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Highlights

• We propose two integrated chaotic systems (ICS) to generate different

chaotic maps.

• A new image encryption algorithm is developed using ICS.

• We provide a theoretical study of ICS and extensive security analysis of

proposed encryption algorithm.
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Abstract

To improve the randomicity behaviors of some existing chaotic maps, this

paper proposes two integrated chaotic systems (ICS), which conduct cascade,

nonlinear combination, and switch operations to three basic 1D chaotic maps to

generate new structures. The developed systems are able to yield several more

complicated chaotic maps. Compared with several existing maps, the newly-

generated ones have more advanced properties, including wider chaotic ranges,

and more complex chaotic behaviors. To demonstrate the effectiveness of ICS,

we also design an image encryption scheme based on ICS. Simulation results on

different types of images and extensive security analysis demonstrate that the

proposed approach has satisfactory properties in image encryption.

Keywords: chaotic maps, image encryption, integrated chaotic systems.

1. Introduction

Chaos theory was first developed in meteorological science by American sci-

entist E.N. Lorenz [1]. As one of the nonlinear dynamics, chaos attracts a huge

number of research interests [2, 3], playing many important roles in various fields,
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such as science, engineering [4, 5] and economic [6]. More specifically, chaos the-5

ory has achieved extremely high application values in electrical engineering [7],

e.g., communications [8], random number generators [9], and information secu-

rity [10, 11, 12].

There are three significant properties of chaotic systems: unpredictability,

ergodicity, and initial value sensitivity [13]. Chaotic map is one of the most10

representative chaotic systems that possesses these properties. Existing chaotic

maps can be generally divided into two categories: one dimension (1D) maps

and high dimension (HD) maps. For 1D chaotic maps, they have simple struc-

tures and are easy to be implemented [14, 15], but they have the defects of

limited chaotic ranges [16] and vulnerability [17]. Recently, several novel 1D15

chaotic maps have been developed gradually such as cascade chaotic system

[18], parameter controlling system [19], and nonlinear combination chaotic sys-

tem [20]. They all expand the range of chaotic maps to acquire better chaotic

behaviors. On the other hand, for HD chaotic systems, they have at least two

variables, e.g., the Duffing system [21], Clifford system [22], and Hénon system20

[23]. Compared with 1D chaotic maps, HD chaotic maps have more complex

structures and better chaotic behaviors to make their chaotic orbits more un-

predictable [24]. Even though, HD chaotic maps have the limitations of high

computation cost and implementation difficulty [25].

Image encryption is a hot topic in the fields of image processing and informa-25

tion security. So far, a large number of image encryption algorithms have been

developed from different perspectives, such as SCAN [26], circular random grids

[27], elliptic curve ElGamal [28], gyrator transform [29], wave transmission [30],

visual cryptography [31], fractional Mellin transform [32], p-Fibonacci trans-

form [33], and chaos-based methods. Among these algorithms, the chaos-based30

encryption approaches are particularly popular thanks to the previously men-

tioned properties of chaos, which ensure satisfactory encryption performance.

Owing to the insecurity of 1D chaotic maps and high computation cost of HD

chaotic maps, chaos-based encryption should take account of the advantages

of both 1D and HD chaotic maps to design a better chaotic system [34]. To35
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this end, some recent 1D chaotic maps have complex structures such as cascade

chaotic system [18], and nonlinear combination system [20]. However, they still

have the limitations of chaotic performance, which will impair encryption ef-

fect and make the encrypted images easy to crack. An excellent chaotic system

should aggregate the properties of higher complexity and better chaotic perfor-40

mance. It is necessary to design a new chaotic system to overcome the defects

referred above.

In this paper, we propose two integrated chaotic systems (ICS) to address

the aforementioned limitations of existing 1D and HD chaotic maps. ICS inte-

grates three seed chaotic maps via cascade, nonlinear combination, and switch45

operations. Setting different seed maps will generate different new chaotic maps.

The newly-generated chaotic maps have wider chaotic ranges, higher structure

complexity, and acceptable computation cost. We also design a novel image en-

cryption algorithm with the proposed ICS. It is long believed that good chaotic

property doesn’t necessary lead to a good encryption algorithm [35, 36, 37].50

However, ICS based image encryption algorithm has sufficient secret keys, so

it has large keyspace and high key sensitivity for image encryption algorithm.

The simulation and extensive experimental results show that the ICS is suitable

to develop image encryption algorithms.

This paper is an extension of our previous work [38]. In this current pa-55

per, we further extend the original framework to a switch-controlled version

to acquire more excellent chaotic properties and higher structure complexities.

What is more, we also give more in-depth theoretical analyses, more extensive

evaluations, and more security analyses on ICS.

The remainder of the paper is organized as follows: Section 2 reviews three60

traditional chaotic maps. Section 3 introduces the proposed ICS systems, and

gives an in-depth analysis of their chaotic properties. Section 4 presents an

image encryption algorithm based on ICS. Section 5 and 6 provide extensive

experimental results from different perspectives to evaluate the performance of

the proposed approach. Section 7 finally reaches a conclusion.65
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2. Preliminaries

This section briefly reviews three representative chaotic maps, namely Sine

map, Tent map, and Logistic map respectively.

2.1. Sine map

Sine map, one of the mostly used 1D chaotic maps, has a simple dynamic70

structure, but it can generate complex chaotic sequences with a range of [0, 1].

The definition of Sine map is:

xn+1 = S(x) = u sin(πxn), (1)

where u is a parameter and u ∈ [0, 1]. The bifurcation diagram and Lyapunov

exponent (LE) of Sine map are shown in Fig. 1(a). Note that a positive LE

value means the dynamic system is chaotic. From the bifurcation diagram we75

also can observe that when u ∈ [0.87, 1], Sine map has a good chaotic behavior.

