
Accepted Manuscript

Big Data fingerprinting information analytics for sustainability

Anna Kobusińska, Kamil Pawluczuk, Jerzy Brzeziński

PII: S0167-739X(17)32996-5
DOI: https://doi.org/10.1016/j.future.2017.12.061
Reference: FUTURE 3899

To appear in: Future Generation Computer Systems

Received date : 25 July 2017
Revised date : 2 November 2017
Accepted date : 29 December 2017

Please cite this article as: A. Kobusińska, K. Pawluczuk, J. Brzeziński, Big Data fingerprinting
information analytics for sustainability, Future Generation Computer Systems (2018),
https://doi.org/10.1016/j.future.2017.12.061

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2017.12.061

Highlights

1. Available approaches to web tracking mechanism are analyzed in this paper, and big data

fingerprinting information security for sustainability are extensively discussed.

2. Achievements and developments in big data fingerprinting discovery and exploration are

presented.

3. To improve methods of fingerprinting collection, the fingerprinting analytics tool is proposed and

developed.

4. The set of the most suitable fingerprints for sustainability are proposed based on the performed

evaluation and analytics.

Highlights (for review)

Big Data Fingerprinting Information Analytics for
Sustainability

Anna Kobusińskaa,∗, Kamil Pawluczuka, Jerzy Brzezińskia

aInstitute of Computing Science, Poznań University of Technology, Poznań, Poland

Abstract

Web-based device fingerprinting is the process of collecting security information

through the browser to perform stateless device identification. Fingerprints

may then be used to identify and track computing devices in the web. There

are various reasons why device-related information may be needed. Among the

others, this technique could help to efficiently analyze security information for

sustainability. In this paper we introduce a fingerprinting analytics tool that

discovers the most appropriate device fingerprints and their corresponding op-

timal implementations. The fingerprints selected in the result of the performed

analysis are used to enrich and improve an open-source fingerprinting analytics

tool Fingerprintjs2, daily consumed by hundreds of websites. As a result, the

paper provides a noticeable progress in analytics of dozens of values of device

fingerprints, and enhances analysis of fingerprints security information.

Keywords: Big Data, Fingerprinting, Web Tracking, Security, Analytics

1. Introduction

In the recent years, Internet has become an essential part of everyday social

and business life for billions of people around the world. Internet users exploit

on a daily-basis a vast range of web-based applications, ranging from on-line

shopping and banking to social networks. As more and more on-line business5

models are based on the necessity of distinguishing one web visitor from another,

∗Corresponding author
Email address: Anna.Kobusinska@cs.put.poznan.pl (Anna Kobusińska)

Preprint submitted to Journal of LATEX Templates November 2, 2017

*

various authentication approaches are applied [1, 2]. In addition to authenticate

users and provide their secure access to web applications [3], also the ability to

track them becomes essential.

The mechanism which has been so far heavily consumed for this purpose are10

HTTP cookies [4, 5, 6]. Once a web page is requested, a cookie containing a

unique identifier is stored on the user’s computer. Such a practice is fundamental

for many websites to ensure a high level of usability. Yet, this mechanism

has been recently under high public attention. Due to the continuous rise of

privacy awareness in society, many people tend to either block or regularly15

remove cookies from their computers. Moreover, forthcoming laws and directives

restrict the future usage of this storage type.

The past decade, however, showed that there are other mechanisms besides

cookies that enable authentication and tracking web users. In [7], the authors

proposed to combine computing device (e.g. desktop computer, smartphone,20

laptop or tablet) attributes in order to create, with a high likelihood, a unique

device-specific identifier, called also a fingerprint. Fingerprinting is possible,

because nowadays it is very unlikely that a set of random users, their devices,

installed software or its settings will not differ in any way [8, 9, 10]. Information

such as User-Agent header, screen resolution, hardware fingerprint (e.g. audio,25

canvas) or approximate location based on the IP address are just a few of the

reasons for devices to differ. Despite above mentioned attributes are individually

non-identified, once combined together, they hold an invaluable identification

properties, which allow to uniquely discover the type of device and associate it

with its user. The simplest solution to get the final user identifier (out of the30

attributes vector) is to apply a hash function to all of the information concate-

nated into one string. If none of fingerprint attributes changes over different

visits of the user, such hash does not differ between consecutive executions of

the algorithm, and therefore, it can be used to identify and re-identify a user

visiting a web page.35

Unfortunately, the device attributes that are used to generate fingerprints

may often be altered, for example by a daily software updates or by modified

2

personalization settings. Therefore, fingerprints need to be continuously veri-

fied and updated, in order to operate efficiently. This makes fingerprinting a

complex process, demanding in terms of CPU power consumption, which takes40

into account large volumes of fingerprint attributes, having various characteris-

tics and multiple data formats. Consequently, fingerprinting may be perceived

as an approach of Big Data processing, which may be applicable as a com-

plementary technique of Big Data analytics, providing a support especially in

terms of web traffic and user behavior analysis, and in digital marketing oppor-45

tunities. Among fingerprinting applications, various Big Data security-related

analytics solutions can be mentioned. They include fraud detection, blocking

abusive users, protection against account hijacking, as well as anti-bot and anti-

scraping services, and many others. Fingerprinting analytics can also be adopted

for multi-factor user authentication, which increases security, while optimizing50

user’s convenience at the same time.

With the increasing popularity of fingerprinting, numerous fingerprinting

studies started, analytics models were proposed, and fingerprinting analytics

tools were developed [11]. Most of the proposed approaches focus on the evalu-

ation of the new ideas, which could be turned into additional fingerprints. They55

also discuss the issues related to fingerprints diversity and stability, which are

the primary challenges that each fingerprinting solution has to face. Although

diversity and stability are the most important criteria for all of the fingerprint

usages, yet many businesses are restricted with the additional conditions. The

length of execution code, execution time and the length of the final fingerprint60

are crucial limitations of any real-time fingerprinting solutions.

Fingerprinting studies underline that the more appropriate data constitutes

a device fingerprint, the more informative and accurate it is, allows to make

better decisions, and provides better understanding of the sustainable user au-

thentication. Thus, it is important to collect as many independent fingerprints65

as possible, so the samples are diverse enough to provide unique device recog-

nition. On the other hand, to improve efficiency of web tracking and user

authentication, the set of a large number of fingerprints supplied to an analyt-

3

ics tool should be optimized, for example by classifying and excluding unstable

fingerprints from the process.70

So far, despite a noticeable need of many companies that are trying to im-

plement early solutions, above mentioned problems were not addressed by other

theoretical studies. Thus, this study aims to implement various methods of fin-

gerprint collection, and compare them accordingly to the most restrictive needs.

In the paper, first the existing fingerprinting methods were discussed. A set of75

the most promising ones was chosen for evaluation, and was used by the pro-

posed fingerprinting analytics tool. As a result of applied analytics, a set of

most suitable fingerprints that efficiently and in a decent time provide sustain-

able user authentication was gathered. The proposed fingerprinting analytics

was applied to the real fingerprinting data, received from thousands of differ-80

ent user browsers. The obtained data has been a subject of excessive analysis.

As a result of cost-benefit evaluation, a set of features and respective optimal

fingerprinting implementations have been chosen. The fingerprints selected in

the result of the performed analysis may enrich and improve the existing finger-

printing analytics tools.85

This paper is organized as follows. Section 2 describes the topic background:

explains web tracking and available approaches, introduces the term of finger-

printing and its usages and challenges, as well as discusses the literature of the

topic. Section 3 presents various features that can be fingerprinted and dis-

cusses their current status. The solution developed for the purpose of analysis90

is described in Section 4. Finally, Section 5 presents the obtained evaluation re-

sults and their discussion, while Section 6 brings final conclusions and proposes

future work.

2. Device Fingerprinting — General Overview

2.1. Tracking Techniques95

Web tracking is commonly known as assigning unique and possibly stable

identifier to each user visiting a website. Its general purpose is to connect future

4

web views of the same person or a computing device with historical ones. Most

of all, it allows to serve personalized content and restore the visitors context.

The most common way of categorizing tracking is to divide it into storage-100

based and storageless techniques, depending whether those techniques use any

of the storage mechanisms on the client side. A well known representative of

storage-based technique are HTTP cookies [12]. According to Web Technology

Survey statistics [13, 14], they are actively used on over 50% of websites globally.

Half of them are persistent, meaning they remain on a visitors computer after105

closing the browser (until they expire or until deleted manually). Their rising

popularity, brought up to the public the topics of privacy in the web and dra-

matically raised the awareness among people. Recent directives of the European

Union, known as Cookie law [15, 16], require each website taking advantage of

this mechanism to openly notify it. Thus, HTTP cookies are being increasingly110

deleted by privacy-conscious users. Additionally, some browser maintainers are

starting to support this movement, e.g. Safari is blocking third-party cookies

by default to protect unwary customers. All of that made cookies relatively

unreliable. Fortunately, there are many alternatives.

High attention is recently directed towards Web Storage API, which was115

introduced in the newest HTML specification. It is already widely adopted by

browsers (92% support1) and offers similar to cookies method of storing data,

but for larger amounts. Usually, when the user requests a cookie removal, this

storage is not cleared out, so the data still remains. Therefore, Web Storage is

considered as modern cookies substitute for storing user identifiers more persis-120

tently.

ETags are identifiers set by a web server to specific versions of resources

found under URLs [17]. Whenever a modification of the content occurs, a new

tag is being assigned and sent together with the requested file. By exploiting

this functionality aimed at cache validation, one can serve different ETags for125

each file request and thus, identify users. Browser cache could be used simi-

1http://caniuse.com/#feat=namevalue-storage

5

larly by serving files containing variable definitions of unique identifiers — they

shall be read on the client side and attached to each further request. Local

Shared Objects, known as Flash cookies, are another place to store data, same

as Silverlights Isolated Storage, Internet Explorers userData storage or HTML5130

indexed database. There are plenty of examples that could be exploited to serve

as user identifiers storage, however most of them are having poor browser sup-

port or their reputation is infamous — knowing the history, reckless usage could

end up with a law suit. A final solution for storage-based tracking is a JavaScript

Evercookie [18, 19, 20]. This script produces extremely persistent cookies in the135

browser, using all possible methods at the same time. Whenever any of the

identifiers from a particular source is removed, it is recreated using the remain-

ing ones. A top-secret NSA document has been leaked by Edward Snowden in

2013, stating that Evercookie has been used to track users in Tor applications,

i.e. browsers providing maximal privacy and anonymity. Obviously, using this140

script has all possible disadvantages reputation-wise.

On the other hand, storageless techniques do not employ any storage, and

can be divided into three categories: history stealing, attribute-based and setting-

based methods. History stealing is considered as attacks that are rather not

visible across the web. CSS history knocking exploits the browser feature of145

marking visited links with different color (usually purple instead of blue). With

JavaScript, one can write into HTML DOM some hyperlinks and test their CSS

properties to determine whether the user has recently visited them. This attack

has its origins in the past decade. Over time, browser maintainers were working

to prevent exploiting similar features — some queries for computed hyper-link150

styles are being lied with false information about their appearance. Therefore,

various timing attacks were invented to detect when browsers are trying to mis-

lead. The battle between browsers and attackers is still in place today, in the

name of users privacy.

On the other hand, attribute-based and setting-based methods are often155

referred to as fingerprinting (device, browser or user fingerprinting) [21], [22].

