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A B S T R A C T

In pharmacovigilance, reported cases are considered suspected adverse drug reactions (ADR). Health authorities
have thus adopted structured causality assessment methods, allowing the evaluation of the likelihood that a drug
was the causal agent of an adverse reaction. The aim of this work was to develop and validate a new causality
assessment support system used in a regional pharmacovigilance centre. A Bayesian network was developed, for
which the structure was defined by experts while the parameters were learnt from 593 completely filled ADR
reports evaluated by the Portuguese Northern Pharmacovigilance Centre medical expert between 2000 and
2012. Precision, recall and time to causality assessment (TTA) was evaluated, according to the WHO causality
assessment guidelines, in a retrospective cohort of 466 reports (April–September 2014) and a prospective cohort
of 1041 reports (January–December 2015). Additionally, a simplified assessment matrix was derived from the
model, enabling its preliminary direct use by notifiers. Results show that the network was able to easily identify
the higher levels of causality (recall above 80%), although struggling to assess reports with a lower level of
causality. Nonetheless, the median (Q1:Q3) TTA was 4 (2:8) days using the network and 8 (5:14) days using
global introspection, meaning the network allowed a faster time to assessment, which has a procedural deadline
of 30 days, improving daily activities in the centre. The matrix expressed similar validity, allowing an immediate
feedback to the notifiers, which may result in better future engagement of patients and health professionals in
the pharmacovigilance system.

1. Introduction

In pharmacovigilance, most of the reported cases are considered as
suspected adverse drug reactions (ADR). Health professionals and
consumers are asked to report episodes they believe are related with
drug intake, but in most of the cases ADR are not particular for each
drug and a drug rechallenge (i.e. the suspected drug was reintroduced
into the patient's therapy, or the patient has taken the same suspected
drug before) rarely occurs. To solve this difficulty, health authorities
have adopted structured and harmonized causality assessment
methods, in order to classify the ADR reports with one of the causality
degrees proposed by the Uppsala Monitoring Centre (WHO-UMC) caus-
ality assessment system [1]. Apart from ADR identification, where in-
novative methods have been proposed [2], causality assessment is an
essential tool in the pharmacovigilance system, as it helps the risk-
benefit evaluation of commercialized medicines, and is part of the

signal detection (being a signal a “reported information on a possible
causal relationship between an adverse event and a drug, the re-
lationship being unknown or incompletely documented previously”
[1]) performed by health authorities.

The Portuguese Pharmacovigilance System has adopted the method
of Global Introspection [3], since its creation. During this process, an
expert (or a group of experts) expresses judgement about possible drug
causation, considering all available data in the ADR report. The deci-
sion is based on the expert knowledge and experience, and uses no
standardized tools. Although this is the method most widely used [4], it
has some limitations related to its reproducibility and validity [5–7].
Besides, this method is closely linked with the medical expert avail-
ability which not always allows meeting legal deadlines.

Causality assessment can also be done through validated algorithms
such as the Naranjo [8], Jones [9] or Karch-Lasagna [10] algorithms.
Although these algorithms have better agreement rates than Global
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Introspection, they also have the disadvantage of not being flexible and,
consequently, it is not possible to include more causal factors to be
evaluated at the same time [4]. Moreover, in our experience, some real
cases evaluated by more than one algorithm may give rise to different
degrees of causality. Guidelines such as the ones used for causality
assessment are several times hard to interpret and to apply, even by
experienced practicioners. Furthermore, they often result in simple
rules or association measures, making their application in decision
support somewhat limited, especially in the context of guidelines that
are to be computer-interpreted for decision support systems [11].

The definition of decision support systems (most of the times based
on expert systems) is currently a major topic since it may help the di-
agnosis, treatment selection, prognosis of rate of mortality, prognosis of
quality of life, etc. They can even be used to help on administrative
tasks like the one addressed by this work. However, the complicated
nature of real-world biomedical data has made it necessary to look
beyond traditional biostatistics [12] without loosing the necessary
formality. Hence, such systems could be implemented applying
methods of machine learning [13], since new computational techniques
are better at detecting patterns hidden in biomedical data, and can
better represent and manipulate uncertainties [14]. In fact, the appli-
cation of data mining techniques to medical knowledge discovery tasks
is now a growing research area. These techniques vary widely and are
based on data-driven conceptualisations, model-based definitions or on
a combination of data-based knowledge with human-expert knowledge
[12]. Bayesian approaches have an extreme importance in these pro-
blems as they provide a quantitative perspective and have been suc-
cessfully applied in health care domains [15]. One of their strengths is
that Bayesian statistical methods allow taking into account prior
knowledge when analysing data, turning the data analysis into a pro-
cess of updating that prior knowledge with biomedical and health-care
evidence [12]. However, only after the 90's we may find evidence of a
large interest on these methods, namely on Bayesian networks.

Bayesian networks can be seen as an alternative to logistic regres-
sion, where statistical dependence and independence are not hidden in
approximating weights, but rather explicitly represented by links in a
network of variables [15], offering a general and versatile approach to
capturing and reasoning with uncertainty in medicine and health care.
Moreover, they intrinsically include an evidence synthesis mechanism
that is yet to be fully exploited as meta-analysis method, central piece
for evidence-based guidelines [16]. Generally, a Bayesian network re-
presents a joint distribution of one set of variables, specifying the as-
sumption of independence between them, with the interdependence
between variables being represented by a directed acyclic graph. Each
variable is represented by a node in the graph, and is dependent on the
set of variables represented by its ascendant nodes. This dependence is
represented by a conditional probability table that describes the prob-
ability distribution of each variable, given their ascendant variables
[17].