2.2. Tent map

Tent map is another 1D chaotic map that is used in many applications. It

is well known that its graph in bifurcation diagram looks like the curve of tent

function. The definition of Tent map is presented as follows,80

xn+1 = T(x) =





2uxn xn < 0.5,

2u(1− xn) xn ≥ 0.5,

(2)

where the parameter u ∈[0, 1]. Fig. 1(b) shows the bifurcation diagram and

LE values of Tent map. Obviously, Tent map has a good chaotic behavior when

u ∈[0.5, 1]. In addition, each output sequence has a data range of [0, 1] in this

situation.

2.3. Logistic map85

Logistic map is derived from Sine map, so they have some similar proper-

ties. In order to restrict the input value in a range of [0, 1], Logistic map is

mathematically defined as follows:

xn+1 = L(x) = 4uxn(1− xn), (3)

5
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Figure 1: Bifurcation diagrams and LE values of three traditional maps. The first row shows

bifurcation diagrams of Sine map, Tent map, and Logistic maps respectively. The second row

shows their LE values correspondingly.

where the parameter u ∈ [0, 1]. As seen in Fig. 1(c), the graph of Logistic map

in bifurcation diagram is similar to that of Sine map. Logistic map has a good90

chaotic behavior when u ∈ [0.9, 1].

3. The Proposed ICS

In this section, we detail two developed chaotic systems, denoted by ICS-I

and ICS-II, respectively.

3.1. Motivation95

Although Sine map, Tent map, and Logistic map are used widely, they have

the common defects of limited chaotic ranges. It can be verified in the bifurca-

tion diagrams and LE values plotted in Fig. 1. As can be seen, only partial LE

values are larger than 0, indicating that the chaotic behaviors of these maps are

restricted according to the property of LE. In addition, the complexities of these100

maps are simple such that the generated sequences can be predicted easily.

In this work, the proposed ICS is expected to solve the aforementioned de-

fects by integrating some basic maps with different operations. More specif-

6
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ically, cascade operation combines two basic maps like a series circuit, which

enhances the complexity of the structure. Meanwhile, nonlinear combination,105

including addition and modulo operations, is used to extend the chaotic range.

To get more favorable chaotic effect, two switches are added in the systems.

As a result, ICS becomes more random with the favor of cascade combination,

nonlinear operations and switch selection.

3.2. The proposed ICS-I110

The structure of ICS-I is illustrated in Fig. 2, where F(x), G(x), and H(x)

are three seed chaotic maps. In this paper, Sine map, Tent map, and Logistic

map are chosen as seed maps. Mathematically, the proposed ICS-I is defined as

follows:

xn+1 = τ(xn) = (F(G(xn)) + H(xn)) mod 1, (4)

where xn is the iteration value, and xn+1 is the output of ICS-I. The mod op-115

eration here ensures the output is restricted to [0, 1]. Observing Fig. 2 and Eq.

(4), ICS-I interates three seed maps by two operations simultaneously. First,

the cascade operator is applied to F(x) and G(x), which improves complexity

level of the chaotic structure. After that, a nonlinear combination opearator,

including addition and modulo, is used to F(G(x)) and H(x), which strengthens120

the chaotic behavior with acceptable computation cost and implementation dif-

ficulty.

3.3. Chaotic behavior analysis of ICS-I

ICS-I is a dynamic chaotic system with unpredictability and high sensitivity

which iterates the cascade chaotic system and seed map nonlinearly, enhancing125
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Table 1: NEW Chaotic Maps Generated by ICS.