Fingerprinting focuses on collecting as many small pieces of information as pos-

6

sible. When those pieces are put together, they enable a reasonably unique

device identification. Various categories of fingerprints could be determined,

among which are low-level fingerprinting: hardware (CPU or GPU measur-160

ing) and network fingerprinting (comparing TCP/ICMP/AJAX clock skew);

information-based fingerprinting: collecting available information, e.g User-

Agent, JavaScript properties; behavioral/biometric fingerprinting: measuring

mouse movement, typing, etc. On the other hand, fingerprinting could be di-

vided into two categories according to the execution mode: passive (collection165

of already available data), and active (measuring, tracking or active querying in

purpose of collecting additional information).

2.2. Fingerprinting Usages

While storage-based techniques are relatively easy to be noticed, fingerprint-

ing is bringing the worst-class scenario for user privacy. It has the insidious170

property of not leaving any persistent evidence of device identification process

that has occurred. Therefore, it has slightly wider applications. Some of the

most important [23, 24, 25] are: identifying users on devices previously used for

fraud, establishing a unique visitor count, advertising networks attempting to

establish a unique click-through count, advertising networks attempting to pro-175

file users to increase ad relevance, profiling the behavior of unregistered users,

linking the visits of users when they are both registered and unregistered and

identify the user when visiting the site without authenticating.

If fingerprinting algorithm would be advanced enough to recognize most

of the tested devices as unique, it could be used as a replacement for HTTP180

cookies. However, the reliability of the latter (if supported), will always outrank

fingerprinting due its stability problems. Thus, combining strengths of both

solutions is often the way to go. Inspired by Evercookie, fingerprinting could

be used for re-spawning cookie identifiers. Instead of only storing them, servers

could pair them with corresponding fingerprints. Whenever the cookie is lost,185

due to expiration or deletion, it could be regenerated based on stored fingerprint.

Additionally, previously impossible device recognition with IP addresses,

7

because of many of them were hidden behind NAT [26, 27] to be addressed,

together with fingerprinting may be quite successful. Since the set of translated

devices is rather very limited, fingerprinting would be much more reliable if con-190

sidered globally — the number of collisions would be much smaller. Obviously,

IP address can serve as fingerprint itself, yet issue with its frequent change over

time would have to be addressed [7].

2.3. Fingerprinting Obstacles

A primary obstacle the fingerprinting algorithm has to deal with is stability.195

Over time, the users browser or device is upgraded, which causes some finger-

prints to change its value. Ideally, one should approach this problem by track-

ing the changes in certain ways. Once the browsers is updated, the User-Agent

header is upgraded to a higher browser version string. Some of the installed

add-ons are no longer supported and therefore temporarily or permanently dis-200

abled. This is one of the examples of fingerprints evolution. Such changes are

mostly deterministic, so machine learning algorithms could make an effect in

following them [28], [29]. Still, any abnormal user action, e.g. disabling cookies

due to privacy awareness raised, installing a new font or change of device loca-

tion, would bring unpredictable shift which is hard to deal with. Only if the205

adjustment is not serious, it is likely to be still detected.

Diversity is another obstacle fingerprinting has to cope with. All the infor-

mation about particular device collected within fingerprinting, needs to be as

unique as possible. There are many machines sharing the same configuration

and having similar setting which fingerprint may be identical. Therefore, it is210

crucial to collect many and diversified fingerprints.

Measuring fingerprints diversity can be done with a mathematical tool —

entropy. A distribution of a set of fingerprints is having 20 bits of entropy if

randomly picked value is only shared with one among each 220 devices. Entropy

is defined as follows:215

H(X) = −
n∑

i=1

P(xi) log2 P(xi) (1)

8

where X = (x1, x2, ..., xn) is a set of observed features, where P (xi) describes

discrete probability distribution. If a website is regularly visited by a set X

of different browsers with equal probability, the entropy is going to reach its

maximum and could be estimated as H(X) ≈ log2|X|.

2.4. Related Work220

In 2010, the Electronic Frontier Foundation (EFF) published a reference

study [7] on browser fingerprinting. Relatively simple script has been developed

and used to collect over 470,000 samples, among which 18 bits of entropy was

observed. In total, 83.6% of unique users were recognized. According to the

study, fingerprints were changing quite rapidly (chance for a change of at least225

one during primary 24 hours reached 37.4% while after 15 days raised to 80%),

however it was relatively easy to track. Using basic string similarity algorithm,

99.1% of modifications were tracked (false-positives rate was 0.86%). Forged

User-Agent header was not enough to mislead the detection.

For a couple of years, Princeton University, cooperating with Catholic Uni-230

versity of Leuven, has been conducting relevant and valuable studies in the field

of privacy on the web. Published in 2014 paper [30], presenting the problem of

canvas fingerprinting, cookie re-spawning and syncing, brought serious media

attention to these topics. Partially because of it, the score of 5.5% crawled sites

exploiting canvas fingerprinting in 2014 dropped down to 1.6% in 2016. Cookie235

syncing analysis showed, that only around a quarter of third-party scripts is

respecting users not willing to be tracked (who have used either opt-out cookies

or set Do Not Track header). Created for the purpose of conducting privacy

studies on large scale, OpenWPM web privacy measurement framework is regu-

larly used for analysis of over a million top websites. According to recent results,240

tracking is especially popular among websites serving news. Scripts coming from

particular companies that were present on over 10% of analyzed sites were only

from the biggest players: Facebook, Google and Twitter. Nevertheless, browser

add-ons such as Ghostery or uBlock Origin are dealing with those scripts quite

effectively, except of very sophisticated and advanced ones that are hard to clas-245

9

sify (same for fingerprinting only around 60-70% of scripts is blocked). Canvas

fingerprinting of fonts were observed on 0.3% of websites while IP NAT address

fingerprinting with webRTC API or audio fingerprinting were present only on

about 0.06% of sites [31].

There are also plenty of websites aimed at raising awareness of tracking250

among Internet users. Many on-line fingerprinting tools [32, 33, 34, 35], exposing

various browser features, have been developed — collected fingerprints are a

subject of analysis for many similar studies. Moreover, some additional websites

aimed at helping users to adjust their browsers protection are present [36], [37].

3. Classification of Fingerprint Categories255

In Section 2.4, a short review of fingerprinting topic-related studies was

presented. Within them, various fingerprinting tools and techniques have been

already implemented and tested. Some of the fingerprinted features became

popular for their confirmed stability and diversity, while some were classified

as useless. This Section systematizes the available knowledge and discusses260

the possible improvements. It also presents an excessive list of fingerprinting

features. Based on their current status, a set of features has been chosen for the

further evaluation within this work.

Since the number of possible features to be fingerprinted is immense, this

Section does not undertake to comment on all of them. Many of the features265

were omitted on purpose, while they may be considered outdated due to tech-

nology evolution, inapplicable for certain reasons, or simply, the author found

them as bringing too little value for the study. Moreover, as the work is focused

on browser fingerprinting, none of the behavioral (user) fingerprints, e.g. ones

that measure/track user behaviors/characteristics, were included.270

Fingerprints have been divided into two categories, based on the source of in-

formation: JavaScript code executed within the client browser or HTTP headers

obtained on the server side. Additionally, JavaScript category has been divided

into browser and device fingerprints, for the purpose of more accurate classifi-

10

cation. The above mentioned HTTP-based fingerprints are all browser-specific,275

except of IP address which is a device property. However, the boundaries be-

tween this second-level categorization are often small enough to consider the

feature as a member of both families.

3.1. Browser-Specific JavaScript Fingerprints

Ad-blocking add-on. In the era where advertisements are present on almost all280

websites, it was a matter of time for ad-blocking browser add-ons to be created.

AdBlock, AdBlock Plus, uBlock and others, have been already widely adopted.

Although there is no straight way to check for this add-ons to be installed, while

browsing the web one can often notice banners telling to turn off any enabled

ad-blocks in order to see the content — as the service’s only income source is285

generated thanks to advertisements.

First solution, widely adopted across the web, tests for external script with

specific name to be entirely blocked from loading by ad-block software. Yet,

it could’t be tested within this study since it assumes usage of only one core

script that does not query for any additional resources. Second way is based290

on creating invisible div element, which class property contains one of the

phrases: ad, advertisement, adsbox, adsframe and so on. Ad-blocking add-on

filters are set to make such elements hidden, invisible or block them in other

ways. Many tests to verify which method is the most efficient were developed. In

the browsing private-mode of Chrome and Opera all of the add-ons are disabled295

by default. In Microsoft Edge they cannot be enabled even though they are

installed. Therefore, by using ad-block detection, one must be aware that it

may make the fingerprint unstable.

JavaScript binary-value properties. There are many properties exposed within

JavaScript APIs (e.g. window, navigator) bringing valuable information. Most300

of the fingerprinting solutions available, are checking those values in true-false

dimension only. However, it is not correct approach since different browser

versions may handle them quite unexpectedly, for instance, returning false, null

11

or 0 as the negative value. Treating them all as false, would be a rejection of

precious data that is aimed to be collected. Moreover, another additional piece305

of information can be obtained by slightly more detailed querying — by adding

vendor prefixes. Some properties used to be prefixed with webkit, moz, ms or o

respectively for Chrome, Firefox, Internet Explorer and Opera browsers, prior

the final standard was created. Thanks to them, developers were able to control

inconsistencies between the browsers. Prefixes for certain properties are still310

working, even though they are often marked as deprecated. Such checks were

included in the evaluation. Below some of JavaScript binary-value properties

are presented:

• AddBehaviour function used to be a function available in some older ver-

sions of Internet Explorer. It was included in further analysis to verify if315

such fingerprint increases the overall entropy.

• Cookies — browsers are exposing cookie support by setting a property

navigator.cookieEnabled. Seven different values of such a fingerprint

can be observed among various browsers [38]. Additionally, actual ability

to create a cookie was sampled since the first setting could be lied or320

overridden.

• DNT header — users are able to set Do Not Track flag, indicating whether

they wish to not be tracked. Sadly, there is no public law to respect this

setting. IE 10 was released with DNT header set to true by default — it

brought a huge controversy. From that time, all of the browsers are not325

adding this flag unless the user explicitly wishes otherwise.

• Indexed database is another modern feature that could be deactivated or

not supported. While testing it, there is a danger that the user will be

prompted with permission dialog. That should only happen if the size of

inserted value is relatively large.330

• Web Storage mechanisms — local storage and session storage were tested

similarly to cookies — both for the setting and actual ability to use the

12

mechanism. Additionally, any SecurityError that have occurred was

treated as another negative setting.

• Open database — window.openDatabase method enables connectivity to335

web SQL databases. Yet, it is not a part of official HTML5 specification

and hence, it is not well supported so the distribution of its values could

be beneficial.

Navigator object. appCodeName, appName and appVersion functions are ex-

posed through navigator object returning respectively code name, name and ver-340

sion information of the browser. Presumably all modern browsers appCodeName

is Mozilla, for compatibility reasons, therefore it does not make much sense to

collect this value. appName, for most of the browsers, should return Netscape,

except of Opera and some versions of IE. appVersion exposes much more in-

formation but likely they are redundant with User-Agent header.345

User-Agent. This header is commonly attached to HTTP requests that the

browser sends to the server but its value can be also obtained from JavaScript

level via navigator object. User-Agent contains a set of values that allow to

identify the client application. In a reference study [7], this fingerprint entropy

in isolation was equal to 10 bits, meaning it may be a source of valuable infor-350

mation.

