

alternatives on the achievement of the goals. The exemplar is elaborated from (Lin et al., 2016). As 
mentioned earlier, there are 10800 possible architectural solutions, each of which represents a trade-

off among the goals. The numbers are in essence subjective quality measures of the various 

architectural decisions and are used to illustrate the overall process. 

Predicting the impact of potential solution architectures on the goals and finding which portion of the 

solution space is valid can be a challenging exercise, in particular at the early stage of the data 
analytics enablement process where the real impact of decision alternatives on quality goals is 

uncertain. Using the second step of the approach (Section 3.2), the system architect can explore the 

solution space to find a new suitable architecture for ETL. 
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Table 9. Impact of operationalisation alternatives on system quality goals (NA: Not applicable) 

 a) The fuzzy expression of decision 

alternatives’ impact on goals 

b) Simple crisp expression of decision 

alternatives’ impact on goals (values 

between 1 and 5) 

  Goal Goal 

Decision 
Operationalisation 

alternative 

g1 g2 g3 g4 g5 g6  g1 g2 g3 g4 g5 g6 

d0.Substiute goal NA NA NA NA NA NA NA  NA NA NA NA NA NA 

d1. Social media data processing 

a8.Python NLTK L VL H L L H  2.7 1.8 4.3 2.4 2.2 4 

a6.Gate M VL M M M VH  3.5 1.3 3.7 3.9 3.6 5 

a7.Lexalytics Sentiment 

Toolkit 
M M L M L L 

 
3.3 3.8 2.8 3.2 2.8 2 

a5.AeroText VH L H L H L  5.9 2.4 4.4 2.1 4.1 2 

d2.Scheduler 

a1.Fair scheduler H M VH M VH L  4.2 3.9 5 3.6 5 2 

a2.Capacity scheduler  VL VL M M L L  1.3 1.2 3.2 3.4 2.8 2 

a3.Delay scheduler M VL M M VH M  3.6 1.8 3.7 3.9 5 3 

a4.Matchmaking scheduler M H H M H L  3.2 4.3 4.3 3.3 4.3 2 

d3.Real-time stream processing 

a9.SQLStream VL H M H L VH  1.8 4.6 3.9 4.1 2.1 5 

a10.Storm M VL M H L VL  3.7 1.3 3.7 4.3 2.5 1 

a11.StreamCloud M M VH L M L  3.3 3.6 5 2.7 3.2 2 

d4. Data visualisation 

a16.Google chart  L M H M VH VL  2.2 3.1 4.2 3.6 5.2 1.7 

a15.Tableau L M H VH M VL  2.3 3.7 4.6 5 3.2 1.5 

a14.Data-driven M M M VH M VL  3.2 3.8 3.7 5 3.3 1.9 

a13.Document  H M M M H H  4.1 3.1 3.2 3.6 4.5 4.9 

a12.Fusion chart VL H M M L VH  1.7 4.3 3.8 4.3 2.4 5 

d5. Big data store 

a17.MongoDB L VL M H VH VH  2.1 1.7 3.3 4.5 5.4 5 

a18.Accumulo L L M M VH H  2.6 2.8 3.3 3.3 5 4.2 

a19.HBase H L H M VH VH  5 2.6 4.3 3.2 5 5 

a20.Cloudant M H M VL M VL  3.9 4.6 3.7 1.6 3.2 1.9 

a21.BigTable M M M H H VH  3.4 3.7 3.6 4.4 4.7 5 

d6. Reduce obstacle big data analytic platform 

latency 

a22.Acquire more resources  
M M M M VH H 

 
3.8 3.8 3.2 3.1 5 4 

d7. Reduce obstacle performance variability of big 

data platform 

a23.Refine network topology 
VL H M M L VH 

 
1.7 4.3 3.8 4.3 2.4 5 

d8 – d10 NA NA NA NA NA NA NA  NA NA NA NA NA NA 

d11. Restore goal  a29.Eventual consistency VH M L H VH H  5 3.3 1.7 4.7 5 4 
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a28.Weak consistency VL M M M M M  1.3 3.6 3.9 3.9 3.2 3 