New maps Definition

LS − S xn+1 = (4uu sin(πxn)(1 − u sin(πxn)) + (1 − u) sin(πxn)) mod 1

LL − S xn+1 = (4u(4uxn(1 − xn))(1 − 4uxn(1 − xn)) + (1 − u) sin(πxn)) mod 1

SL − L xn+1 = (u sin(π4uxn(1 − xn)) + (4 − 4u)xn(1 − xn)) mod 1

SL − T xn+1 =





(u sin(π4uxn(1 − xn)) + (2 − 2u)xn) mod 1 for xn < 0.5

(u sin(π4uxn(1 − xn)) + (2 − 2u)(1 − xn)) mod 1 others

LL − T xn+1 =





(4u(4uxn(1 − xn))(1 − 4uxn(1 − xn)) + (2 − 2u)xn) mod 1 for xn < 0.5

(4u(4uxn(1 − xn))(1 − 4uxn(1 − xn)) + (2 − 2u)(1 − xn)) mod 1 others

LT − S xn+1 =





(4u(2uxn)(1 − 2uxn) + (1 − u) sin(πxn)) mod 1 for xn < 0.5

(4u(2u(1 − xn))(1 − 2u(1 − xn)) + (1 − u) sin(πxn)) mod 1 others

ST − S xn+1 =





(u sin(π2uxn) + (1 − u) sin(πxn)) mod 1 for xn < 0.5

(u sin(π2u(1 − xn)) + (1 − u) sin(πxn))) mod 1 others

ST − T xn+1 =





(u sin(π2uxn) + (2 − 2u)xn) mod 1 for xn < 0.5

(u sin(π2u(1 − xn)) + (2 − 2u)(1 − xn)) mod 1 others

ST − L xn+1 =





(u sin(π2uxn) + (4 − 4u)xn(1 − xn)) mod 1 for xn < 0.5

(u sin(π2u(1 − xn)) + (4 − 4u)xn(1 − xn)) mod 1 others

LS − T xn+1 =





(4uu sin(πxn)(1 − u sin(πxn)) + (2 − 2u)xn) mod 1 for xn <0.5

(4uu sin(πxn)(1 − u sin(πxn)) + (2 − 2u)(1 − xn)) mod 1 others

LT − L xn+1 =





(4u2uxn(1 − 2uxn) + (4 − 4u)xn(1 − xn)) mod 1 for xn < 0.5

(4u2u(1 − xn)(1 − 2u(1 − xn)) + (4 − 4u)xn(1 − xn)) mod 1 others

TT − L xn+1 =





(2u(2uxn) + (4 − 4u)xn(1 − xn)) mod 1 for xn < 0.5, 2uxn < 0.5

(2u(1 − 2u(2u(1 − xn))) + (4 − 4u)xn(1 − xn)) mod 1 others

the chaotic performances significantly. In this part, we use LE to theoretically

study the chaotic behavior of ICS-I. LE denotes the exponential divergence of

two extremely close trajectories of a dynamic system. The positive LE value

means the two trajectories have totally different exponentially diverge in each

unit time. In other words, a system with positive LE values will have a good130

chaotic behavior.

Assume x0 and y0 are two initial values with a small distance of ICS in Eq.

(4). x1 and y1 are next iteration values of x0 and y0. The difference between

x1 and y1, denoted by |x1 − y1|, is defined as:

∣∣x1 − y1
∣∣ =(

∣∣F(G(x0))− F(G(y0))|
|G(x0)− G(y0)

∣∣

∣∣G(x0)− G(y0)
∣∣

∣∣x0 − y0
∣∣ +

∣∣H(x0)− H(y0)
∣∣

∣∣x0 − y0
∣∣ )

∣∣x0 − y0
∣∣. (5)

G(x0) will be extremely close to G(y0) if x0 → y0. We can obtain following

8
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results:

∣∣dF
dx
|G(x0)

∣∣ ≈ lim
G(x0)→G(y0)

∣∣F(G(x0))− F(G(y0))
∣∣

∣∣G(x0)−G(y0)
∣∣ ,

∣∣dG
dx
|x0

∣∣ ≈ lim
x0→y0

∣∣G(x0)−G(y0)
∣∣

∣∣x0 − y0
∣∣ ,

∣∣dH
dx
|x0

∣∣ ≈ lim
x0→y0

∣∣H(x0)−H(y0)
∣∣

∣∣x0 − y0
∣∣ .

Now it has:

∣∣x1 − y1
∣∣ ≈ (

∣∣dF
dx
|G(x0)

∣∣∣∣dG
dx
|x0

∣∣+
∣∣dH
dx
|x0

∣∣)
∣∣x0 − y0

∣∣.

After n iterations, we can get the following result:

∣∣xn − yn
∣∣ ≈ (

∣∣
n−1∏

i=0

dF
dx
|G(xi)

∣∣∣∣
n−1∏

i=0

dG
dx
|xi
∣∣+
∣∣
n−1∏

i=0

dH
dx
|xi
∣∣)
∣∣x0 − y0

∣∣. (6)

Then the average change in each iteration from |x0 − y0| to |xn − yn| is:135

∆τ(x) ≈ {
∣∣
n−1∏

i=0

dF
dx
|dG(xi)

∣∣∣∣
n−1∏

i=0

dG
dx
|xi
∣∣+
∣∣
n−1∏

i=0

dH
dx
|xi
∣∣} 1

n .

Accordingly, LE of τ(x) is calculated as:

λτ(x) = ln(∆τ(x)) = lim
n→∞

1

n

n−1∑

i=0

ln(
∣∣dF
dx
|dG(xi)

∣∣ ∣∣dG
dx
|xi
∣∣+
∣∣dH
dx
|xi
∣∣). (7)

Based on the increasing property of ln(x), it is easy to find that ∆τ(x) ≥
lim
n→∞

1
n

n−1∑
i=0

ln(
∣∣ dF
dx |dG(xi)

∣∣∣∣dG
dx |xi

∣∣. What is more, LEs of F(x) and G(x) are defined

as :

λF(x) = lim
n→∞

1
n

n−1∑
i=0

ln(
∣∣ dF
dx |(xi)

∣∣. (8)

140

λG(x) = lim
n→∞

1
n

n−1∑
i=0

ln(
∣∣dG
dx |(xi)

∣∣. (9)

Therefore, we get following result:

λτ(x) ≥ λF(x) + λG(x). (10)

The larger value of a positive LE indicates the faster divergence of two trajecto-

ries and better chaotic performance. From Eq. (10), we also can conclude that

ICS-I has more excellent chaotic performance than the chaotic system derived

only by cascade operation [18].145
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3.4. Examples of ICS-I

As aforementioned, ICS-I is able to produce several new chaotic maps. For

convenience, we denote the used Sine map, Tent map, and Logistic map by S,

T, and L respectively. Compared with these seed maps, ICS-I possesses more

complicated chaotic behaviors, because the chaotic complexity and chaotic range150

are enhanced in ICS-I. To show the effectiveness of proposed chaotic system, 14

examples of ICS-I are shown in Table 1. We name these produced chaotic maps,

by LT − S, TL − S, LT − L, and TS − L and so on for short. For example, in

LT−S system, LT comprises cascade system Logistic (Tent) and Sine maps, so

the TS− L system is defined as :155

xn+1 = (Logistic(Tent(xn)) + Sine(xn)) mod 1. (11)

We can similarly derive the mathematical formulae of some other generated

chaotic maps, which are illustrated in Table 1. Based on the definitions given

in Table 1, Fig. 3 illustrates the LE values of some chaotic systems produced

by ICS-I. We can find that these chaotic systems have positive LE values in a

vast range, which indicates that ICS-I has excellent chaotic behaviors. On the160

other hand, Fig. 4 also shows the bifurcation diagrams of some generated maps,

which have more wider chaotic ranges than their seed maps plotted in Fig. 1.