Given their successful applications in previous healthcare applica-
tions [18,19], we decided to build (and validate) a Bayesian network
model to help in the process of causality assessment carried out in
pharmacovigilance centres, making possible a new path for im-
plementing such practice guidelines. Fig. 1 sketches the workflow of
causality assessment process at the pharmacovigilance centre, high-
lighting the inclusion of our proposal to speed up the feedback to ori-
ginal reporters. The Bayesian network is not used by the expert. The
pharmacovigilance team uses the Bayesian network to have a predic-
tion of the causality that the expert will assign to the report. With this,
they can start to prepare the global report for national and European
institutions, while providing a quick response to the reporter, with a
preliminary assessment degree. This not only speeds up the final report
preparation (which is where most of the time is spent by the team) but
also improves the feedback to the reporter, increasing engagement in
the pharmacovigilance system. Then, the expert performs the usual
global introspection and gives the final degree which is sent back to the

reporter as well. The Bayesian network has, therefore, two main ob-
jectives: (a) predict the most probable causality degree the expert will
assign to the report, and (b) be interpretable by the pharmacist team
members to inspect which variables are causing the shifts in causality
classification.

Although the entire process is called “causality assessment”, we do
not intend to model causal relationships. In fact, the term “causality
assessment” does not come from the methodological approach of causal
inference or causality modelling; rather, it comes directly from the
pharmacovigilance system, describing the process where an algorithm
or an expert physician tries to classify whether a drug (or a combination
of drugs) was the causal agent of the adverse event that was reported. In
this work, we modelled associations by means of conditional prob-
abilities structured in a Bayesian network, trying to predict the classi-
fication the expert would provide for the same data.

2. Material and methods

The study is framed as the development of a diagnostic test, where
the comparison (gold standard) is the method of medical expert's global
introspection.

2.1. Cohorts of adverse drug reaction reports

Three cohorts of suspected ADR were used in the building and as-
sessment of the Bayesian model: a derivation cohort, consisting of the
registries of suspected ADR evaluated by a medical expert in a regional
pharmacovigilance centre between 2000 and 2012; a retrospective
validation cohort consisting of all reports of suspected ADR received in
the same centre within the initial 6 months of implantation of the
system in the centre (in 2014); and a prospective cohort, consisting of
all reports of suspected ADR received in the same centre during the year
of 2015. Additionally, a cohort of reports from the first semester of
2016 was used to validate the derived simplified assessment matrix
(explained further in the text).

2.2. Relevant variables

Each suspected ADR was evaluated by the medical expert of the
Northern Pharmacovigilance Centre using global introspection, for
causality categories of Definite, Probable, Possible or Conditional, ac-
cording to the WHO causality assessment guidelines. The variables used
to develop the network were the usual data needed for common caus-
ality assessment algorithms [8–10] and for global instrospection, as
explained below:DescribedIf the ADR was previously reported in other
patients so that this event is descibed in the summary of product
characteristics (SPC), it enhances the likelihood that a drug is the cause
of the observed event; this variable was slightly enhanced for the pro-
spective cohort, including descriptions also on other sources of pub-
lished literature. Variable Described can take (yes/no) values.Rein-
troduced / ReappearedData on drug rechallenge is mostly absent,
because it is not likely that a patient who has suffered ADR receive the
suspected drug again. This data is available when the patient uses the
drug for the second time by mistake, or when the first ADR episode has
not been interpreted as such. When this data is available, it is a very
useful variable on causality assessment, because it provides a con-
firmation of the previous suspicion. Since uncertainty exist during ad-
verse event reporting, two separate variables are modeled: Reintroduced
(yes/no) and Reappeared (yes/no/notapplicable).Suspended / Im-
provedA favorable evolution of the ADR after drug withdrawal in-
creases the likelihood that the suspected drug was the cause of the ADR.
Since uncertainty exist during adverse event reporting, two separate
variables are modeled: Suspended (yes/no) and Improved (yes/no/no-
tapplicable).ConcomitantThe presence of other drugs can represent al-
ternative causes (other than the suspected drug) that could on their own
cause the ADR. Variable modeled with (yes/no) values.Suspected
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interactionIf there is suspicion that an interaction with other drug ex-
isted, then the cause of the ADR is less clear. Variable modeled with
(yes/no) values.Route of administrationSome ADR are more likely to
occur when the drug is administered intravenously, and others when it
is administered orally or topically, for example. Variable modeled with
(oral/topic/injectable) values.NotifierThis variable represents a proxy
for quality of information. In most cases, physicians report their ADR
suspicions more completely and precisely than other health profes-
sionals. Variable modeled with (physician/pharmacist/nurse/other)
values.Pharmacotherapeutic groupAlthough ADR are not specific to
drug classes, some events are more related to certain pharmacother-
apeutic group(s). The nomenclature used for drug classification was the
one adopted by Portuguese Authority of Medicines and Health Products
(INFARMED, IP) according to national legislation (Despacho no 21844/
2004, de 12 de outubro) which includes a correspondence with the in-
ternational ATC. Variable modeled with (anti-infectious/central ner-
vous system/cardiovascular system/blood/respiratory system/gastro-
intestinal system/genitourinary system/hormones and drugs used to
treat endocrine diseases/loco-motor system/anti-allergic medication/
nutrition/corrective agents in blood volume and electrolyte dis-
turbances/ drugs for skin disorders/drugs used in otorhinolar-
yngological disorders/drugs for eye disorders/antineoplastic drugs and
immune-modulators/drugs used to treat poisoning/vaccines and im-
munoglobulins/diagnosis media) values.IneffectivenessDrug ineffec-
tiveness means the drug did not act as expected (example: an analgesic
that does not relieve a headache). This is an inherent condition to any
drug, because it is accepted that none drug is 100% effective. Until
February 2015, the expert interpretation of this kind of ADR (lack of
effect) assumed that they should all receive the causality degree of
Conditional, as medical experts needed further information to a com-
plete the assessment. After February 2015, this interpretation has
changed into assuming lack of effect is described for all drugs. Variable
modeled with (yes/no) values.