Browser tempering. Some available fingerprinting solutions are attempting to

detect whether user has been tempering with the browser2. However, creation

of artificial fingerprints out of existing one is incorrect — there is no value

coming from adding such fingerprints to the final solution. Collected fingerprint355

values which are faked, make the final fingerprint unique by definition. Adding

additional flags will not increase the overall entropy but will negatively impact

execution time.

2https://github.com/Valve/fingerprintjs2/pull/44

13

Flash technology fingerprints. Over last year, Flash world-wide usage in the web

dropped by 2% to 5.8%. Installed Flash version could make another fingerprint,360

yet due to its low support, increase in entropy is rather small [7]. Additionally,

some of the browsers do not support it in a private mode, similarly to add-ons.

Therefore, the browser fingerprint based on Flash may change once the user

enables incognito browsing [11]. However, having Flash enabled, it is really

easy to yield complete installed fonts list, which unlike CSS or canvas solution365

outlined in the next subsection, can be simply accessed. Such fingerprint con-

sidered independently, is having high entropy, which could be even increased by

taking into account the order of returned fonts [7].

Installed plugins and supported MIME types. The list of plug-ins with corre-

sponding MIME types can be obtained with interfaces: navigator.plugins370

and navigator.mimeTypes, except of the Internet Explorer which uses ActiveX

object and requires probing. To protect privacy, Firefox from version 29 also

restricts the full access to these APIs and it is suggested to query for their exact

names like in IE. Plugins are binary libraries built in the browsers and extend-

ing their functionality, e.g. PDF viewer engine. Most of them are bundled with375

browsers and therefore, may not increase the overall entropy.

3.2. Device-Specific JavaScript Fingerprints

Language. Exposed by navigator object language property (in some versions

of the browsers userLangugage, browserLanguage, systemLanguage are also

available), is supposed to return user preferred language, in a format described380

by RFC specification, e.g. en-US, pl-PL or de-Latin-CH 1992.

Platform. navigator.platform represents the platform on which the execution

takes place. The set of possible values is not closed and the representation may

differ from browser to browser3. Example values are: Linux aarch64, MacIntel,

iPhone, Nokia Series 40 or PlayStation 4.385

3http://stackoverflow.com/a/19883965/1644291

14

CPU class. This property is presumably present only in Firefox and Internet

Explorer (under oscpu and cpuClass endpoint), while in Chrome it is a part

of appVersion.

Timezone. Utilizing JavaScript Date object, one can request an offset which

shall represent user system timezone setting within 15 minutes slots. Browsers390

may yield here quite unexpected numbers4, which, properly interpreted, could

make a valuable fingerprint.

Screen properties. window.screen object may be used to yield properties such

as device screen color depth, resolution and available resolution. The latter is

representing the space that may be consumed by system applications (without395

menu bars). In terms of fingerprinting resolutions, depending on which value

is greater (width or height), the screen orientation is additionally determined.

Again, by using it, some fingerprinting solutions are incorrectly creating an-

other artificial fingerprint. On the other hand, orientation may be dangerous

considering stability, as the users may change it quite often.400

Pixel ratio. window.devicePixelRatio returns the ratio of the (vertical) size

of one physical pixel on the current display device to the size of one CSS pixel.

For some devices (systems), the value is known to be fixed so it may be strongly

platform dependent.

Fonts. The complete list of fonts installed in the system can make another405

complex fingerprint. Browsers do not provide a way to retrieve it without usage

of external plugins (Adobe Flash or Java), however there are hacks to obtain a

partial collection.

All methods described below assume a brute-force testing for a specific list

of fonts.410

• Retrieving fonts with canvas — a canvas method measureText returns an

object that contains width and height of a text, based on specified font

4http://stackoverflow.com/questions/19618066/date-gettimezoneoffset-returns-a-non-integer-value

15

family and size. If a font is not available on user’s device, the browser will

employ fallback font and return the same dimensions for both queries.

Internet resources suggest to use a considerable size of font (e.g. 70 pixels)415

and fallback to either monospace, sans or sans-serif as they represent

fully-supported font families.

• CSS fonts querying — another font probing solution relies on the same

idea as for canvas. It employs simple CSS properties comparison. Two

span objects have to be appended to DOM while a bunch of measurement420

methods are applied to detect differences between both texts. It was

suggested that usage of m and w characters for the test string would

improve the result as they are the widest.

Touch support. It is a complex problem to reliably determine the touch support

in the browser. Fortunately, reliability is not a primary concern for the best425

fingerprinting algorithms. Various browsers expose touch APIs through different

endpoints so wide range of solutions were created: passive checks for methods

availability, touch-related property tests or attempts to utilize the functionality.

Canvas fingerprint. Canvas is an HTML element used to draw basic 2D graphics

on a web page. First fingerprinting studies used to draw on a hidden canvas two430

text strings with different colors, consisting from the perfect pangram: “Cwm

fjordbank glyphs vext quiz” [30]. Such images translated to characters, using

canvas toDataURL method, were found as very distinctive, stable and clearly de-

pendent on graphics card used for rendering. With the time, more sophisticated

ways for exploiting hardware specification with canvas were discovered. Latest435

solutions are making use of the following features (in different combinations):

• drawing a text with two fonts: using one of the fonts well supported among

browsers and using the default fallback font (while providing a fake font

name e.g. fake-arial123-font, the browser has to use a default one if the

requested is not available)440

16

• using text string as a perfect pangram, rarely with some digits or special

characters

• using different colors

• verifying Unicode support by drawing a smile (e.g. smiling face with open

mouth icon represented by character U+1F603)445

• checking for canvas globalCompositeOperation support

• drawing two rectangles and checking if a specific point is in the path with

isPointInPath method

• testing canvas winding support by drawing two objects on top of each

other with evenodd setting450

• testing for canvas blending support with three overlapping objects

Various combinations of tests discussed above were implemented to allow

the emergence of best solution. Also, as the fingerprint is relatively big in size

and taking long time to be computed, additional checks for classification of the

features were included.455

WebGL fingerprint. WebGL JavaScript API allows to draw on three dimen-

sional canvas in the browser and used properly, makes another example of hard-

ware fingerprinting. Images obtained with this technology can be translated

into text the same way as for canvas fingerprinting, and therefore easily com-

pared. Additionally, a variety of settings that may extend the fingerprint, can460

be accessed within getParameter and getShaderPrecisionFormat methods.

In this work, one example of drawing algorithm was tested [11] and a wide set

of environment locales were collected for comparison. Some of them could bring

a prominent value e.g. in some older versions of Safari, it was possible to obtain

the information which graphics card model is installed [39].465

17

3.3. HTTP Protocol Fingerprints

Since the solution developed within this study is taking advantage of a back-

end service, some additional server-side attributes could be collected. Each time

a browser requests a resource from a server, a HTTP protocol exchange takes

place. This Section discusses which request headers of such communication470

could make a valuable fingerprints.

User-Agent and DNT headers. User-Agent and DNT headers were collected

both from JavaScript and HTTP protocol level in purpose of assessing whether

these sources can be treated equally.

Accept-* headers. The examples of the headers that are not related to requested475

website but rather fixed to a resource type are: Accept, Accept-Encoding,

Accept-Charset and Accept-Language. Considering a decisively active fin-

gerprinting algorithm, one could sent many faked requests from user’s browser

for different kind of resources to increase fingerprint entropy. Yet, this study

followed a passive approach due to strict efficiency limitations for created solu-480

tion. Headers were collected only for the single request that is made in order to

transfer the data to the server.

Headers order. Apparently, the order in which the request headers are served is

not explicit and may vary among browsers. This way, an additional fingerprint

could be obtained and analyzed [7].485

IP address. IP address of a machine connecting to a web server is one of the

basic properties necessary to establish a connection. If there had been enough

addresses for everyone in the web, they would have made a complete source

of identification. Yet, devices have to share their IP’s or have them assigned

dynamically. Even though these limitations exist, a decent piece of information490

is provided. One of the solutions to overcome these issues is to use a geolocation

service and treat IP fingerprints as approximated locations.

18

3.4. Features Selected for Further Analysis

Due to the large number of features that can serve as fingerprints, we focus

below only on the selected fingerprint features, which according to the authors495

seem to be the most promising during the user authentication (Table 1).

Table 1: Table of chosen attributes to be evaluated.

Feature Data

source

Additional motivation No5

addBehaviour JavaScript 1

ad-block add-on JavaScript finding best implementation; comparing classifiers 4

appCodeName JavaScript 1

appName JavaScript 1

appVersion JavaScript 1

canvas JavaScript finding most efficient implementation 9

cookies JavaScript comparing passive vs active testing 2

CPU class JavaScript finding best implementation 2

DNT header JavaScript finding best implementation 2

fonts JavaScript comparing canvas-based with CSS-based imple-

mentations; finding most valuable subset of fonts

10

indexedDb JavaScript 1

language JavaScript finding best implementation 4

localStorage JavaScript comparing passive vs active testing 2

openDb JavaScript 1

screen pixel ratio JavaScript 1

screen resolution JavaScript 1

screen color depth JavaScript 1

sessionStorage JavaScript comparing passive vs active testing 2

timezone JavaScript 1

touch support JavaScript finding best implementation 6

User-Agent JavaScript testing usability of UA parser client library; com-

paring to naviagator.app* methods

9

webGL drawing JavaScript 1

webGL properties JavaScript choosing meaningful properties 10

Accept HTTP 1

Accept-Encoding HTTP 1

Accept-Language HTTP 1

DNT header HTTP comparing to JavaScript source 1

User-Agent HTTP comparing to JavaScript source 1

Most of the chosen features are obtained from the executed JavaScript code,

which in practice has emerged as the client-side programming language of the

web. However, we have also decided to analyze some of the most often used

5Number of different implementations — for evaluation of additional motivations, many

supplementary implementations for specific fingerprinted features were created.

19

HTTP-based fingerprints. Since some fingerprint features (f.ex. DNT and User-500

Agent headers) can be obtained from both sources: browser-specific JavaScript

and HTTP protocol, our additional motivation during the evaluation of those

features was a comparison of the efficiency of fingerprints obtained from both

sources.

It is important to note, that browser fingerprinting do not have any explicit505

law interpretations. Some of the fingerprints are having questionable reputation

and thus, are denounced within specific societies. This study does not focus on

the legal issues. Any possible usage of poor reputation-wise fingerprints was not

intended. All the collected samples were gathered for educational purposes.

4. Evaluation Environment510

In Section 2.4, some examples of existing long-term studies focused on fin-

gerprinting methods evaluation were presented. They rely on dedicated websites

created with the purpose of collecting fingerprints. The user visiting the study

page may press a ”fingerprint me” button in order to obtain his own finger-

print and equally, to support the work by sharing it. However, in a short range515

of time, such a solution would not generate enough samples to allow drawing

reliable conclusions. Therefore, a different approach had to be followed.

The proposed fingerprinting analytics tool was preliminary described in [40].

It consists of three parts: fingerprinting script (called bf.js), back-end services

and an analytics module. The aim of fingerprinting analytics is to distinguish520

and choose a set of fingerprints that will make possible stable user identification,

and thus will provide sustainable authentication. To overcome the limitation

of collecting fingerprints from a single dedicated web page, a script that can

be attached to any website was created (which in fact is the target scenario of

its usage). However, instead of the machine that serves particular domain to525

process the fingerprint, it shall be sent to another server that is responsible for

data collection. Such solution implies many technological issues that had to be

addressed. They are discussed in this Section altogether with a description of

20

Figure 1: Fingerprinting process scheme

the setup.