All LE and bifurcation diagram results have testified the advanced performance

of ICS-I.

3.5. The proposed ICS-II165

To improve the structure complexity and unpredictability of ICS-I, two

switches are further added to F(x) and H(x) to construct ICS-II. The struc-

ture of ICS-II is shown in Fig. 5. Correspondingly, fn and hn are set as two

control sequences of switches. In this work, fn and hn are generated by Sine

and Tent maps respectively, and G(x) is set to Tent map. Control sequence170

should be different from the sequence used for iteration. The selection criteria

is shown as follows:

1. when fn < 0.5, F(x) is set to be Logistic map, otherwise F(x) is Tent map.

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0 0.2 0.4 0.6 0.8 1

u

-4

-3

-2

-1

0

1

2

3

LE

LS-S
LL-S

0 0.2 0.4 0.6 0.8 1

u

-4

-3

-2

-1

0

1

2

3

LE

SL-T
SL-L

0 0.2 0.4 0.6 0.8 1

u

-4

-3

-2

-1

0

1

2

3

LE

LL-T
LT-S

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

u

-4

-3

-2

-1

0

1

2

3

LE

ST-S
ST-T

0 0.2 0.4 0.6 0.8 1

u

-4

-3

-2

-1

0

1

2

3

LE

ST-L
LS-T

0 0.2 0.4 0.6 0.8 1

u

-4

-3

-2

-1

0

1

2

3

LE

LT-L
TT-L

(d) (e) (f)

Figure 3: LE values of new chaotic system produced by ICS-I. The first row shows the LE

values of LS− S, LL− S, SL− T, SL− L, LL− T, and LT− S. The second row shows those

of ST− S, ST− T, ST− L, LS− T, LT− L, and TT− L.

2. when hn <0.5, H(x) is set to be Logistic map, otherwise H(x) is Sine map.

Also, this procedure can be mathematically represented by:175

xn+1 =




F1(G(xn)) fn < 0.5

F2(G(xn)) fn ≥ 0.5

+




H1(xn) hn < 0.5

H2(xn) hn ≥ 0.5

, (12)

where F1 and F2 are Logistic map and Tent map respectively. H1 is Logistic

map, and H2 is Sine map.

3.6. Discussion

As aforementioned, ICS-I is constructed by performing cascade and nonlin-

ear combination operations to three seed maps synchronously, while ICS-II is180

derived from ICS-I. Two switches are further added to ICS-I to obtain ICS-

II, providing more choices to generate more complicate chaotic sequences. In

summary, the proposed two ICS have following flexibilities:

1. combining cascade chaotic system with three seed chaotic maps to form a

new chaotic system;185

11
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Figure 4: Bifurcation diagrams of (a) LS− S, (b) LL− S, (c) SL− L, (d) SL− T, (e) LL− T,

(f) LT− S, (g) ST− S, (h) ST− T, (i) ST− L, (j) LS− T, (k) LT− L, and (l) TT− L.

Figure 5: The structure of ICS-II.
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2. enhancing the structure complexity of the whole system;

3. achieving a more wider range of chaotic behavior;

4. obtaining the hypersensitivity to its parameters and initial states.

4. Image Encryption

The proposed ICS has excellent chaotic behaviors and high complexity levels,190

which are suitable for image encryption. This section introduces a new image

encryption algorithm named ICS-IE using ICS-II as chaotic sequence generator

because it yields more complicated chaotic sequence in every iteration than ICS-

I. In the following, we first develop a transform via ICS, named ICST, to disturb

the locations and values of pixels in an image, and then detail the derivation of195

ICS-IE.

4.1. ICST

ICST includes two steps to increase the diffusion and confusion of an image.

The first step is to convert the chaotic sequence with a range of [0, 1] into an

integer sequence with a range of [0, N ]. For example, provided that an input200

chaotic sequence Xi generated by ICS is:

Xi=(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1).

First, Xi is transformed to an integer sequence Ti by 1000 · Xi + 2. So, the

obtained Ti now is:

Ti=(102, 202, 302, 402, 502, 602, 702, 802, 902, 1002).205

Then, Ti is converted to a binary sequence Bi as follows:

(000001100110, 000011001010,

000100101110, 000110010010,

000111110100, 001001011010,

001010111110, 001100100010,210

001110000110, 001111101010).
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Furthermore, Bi will be translated to Ri by exchanging the values of first and

seventh positions in every binary number, and Ri is:

(000000100111, 000010001011,

000100101110, 000110010010,215

000110110101, 001000011011,

001010111110, 001100100010,

001110000110, 001110101011).

After that, Ri will be transformed to the following integer sequence:

(39, 139, 302, 402, 437, 539, 702, 802, 902, 939).220

Finally, the above sequence is conducted a modulo operation with 255, resulting

in the ultimate output integer sequence Si:

Si=(39, 139, 37, 147, 182, 29, 192, 34, 137, 174).

The first step of ICST is used to change pixel locations of an image. However,

it is complex to transform the ICS sequences into integer sequences line by line,225

so the second transform is proposed to accelerate the process of ICST.

Let I be the original image to be encrypted, and its size is M ×N . Wr and

Wc are the row and column matrices of I. The process of the second step of

ICST includes three steps:

1. There are two sequences Tr and Tc generated by the first transform, and230

they are with length of M and N respectively,

2. Form row and column matrices according to the following equations:

Wc(i, j) =





1 for (Tr(j), j)

0 others

,

Wr(k, l) =





1 for (k, Tc(k))

0 others

,

(13)
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Figure 6: The flowchat of ICS-IE algorithm.