a30.Timeline consistency M VH M M VH H  3.8 5 3.2 3.4 5 4 

d12. Prevent obstacle a25.Adapt data VL M M H H M  1.4 3.9 3.5 4.5 4.8 3 

d13. Prevent obstacle a26.Develop adaptor M L VL M VL M  3.6 2.2 1.6 3.6 1.4 3 

d14. Prevent obstacle 

a30.Redact data M VL L M M M  3.2 1.8 2.4 3.9 3.6 3 

a32.Mask data  M M M M VH H  3.8 3.8 3.2 3.1 5 4 

a31.Obfuscate data VL H L M M H  1.1 4.2 2.8 3.9 3.6 4 

              



  

20 
 

Given that the goal weights are assumed to be equal by the stakeholders, the value of each solution 

architecture is calculated using equation (ii) and fuzzy rules in Table 6. One of the constraints 
imposed by the stakeholders was to keep the cost of a solution architecture implementation under 

$30000, which is represented using equation (iv). This constraint ruled out 2531 solution architectures 

out of 10800. Thus, 8269 solution architectures were left. Following further discussions with the 

stakeholders, it was agreed to relax the cost constraint to $36000. Subsequently, this reduced the 
number of rejected architectures to get a better chance for solution exploration. In other words, 564 

solution architectures were added, i.e. 8833 solutions in total. As mentioned in Section 3.2, the second 

constraint imposed by ETL users was to keep the data stream processing coming from sensors below 
40 milliseconds. This allows the system architect to assess the system performance constraint on the 

choice of solution architectures. Relaxing this constraint to 47 milliseconds yielded in increasing the 

number of acceptable candidate architectures. With this change, 185 solution architectures were 
further added to the solution space. That is, 9018 valid solutions remained for further analysis. Table 

10 shows the top 10 solution architectures ranked using equation (vii) and the selected architectural 

decision alternatives for all those. Recall from Step 2.4 (Section 3.2), among two solution 

architectures the one is better if it has a greater fuzzy value. The best solution architecture ranked as 
the first one has the best combination of decision alternatives in view of trade-off among goals 

compared to the majority of candidates. That is, it has the best combination of fuzzy values. 

Nevertheless, it is still likely that the architect may select a solution architecture that is slightly worse 
than the optimal one due to some reasons (e.g. preference to a particular data analytics platform in the 

marketplace. Figure 8 shows the final goal model based on the selected decision alternatives for the 

first ranked solution architecture. 

 
Figure 8. The first solution architecture including the best combination of implementation alternatives 
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 Table 10. Ranked solution architectures with respect to the decision alternatives based on fuzzy-logic and crisp approaches 

 (a) Fuzzy approach (b) Crisp approach 

 Decision alternative Decision alternative 
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Interestingly, the system architect also compared the results generated through our approach and the 

simple crisp approach (Table 9-b). Herein, the simple crisp approach refers to an approach that 
ignores the uncertainty in the impact of decision alternatives on quality goals. Stakeholders used crisp 

values to represent the impact of decision alternatives on the goals. This difference highlights the 

contribution of our approach compared to the crisp one in the selection of a proper solution 

architecture. The simple crisp approach for the calculation the value of a candidate solution 
architecture would select 125

th
 solution architecture as the optimal solution. This is in contrast to our 

approach in which 125
th

 approach is ranked as 46
th
 suitable candidate architecture. In other words, 

125
th
 has a large negative consequence of uncertainty, which is ignored by the crisp approach. The 

difference between 1th and 125th solution architectures can be also recognized through specific 

decision alternatives selected for each architecture. Table 10 represents the selected decision 

alternatives for the first top ten solution architectures based on two approaches. For example, 
regarding the information in this right and left sides of the table to find selected decision alternatives, 

it is observable that our approach chose a17.MongoDB for d5.Big data store for the first ranked 

solution architecture whilst the crisp approach chose a18.Accumulo.  