General process of gathering fingerprint samples is presented in Figure 1.530

Amazon Web Services (AWS) are utilized as back-end services. The finger-

printing script bf.js is exposed within Amazon S3 Bucket and can be linked

to any website. When a user enters one of the collaborating web pages, the

script is downloaded and executed as one of the assets. The outcome is sent

directly to the study server (Amazon EC2), where the analytics tool processes535

the data, appends backend-side fingerprints (HTTP request headers), and even-

tually stores them into DynamoDB database for further analysis. The statistics

are generated with analytics module that fetches the data directly from Amazon.

4.1. Fingerprinting bf.js Script

The script, once triggered, collects all implemented fingerprints and sends540

them to the server, where they are stored in the database. However, instead of

the database, various approaches that provide the reliability of obtained finger-

prints can be used [41, 42, 43].

Communicating with the server. While creating fingerprinting framework, com-

munication with the server was the first issue to be addressed. For security545

reasons, browsers restrict cross-origin HTTP requests initiated by scripts. Yet,

21

there are certain exceptions that could be exploited. For example, a request

for an image containing the data as GET parameter could be sent. Due to the

character limitation of URL parameters 6, none of the solutions are applicable

up to the size of 100 KB — the average size of a fingerprint obtained within550

bf.js. Therefore, CORS -enabled AJAX requests were used for transferring

the data to the server. Within CORS, additional preflight HTTP request (by

specification) is triggered before the actual request is made. This was a supple-

mentary cost in performance that has to be kept in mind while evaluating the

overall fingerprinting overhead.555

Blocking redundant executions. As the script was going to be most likely linked

on all of the sub-pages of the host website, each time the user would navigate or

refresh the page, the fingerprinting process would be started. To prevent that,

a cookie mechanism was implemented. Once the fingerprinting completed, it

blocked its execution for next 3 minutes. Such suspension allowed to track560

long-term stability of fingerprints and at the same time, prevented flooding of

the database with identical ones. This solution, as well as usage of WebStorage

API during fingerprinting, brought the necessity to inform the users about usage

of storage mechanisms, in accordance to European Union cookie law.

Ensuring ease of attachability to any web page. All of the modules were bundled565

together7 and minified8 to provide a single and minimal JavaScript file, that

could be linked to any web page with ease. The overall size of the script was

70KB which could be considered a lot for a single asset9, but was accepted

by the cooperating websites. Fortunately, bf.js implemented many redundant

6HTTP protocol does not place any limit for the length of the URI. However the clients

and the servers do only support the URLs up to a certain length. The rule of thumb is 2000

characters
7Bundling were achieved with browserify module (http://browserify.org/).
8gulp task runner (http://gulpjs.com/) with gulp-uglify package (https://www.npmjs.

com/package/gulp-uglify) were employed for minification process.
9Similar solution Fingerprintjs2 [11] script size is 33KB.

22

methods (for testing purposes), so the size of a production solution would be570

much smaller.

The only line that a website administrator had to add to the sources is

presented on Listing 1. Note, it should be appended as the last line of the body

tag to not affect any other scripts responsible for website behavior. Included

async tag, which should take care of it by default, may be not respected by575

some of the browsers.

Listing 1: The code for linking bf.js to any website

1 <script type="text/javascript" src="https ://

2 s3.eu-central -1. amazonaws.com/cdn.

3 alatar.eu/js/bf.min.js" async></script >

Ensuring efficient background execution. Even though the fingerprinting meth-580

ods were written with a focus on minimal execution time, overall computation

could take a noticeable moment, 2.5 second for a computer up to 4.5 second

for a mobile device. It was mostly caused by canvas-related and font-related

fingerprints, which are computationally expensive. Because JavaScript execu-

tion is made on a single timeline (except of WebWorkers which unfortunately585

could not be applied due to restriction of DOM manipulations), once the exe-

cution triggered, other scripts controlling the website could be starved of CPU

time. Therefore, user experience on the website would be affected due to the

delayed user interaction outcomes. This issue was solved by setting some time-

outs with a break of 50ms between executions of consecutive methods. During590

those breaks, a JavaScript context switch could take place, if there were another

scripts demanding to be resumed.

Ensuring lack of interaction with the users. Ideally, the script was supposed

to be unnoticeable by the user in terms of performance, but regarding visual

interactions, it should not bring any attention at all. The following precautions595

have been taken:

23

• All DOM manipulations (there were a few), were set to be hidden from

user view by setting elements absolute position to inappropriately large

negative value

• None of the API known for asking user for a permission (e.g. browser pop-600

ups geolocation API request for sharing device location) were accessed

• Names of all data stored locally were randomized to prevent overwriting

existing values

• All the code was surrounded by a closure to protect the name-spaces of

another scripts605

Preventing exceptions. Since bf.js has taken advantage of a set of various

JavaScript APIs that are often deprecated or not supported yet, there was a dan-

ger of how unexpected findings will affect the execution. Therefore, the whole

script and all of the fingerprinting methods themselves, were carried out within

try-catch statements. If an exception occurred, it would stay unnoticeable by610

the environment. In addition, the script would continue the fingerprinting of

remaining features and attach the error messages to the results as a debugging

information for improvement.

Since the script was written according to ECMA Script 2015 specification,

which is supported only by the newest versions of browsers, babel10 compiler615

has been utilized to translate it into code understandable by older clients. Ad-

ditionally, some JavaScript polyfills were appended to increase the number of

supported browsers.

4.2. Back-End Services

Amazon Web Services were used as a back-end infrastructure for the whole620

solution. Their first and foremost goal was to provide high-availability and high-

performance static files server for bf.js. As the number of study participants

10https://babeljs.io/

24

was unpredictable and any website could join the study at any time (by link-

ing the script), the machine should be provisioned for high demand and easily

scalable. Instead of creating virtual machine running Apache, Nginx or another625

type of server, Amazon dedicated solution for serving static files was utilized. S3

Bucket container is a space for files which is a part of Amazon content delivery

infrastructure. It is used as assets server by Amazon itself, the same way it was

used within this work.

Next element, constituted of EC2 service, provided endpoints for data collec-630

tion. Created t2.medium virtual machine instance was running Amazon Linux

RMI and Apache server. The latter served as a proxy to core functionality. It

handled AJAX requests, initiated by bf.js, and through WSGI module exe-

cuted its processing implemented in the Flask framework. Flask is a Python

micro-framework suitable for applications exposing small functionality. Two635

endpoints were necessary to handle interactions, one for GET requests and one

for POST. The first was a debugging routine which could be used to send ex-

ception message if such occurred on the client side. The second was gathering

the fingerprints transferred as JSON payload of POST requests. It was also

responsible for assigning unique cookie identifiers (for the purpose of tracking640

fingerprints stability), extracting and appending HTTP request headers to the

dataset and finally, connecting to the database instance to dump the data. Dy-

namoDB, an Amazon’s distributed NoSQL solution, ensuring performance and

high scalability, was used. Since the size of fingerprints (and therefore the re-

quests) was substantial, it was provisioned with 15 MB per second throughput.645

In case it would not be enough for incoming traffic, it could be easily increased

in a similar way the t2.medium instance could be upgraded. Fortunately, during

the whole data collection period, there was no necessity to update any of the

configuration.

4.3. Analytics Tools650

All the results were generated with analysis tools written in Python. Amazon

boto3 library was utilized to access Dynamo database. The statistics functions

25

Table 2: The statistics of data collection from collaborating websites.

Website URL Target country Collection

period

Collected

samples

Unique

users
salsasiempre.pl Poland 33 days 10398 1743
szlakami.pl Poland 28 days 3428 2506
prononce.me France/Global 30 days 442 408
carlosunlar.

blogspot.com.br

Brazil 20 days 312 177

akai.org.pl Poland 35 days 290 136
www.pklux.org Luxembourg 20 days 112 73
edventurer.net Poland/Global 19 days 60 15

15042 5038

and data cleansing were implemented using standard Python libraries and no

additional tools were employed. Additional information about data processing

was presented alongside the results in the next Section.655

In order to collect a reasonable number of fingerprints, bf.js had to be linked

to a minimal number of websites such that combined together visitors’ traffic

was analysis-considerable. A study page e-fingerprint.me had been created

in order to find supporters. The data have been collected from 7 participating

websites during approximate period of one month. In total 15042 records from660

5038 users were obtained. The summary numbers are presented in Table 2.

Luckily, the top two sources of samples presented opposed type of users activity

— the first website allowed to collect fingerprints from returning users while the

second one provided large amount of uniques.

5. Experimental Evaluation Results665

The evaluation environment described in the previous Section allowed to ob-

tain a reasonable number of samples for further analysis. In total, 15042 samples

were collected (of the total size 1.36 GB). Each script execution queried the at-

tributes listed in Table 1. This Section undertakes the task of their evaluation

and analytics.670

26

5.1. Evaluation Criteria and Data Representation

Evaluation criteria. Except of identification of the best possible fingerprinting

implementations of certain features, each attribute has been analyzed according

to the following criteria, which were proposed in [8][9]:

• Diversity — basic criterion for each fingerprinting study [44], a measure of675

how diverse is a set of samples calculated independently for each attribute

as entropy. Additionally, a number of distinct and unique values in the

dataset was counted.

• Stability — second cannon criterion stating how often a fingerprint is

changing its value over the time [9][45]. Four characteristics were calcu-680

lated for each method: total number of changes, average time distance

between the changes, number of devices for which at least one alternation

was observed, average percentage ratio of how many samples have been

modified for these devices.

• Length of execution code — as the number of collected fingerprints in-685

creases, as well as libraries necessary for processing, size of the execu-

tion code becomes a limitation for some real-time-oriented businesses [46].

Thus, length of minified code for each method implemented in bf.js was

included.

• Execution time — advanced fingerprints rely on time-consuming process-690

ing that makes another limitation [45]. Execution has been measured for

each method independently so the average time could be calculated. 2% of

the slowest records were dismissed since some edge values were enormously

high, making the average overstated.

• Length of the fingerprint — in scenario when all the results are transferred695

to the server unchanged, their overall size is a shortcoming [45]. Average

length of sent data was computed as the last criterion.

27

Data cleansing. Before the analysis, some essential data preprocessing was ex-

ecuted. Out of 15042 samples two processing sets were prepared:

• data unique — a set of unique samples used as the base for all of the crite-700

ria evaluation, except of stability. It was created by filtering the samples

by user cookie-based identifiers. For each user, only the earliest observed

sample was taken. 8350 entries were removed so 6692 samples preserved.

Yet, some cookies could have been removed in the meantime so their iden-

tical fingerprints could be stored under many cookie-ids. An important705

assumption has been taken — in such a small dataset with large number of

fingerprinting methods, it is very unlikely that many collisions (two differ-

ent devices having all of the fingerprints identical) could occurred. Hence,

a subsequent filtering to remove identical fingerprints from the dataset

was conducted. In total 1654 duplicates were dismissed, resulting in 5038710

samples11. Considerable number of recognized duplicates confirms that

cookies are being frequently removed by some users.

• data recurrent — a set of 8146 samples constructed by filtering out all

user entries from which only a single record was collected. In other words,

the data for which stability over time could be evaluated was preserved in715

this dataset.