3. Combine the row and column matrices with input image I as follows:

S = WT
c IW

T
r . (14)

In the decryption process, the image I will be recovered by the following235

way:

I = (WT
c )−1S(WT

r )−1. (15)

Note that Eq. (15) is the reverse process of Eq. (14).

ICST is an effective method to change the values and positions of an input

image and it can be embeded in many other encryption algorithms. Generally

speaking, ICST is an important process in image encryption. The pixel values240

and positions in an image will get well disturbed after ICST, so that the diffusion

and confusion of encrypted image will be significantly enhanced.

4.2. The ICS-based image encryption (ICS-IE) algorithm

This subsection introduces a new image encryption algorithm using ICS-

II and ICST. The proposed encryption algorithm is named ICS-IE, which is245

summarized in Algorithm 1. ICS-IE includes two important procedures: sub-

stitution and permutation. The flowchart of the ICS-IE is also shown in Fig. 6.

The encryption key ke consists of f0, h0, x0 and u. In this paper, u is set to

be 0.96. f0, h0, and x0 are the initial values of fn, gn, and xn. Moreover, the

ICST cycles L times to acquire the best encryption result. The ICST process is250
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repeated for four times (L = 4) to improve the diffusion and confusion proper-

ties of encrypted images. So the initial values f0 and h0 should be updated for

four times according to the following equation:

ci0 =





1
2 (c0 + p) for i = 1,

1
2 (ci−10 + x0) for i > 1.

(16)

p is a random number with a range of [0, 1], c0 represents the initial value, and

x0 is the initial value of a chaotic sequence. f0 and h0 get updated with Eq.255

(16).

Substitution process is used to the encrypted image with the operation shown

as follows:

E(m,n) = (b(Xs(k)F )c − I(m,n)) mod F, (17)

where b·c is the floor function. I(m,n) is the input image, and E(m,n) is

the output image after substitution process. Xs(k) is the ICS sequence for260

substitution. In addition, F is the maximal value of I(m,n). m and n are two

integers with the ranges of [0, M ] and [0, N ] respectively.

In image decryption process, the output image E(m,n) will be transformed

into input one via the following formula:

I(m,n) = (b(Xs(k)F )c − E(m,n)) mod F . (18)

The proposed ICST is used in permutation process, which can efficiently change265

the values and positions of all pixels within the image E(m,n) after substitution

process. The diffusion and confusion properties will get remarkable enhanced,

because the correlation of the image pixels get well disturbed in the permutation

process. Note that image decryption is the inverse process of image encryption.

To reconstruct the original image, we can apply the correspondingly inverse270

transform equations referred in Eq. (15) and Eq. (18).

As mentioned before, substitution and permutation operations are impor-

tant steps to constitute the ICS-IE algorithm. In summary, ICS-IE has several

merits, including
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1. possessing higher security levels,275

2. havig excellent behaviors in confusion and diffusion aspects,

3. having more choices to set the control parameters, and

4. againsting several attacks, such as data loss, noise and chosen-plaintext.

Algorithm 1 ICS-IE
Input: encryption key ke and original image with size of M ×N .

• Step 1: initial the control parameter f0, h0, x0 and u.

• Step 2: For l = 1 to L, do

(a) Generate the ICS sequence X with Eq. (12), the length of X is Ls+Lp= M×N +

M + N .

(b) Conduct substitution operation with the Eq. (17).

(c) Perform permutation operation with the ICST.

Output: the encrypted image and decryption key.

5. Simulation Results

This section provides encryption and decryption results of the proposed ICS-280

IE algorithm. As depicted in the first row of Fig. 7, different types of images

are considered here, including grayscale image, color image, biometrics image,

and binary image, respectively. The simulation results are illustrated in Figs.

7(a)-(d). We can observe that all encrypted images, illustrated on the third

row of Fig. 7 are noise-like ciphertext and unrecognized, so that the original285

information has been well protected. On the other hand, as seen in the sec-

ond and the fourth rows of Fig. 7, the histograms of encrypted images are

uniform-distributed compared with those of the original images that are un-

evenly distributed. These results indicate that the ICS-IE algorithm performs

well in breaking the correlations of image pixels and achieving satisfactory im-290

age encryption performance. In addition, the images on the fifth row of Fig. 7

are the corresponding decrypted ones and it can be seen that they all correctly

recover to original images.
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Figure 7: Simulation results of different types of images. The first and second rows show

original images and their histograms. The third and fourth rows illustrate the ciphertext

images and their histograms. The last row shows the decrypted image. The results on the

first to fourth columns are corresponding to (a) grayscale image, (b) color image, (c) biometrics

image, and (d) binary image respectively.
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Table 2: Information Entropy of encrypted images by different schemes.