5 Related work 
There is a paucity of research focus on the early goal-obstacle analysis and architecture decisions in 

the scope of integrating manufacturing systems with data analytics platforms. The literature most 

related is thus subsumed under three research streams: (i) traditional system re-engineering, (ii) 
reengineering to cloud platforms, and (iii) reengineering to data analytics platforms. Hence, we 

discuss how our approach presented is positioned in relation to notable research in each stream. 

5.1 Traditional approaches for legacy system reengineering 
Early decision making on selecting solution architectural under uncertainty have been already 

discussed in the Introduction section. One of the earliest work is by Svahnberg et al. where they 

provide a multi-criteria decision method using Analytic Hierarchy Process (AHP) supporting 

comparison of different software architecture candidates for software quality attributes (Svahnberg, 
Wohlin, Lundberg, & Mattsson, 2003). In its process, two sets of vectors of different candidate 

architectures with respect to different quality attributes and vice versa are created and refined. The 

variance of uncertainty is also calculated in each candidate architecture. The sets are used as input for 
a consensus-based decision making process to identify underlying reasons for disagreements amongst 

stakeholders. Our proposed equations in this work are inspired by GuideArch approach (Esfahani, 

Malek, & Razavi, 2013). It presents a fuzzy-based exploration of the architectural solution space 
under uncertainty aiding architecture in making architecture selection. GuideArch is later extended in 

(Letier, Stefan, & Barr, 2014) where authors model uncertainty about parameters’ values as 

probability distributions rather than fuzzy values and also assess to extent additional information 

about uncertain parameters can reduce risks. All of these works including others e.g. (Al-Naeem, 
Gorton, Babar, Rabhi, & Benatallah, 2005) do not provide a systematic support for top-down goal-

obstacle analysis towards generating possible decision architecture alternatives in view of system 

quality goals. Our approach can be used as a complementary step to generate different alternatives to 
be used as an input for this group of studies to identify suitable solution architecture.   

5.2 Legacy systems and cloud computing  
An impetus to look at this track of research is the popularity of hosting data solution architectures on 
the cloud computing platforms (Agrawal et al., 2011). Khajeh‐ Hosseini et al. (Khajeh‐ Hosseini, 

Greenwood, Smith, & Sommerville, 2012) define a cloud adoption conceptual framework to support 

decision makers in identifying uncertainties. They focus particularly on the cost of deploying options 

of legacy systems in cloud platforms, which may undergo network latency and service price. Coth 
studies limit their view to the cost of legacy system reengineering. Similarly, Umar et al. (Umar & 

Zordan, 2009) defines decision model for reengineering legacy systems to service-oriented 

architecture to make trade-off between integration versus migration in terms of cost. On the contrary, 
we do not confine our view to the reengineering cost; rather incorporate other system quality goals 
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that might be important for stakeholders along with elaborating them to potential obstacles and 

operationalisation alternatives. The approach in (Zardari, Bahsoon, & Ekárt, 2014) uses goal-obstacle 
analysis to represent risks encountered in using cloud services and mitigating strategies. We extended 

Zardari’s goal-oriented approach by taking into account the risk of uncertainty impact of decision 

alternatives on stakeholders’ goals using fuzzy math. Furthermore, previous cloud migration literature 

(Alonso, Orue-Echevarria, Escalante, Gorronogoitia, & Presenza, 2013), (Menzel, Schönherr, & Tai, 
2013), (Menzel & Ranjan, 2012), and (O. Zimmermann, 2017) suffer providing a meticulous process 

for an early goal-obstacle exploration and architecture decisions with considering uncertainty issue at 

the same time. 