Summary table representation. The tests were summarized in the Table 3, which

columns headers were abbreviated as follows:

• dtC — number of distinct values (diversity)

• uqC — number of unique values (diversity)720

• E(x) — entropy (diversity)

• modC — number of changes (stability)

11For many tested attributes the overall amount of collected records differs due to various

deployment dates.

28

Table 3: Summary table for conducted fingerprinting tests.

Test signature dtC uqC E(x) modC modT UmodC UmodR codeL execT fingL

accept 6 0 0.97 0 - - 21B

acceptEncoding 10 1 0.62 4 22h 10m 3 20 - - 13B

acceptLanguage 254 164 3.54 1 7d 21h 1 5 - - 26B

adblock-adframe 6 0 1.08 54 23h 54m 22 44 300B 2ms 57B

adblock-adsbox 6 0 1.08 54 23h 54m 22 44 300B 3ms 57B

adblock-lib 5 0 1.04 49 1d 1h 22 43 500B 1ms 57B

adblock-lib-min 5 0 1.04 53 1d 1h 23 43 400B 1ms 57B

addBehavior 2 0 0.03 0 50B 1ms 1B

appCodeName 1 0 0 0 50B 1ms 7B

appName 3 0 0.05 0 50B 1ms 8B

appVersion 1056 842 6.34 108 7d 22h 95 30 50B 1ms 86B

canvas-advanced 864 450 8.08 90 4d 10h 74 34 900B 0.2s 21KB

canvas-basic 209 93 4.77 5 2d 20h 5 44 500B 11ms 8KB

canvas-fontArial 159 68 4.48 4 3d 13h 4 30 250B 2ms 580B

canvas-fontDigits 161 68 4.56 4 3d 13h 4 30 250B 2ms 677B

canvas-fontFake 166 78 4.03 4 3d 13h 4 30 250B 5ms 619B

canvas-fontSmiles 281 115 5.75 73 4d 21h 59 33 250B 4ms 573B

canvas-fontSpecialChars 156 70 3.98 4 3d 13h 4 30 250B 3ms 724B

canvas-moderate 646 312 7.38 76 5d 2h 61 29 500B 12ms 13KB

cookies 2 0 0.02 0 50B 1ms 1B

fontJs-sans-70px-821 2086 1688 9.07 187 6d 7h 166 29 1KB* 3.5s 5KB

screenColorDepth 4 0 0.74 0 50B 1ms 2B

screenDimensions 515 305 5.76 90 2d 22h 44 41 100B 1ms 14B

screenPixelRatio 6 0 0.82 3 14h 26m 3 4 50B 1ms 1B

timezone 22 7 0.74 1 4d 14h 1 3 50B 1ms 4B

touchSup-basic 2 0 0.76 6 2d 15h 2 23 150B 1ms 1B

touchSup-deprecated 2 0 0.75 6 2d 15h 2 23 50B 1ms 1B

touchSup-maxPoints 1 0 0 0 50B 1ms 1B

touchSup-modernizr1 2 0 0.75 6 2d 15h 2 23 50B 1ms 1B

touchSup-modernizr2 1 0 0 0 50B 1ms 1B

touchSup-msPointer 2 0 0.24 0 50B 1ms 1B

uaBrowserName 16 1 2.01 0 50B* 1ms 7B

uaBrowserVersion 236 112 4.47 120 7d 19h 109 31 50B* 1ms 9B

uaCpuArch 3 0 1.01 0 50B* 1ms 3B

uaDeviceType 4 1 0.87 0 50B* 1ms 2B

uaDeviceVendor 18 3 0.98 0 50B* 1ms 2B

uaEngineName 7 2 1.23 0 50B* 1ms 6B

uaEngineVersion 83 32 2.51 20 6d 12h 20 40 50B* 1ms 5B

uaOsName 13 3 1.32 0 50B* 1ms 7B

uaOsVersion 93 27 3.58 5 9d 7h 5 38 50B* 1ms 3B

userAgent-http 1105 833 7.46 124 7d 22h 113 31 - - 104B

webGl 169 57 5.03 35 1d 16h 17 38 2KB 0.2s 4KB

29

• modT — average time between changes (stability)

• UmodC — number of users for which a change took place (stability)

• UmodR — percentage ratio of changes for these users (stability)725

• codeL — code length

• execT — average execution time

• fingL — fingerprint record length

Data quality. Much of the fingerprinting research commented in early Sections

of this work, relies on large databases of samples collected during long-term730

executions. This study was based on slightly over 15000 records that the author

managed to collect. Moreover, the final evaluation was based on only 5000

cleansed entries. Yet, it is a recognizable amount of data allowing to draw

reliable conclusions on certain aspects.

For the last three criteria (codeL, execT and fingL), which were the focus735

of the study, the number of collected samples was enough to make inferences.

Concerning stability and diversity, one must be aware of some perspectives.

Other studies fingerprinting algorithms may be concluded to provide e.g. 20

bits of entropy. This evaluation, having 5000 samples, could achieve at best

log2 5000 ≈ 12.3 bits. Obviously, both solutions cannot be compared due to740

different dataset sizes. Entropy measure should be considered in a relative

sense, having the limit in mind. Secondly, the number of website’s recurrent

visitors is much smaller than the number of overall visits. Hence, the dataset

used for stability measurements was even less referential than for diversity —

stability results should be interpreted with a dose of uncertainty.745

5.2. Presentation and Analysis of Evaluation Results

As expected, the highest entropy was observed for appVersion (6.34), userAgent-http

(7.46), canvas-advanced (8.08), webGl (5.03 + properties) and fontJs-sans-70px-821

(9.07) tests. Surprisingly, screenDimensions test was ranked with a decent 5.76

30

bits of entropy. appCodeName (0), appName (0.05), cookies (0.02) and some750

touchSup* tests (0) have proven to be useless in the overall evaluation. Such

low entropies are caused by the fact that almost all collected samples values

were identical.

The highest number of changes over time was observed for fontJs-sans-70px-821

test (187) which inspected 821 fonts support. Apparently, its high entropy is cor-755

related with stability problem. adblock-* tests, having a score of ∼50 changes

and average time distance in-between equal to one day, uncovered unexpected

instability. Again, screenDimensions result of 90 changes with a distance of 3

days was unforeseen. The length of code was the highest for canvas, webGL and

font-related tests. However, the size of additional library for User-Agent, which760

was shared among ua* tests, was not included in the summary. It was a cost

of additional 10KB, making these methods the most expensive in this category.

The size of the list of fonts, used by probing tests, was also not included in the

calculations since it was similarly shared.

Another issues that should be addressed are the size of canvas fingerprint records765

(up to 21KB) and execution time of fontJs-sans-70px-821 test (3.5s).

Accept headers. HTTP header fingerprints proved to be a respectful and low-

cost source of entropy. All three tests (accept, acceptEncoding and acceptLanguage)

scored high results of 0.97, 0.62 and 3.54 bits. There were very few value changes

during testing period so they also appear to be stable. Since HTTP headers770

were obtained on the server side, it is not necessary to deliberate on the last

three criteria.

Ad-block add-on detection. Four methods of triggering ad-block add-ons were

implemented and 9 attributes of detection were compared. The results are pre-

sented in Fig. 2. Usage of dedicated solution BlockAdBlock.js [47] was slightly775

less efficient than verification whether div with appropriate class tag (adsbox or

adframe) was blocked. Testing offsetTop property of appended object turns

out to be the best choice while visibility, display and abp gained the small-

est score. Apparently, there is no need to combine many verification crite-

31

Figure 2: Results of ad-block fingerprinting

ria. Lastly, adblock-* tests instability was recognized but further investigation780

showed that all the changes originated from a small number of users (22). The

author suspects they either have just installed the add-on or disabled it for some

reasons.

addBehaviour test. collected almost identical values for all of the samples, re-

sulting in only 0.03 bits of entropy. It is stable and cheap in execution but does785

not bring much of information.

app* properties, ua* parsing tests and User-Agent. The first question regarding

User-Agent family of tests concerned any difference between the string obtain-

32

Table 4: Values obtained by parsing User-Agent header with UAParser.js li-

brary.

Device vendor Browser Engine Type Arch

None 4689 Chrome 2746 WebKit 3827 None 4432 amd64 3186

Apple 657 Firefox 1607 Gecko 1607 mobile 1041 None 2629

Samsung 208 Mobile Safari 567 Trident 301 tablet 358 ia32 17

LG 61 IE 266 EdgeHTML 85 console 1

Sony 49 Opera 187 Presto 10

Lenovo 36 Safari 186 None 1

Huawei 31 Edge 86 Webkit 1

Nokia 29 Android 68

HTC 24 Facebook 47

HUAWEI 18 IEMobile 35

ASUS 10 Opera Mini 9

Motorola 10 Chromium 9

Asus 3 Maxthon 7

Xiaomi 2 WebKit 7

Amazon 2 Silk 3

BlackBerry 1 Vivaldi 2

ALCATEL 1

SonyEricsson 1

able from JavaScript and HTTP request headers. In collected dataset such

difference was observed in very few cases, therefore both data sources are re-790

dundant. JavaScript User-Agent was parsed with UAParser.js library to assess

its usability in client-based classification. Since this fingerprint is relatively un-

stable, due to large amount of detailed information e.g. updated frequently

browser version, it is worth to consider a separation of the data — to parse

only the stable parts. Usage of the library was an additional cost of 10KB,795

which was not included in the summary table since it was shared by many

tests. It provides a parser for the following features: browser name, version and

engine; device type and vendor; OS name and version; CPU architecture. As

expected, uaBrowserVersion tends to be updated regularly (120 changes, on

average each 8 days) and at the same time scored the highest entropy (4.47).800

Remaining attributes were rather stable. Some of the collected values are pre-

sented in Table 4.

Last aspect to be addressed was determining any relationship or redun-

dancy between navigator.app* fingerprints and User-Agent. appCodeName

matched the expectations — values from all of the samples were Mozilla (0805

33

bits of entropy). When it comes to appName, three different values were ob-

served: Netscape (5806 entries), Microsoft Internet Explorer (16) and Opera

(10), scoring only 0.05 points of entropy. appVersion results were much more

diverse (6.34) and the list of unique samples was large. Many values (3960)

concatenated with Mozilla foreword proved to be identical with User-Agent but810

remaining 1872 varied. 1514 samples were equal to 5.0 (Windows), the rest

represented mostly subsets of the User-Agent strings but rarely added extra

information.

Summing up, for most of the devices navigator.appVersion is redundant

with User-Agent but in some cases it brings additional diversity. Yet, due to815

its high instability, similar to raw User-Agent header, for most of the usages it

is rather impractical.

Canvas fingerprinting. Since this fingerprint was very popular within past years,

many different ways of implementation, described in Section 3.2, were discov-

ered. 12 canvas fingerprint tests were collected to answer the question which820

properties are the most valuable. Table 5 presents the characteristics of each

test. Conclusions are following: the canvas size (width and height) is having

considerable impact on the entropy. While all the drawn elements are bigger,

number of unique fingerprints is significantly larger and the entropy increases.

Moreover, tests for blending and winding support improved the overall result.825

The surprisingly high score of entropy was achieved by the smile icon rendering

test. Also, unexpectedly, it turned out that the usage of fake (fallback) font

has lower entropy than the usage of widely-accessible Arial font, even though

it registered a larger number of unique and distinct values. Finally, adding a

number to a text increased overall diversity.830

The most advanced canvas test (canvas-advanced) obtained 8.08 bits of

entropy. It is a significant score, however other criteria must be considered.