Filename Bao′s [39] Liao′s [40] Sudoku [41] Zhou′s [42] ICS − IE

5.1.09 7.9966 7.9973 7.9972 7.9971 7.9971

5.1.10 7.9971 7.9973 7.9970 7.9971 7.9971

5.1.11 7.9975 7.9975 7.9974 7.9972 7.9973

5.1.12 7.9972 7.9968 7.9974 7.9970 7.9968

5.1.13 7.9965 7.9976 7.9947 7.9972 7.9974

5.1.14 7.9977 7.9967 7.9970 7.9972 7.9970

5.2.08 7.9991 7.9993 7.9993 7.9993 7.9993

5.2.09 7.9992 7.9993 7.9993 7.9993 7.9993

5.3.01 7.9998 7.9998 7.9998 7.9998 7.9998

5.3.02 7.9996 7.9998 7.9998 7.9998 7.9998

7.1.01 7.9990 7.9993 7.9992 7.9992 7.9992

7.1.02 7.9991 7.9992 7.9990 7.9993 7.9994

7.1.03 7.9990 7.9992 7.9992 7.9992 7.9994

7.1.04 7.9992 7.9993 7.9992 7.9993 7.9992

7.1.05 7.9992 7.9993 7.9992 7.9993 7.9994

7.1.06 7.9992 7.9993 7.9993 7.9993 7.9994

7.1.07 7.9991 7.9993 7.9992 7.9994 7.9993

7.1.08 7.9990 7.9992 7.9991 7.9991 7.9993

7.1.09 7.9991 7.9994 7.9992 7.9994 7.9992

7.1.10 7.9990 7.9993 7.9992 7.9993 7.9993

7.2.01 7.9996 7.9993 7.9997 7.9998 7.9998

Boat.512 7.9992 7.9994 7.9993 7.9994 7.9992

Elaine.512 7.9992 7.9992 7.9992 7.9991 7.9993

Gray21.512 7.9993 7.9992 7.9997 7.9993 7.9994

Numbers.512 7.9994 7.9993 7.9993 7.9993 7.9994

Ruler.512 7.9987 7.9994 7.9995 7.9993 7.9993

Mean 7.998754 7.998846 7.998554 7.998846 7.998862

6. Security Analysis

Apart from the encryption results reported in Section 5, security analysis is295

also a significant aspect to evaluate an encryption algorithm. In this section, we

conduct the security analysis of the proposed ICS-IE from different perspectives,

namely security key analysis, pixel correlation analysis, information entropy

analysis, differential attack, chosen-plaintext attack, noise and data loss attack,

and time complexity analysis, respectively. Some commonly used grayscale300

images are chosen as examples in the following experiments.

6.1. Security key analysis

In the following, we will study the security key from two aspects, i.e., space

and sensitivity.

6.1.1. Security key space305
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It is important for an image encryption algorithm to have a large enough

security key space to resist the brute force attacks. For the proposed ICS-IE,

the security key includes four parts, namely control parameter u, initial value

f0, h0, and x0. Each subkey is in a range of [0, 1]. If the length of every subkey

is set to 14 decimals, the key space of ICS-IE will be 1056. As a result, it is310

large enough to resist brute force attacks.

6.1.2. Key sensitivity analysis

Key sensitivity analysis is usually used to test the ability of resisting inimical

deciphering, which detects the variation of encryption results when a slight

change (like 10−14) caused in the encryption keys. In this paper, the encryption315

key ke is consist of f0, h0, x0 and u. Key sensitivity test is usually tested in

the image encryption and decryption procedures as follows: 1) a little change in

encryption keys will produce quite different encrypted images; 2) a minor change

in decryption keys will result in the failure of recovering image. In addition, the

difference between failure reconstruction images is distinct.320

The key sensitivity simulation results are shown in Fig. 8. K1 and K2 are

two encryption keys with a tiny difference of 10−14. Fig. 8(a) is the original

image, encrypted respectively with K1 and K2 to form Fig. 8(b) and Fig. 8(c).

The pixel-to-pixel difference can be acquired by calculating the absolute value

of difference between the two encrypted images, which is shown in Fig. 8(d).325

The corresponding decrypted results with incorrect decryption key K3 and K4

are shown in Fig. 8(f) and Fig. 8(g), whose pixel-to-pixel difference is obtained

in Fig. 8(h). As can be seen, a tiny difference makes great changes between

decrypted images. Therefore, we can conclude that ICS-IE algorithm has a

high sensitivity to security keys in both encryption and decryption process.330

Additionally, only a tiny difference of 10−14 can result in significant changes in

encryption/decryption results, which means the proposed ICS-IE algorithm has

a large key space to defend the inimical deciphering.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Key sensitivity analysis. (a) Original image. (b) Encryption image C1 with K1.

(c) Encryption image C2 with K2. (d) Difference between encryption images |C1-C2|. (e)

Decryption image D1. (f) Decryption image D2 from C1 with K1. (g) Decryption image D3

from C1 with K2. (h) Difference between two encryption images |D2-D3|.

40 60 80 100 120 140 160 180 200
40

60

80

100

120

140

160

180

200

40 60 80 100 120 140 160 180 200 220 240
40

60

80

100

120

140

160

180

200

220

240

40 60 80 100 120 140 160 180 200
40

60

80

100

120

140

160

180

200

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

(a) (b) (c)

Figure 9: Adjacent pixels correlation of the original and encrypted images at different direc-

tions of Fig. 8(a). Top row shows the adjacent pixels correlation of original image at vertical,

horizontal and diagonal directions. Correspondingly, bottom row displays the adjacent pixels

correlation of original image at the same three directions.
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Table 3: Pixel correlation of the original and encrypted images in terms of correlation coeffi-

cient.

V ertival Horizontal Diagonal

Original image 0.9420 0.9455 0.9205

Encrypted image −2.5× 10−4 0.0065 0.0029

6.2. Pixel correlation analysis

In natural images, there are strong correlations of pixels at vertical, hori-335

zonal, and diagonal directions. To detect the correlations of adjacent pixels, we

randomly select 4000 pixels from the original image as test samples and plot

their distributions at three different directions. As shown in the first row of

Fig. 9, pixels are distributed near the line y = x, which means adjacent pixels

have strong correlations. Breaking the high correlation between adjacent pixels340

is one important step in image encryption. We conduct the same operations

to the encrypted images, and the results are plotted in the second row of Fig.

9. It is obviously to see that the adjacent pixels of the encrypted image are

distributed uniformly in the whole range.