The decision to include variables in the Bayesian network was ex-
pert-oriented, following international guidelines for “causality assess-
ment” in pharmacovigilance. Some of those are not queried in the
original report, as they require expert-knowledge from the pharma-
covigilance pharmacist team (e.g. drug's pharmaceutical group).
However, none requires the intervention of the expert (medical doctor)
who proceeds with the assessment a posteriori.

2.3. Data pre-processing

Data was collected from the official adverse drug report (ADR) da-
tabase, including completely filled ADR reports evaluated by the
Portuguese Northern Pharmacovigilance Centre. In case of duplicate
reports, an evaluation was performed and the duplicate dismissed. All
the reports inserted in the database were cross-checked with the ori-
ginal paper reports:

• in the cases were we had two or more drugs that had different
properties and characteristics in the same report, the classification
on the database was unknown for variables Suspended,
Administration and PharmaGroup;

• all reports where there was no indication of the reaction being de-
scribed in the literature were classified as not being described;

• also, if the same report described two levels of causality, we con-
sidered it having the lowest one, following the recommendations of
the experts;

• variables Suspended and ImprovedAfterSuspension (and likewise
Reintroduced and Reappeared) have an intimate connection, with the
former imposing a “NotApplicable” status to the latter in cases
where the former were negative; if we do not know what happened,
then both variables are left missing.

2.4. Bayesian network model definition

A Bayesian network was developed where the structure of causal
dependence was defined towards implementing the current guidelines
for causality assessment, in cooperation with the medical expert,
whereas the conditional probabilities were induced from the derivation
cohort.

Fig. 2 presents a graphical representation of the development pro-
cess. ADR reports are sent to pharmacovigilance centres using any
available channel (e.g. web service, online form1, phone, email, etc.)
where a medical expert assesses the causality by the process of global
introspection, assigning a causality degree (Definite, Probable, Possible or
Conditional) to the report, which is then stored in a relational database.

Fig. 1. Causality assessment workflow at a regional pharmacovigilance centre, including administrative steps, causality assessment by two different methods, and
feedback to the original creator of the adverse drug report (ADR).

1 http://newdbserver.med.up.pt/web.care/UFN/notificacao/notificacao.php
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Using published guidelines for the causality assessment, and the ex-
perienced opinion of the medical expert, a Bayesian network was built
trying to capture the causal interdependences of the ADR. Then, using
the historical assessment done by the medical expert, the network
parameters were learnt from data of the derivation cohort, defining its
quantitative model.

2.5. Bayesian network model structure

Following the guidelines and expert opinion, we separated the re-
levant variables into four groups of nodes for the network: (a) factors
that generally influence the occurrence of ADR for the drug in question
(i.e. Described, Reintroduced and Reappeared); (b) factors which are re-
lated with the particular report in question (i.e. Suspended,
ImprovedAfterSupension, Concomitant, SuspectedInteraction, Notifier and
Administration); (c) special cases, i.e. PharmaGroup which, given the
number of possible states, would make the network too complex if
modeled in causal ways, and also, Ineffectiveness was considered to only
influence the Conditional degree; and (d) given that we have observed
the expert using the same information in different ways for different
causality degrees, and the limited number of reports for the modeling
(which hinder the possibility of bigger conditional probability tables),
we decided to model each causality degree in a separate node, with the

final degree being decided by the team member, assigning the degree
with higher a posteriori probability. Fig. 3 presents the final structure of
the model.

2.6. Bayesian network model parameters

Since we are trying to model the assessment done by the expert, the
model's parameters were learnt from the actual reports and assessment
in the derivation cohort. Given the limited quality of the electronic
reporting of suspected ADR in years prior to 2012, we only considered
complete reports for this step. An exception is noted for node
Ineffectiveness, as this info was not registered up until 2014; thus, to
model the uncertainty described by the expert, for this node, the con-
ditional probability table was defined as

P(Yes|Conditional)= 1.0 and P(Yes|∼ Conditional)= .375

Fig. 3 presents the marginal probabilities for each node after the
conditional probability table fitting procedure.