Apparently, it is quite unstable (90 changes each 4.5 days), time consuming

(0.2s) and its length is the highest from all collected fingerprints (21KB). In-

dividual tests imply that the smile icon (canvas-fontSmiles) is the primary835

34

Table 5: Components of canvas fingerprinting tests.

Test signature Width Height Text complexity Icon Blending Winding

canvas-basic 350 40 high

canvas-advanced 550 200 high X X X

canvas-advanced-min 200 60 high X X X

canvas-moderate 550 200 high X

canvas-moderate-min 200 60 high X

canvas-blend-winding 550 200 X X

canvas-blend-winding-min 70 65 X X

canvas-fontSmiles 30 25 X

canvas-fontFake 60 20 fake font

canvas-fontArial 60 20 arial font

canvas-fontDigits 60 20 only numbers

canvas-fontSpecialChars 60 20 only special chars

source of instability and, at the same time, of entropy. The bigger the canvas

and drawn elements are, the higher the entropy, instability and the execution

time. The only stable element seems to be the font drawing (canvas-basic,

canvas-font*). Notwithstanding, the average fingerprint size of 21KB is too

large for most. Luckily, the usage of a hash function can solve this issue if840

additional uniqueness deterioration is acceptable.

Cookies and Web Storage API support. Cookies, local and session storage were

tested both using JavaScript properties (e.g. navigator.cookieEnabled indi-

cating the setting) and with active evaluation with the following scenario: get

storage handle, write some data into it, probe it for saved data existence, re-845

move the data. If the check for saved content failed or an exception was raised,

storage mechanism could be considered as disabled. The results (Table 6) reveal

that such method was successful in detecting a few ”lied” situations for local

and session storage, while for cookies, property value was always providing the

same answer. Unfortunately, even though storage fingerprints are stable and850

execution low-cost, their small entropy make them relatively irrelevant. It it

also worth noticing, that only 2 distinct values were observed for cookies test

while larger studies collected up to 7 configurations (Section 3.1). It confirms

that small amount of collected data does not allow to draw widely applicable

35

Table 6: Results of storage support fingerprinting.

Test name Negative Positive Exception

localStorage 9 5818 5

localStorage-active 5736 96

sessionStorage 9 5820 3

sessionStorage-active 5740 92

cookies 10 5822

cookies-active 10 5822

conclusions.855

CPU class. In 95% of cases navigator.cpuClass did not return any value. 259

devices returned x86, 40 yielded ARM and x64 was observed twice, all resulting

in 0.25 bits of information. oscpu property returned much more interesting

results, the ratio of empty values was 72%. Unexpectedly, it does not only

concern CPU architecture but also OS version, making the entropy higher (1.76).860

Since both fingerprints were stable and their execution cost was negligible, such

consideration in independence makes them a good choice for any algorithm.

Do Not Track header. This fingerprint was collected in JavaScript using two

different objects, navigator and window. The obtained results were exclusive

and they did not cover with the back-end side values. Table 7 presents observed865

configurations and their count. The fact that it is not clear what is the real user

setting does not prevent these attributes from being useful in the fingerprinting

process, thanks to relatively high entropies in comparison to small numbers of

distinct values (2 or 3). Paradoxically, a feature that was created to protect

privacy proved to be a valuable addition for this study.870

Fonts fingerprinting. Among two methods of fingerprinting fonts, canvas and

CSS, the more efficient one was intended to be uncovered. In a very early stage

of the samples collection, it was already clear that CSS-based method is much

more attractive than canvas probing. Because canvas tests were affecting overall

processing time substantially, they were entirely removed from bf.js and not875

included in the summary table.

36

Table 7: Do Not Track values distribution.

navigator.DNT window.DNT DNT (HTTP) Count

F F null 3765

T F null 1390

ms F null 7

F T null 5

T F 1 411

F F 1 29

ms F 1 9

F T 1 215

total(T) 1818 220 664 *

Firstly, the average execution time of canvas-based font probing was roughly

three times slower. Moreover, CSS detection slightly outranks canvas but in

both methods efficiency is almost complete (assessed with manual verifica-

tion), and CSS probing for foreign fonts containing exceptional characters (e.g.880

Japanese alphabet), even though there were not included in the test string, de-

tected the font while canvas method did not. The authors suspect that CSS

methods reserve the space (maximal height) for any character supported by a

font, even if not printed explicitly. Also, in some browsers discrepancies of 1

pixel were observed. Therefore, the tests were improved to meet this margin885

of error. Additionally, the results revealed that usage of a test string contain-

ing full alphabet or the one chosen for fonts entropy assessment (adfgjlmrsu-

vwwwwz7901) increased the detection rate in comparison to the string proposed

in other studies (based on m and w letters). Also, test string size of 70 pixels

produced almost identical results as 180 or 200 pixels, and monospace font was890

slightly more effective than sans-serif, both for CSS and canvas tests. The only

drawback of CSS method is the fact that it requires to be executed in the user’s

DOM, which brings a danger of influencing website appearance (canvas works

in the background).

There were two additional observations which remain unsolved. Firstly,895

for unknown reasons, drawing with monospace as fallback font was on average

10 times faster than drawing using sans-serif. The authors did not find any

37

confirmed explanation for this fact. It is suspected that monospace tests could

have been optimized after sans-serif checks were run, although no particular

execution order was assured. Secondly, drawing strings of size 200 pixels were900

twice faster than 70 pixels in CSS-based tests. The same possible explanation

applies.

Another important aspect of fonts evaluation is determining a subset to be

used for probing. A font that is not supported for each user nor is present

in all the samples, will not allow to distinguish devices. Maximum entropy905

(1 bit) is reached when a font is present in exactly half of the data. Yet,

choosing only such fonts will not maximize the output since many sets are

strongly dependent. Therefore, an excessive list of 821 fonts was prepared and

for all of them, a sample was collected. An iterative entropy maximization

algorithm was executed in order to find optimal collection. Fig. 3 presents how910

big sets were necessary to obtain particular values of entropy. To achieve 6 bits

result, in the best scenario the following 9 fonts were used (ordered from the most

valuable): Open Sans, Brush Script MT, Estrangelo Edessa, Gadugi, Roman,

Papyrus, MT Extra, Wingdings, Segoe UI Semibold. Above 8 bits, the number

of fonts required to improve the entropy increases drastically. After reaching 9915

bits the remaining 746 elements almost did not improved the result. It shows

how important choosing the right collection is. It is essential not only for the

diversity but also for the code execution time (3.5s) and stability (187 changes, 6

days), as this fingerprint achieved the worst results in both categories. Reducing

the set of fonts from 821 to 100 would decrease the average time necessary for920

probing to around 0.4s which may be acceptable in certain usages. Stability

metrics should improve as well, although fontJs-sans-70px-65 test probing

for only 65 fonts still presents alarmingly high instability (132 changes each 7

days). A short investigation revealed three main categories of changes that have

occurred: (1) single font installation; (2) a large set of fonts changing the status925

from absent to present; (3) single font fluctuations.

The first two categories may denote that the user has installed an additional

font or a new software. Unfortunately, there is nothing that can be done to

38

Figure 3: Number of fonts necessary to obtain particular level of entropy.

prevent them. Yet, often status changes of a particular font are quite unlikely

to be caused by a user action. Thus, the latter category suggests either a field930

for detection algorithm improvement or necessity to investigate the cause in a

deeper manner.

indexedDb and openDatabase fingerprints. 7 different values were observed for

indexed database support, providing 1.31 bits of information. Open database

fingerprinting scored 0.94 entropy with true-false setting. Both features were935

stable and easy to obtain so are worth to be included in the production solutions.

Language setting. 4 methods of obtaining language were implemented. Broadly

supported (99.9%) navigator.language property presented 2.1 bits of informa-

tion. Remaining tests returned a result in only 5% of cases and as their values

were mostly equal, they barely achieved any entropy. Yet, thanks to a decent940

stability and low cost execution all of the features are worth consideration.

Platform fingerprint. has changed its value only once, so it is one of the most

stable. 16 distinct values with 3 uniques were found in the dataset (1.57 en-

tropy).

Screen properties. Among both screenColorDepth and screenPixelRatio tests,945

stable but rather similar values were collected, providing 0.74 and 0.82 bits

39

Table 8: Screen resolution instability investigation.

Test signature dtC uqC E(x) modC modT UmodC UmodR

screenAvail 501 260 5.71 90 2d 22h 44 41

screen 153 64 4.06 65 2d 3h 29 36

screenDimensions 515 305 5.76 90 2d 22h 44 41

of entropy. However, screen dimensions method yielded surprisingly diverse

(5.76 bits) and unstable results (90 changes, on average every 3 days). In-

stability was not expected since the test did not take into account the screen

orientation. It was analyzed what entropy loss it implied — it was only 0.25950

bits. Additional tests were run to investigate the source of instability (Table 8).

Both methods frequently yielded different values for the same users, although

window.screen.availHeight and availWidth prevailed the final result. Some

changes were marginal (e.g. 404 pixels to 401 pixels) and their cause should be

further investigated. Yet, many changes appear to be a switch to entirely new955

resolution of the same device or to an external display (rarely since color depth

and pixel ratio did not change).

Timezone. results with 22 distinct and 7 unique values scored only 0.74 bits of

entropy. Yet, this fingerprint is also very stable and execution low-cost so worth

a consideration.960

Touch support detection. The evaluation of 6 detection methods (Table 9) sug-

gests, that the three could be used redundantly as they are all marked by the

same devices as touch-enabled (25% of the dataset, 0.75 entropy). touchSup-maxPoints

test and the second part of Modernizr library check method returned false for all

of the devices. As Internet Explorer property msPointer marked additional de-965

vices as supported (0.24 bits), an ideal solution could make use of a combination

of these features.

WebGL fingerprints. Besides collecting WebGL drawing fingerprint, 10 cate-

gories of properties were collected. Their high entropy makes them valuable,

yet many samples have changed over the time (on average after 36 hours). As970

40

Table 9: Results of touch support detection tests.

touchSup-basic F T T T F F

touchSup-deprecated F T T F F F

touchSup-modernizr1 T T T F F F

touchSup-msPointer F F T F T F

touchSup-maxPoints F F F F F F

touchSup-modernizr2 F F F F F F

configuration count 1 1060 10 3 182 3680

Table 10: WebGL fingerprints dependence analysis.

Test signature dtC uqC E(x) modC modT codeL execT fingL

webGl 169 57 5.03 35 1d 16h 2KB 0.2s 4KB

webGlProp-* 366 171 5.53 57 23h 46m 5KB 0.1s 682B

webGl* 459 225 6.31 73 1d 3h 6KB 0.4s 5KB

most of the tests manifested a similar performance, they do not allow to draw

any conclusions independently. Additional evaluation was executed to asses the

attributes together (Table 10). By combining drawing fingerprint with all prop-

erties, only 6.31 bits of entropy were achieved. In total 73 values have changed

within a relatively short period of time, namely 27 hours. As for the cost of 0.4975

seconds of execution time, the great length of code (6KB) and the final sample

size of 5KB, this study does not allow to conclude that WebGL features are a

necessary addition to any fingerprinting algorithm.

5.3. Evaluation Summary

In the paper, fingerprinting analytics was applied to study various finger-980

printing approaches, uncover the existing correlations among fingerprints and

choose the most appropriate ones for sustainable user authentication.