5.3 Legacy systems and big data 

At the organisational level, some studies aimed at identifying and analysing business goals for data 

analytics adoption. For example, Park emphasizes the importance of alignment between 
organisational business processes and big data sides towards making better business decisions to 

adopt data analytics platforms (Park, 2017). She defines a systematic process to ensure traceability 

among high-level big data adoption goals and big data solutions in view of relevance (utility of a data 

element), comprehensiveness (preventing omissions of potentially important data), and prioritization 
(required effort in obtaining resources for the data). In another work, Supakkul’s approach discusses 

insights gained from adopting big data to improve business goals (Supakkul, Zhao, & Chung, 2016). 

Their approach generates two types of resulting insight through goal reasoning and decision-making: 
(i) descriptive insights of current state of business e.g. the customer retention rate and (ii) predictive 

insights e.g. customers who are likely to defect. GOBIA (Goal-Oriented Business Intelligence 

Architecture) is a goal-oriented approach for transforming business goals into a customized big data 
architecture (Fekete, 2016). GOBIA produces a layered-based conceptual solution architecture, which 

can be realized by selecting an appropriate mix of data analytics platforms, though it leaves 

technology selection to implementation phase. The main difference between our approach and the 

above studies is that we narrow our focus on legacy systems as the unit of analysis and explore 
solution architectures to integrate them with data analytics platforms.  

On the other hand, some work deal with integrating existing legacy systems with data analytics 

platforms. This genre of literature is deemed closest to our work. A key feature of existing works is 

their motivations in making legacy systems big data enablement. Some studies develop intelligent 

techniques such as clustering (Fahad et al., 2014), deep learning (Najafabadi et al., 2015), text mining 
(Xiang, Schwartz, Gerdes, & Uysal, 2015), and machine learning algorithms (Scott et al., 2016) on 

big data analytic platforms to mine hiding knowledge in given legacy system data. Once chosen, such 

techniques can supply inputs to the second step of our approach as decision alternatives for the goal 
operationalisation or obstacle resolution (see third column of Table 8 for example) where their impact 

on quality goals is investigated for the optimum selection of solution architecture.    

Jha et al. define both forward and backward reengineering activities through which legacy system 

functionalities are reused, and their data can be accessed and processed by data analytics platforms (S. 

Jha et al., 2014). They suggest a framework to construct an architectural view of big data solution 
including business, data, and application architecture (M. Jha, Jha, & O'Brien, 2015). The need for 

this is highlighted by (Varkhedi, Thati, Nanda, & Alper, 2014) discussing challenges of transferring 

legacy system data, e.g. mainframes, to a platform configured for big data processing in the same or a 

separate logical partition on the legacy systems. (Mathew & Pillai, 2015) suggest a three layer-based 
architecture for handling heterogeneities between legacy systems and data analytics platforms. 

Govindarajan’s work, as a part of Cloud Collaborative Manufacturing Networks (CCMN) project, 

resolves integrating supply chain manufacturing system and logistic assets with cloud services by 
developing data adapters for collecting and transforming data from heterogeneous sources to 

appropriate format accepted by legacy systems, i.e. XML (Govindarajan et al., 2016). Similarly, 

Givehchi et al. provide a cross-layer architecture enabling interoperability between legacy industrial 
devices (e.g. I/O devices and sensors) and data analytics platforms (Givehchi, Landsdorf, Simoens, & 

Colombo, 2017). They apply an information model in order to retain legacy device codes unchanged.   

While above approaches acknowledge challenges in legacy system big data enablement scenarios, 

they keep the description of their analysis process at a high-level that does not represent ‘actionable 



  

24 
 

intelligence’ towards big data enablement. Nor do they address the uncertainty issue. We have 

prescribed a more detailed approach for analysing goals in moving manufacturing systems to data 
analytics platforms, identifying, assessing, and generating resolution tactics in handling potential risks 

(i.e. step 1 of the approach). Furthermore, we address selecting, prioritization, and ranking resolution 

tactics in identifying proper solution big data solution architecture under uncertainty (i.e. step 2 of the 

approach). We have not found other studies that outline a systematic approach on early requirements 
and big data architecture decisions. 