2.7. Preliminary causality assessment matrix

The preliminary application of the model by the notifier can be
approached by an appropriately defined matrix. In order to choose

Fig. 2. Definition of the expert-informed Bayesian network for causality assessment of adverse drug reaction reports. Both the guidelines and the medical expert
opinion were used to define the structures, while parameters were learnt from historical assessment.

Fig. 3. Expert-informed Bayesian network for causality assessment of adverse drug reaction (ADR) reports. Monitors show the marginal probabilities for all nodes,
except for drug pharmacotherapeutical group, which was hidden for presentation space reasons.
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which variables should be included in the matrix, we applied logistic
regression with all independent variables using the enter method.
Variables with statistical significance, which were available to the no-
tifier (and for which enough data was available), were chosen as factors
for the matrix. Each cell of the matrix represents the marginal posterior
degree probability estimate for that subgroup of patients. The values in
each cell of the matrix represent the expected degree for a report in that
subgroup.

To assess the discriminative ability of the matrix, specific cut-off

values were chosen after performing a ROC analysis of the derivation
cohort. Given the expected application of the matrix, we only label the
report as Definite if probability of that causality degree is higher than
that of Probable, and we label them as Possible in all cases where the
probability of that causality degree is higher than 40%; all other cases
are labeled Probable, in the matrix.

Table 1
Descriptive analysis of the three cohorts used in the derivation and validation of the model.

Derivation Validation Prospective Total
n (%) n (%) n (%) n (% [95%CI])

Period 2000–2012 April–September 2014 January–December 2015

Described 593 (28.3) 464 (22.1) 1041 (49.6) 2098 (100)
Yes 459 (77.4) 383 (82.5) 932 (89.5) 1774 (84.6 [82.9,86.1])
No 134 (22.6) 81 (17.5) 109 (10.5) 324 (15.4 [13.9,17.1])

Reintroduced 593 (55.6) 189 (17.7) 284 (26.6) 1066 (100)
Yes 148 (25) 59 (31.2) 101 (35.6) 308 (28.9 [26.2,31.7])
No 445 (75) 48 (25.4) 183 (64.4) 676 (63.4 [60.4,66.3])
Not applicable 0 (0) 82 (43.4) 0 (0) 82 (7.7 [6.2,9.5])

Reappeared after reintroduction 593 (56.6) 183 (17.5) 271 (25.9) 1047 (100)
Yes 129 (21.8) 44 (24) 56 (20.7) 229 (21.9 [19.4,24.5])
No 18 (3) 9 (4.9) 32 (11.8) 59 (5.6 [4.4,7.3])
Not applicable 446 (75.2) 130 (71) 183 (67.5) 759 (72.5 [69.7,75.2])

Suspended 593 (30.4) 418 (21.5) 937 (48.1) 1948 (100)
Yes 518 (87.4) 319 (76.3) 628 (67) 1465 (75.2 [73.2,77.1])
Reduced 3 (0.5) 5 (1.2) 24 (2.6) 32 (1.6 [1.1,2.3])
No 8 (1.3) 28 (6.7) 152 (16.2) 188 (9.7 [8.4,11.1])
Not applicable 64 (10.8) 66 (15.8) 133 (14.2) 263 (13.5 [12,15.1])

Improved after suspension 593 (31.7) 399 (21.3) 879 (47) 1871 (100)
Yes 486 (82) 293 (73.4) 567 (64.5) 1346 (71.9 [69.8,74])
No 29 (4.9) 7 (1.8) 27 (3.1) 63 (3.4 [2.6,4.3])
Not applicable 78 (13.2) 99 (24.8) 285 (32.4) 462 (24.7 [22.8,26.7])

Concomitant medication 593 (47.7) 189 (15.2) 460 (37) 1242 (100)
Yes 466 (78.6) 180 (95.2) 445 (96.7) 1091 (87.8 [85.9,89.6])
No 127 (21.4) 9 (4.8) 15 (3.3) 151 (12.2 [10.4,14.1])

Suspected interaction 593 (34.7) 75 (4.4) 1041 (60.9) 1709 (100)
Yes 37 (6.2) 10 (13.3) 21 (2) 68 (4 [3.1,5])
No 556 (93.8) 65 (86.7) 1020 (98) 1641 (96 [95,96.9])

Route of administration 593 (29) 443 (21.7) 1006 (49.3) 2042 (100)
Oral 429 (72.3) 267 (60.3) 654 (65) 1350 (66.1 [64,68.2])
Injectable 123 (20.7) 167 (37.7) 346 (34.4) 636 (31.1 [29.2,33.2])
Topical 41 (6.9) 9 (2) 6 (0.6) 56 (2.7 [2.1,3.6])

Notifier 593 (29.3) 466 (23) 966 (47.7) 2025 (100)
Physician 372 (62.7) 295 (63.3) 565 (58.5) 1232 (60.8 [58.7,63])
Pharmacist 175 (29.5) 91 (19.5) 283 (29.3) 549 (27.1 [25.2,29.1])
Nurse 46 (7.8) 57 (12.2) 118 (12.2) 221 (10.9 [9.6,12.4])
Other 0 (0) 23 (4.9) 0 (0) 23 (1.1 [0.7,1.7])