The proposed analytics tool was used to independently analyze and discuss

the obtained results of performed tests. Based on those results, in this Section a

selection of the most efficient features that could make the client-side production985

fingerprinting algorithm is conducted. Additionally, some important observa-

tions useful in creating more advanced solution that utilizes a server-side logic

(and HTTP-based fingerprints) are summarized.

41

Client-side solution. Weighting the expectations from an optimal fingerprinting

script, the following key points were summed up to serve as the criteria of the990

final selection:

• The script should not fingerprint any of the features classified as unstable.

• As many features as possible should be employed to ensure maximal di-

versity. Even if the fingerprint independent entropy is barely recognizable,

but all the other criteria are matched, such feature should be included in995

the algorithm (the number of samples collected within this study is not

significant enough to come up with a conclusion of permanent attribute

rejection).

• Execution time of the script should not exceed 0.5s on average — many of

the usages are aimed on blocking abusive users which should be executed1000

as soon as they enter a website.

• A size of the final code bundle should be minimized to reduce the download

time and save the bandwidth on mobile devices.

The features that meet the requirements are presented in Table 11. A few of

the implemented tests have been concluded to need an improvement in order to1005

match the criteria. Thus, with the purpose of measuring the characteristics of

the algorithm created from an optimal set of implementations, the dataset was

translated into a form of a results yielded by improved fingerprinting methods.

The only issue was a lack of the real world execution time data — an estimation

had been made based on the old methods performances.1010

The result achieved by all fingerprinting methods together, implemented in

bf.js, were compared with the fingerprinting efficiency of an algorithm utilizing

only selected features (Table 12). Obtained with the first solution entropy is

extraordinarily satisfactory, in fact almost ideal as for the available dataset. Yet,

bf.js could not be used in a production environment since it was not built with1015

such intention — its execution time is exceedingly high (3.9s) and instability

(a change observed each 3.5 days) leaves much to be desired. Nonetheless,

42

Table 11: Final fingerprinting methods evaluation.

Feature Verdict Test signature codeL execT Discussion

addBehaviour included addBehavior 50B 1ms low entropy but stable

ad-block add-on rejected - - - rejected due to potential instability

appCodeName included appCodeName 50B 1ms low entropy but stable

appName included appName 50B 1ms low entropy but stable

appVersion modification - 100B 2ms appVersion parts including version

strings (e.g. 1.5.11.0) should be

trimmed to ensure stability

canvas included canvas-advanced-

min

900B 6ms a test with the highest stability, rela-

tively high entropy and quite effective

execution time-wise has been chosen

cookies included cookies,

cookies-active

200B 2ms low entropy but stable

CPU class included cpuClass,

cpuClass-oscpu

100B 2ms low entropy but stable

DNT header included dnt-navigator,

dnt-window

150B 1ms

fonts modification - 2,5KB 20ms a test for 100 selected fonts with

monospace as the base font and size of

70 pixels

indexedDb included indexedDb 50B 1ms

language included language,

language-browser,

language-system,

language-user

200B 4ms

localStorage included localStorage,

localStorage-

active

200B 2ms

openDb included openDatabase 50B 1ms

screen pixel ratio included screenPixelRatio 50B 1ms

screen resolution rejected - - - rejected due to potential instability

screen color depth included screenColorDepth 50B 1ms

sessionStorage included sessionStorage,

sessionStorage-

active

200B 2ms low entropy but stable

timezone included timezone 50B 1ms

touch support included touchSup-basic,

touchSup-

msPointer

200B 2ms

User-Agent modification - - - User-Agent parts including version

strings (e.g. 1.5.11.0) should be

trimmed to ensure stability

UA properties rejected - - - to save the script code length by not

including parser external library, User-

Agent approach was chosen

webGL included - - - both webGL drawing and properties

proved high instability therefore have

been rejected

43

Table 12: Comparison of different solutions.

Solution dtC uqC E(x) modC modT codeL execT

all bf.js fingerprints 4921 4909 12.26 543 3d 12h 85KB 3.9s

final selection of fingerprints 4385 4020 11.96 249 6d 4h 29KB 0.4s

an ideal solution 5038 5038 12.30 0 - - -

the production solution, while matching all the expectations listed previously,

achieved likewise high diversity — only 0.3 less bits of entropy. The execution

time of 0.4s is excellent, the number of changes dropped by a half and the1020

average time distance of a change improved by almost 3 days, which is highly

more acceptable.

Server-based solutions. 6 days of fingerprint stability achieved with the pro-

posed production solution is far behind cookie-based identifiers that are able

to last for years. The need for more advanced techniques is a natural way of1025

improving the process of fingerprint creation. This work has employed certain

aspects of a potential server-based solution, thus few conclusions that could be

useful in creating such solutions were summarized.

The primary obstacle is the transfer of obtained in the browser data to a

server. Length of certain fingerprints (e.g. canvas, webGL) proved to be unac-1030

ceptable, thus the author suggests compressing the data by applying a hashing

algorithm before the transfer. Locality preserving hash could be utilized in case

the server logic would implement a tracking of value changes — it would allow

to measure the change extent. By having such hashes for the most expensive

fingerprints and implementing translation and compression methods for the re-1035

maining ones (e.g. true/false setting sent as one bit of information, mapping of

common phrases to shorter symbols), the necessity to use CORS POST request

could be possibly reduced. Because CORS introduces a noticeable connection

overhead, having a fingerprint compressed enough to fit a GET parameter would

significantly advance the performance. The primary obstacle is the transfer of1040

obtained in the browser data to a server. Length of certain fingerprints (e.g. can-

vas, webGL) proved to be unacceptable, thus the author suggests compressing

44

the data by applying a hashing algorithm before the transfer. Locality preserv-

ing hash could be utilized in case the server logic would implement a tracking

of value changes — it would allow to measure the change extent. By having1045

such hashes for the most expensive fingerprints and implementing translation

and compression methods for the remaining ones (e.g. true/false setting sent as

one bit of information, mapping of common phrases to shorter symbols), the ne-

cessity to use CORS POST request could be possibly reduced. Because CORS

introduces a noticeable connection overhead, having a fingerprint compressed1050

enough to fit a GET parameter would significantly advance the performance.

To improve the JavaScript code execution time, its length and the size of

transferred data, some fingerprints could be processed on the back-end side

instead in the user’s browser, e.g. User-Agent accessible from HTTP request

headers holds identical information as the value returned by JavaScript API —1055

server could utilize parsing libraries to extract meaningful data.

6. Conclusions and Future Work

As digital transactions and interactions continue to grow in volume and im-

portance, the necessity of authentication and verification of the identity of their

participants will continue to grow. One of the mechanisms that can be utilized1060

for this purpose is fingerprinting, which plays recently a more and more signifi-

cant role in sustainable user authentication and web tracking. This techniques

has a very broad scope of use cases, among which are fraud detection, adjusting

security policies and management, identifying and blocking botnets, real-time

target marketing, limiting access to services (for example when filling the sur-1065

veys), to name just a few. Due to fingerprinting analytics linking a device to

a user is possible, as well as identifying the user who uses multiple devices to

access the same service.

Despite the indisputable role of computing device fingerprinting in web track-

ing, this paper proves that the application of fingerprinting technique is really1070

demanding, and it requires a lot of effort to develop an efficient fingerprinting

45

algorithm. The resulting solution presents satisfactory performance in terms of

diversity, execution time and the length of the code bundle, yet demonstrates a

need for improvement of its stability, which is essential in most of the usages.

Except for the benefits coming from conducting the first evaluation of differ-1075

ent fingerprint implementations and producing an optimal set of features, this

work allows to draw many additional conclusions. The implication of the per-

formed analysis of existing solutions is the revealment of some misconceptions

that they introduce — creating artificial fingerprints like browser tempering is

only exacerbating the overall efficiency. Some of the fingerprints (ad-block ex-1080

tension detection, flash-based) have been found to be unstable between regular

browsing and private-mode, something that should not make a difference to a

respectable algorithm. An instability of certain fingerprints was observed and

discussed altogether with potential causes and possible improvements. Finally,

the paper proves the superiority of CSS-based font probing over canvas-based1085

solutions and allows to select a reference set of fonts providing the best de-

tection performance. Additionally, some important objectives of an advanced

server solution were pointed out. The outcome of our research provides a no-

ticeable progress in the fingerprinting analytics. The discovered features and

corresponding optimal implementations will enrich and improve an open-source1090

fingerprinting library Fingerprintjs2 that is daily consumed by hundreds of web-

sites.

Although this paper presents detailed and interesting results, it suffers also

from some limitations. First of all, this research intended to test all the fea-

tures, which according to the authors knowledge could serve as fingerprints.1095

However, an unexpectedly large number of possible attributes and their modifi-

cations have surpassed the authors capabilities. The fact that many additional

fingerprinting features have not been evaluated raises a number of opportunities

for future research and analysis of the remaining fingerprints. Moreover, certain

test outcomes did not allow to perform their full assessment, thus continuation1100

of their evaluation could bring important findings in terms of their usability.

Importantly, a short period of data collection, resulting in a decent but limited

46

dataset, did not allow to conclude reliably in a few aspects — following research

should be conducted in the long-term to eliminate such concerns.

Device fingerprinting proves to be a powerful technique, yet leaving a large1105

room for improvement. Thus, further research have to be conducted in order to

decrease the efficiency distance with well-known storage-based methods. Also,

the detailed analysis of numerous possible practical applications of fingerprints,

and the description of the proposed scenarios of their usage is assumed.

References1110

[1] R. Amin, N. Kumar, G. Biswas, R. Iqbal, V. Chang, A light weight au-

thentication protocol for IoT-enabled devices in distributed cloud comput-

ing environment, Future Generation Computer Systems.doi:10.1016/j.

future.2016.12.028.

[2] V. Chang, Y. Kuo, M. Ramachandran, Cloud computing adoption frame-1115

work: A security framework for business clouds, Future Generation Comp.

Syst. 57 (2016) 24–41. doi:10.1016/j.future.2015.09.031.

[3] G. Sun, D. Liao, H. Li, H. Yu, V. I. Chang, L2P2: A location-label based

approach for privacy preserving in LBS, Future Generation Computer Sys-

tems. 74 (2017) 375–384. doi:10.1016/j.future.2016.08.023.1120

[4] D. M. Kristol, HTTP cookies: Standards, privacy, and politics, ACM

Trans. Internet Techn. 1 (2) (2001) 151–198. doi:10.1145/502152.

502153.

[5] P. Rabinovich, Secure cross-domain cookies for HTTP, J. Internet Services

and Applications 4 (1) (2013) 13:1–13:12. doi:10.1186/1869-0238-4-13.1125

[6] S. Sivakorn, I. Polakis, A. D. Keromytis, The cracked cookie jar: HTTP

cookie hijacking and the exposure of private information, in: IEEE Sym-

posium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26,

2016, 2016, pp. 724–742. doi:10.1109/SP.2016.49.

47

[7] P. Eckersley, How unique is your web browser?, in: Privacy Enhancing1130

Technologies, 10th International Symposium, PETS 2010, Berlin, Ger-

many, July 21-23, 2010. Proceedings, 2010, pp. 1–18. doi:10.1007/

978-3-642-14527-8_1.