Giret et al. state that the main reason of complexity for developing service-oriented manufacturing 

systems is the number of heterogeneous technologies and execution environments (Giret, Garcia, & 

Botti, 2016). They combine multi-agent system design with service-oriented architectures for the 

development of intelligent automation control and execution of manufacturing systems. Giret later 
proposes a process model, named Go-green, including activities, guidelines, and tools to design and 

develop sustainable manufacturing system architectures (Giret, Trentesaux, Salido, Garcia, & Adam, 

2017). We believe that the second step of our approach can augment the design phase of Giret’ work 
to fill its gap in addressing early architecture design of big data enabled manufacturing systems under 

the uncertainty.  

6 Conclusion, research limitations, and further work  
Legacy manufacturing systems are expected to be able to utilize data analytics platforms for advanced 

information analytics. A clear understanding of goals and risks against data analytics adoption and 

how they relate to manufacturing systems is particularly crucial. As a business risk management 

strategy, a systematic architecture design to enable existing manufacturing systems to use data 
analytics platforms is an important contribution. Our goal-obstacle analysis which takes into account 

imperfect information and unavoidable uncertainties is quite intuitive to follow. In particular, it 

provides an early stage analysis, which is taken place before delving into technical aspects of 
implementing a big data analytics architecture. To the best of our knowledge, such a harness is not 

available in the literature. 

Our approach applies goal reasoning and fuzzy-based logic for analysing suitability of big data 

solution architecture for manufacturing systems. The approach starts with identifying high-level 

architectural goals, architectural decision alternatives to realize these goals, generating probable 
obstacles, and analysing uncertainties in selecting solution architectures. The output of the approach 

gives the system architect a complete set of architectural requirements to be incorporated into the 

implementation stage of data analytics architecture implementation to make appropriate trade-offs 
based on, for instance, cost, security, or performance goals. The application of the approach was also 

demonstrated the in a scenario of moving ETL to a set of data analytics platforms. Apart from 

manufacturing and big data settings, due to the genericity of the approach, it can be used in other 

scenarios of technology adoption when the system architect is interested in evaluating possible 
solution architecture alternatives.  

Our model describes the various options (resolutions) but it does not mandate any. The choice of the 

resolutions is ultimately determined by whether on the values given to the goals. Hence, strictly 

speaking, it is not normative per se. However, the scale of complexity involved in the architecture 

analysis may well lead the architects to rely on the advice produced. Indeed, this is required as we 
argue. In a lower complexity scenario, the proposed approach may be too intrusive and the system 

architect may favour an ad-hoc approach for architectural requirements and possible solution 

architecture. It is important to keep in mind that the work targets settings where systematicity is 
desirable and actually sought by the system architects. Hence, whilst our approach is applicable for 

small-scale projects with a limited number of goals/risks and stakeholders, it is more needed for large-

scale projects where there are multiple goals, potential obstacles, and possible resolution tactics. 

Indeed, the approach targets settings where a systematic and communicative approach specifying 
notations and representation and model refinement mechanisms is useful.  

Although we have shown the applicability of our approach, further validation is required to account 

for the variety in scenarios of integrating manufacturing systems with data analytics platforms. There 
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might be some other ways to satisfy goals or some hidden factors that hinder certain goal achievement 

but are not defined in the approach’s steps. Another important way for the improvement of the 
approach is to provide further automatic support. The size of the goal model in Step 1 and the number 

of required computations in Step 2 can limit the usability of the approach without further tool support. 

We plan to provide a tool support that facilitates using the approach when working with large solution 

architecture space. 
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Highlights 

 Integrating manufacturing systems with big data analytics is challenging. 

 We address goal reasoning in adopting big data analytics platforms. 

 We tackle uncertainties in designing big data solution architecture.  

 The key contribution is our systematic goal-oriented fuzzy-based approach. 

 Evaluation showed a positive indication of our approach efficacy.  

 

 