Pharmacotherapeutical group 593 (28.8) 466 (22.6) 1003 (48.6) 2062 (100)
AntiallergicMedication 11 (1.9) 4 (0.9) 8 (0.8) 23 (1.1 [0.7,1.7])
Antiinfectious 136 (22.9) 103 (22.1) 264 (26.3) 503 (24.4 [22.6,26.3])
AntineoplasticDrugsImmunemodulators 35 (5.9) 82 (17.6) 212 (21.1) 329 (16 [14.4,17.6])
Blood 7 (1.2) 9 (1.9) 25 (2.5) 41 (2 [1.4,2.7])
CardiovascularSystem 72 (12.1) 29 (6.2) 42 (4.2) 143 (6.9 [5.9,8.1])
CentralNervousSystem 91 (15.3) 51 (10.9) 162 (16.2) 304 (14.7 [13.3,16.4])
DiagnosisMedia 1 (0.2) 9 (1.9) 20 (2) 30 (1.5 [1,2.1])
DrugsForEyeDisorders 4 (0.7) 1 (0.2) 8 (0.8) 13 (0.6 [0.4,1.1])
DrugsForSkinDisorders 23 (3.9) 3 (0.6) 3 (0.3) 29 (1.4 [1,2])
DrugsToTreatPoisoning 1 (0.2) 0 (0) 0 (0) 1 (0 [0,0.3])
GastrointestinalSystem 28 (4.7) 11 (2.4) 16 (1.6) 55 (2.7 [2,3.5])
GenitourinarySystem 13 (2.2) 1 (0.2) 10 (1) 24 (1.2 [0.8,1.8])
Hormones 17 (2.9) 14 (3) 33 (3.3) 64 (3.1 [2.4,4])
LocomotorSystem 101 (17) 77 (16.5) 84 (8.4) 262 (12.7 [11.3,14.2])
Nutrition 3 (0.5) 2 (0.4) 2 (0.2) 7 (0.3 [0.1,0.7])
Otorhinolaryngology 0 (0) 2 (0.4) 0 (0) 2 (0.1 [0,0.4])
RespiratorySystem 10 (1.7) 8 (1.7) 12 (1.2) 30 (1.5 [1,2.1])
VaccinesImmunoglobulins 40 (6.7) 58 (12.4) 102 (10.2) 200 (9.7 [8.5,11.1])
Volaemia 0 (0) 2 (0.4) 0 (0) 2 (0.1 [0,0.4])
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2.8. Evaluation strategy and software used

The network assessment was compared with the gold standard
(medical expert's global introspection) in terms of sensitivity (recall)
and positive predictive values (precision). Also evaluated (using the
retrospective validation cohort) was the time to causality assessment
(TTA), compared to the manual assessment times recorded in the cen-
tre's quality management system. Final validation was done in the
prospective validation cohort, along with the specific AUC for each
outcome node. Bayesian network structure was defined with SamIam
[20], while conditional probability tables were learnt from data using R
package bnlearn [21]. Inference for daily use was done using SamIam,
while validation was done with the R package gRain [22] using Laur-
itzen-Spiegelhalter algorithm [23] for exact posterior probability in-
ference. ROC curves were computed with R package pROC [24], Pre-
cision-Recall curves with R package PRROC [25], and confidence
intervals for proportions were computed with R package stats [26].

3. Results

The path for model validation in this work was defined in several
steps (derivation, validation, prospective validation and simplified as-
sessment), leading to different levels of results.

3.1. Descriptive analysis

The 2000 to 2012 activity generated 3220 records, from which 593
complete instances were used as derivation cohort. The retrospective
validation cohort, collected during 6 months in 2014, included 466
reports. The final prospective validation cohort, collected for the whole
year of 2015, included 1041 reports.

Over all 2100 ADR, 85% were described, 29% did not include a drug
rechallenge, but 77% were suspended leading to patient status

improvement in 72% of the cases, 88% considered concomitant medi-
cation, although only 4% actually raised suspicion of interaction. The
majority of ADR were reported by physicians (61%) and pharmacists
(27%), being mainly related to oral (66%) or injectable (31%) drugs.
Table 1 presents the descriptive analysis of the three cohorts, while
Table 2 presents a summary of the causality assessment performed by
both the medical expert (using global introspection) and the Bayesian
network model.

The additional cohort used for the matrix validation included 482
reports: 93% described, 18% without drug rechallenge, 62% suspended
leading to patient improvement in 86% of the cases, 44% with con-
comitant medication.

3.2. Model derivation and prospective validation

The initial analysis of the derivation and validation cohorts gave
indications that the network seems better for higher degrees of caus-
ality (precision and recall for Probable above 87%). However, in the
validation cohort, the network actually tends to overrate causality
(96.9% of errors on Possible cases classified as Probable) or give the

immediately below level (90.8% of errors on Definite cases classified as
Probable; 69.7% of errors on Probable cases classified as Possible). The
median (Q1:Q3) time to causality assessment was 4 (2:8) days using the
network and 8 (5:14) days using global introspection, meaning the
network allowed a faster time to assessment.