[8] Q. Xu, R. Zheng, W. Saad, Z. Han, Device fingerprinting in wireless net-

works: Challenges and opportunities, IEEE Communications Surveys and1135

Tutorials 18 (1) (2016) 94–104. doi:10.1109/COMST.2015.2476338.

URL https://doi.org/10.1109/COMST.2015.2476338

[9] F. Alaca, P. C. van Oorschot, Device fingerprinting for augmenting web

authentication: classification and analysis of methods, in: Proceedings of

the 32nd Annual Conference on Computer Security Applications, ACSAC1140

2016, Los Angeles, CA, USA, December 5-9, 2016, 2016, pp. 289–301.

[10] E. Bursztein, A. Malyshev, T. Pietraszek, K. Thomas, Picasso: Lightweight

device class fingerprinting for web clients, in: Proceedings of the 6th

Workshop on Security and Privacy in Smartphones and Mobile Devices,

SPSM@CCS 2016, Vienna, Austria, October 24, 2016, 2016, pp. 93–102.1145

[11] Fingerprints2, Fingerprintjs2 - modern browser fingerprinting library. [on-

line] https://github.com/valve/fingerprintjs2. (2016).

[12] A. Cahn, S. Alfeld, P. Barford, S. Muthukrishnan, An empirical study of

web cookies, in: Proceedings of the 25th International Conference on World

Wide Web, WWW ’16, 2016, pp. 891–901.1150

[13] Persistent, Usage of persistent cookies for websites. [on-line]

https://w3techs.com/technologies/details/ce-persistentcookies/all/all

(retrieved: 08/2016). (2016).

[14] M. E. Whitman, J. Perez, C. Beise, A study of user attitudes toward per-

sistent cookies, Journal of Computer Information Systems 41 (3) (2001)1155

1–7.

48

[15] C. Low, Cookie law explained. [on-line] https://www.cookielaw.org/the-

cookie-law/ (retrieved:08/2016). (2016).

[16] J. Hayes, ’cookie law’: a hostage to fortune?, Engineering Technology 7 (8)

(2012) 66–69. doi:10.1049/et.2012.0812.1160

[17] D. Fetterly, M. Manasse, M. Najork, J. Wiener, A large-scale study of the

evolution of web pages, in: Proceedings of the 12th International Confer-

ence on World Wide Web, WWW ’03, ACM, 2003, pp. 669–678.

[18] M. S. Siddiqui, D. Verma, Evercookies: Extremely persistent cookies, In-

ternational Journal of Computer Science and Information Security 9 (5)1165

(2011) 165.

[19] G. Goth, Privacy gets a new round of prominence, IEEE Internet Comput-

ing 15 (1) (2011) 13–15.

[20] D. Kim, Poster: Detection and prevention of web-based device fingerprint-

ing, in: IEEE Symposium on Security and Privacy (SP), 2014.1170

[21] T. Yen, Y. Xie, F. Yu, R. P. Yu, M. Abadi, Host fingerprinting and tracking

on the web: Privacy and security implications, in: 19th Annual Network

and Distributed System Security Symposium, NDSS 2012, San Diego, Cal-

ifornia, USA, February 5-8, 2012, 2012.

[22] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, B. Pre-1175

neel, Fpdetective: dusting the web for fingerprinters, in: Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security,

ACM, 2013, pp. 1129–1140.

[23] T. D. Laksono, Y. Rosmansyah, B. Dabarsyah, J. U. Choi, Javascript-based

device fingerprinting mitigation using personal http proxy, in: Information1180

Technology Systems and Innovation (ICITSI), 2015 International Confer-

ence on, IEEE, 2015, pp. 1–6.

49

[24] P. Baumann, S. Katzenbeisser, M. Stopczynski, E. Tews, Disguised

chromium browser: Robust browser, flash and canvas fingerprinting pro-

tection, in: Proceedings of the 2016 ACM on Workshop on Privacy in the1185

Electronic Society, ACM, 2016, pp. 37–46.

[25] N. Takei, T. Saito, K. Takasu, T. Yamada, Web browser fingerprinting

using only cascading style sheets, in: Broadband and Wireless Comput-

ing, Communication and Applications (BWCCA), 2015 10th International

Conference on, IEEE, 2015, pp. 57–63.1190

[26] Rfc 2663 specification — ip network address translator (nat) terminol-

ogy and considerations, [on-line] https://tools.ietf.org/html/rfc2663

(Retrieved: 08/2016).

[27] K. Egevang, P. Francis, The ip network address translator (NAT), Tech.

rep. (1994).1195

[28] T.-F. Yen, X. Huang, F. Monrose, M. K. Reiter, Browser fingerprinting

from coarse traffic summaries: Techniques and implications, in: Interna-

tional Conference on Detection of Intrusions and Malware, and Vulnerabil-

ity Assessment, Springer, 2009, pp. 157–175.

[29] K. Boda, Á. M. Földes, G. G. Gulyás, S. Imre, User tracking on the web via1200

cross-browser fingerprinting, in: Nordic Conference on Secure IT Systems,

Springer, 2011, pp. 31–46.

[30] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, C. Diaz.,

The web never forgets: Persistent tracking mechanisms in the wild. tech-

nical report, princeton university, ku leuven (2014).1205

[31] S. Englehardt, A. Narayanan., On-line tracking: A 1-million-site measure-

ment and analysis. technical report, princeton university (2016).

[32] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethencourt, E. Stefanov, E. C. R.

Shin, D. Song, On the feasibility of internet-scale author identification, in:

50

Security and Privacy (SP), 2012 IEEE Symposium on, IEEE, 2012, pp.1210

300–314.

[33] K. Boda, Á. Földes, G. Gulyás, S. Imre, User tracking on the web via cross-

browser fingerprinting, Information Security Technology for Applications

(2012) 31–46.

[34] C. Ferreira Torres, H. Jonker, S. Mauw, Fp-block: usable web privacy1215

by controlling browser fingerprinting, Computer Security–ESORICS 2015

(2015) 3–19.

[35] N. Nikiforakis, W. Joosen, B. Livshits, Privaricator: Deceiving fingerprint-

ers with little white lies, in: Proceedings of the 24th International Con-

ference on World Wide Web, International World Wide Web Conferences1220

Steering Committee, 2015, pp. 820–830.

[36] C. Hothersall-Thomas, S. Maffeis, C. Novakovic, Browseraudit: automated

testing of browser security features, in: Proceedings of the 2015 Inter-

national Symposium on Software Testing and Analysis, ACM, 2015, pp.

37–47.1225

[37] S. Madan, S. Madan, Security standards perspective to fortify web database

applications from code injection attacks, in: Intelligent Systems, Modelling

and Simulation (ISMS), 2010 International Conference on, IEEE, 2010, pp.

226–230.

[38] P. Laperdrix, W. Rudametkin, B. Baudry, Beauty and the beast: Diverting1230

modern web browsers to build unique browser fingerprints, in: 37th IEEE

Symposium on Security and Privacy (S&P 2016), 2016.

[39] K. Mowery, H. Shacham, Pixel Perfect: Fingerprinting Canvas in HTML5,

Tech. rep., University of California, San Diego, USA (2012).

[40] A. Kobusinska, J. Brzezinski, K. Pawulczuk, Device fingerprinting: Anal-1235

ysis of chosen fingerprinting methods, in: Proceedings of the 2nd Interna-

51

tional Conference on Internet of Things, Big Data and Security, IoTBDS

2017, Porto, Portugal, April 24-26, 2017, 2017, pp. 167–177.

[41] J. Brzezinski, A. Danilecki, M. Holenko, A. Kobusinska, J. Kobusinski,

P. Zierhoffer, D-reserve: Distributed reliable service environment, in: Ad-1240

vances in Databases and Information Systems - 16th East European Confer-

ence, ADBIS 2012, Poznań, Poland, September 18-21, 2012. Proceedings,

2012, pp. 71–84.

[42] A. Danilecki, M. Holenko, A. Kobusinska, M. Szychowiak, P. Zierhoffer,

Reserve service: An approach to increase reliability in service oriented sys-1245

tems, in: Parallel Computing Technologies - 11th International Conference,

PaCT 2011, Kazan, Russia, September 19-23, 2011. Proceedings, 2011, pp.

244–256.

[43] A. Kobusinska, D. Wawrzyniak, Replication of recovery log - an approach

to enhance SOA reliability, in: Distributed Applications and Interoper-1250

able Systems - 15th IFIP WG 6.1 International Conference, DAIS 2015,

Held as Part of the 10th International Federated Conference on Distributed

Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015,

Proceedings, 2015, pp. 152–157.

[44] C. Maurice, S. Onno, C. Neumann, O. Heen, A. Francillon, Improving1255

802.11 fingerprinting of similar devices by cooperative fingerprinting, in:

SECRYPT 2013 - Proceedings of the 10th International Conference on

Security and Cryptography, Reykjav́ık, Iceland, 29-31 July, 2013, 2013, pp.

379–386.

[45] J. Doherty, Wireless And Mobile Device Security, Jones & Barlett Learning1260

Information Systems Security & Assurance, Jones & Bartlett Learning; 1

edition (January 6, 2015), 2015.

[46] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, G. Vi-

gna, Cookieless monster: Exploring the ecosystem of web-based device fin-

52

gerprinting, in: 2013 IEEE Symposium on Security and Privacy, SP 2013,1265

Berkeley, CA, USA, May 19-22, 2013, 2013, pp. 541–555.

[47] BlockAdBlock — AdBlock add-on detection library., [on-line] https://

github.com/sitexw/BlockAdBlock (Retrieved: 08/2016).

53

Anna Kobusinska received her M.Sc. and PhD degrees in computer science from Poznań

University of Technology, in 1999 and 2006, respectively. She currently works as an

Associate Professor at the Laboratory of Computing Systems, Institute of Computing Science,

Poznań University of Technology, Poland. Her research interests include large-scale

distributed systems, service-oriented and cloud computing. She focuses on distributed

algorithms, Big Data analysis, replication and consistency models, as well as fault-tolerance,

specifically checkpointing and rollback recovery techniques.

She has served and is currently serving as a PC member of several international conferences

and workshops. She is also author and co-author of many publications in high quality peer

reviewed international conferences and journals. She participated to various research

projects supported by national organizations and by EC in collaboration with academic

institutions and industrial partners.

*Biographies (Text)

Jerzy Brzeziński received M.Sc. in electrical engineering, and Ph.D. and Dr. Habil. in

computer science, all from Poznań University of Technology, where he is currently a Full

Professor of Computer Science.

His research interests include distributed algorithms and fault-tolerant distributed systems. He

is the author and coauthor of two books, and over 100 research papers published in journal

and proceeding of many international conferences. He has been involved in many

international and national research projects.

Prof. Brzeziński is a member of the IEEE CS, ACM, Polish Information Processing Society,

Computer Science Committee of the Polish Academy of Sciences, among others.

*Biographies (Text)

Kamil Pawluczuk is a 2016 graduate of Poznan University of Technology. His interests focus

on practical implementations of cutting-edge solutions in web security. His Master thesis

consisted in development of device fingerprinting algorithm ready to meet real-time

environments. Currently he is leading creation of progressive fraud detection system at Beta

District, Honk Kong bitcoin-oriented buisness.

He is also very active in tech-related communities. He led Web Application Research Group -

Poznań, Poland, and (co)organised conferences and workshops.

*Biographies (Text)

*Biographies (Photograph)

*Biographies (Photograph)
Click here to download high resolution image

*Biographies (Photograph)
Click here to download high resolution image