To specifically calculate the relationship in different directions, the following345

correlation coefficient is used here:

corr(x, y) =
E[(x− µx)(y − µy)]

σxσy
, (19)

where x and y are two data sequences, and E[·] is the expectancy function. µx

and µy are mean values of x and y. σx and σy are the standard deviations.

Correlation coefficient is closed to 1 means x and y have a strong correlation.

Otherwise, the value is closed to 0 if there is no correlation between x and y.350

Table 3 shows the comparison of adjacent pixel correlation test between the

original image and encrypted image by ICS-IE. It is obviously that the values

of pixel correlation are extremely closed to 0, which indicates ICS-IE is able

to highly decrease the correlation of pixels in three directions and increase the

security level in encryption process.355
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6.3. Information entropy analysis

Information entropy analysis is a valid way to estimate the randomness of

the encrypted images and its definition is given as:

H(R) = −
F−1∑

l=0

P (R = l) log2 P (R = l), (20)

where F is the grayscale level. P (·) is the discrete probability density function

to calculate the percentage of pixels.360

If the information entropy is close to the maximum value, it means the en-

crypted image acquires excellent properties of randomness. For a grayscale

image, F is an integer with the range of [0, 255]. More specifically, each

pixel in gray scale image is represented by 8 binary bits and the expected

value of information entropy is 8. As shown in Table 2, 26 experimental im-365

ages of several different sizes are obtained from the USC-SIPI image database

(http://sipi.usc.edu/ database). Information entropy of several encrypted im-

ages obtained by different schemes are given. The ICS-IE algorithm achieves

the closet average value to 8, which means it posses excellent performance in

information entropy. Therefore, the proposed ICS-IE algorithm perfects well in370

terms of information entropy, which makes the values of encrypted image pixels

distribute uniformly with a range of [0, F ].

6.4. Differential attack

Differential attack test is another way to measure the encryption perfor-

mance. An encrypted image can resist the differential attack means it has a375

good diffusion property. In other word, the differential attack investigates the

slight change in input sequence whether influences the output sequence. Number

of pixel changing rate (NPCR) and unified average changed intensity (UACI)

are two common tools to evaluate differential attack. We give two encrypted

images E1 and E2 with size of M ×N and their original images only have one380

bit of pixel difference. L is the gray scale level of the image. For a 8-bit gray

scale image, L=256. Mathematically, they are defined as follows:

UACI =
1

MN

M∑

m=1

N∑

n=1

[
|E1(m,n)− E2(m,n)|

(L− 1)
]× 100, (21)
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(a) (b) (c) (d) (e)

Figure 10: The images on the first row are the original encrypted images, and its damaged

versions by 1% gaussian noise, 5% Salt and Pepper noise, 50*50 square data loss, and 50*50

data loss with a white square , respectively. Those images on the second row are decrypted

results of corresponding encrypted images.

and

NPCR =

∑M
m=1

∑N
n=1$(m,n)

MN
× 100, (22)

where $(m,n)=





1 for E1(m,n) 6= E2(m,n)

0 others

. UACI and NPCR both measure

the pixel changes between E1 and E2. The former one calculates the average385

value of changed pixels, while the latter one describes the number of changed

pixels. For different types of images, the obtained expected values of UACI and

NPCR will differ [43]. When the E1 and E2 are binary images, the expected

values of UACI and NPCR are all 50%, while for 8-bit gray scale image, the

expected values respectively are 33.4635% and 99.6096%. Table 4 lists the390

values of UACI and NPCR acquired by several different encryption schemes. As

seen in these tables, the scores achieved by ICS-IE algorithm is more closed to

their corresponding standard values. These results indicate that ICS-IE has an

excellent property of resisting the differential attacks.

6.5. Chosen-plaintext attack395
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Table 4: UACI/NPCR scores of gray scale images for different image encryption algorithms.