The prospective validation of the network reinforced the ability to
identify higher levels of causality (recall for Definite and Probable above
80%) while exposing even stronger problems dealing with the lower
levels of causality. Table 3 presents the results for that cohort, where
the network clearly failed to address Possible and Conditional levels,
although each node, alone, had a specific AUC above 65% (Figs. 4 and 5
present the ROC and Precision–Recall curves for all degrees, which give
only insights of the discriminative ability of each node, since the final
degree is decided by the team member a posteriori). Nonetheless,
classifying Possible/Probable cases as Definite is the worst error as judge
by the experts. Therefore, the fact that only a small fraction of Probable
cases are classified as Definite appears as a good quality of the model.

3.3. Matrix for preliminary assessment

Although the aim of the model is to help the pharmacovigilance
teams in the causality assessment process, we envisioned its use as a
rough feedback to the notifier, in order to provide an initial expectation
of causality for the submitted report. Table 4 presents a matrix using
only two variables (available to the notifier) which provides the ex-
pected causality assessment for those subgroups of reports. Given the
existing conceptual constraints, in case of missing information re-
garding reappearance after reintroduction and improvement after sus-
pension, categories “Not reintroduced” or “Not suspended” should be
assumed, respectively. Additionally, the matrix was validated against a
new cohort of reports from the first semester of 2016 (from the same
pharmacovigilance centre, which followed similar distributions) using
the following rationale:Definiteif probability of Definite degree is higher

Table 2
Causality assessment by the medical expert (gold standard using global in-
trospection) and the Bayesian network model.

Derivation Validation Prospective Total
n (%) n (%) n (%) n (% [95%CI])

Expert assessment 593 (28.2) 466 (22.2) 1041 (49.6) 2100 (100)
Definite 60 (10.1) 37 (7.9) 36 (3.5) 133 (6.3

[5.3,7.5])
Probable 346 (58.3) 372 (79.8) 833 (80) 1551 (73.9

[71.9,75.7])
Possible 152 (25.6) 44 (9.4) 131 (12.6) 327 (15.6

[14.1,17.2])
Conditional 35 (5.9) 13 (2.8) 41 (3.9) 89 (4.2 [3.4,5.2])

Bayesian net
assessment

593 (28.2) 466 (22.2) 1041 (49.6) 2100 (100)

Definite 77 (13) 36 (7.7) 47 (4.5) 160 (7.6
[6.5,8.9])

Probable 331 (55.8) 388 (83.3) 945 (90.8) 1664 (79.2
[77.4,80.9])

Possible 185 (31.2) 38 (8.2) 47 (4.5) 270 (12.9
[11.5,14.4])

Conditional 0 (0) 4 (0.9) 2 (0.2) 6 (0.3 [0.1,0.7])

Table 3
Validity assessment for the 2015 prospective cohort of adverse drug reaction (ADR) reports. Columns represent the assessment done by the expert using global
introspection, while lines represent the Bayesian network most probable causality degree.

Definite Probable Possible Conditional Precision Recall Node AUC
% [95%CI] % [95%CI] % [95%CI]

Definite 30 16 1 0 63.8 [48.5,76.9] 83.3 [66.5,93.0] 91.7 [84.8,98.5]
Probable 4 792 117 32 83.8 [81.3,86.1] 95.1 [93.3,96.4] 70.7 [66.6,74.8]
Possible 2 24 12 9 25.5 [14.4,40.6] 9.2 [5.0,15.8] 66.7 [62.0,71.3]
Conditional 0 1 1 0 0.0 [0.0,80.2] 0.0 [0.0,10.7] 69.1 [61.3,76.9]
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than that of Probable;Possibleif probability of Possible degree is
≥40%;Probableotherwise. Results of applying the matrix to the pro-
spective cohort are presented in Table 5 (top half), which are not sig-
nificantly different from the prospective validation of the model itself
(Table 3). Looking towards the application to the new 2016 cohort
(Table 5, bottom half), although most validity measures are not sig-
nificantly different, we should note a decrease in sensitivity in the De-
finite degree. Nonetheless, this decrease represents a shift towards a
more conservative approach (classifying Definite cases as Probable)
which is recommended assuming its future direct use by the notifier.

4. Discussion

The Bayesian network model allowed a faster time to causality as-
sessment, which has a procedural deadline of 30 days, improving daily
activities in the pharmacovigilance centre. Moreover, the model was
accurate on most cases, showing satisfactory results to the higher de-
grees of causality.

4.1. On results

Although the overall problem is quite imbalanced, with Probable

cases being the vast majority which could allow a majority default
model resulting in 100% recall and 80% precision for the Probable de-
gree (against 95% recall and 84% precision of our strategy), we believe
the beneficial trade-off rises from being able to address the most im-
portant Definite degree (83% recall and 64% precision). Likewise, ROC
and PR curves seem to indicate a somewhat low discriminative ability.
However, since we have modelled each level as a separate node, the
ROC and PR curves are drawn from the probability output of each node
which does not translate directly into a global probability for that level.
Therefore, ROC and PR curves are only indicative of each node's
quality, not of the overall system.

On the other hand, it had a non-adequate behaviour with the two
lowest degrees of causality. We believe the Bayesian network failed to
learn the degree Possible because this degree is much related with the
existence of concomitant diseases or conditions that could explain the
ADR [1]. However, this kind of information is not collected in the ADR
form as a structured field. The notifier may provide this information in
a free text field (comments) or by phone. For this reason, the network
does not consider any node with this question. On the other hand, the
medical expert, while performing global introspection, is aware of this
information (if any) and can fully assess the case. For example, there
were several reports of headache and fatigue involving new drugs used

Fig. 4. ROC and Precision–Recall curves for the top causality degrees, reflecting the application of the model to both the validation and prospective cohorts.
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in Hepatitis C. These reports were mainly assessed by the expert as
Possible, because the ADR reported could also be explained by the dis-
ease (Hepatitis), contrary to the Bayesian network which assessed these
cases as Probable, since these ADR are described in the summary of
product characteristics. We believe that this issue can be solved with
the inclusion of a new question on the ADR form on (a) the existence of
any other eventual cause to the ADR other than the suspect drug, or (b)
if the drug is considered to be new in the population; consequently, new
nodes in the Bayesian network are needed.

The network also failed, and with greater magnitude, to learn the
degree Conditional. This is a temporary degree, attributed to those cases
with insufficient information and also to those cases which is expected
to obtain more data. For this reason, it is a degree difficult to fit in a
model and was hence not considered for the preliminary matrix as-
sessment. After February 2015, this interpretation has changed (which
prevented a joint analysis of both cohorts together). Thus, a particular
analysis will be performed to node Innefectiveness.

4.2. On the final decision

The use of a maximum a posteriori probability rule to define the
final degree (or a cut-off rule as used in the preliminary assessment

matrix) is clearly debatable. To better assess the quality of our strategy,
we have compared it with a 2-layer solution, where the a posteriori
probabilities of each degree are fed to a naive Bayes classifier, with
factors being (quintile-based) discretized versions of each degree
probability from the original network, and conditional probability ta-
bles learnt using the validation cohort (2015). This classifier was then
applied to the prospective cohort (2016), and results are present in
Table 6, where we can stress that the strategy is mostly equivalent,
being only slightly more flexible towards Conditional degree.

4.3. On model validation

As noted in the results section, there are changes in the data priors
(which were overviewed in the detailed descriptive analysis table)
which might affect the validation of the model. As is, given the changes
in data distribution, the validation can be considered a worst-case
scenario. This has led us to the prospect of learning the models online,
updating them with new data as available. However, to be validated to
be used in real practice, an online model would need to be evaluated
not only in its validity, but also in its adaptability, which would require
a more complex study design. Although we are looking towards adap-
tive models in the future, we need to have a stable model validated for

Fig. 5. ROC and Precision–Recall curves for the bottom causality degrees, reflecting the application of the model to both the validation and prospective cohorts.
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real-world use.

4.4. On model building

The Bayesian network has two main objectives: (a) predict the most
probable causality degree the expert will assign to the report, and (b) be
interpretable by the pharmacist team members to inspect which vari-
ables are causing the shifts in causality classification. The first objective
would clearly take advantage of a classifier approach (e.g. naive Bayes

or Tree-Augmented Naive Bayes). However, the interpretation of such
models is challenging for a health professional. Therefore, the defini-
tion of the structure was, indeed, ad-hoc, trying to give meaning to the
dependences, while not losing in terms of predictive accuracy (we have
compared results with classifier approaches and the differences were
negligible, hence not shown). The rationale was to define as root nodes
those factors which describe drug-event causality in a broader sense (is
the event described in literature, was it reintroduced previously and did
it reappeared) and as leaf nodes those who represent observations of the

Table 4
Preliminary assessment matrix showing the probability [%] of causality degrees, according to variables Reappeared after reintroduction and Improved after suspension,
and the likely degree according to defined thresholds: Definite, if probability of degree is higher than that of Probable; Possible if probability of degree is ≥40%;
Probable otherwise. In case of missing information about reappearance or about improvement after suspension, categories “Not reintroduced” and “Not suspended”
should be assumed, respectively.

Table 5
Matrix validity assessment for the 2015 and 2016 cohorts of adverse drug reaction (ADR) reports. Columns represent the assessment done by the expert using global
introspection, while lines represent the causality degree according to the preliminary assessment matrix.

Definite Probable Possible Conditional Precision Recall
% [95%CI] % [95%CI]

2015
Definite 33 16 4 3 58.9 [45.0,71.6] 91.7 [76.4,97.8]
Probable 3 793 121 36 83.2 [80.7,85.5] 95.2 [93.5,96.5]
Possible 0 24 6 2 18.8 [7.9,37.0] 4.6 [1.9,10.1]

2016
Definite 15 12 2 0 51.7 [32.9,70.1] 60.0 [38.9,78.2]
Probable 10 380 40 4 87.6 [84.0,90.4] 93.4 [90.4,95.5]
Possible 0 15 4 0 21.1 [7.0,46.1] 8.7 [2.8,21.7]

Table 6
Validity assessment of the 2-layer classifier strategy, for the 2016 cohorts of adverse drug reaction (ADR) reports. Columns represent the assessment done by the
expert using global introspection, while lines represent the causality degree according to the naive Bayes classifier applied to the a posteriori probabilities computed
by the original network.

Definite Probable Possible Conditional Precision Recall
% [95%CI] % [95%CI]

2016
Definite 14 8 1 0 60.9 [38.8,79.5] 56.0 [35.3,75.0]
Probable 10 367 41 0 87.8 [84.2,90.7] 90.2 [86.8,92.8]
Possible 0 5 0 0 0.0 [0.0,53.7] 0.0 [0.0,9.6]
Conditional 1 27 4 4 11.1 [3.6,27.0] 100.0 [39.6,100.0]
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actual event (who reported, how was the drug administrated, if it was
suspended and condition improved, if there are suspicion of interac-
tions). There are, however, two variables which are general and should,
therefore, be modelled as root nodes and were not, for different reasons.
First, pharmaceutical group includes dozens of sparse categories;
modelling it as an ascendant node would block the possible inference
we would like to do with it, as conditional probabilities of degrees given
each category of this variable are several times not possible to compute.
Then, drug ineffectiveness relates to the known possibility of a drug
simply failing in its main purpose; this factor was known to be used by
the medical expert directly as a trigger for the Conditional degree, so we
applied the classifier approach to it, instead.

The choice to have four different nodes for causality degrees instead
of one single node with four categories is not without debate. Although,
in theory, the four degrees are mutually exclusive (despite Conditional
being not so clearly exclusive), the fact is that the uncertainty sur-
rounding the classification is so high that we prefered to model the
dependences of the factors to each causality degree separately, to allow
for higher degrees of freedom in the inference process. We tested
models with single node causality degree and the predictive results
were similar. Furthermore, the pharmacists team expressed also bene-
fits in having such modelling (instead of usual one outcome classifier
approach) to enable a richer interactive analysis of the reports.

Also debatable is the use of separate nodes for Suspended / Improved,
Reintroduced / Reappeared and Concomitant / SuspectedInteraction, when
there seems to exist a straightforward link between each pair which
could allow to use a single node for each pair, with three states (as used
in the matrix). In reality, this theoretical definition is not entirely true.
The team usually works with incomplete forms (e.g. one could know
that the drug was suspended but not knowing if it improved or not the
condition, Reintroduced actually means it might be a rechallenge of a
drug which was taken a long time ago and not directly related to this
case, so we do not know the exact response for Reappeared).
Furthermore, Suspected Interaction might be defined even if there were
no concomitant medications reported (the team might induce this from
a narrative section of the report). Therefore, although in theory these
could be modelled as single nodes, we preferred to have separate nodes
where the team members could exactly work with the uncertainty of
each of them (leaving them random if no information comes from the
report).

Causality assessment by the expert has also some limitations [5,7].
During this activity, personal expectations and beliefs can influence the
assessment. As so, there is always some randomness at the time of
evaluation. This subjectivity is hard to be replicated in a model as ours.
Although our model learned data from the expert assessment, it tends to
follow the causality assessment guidelines, which is not in line with this
kind of subjectivity. For example, in ADR reports made by physicians
the signs and symptoms are usually better described than in ADR re-
ports made by other health professionals or consumers. As a con-
sequence, the medical expert has more information about the ADR, as it
is detailed by a peer, with the same language and structure. To try to
solve this issue, we have included in the network the node Notifier
which is intended to be a proxy to the manner the ADR is explained.
Future developments could include learning a model with latent vari-
ables to try to capture these phenomena.

5. Concluding remarks

The derived Bayesian network model has been used in the Northern
Pharmacovigilance Centre, in Portugal, for more than three years now,
for causality assessment of ADR reports. Upon reception of an ADR
report, at the pharmacovigilance centre, whilst the expert is still and
always consulted for final assessment, the centre pharmacists can, in
parallel, use the network to inform the notifier about the preliminary
assessment, speeding up the process of the centre.

One important aspect of the creation of our model was to endow the

pharmacovigilance team with an interactive model which could pro-
vide, along with the best prediction of the causality degree assigned by
the expert, a visual interpretation of the interactions and dependences
of different factors in the causality assessment process, more than the
applied in other assessment algorithms (e.g. decision trees) or other
less-interpretable models (e.g. neural nets). The additional goal (which
is out of scope of this paper) was to improve the parallel assessment
done by the team, preparing the final report for the national and
European institutions of pharmacovigilance.

Furthermore, the simplified matrix will allow the notifier to have an
immediate feedback on their submission, improving engagement in the
entire voluntary process. As suggested by other authors, to provide
technical information during the act of ADR reporting seems to sti-
mulate health professionals for this activity [27–29]. Thus, information
on causality assessment presented in real time can improve the ex-
perience of ADR reporting, turning it into an engaging activity.
Therefore, we believe that this tool will increase the motivation of
health professionals to report their suspicions of ADR, with a con-
sequent improvement of drug safety profile knowledge, resulting in a
better public health protection.

We believe that this network can be very useful to other pharma-
covigilance centres, mainly to those that do not have access to a full-
time expert to evaluate ADR reports. As every method for ADR causality
assessment [4], the presented Bayesian network has some advantages
but also some limitations. Nonetheless, the network allows to shorten
the time to causality assessment, which is a main issue in pharmacov-
igilance activities, and is accurate for most of the cases. Therefore, this
method does not replace the expert evaluation, but can be used to
complement it. Furthermore, future work will focus on refining the
model, learning a new classifier from the (now more complete) data
recorded from 2015 onwards, validate it against other alternatives
while studying the interpretability and usability of different ap-
proaches. Hopefully, this will be included in a future global comparison
on the cost-effectiveness of the system, measuring both the validity and
the effort needed to achieve a classification by each method.
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