Filename Wu′s [19] Liao′s [30] Hua′s [18] Hua′s [42] Zhou′s[16] ICS − IE

5.1.09 33.51/99.61 16.67/49.81 33.48/99.60 33.60/99.61 33.14/99.60 33.42/99.60

5.1.10 33.56/99.60 33.54/99.61 33.51/99.61 33.54/99.62 33.24/99.61 33.45/99.64

5.1.11 33.43/99.61 16.70/49.81 33.35/99.61 33.44/99.62 33.72/99.64 33.40/99.61

5.1.12 33.54/99.61 17.06/49.83 33.45/99.63 33.42/99.57 33.56/99.60 33.41/99.60

5.1.13 33.62/99.61 33.64/99.60 33.36/99.59 33.42/99.61 33.77/99.63 33.42/99.59

5.1.14 33.46/99.66 33.30/99.64 33.37/99.67 33.47/99.64 33.21/99.62 33.44/99.63

5.2.08 33.43/99.61 33.43/99.62 33.43/99.60 33.47/99.63 33.31/99.61 33.45/99.62

5.2.09 33.34/99.60 33.46/99.62 33.42/99.60 33.49/99.63 33.62/99.60 33.57/99.63

5.3.01 33.45/99.61 33.81/49.81 33.43/99.61 33.45/99.59 33.42/99.60 33.47/99.61

5.3.02 33.48/99.60 33.62/99.62 33.47/99.61 33.49/99.59 33.29/99.60 33.49/99.61

7.1.01 33.54/99.58 16.82/49.80 33.44/99.61 33.52/99.60 33.25/99.59 33.47/99.59

7.1.02 33.49/99.61 16.81/49.80 33.45/99.60 33.48/99.61 33.53/99.59 33.46/99.62

7.1.03 33.56/99.62 16.73/49.81 33.46/99.59 33.46/99.61 33.27/99.62 33.41/99.62

7.1.04 33.48/99.62 33.48/99.61 33.46/99.62 33.52/99.60 33.21/99.59 33.49/99.59

7.1.05 33.40/99.62 33.46/99.61 33.38/99.59 33.54/99.62 33.21/99.62 33.45/99.60

7.1.06 33.57/99.63 33.45/99.60 33.50/99.60 33.53/99.63 33.30/99.61 33.48/99.61

7.1.07 33.44/99.59 33.52/99.63 33.47/99.59 33.52/99.59 33.15/99.61 33.51/99.63

7.1.08 33.48/99.62 33.45/99.61 33.45/99.61 33.57/99.61 33.26/99.60 33.44/99.59

7.1.09 33.41/99.62 16.77/49.81 33.40/99.61 33.52/99.62 33.23/99.58 33.43/99.61

7.1.10 33.52/99.61 16.86/49.82 33.47/99.61 33.53/99.60 33.59/99.61 33.49/99.60

7.2.01 33.48/99.61 33.47/49.82 33.47/99.62 33.50/99.62 33.42/99.63 33.50/99.61

Elaine.512 33.49/99.58 33.63/99.60 33.52/99.62 33.51/99.62 33.37/99.61 33.51/99.61

Boat.512 33.44/99.61 33.44/99.63 33.38/99.63 33.55/99.62 33.37/99.61 33.47/99.61

Numbers.512 33.54/99.60 33.45/99.61 33.42/99.59 33.40/99.61 33.77/99.61 33.45/99.60

Ruler.512 33.42/99.61 33.06/99.63 33.4/99.62 33.51/99.61 33.43/99.61 33.44/99.59

Gray21.512 33.47/99.62 33.48/99.63 33.40/99.60 33.39/99.60 33.36/99.60 33.50/99.61

Mean 33.4827/99.6104 28.3504/80.4612 33.4362/99.6092 33.4938/99.6100 33.3846/99.6085 33.4623/99.6095

The capacity of resisting chosen-plaintext attack is a significant standard to

measure security of an image encryption [44, 45, 46]. Some existing algorithms

will achieve the same encryption results when they are applied to original im-

ages with the same security keys. However, considering the proposed ICS-IE,

the initial values are produced randomly, hence our algorithm can generate com-400

pletely different encrypted images in each iteration even though the algorithm

is applied to the same original image with the same set of security keys. As

seen in Fig. 11, (a) in top row is original image, and ICS-IE iterates the orig-

inal images for different times with the same set of security keys. In the top

row, Figs. 11(b)-(c) are the encrypted images C1 and C2 acquired in the third405

and fourth iterations respectively, and Fig. 11 (d) shows their pixel-to-pixel

difference |C1-C2|. In the bottom row of Figs. 11(a)-(d) are histograms of their

corresponding images, and the last histogram indicates the C1 and C2 are com-

pletely different. For an original image with size of M ×N , ICS-IE can produce

216(M+N) different encrypted images with the same security keys. In general,410
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Figure 11: ICS-IE encrypts an image twice with the same set of security keys. The top row are

original image, the encrypted image(C1) after third encryption run, the encrypted image(C2)

after fourth run and its histogram, and the pixel-to-pixel difference(|C1-C2|). The bottom

row shows their histogram respectively

ICS-IE is able to resist the chosen-plaintext attack.

6.6. Noise and data loss attack

It is inevitable that the digital signal may be corrupted by noise or data

loss during the transmission. In this situation, we hope to acquire the content

of the original images as much as possible so it is not necessary to transmit415

the encrypted images again. This experiment investigates the performance of

ICS-IE under noise corruption and data loss attack.

Fig. 10(a) shows the encrypted and reconstructed images, and Figs. 10(b)-

(c) show the different noise corruptions to image reconstruction. In the top row,

the original pictures are added with 1% Gaussian noise and 5% Salt and Pepper420

noise, then they decrypted with ICS-IE algorithm and the decryption results

are shown in the bottom row. As can be seen, although existing some visible

noise-like points distribute in reconstruction images, we can see most contents

of the original images. In addition, Figs. 10(d)-(e) show the data loss attacks

to the encrypted images. In the top row, Fig. 10(d) is randomly cut with a425

50×50 patch within the encrypted image, and the pixel values of lost patch are

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Comparison of time consumption (in second) of different algorithms.

Methods Zhou’s [16] Zhou’s [20] Hua’s [40] Hua’s [42] ICS-IE

Running Time 0.212321 1.562923 0.540808 81.90322 0.444224

all set to 0. Fig. 10(e) has a slight difference with Fig. 10(d) where the pixel

values of lost square are set to 255. The corresponding reconstructed images are

shown in the bottom row. As can be seen, although there are noise-like points

in the reconstructed images, they still preserve most of the visual information430

and are recognizable. Therefore, ICS-IE algorithm has the capacity of resisting

noise corruption and data loss attacks.

6.7. Time complexity analysis

To test the computation cost of different encryption algorithms, we compare

the running time of ICS-IE and four representative approaches, namely Zhou’s435

1D encryption methods [16, 20] and Hua’s 2D encryption methods [40, 42].

The experiments here are conducted via MATLAB R2016b in a computer with

Windows 10 operation system, Intel(R) Core(TM) i7-6700 CPU @ 3.60GHz and

8GB RAM. All 26 images in the USC SIPI image database, which are used the

Section 6.3, are chosen as test images. These images are with different sizes,440

and they are encrypted with the referred five algorithms. Table 5 shows the

average encryption time of these algorithms for one image. It can be seen that

speed of ICS-IE is faster than those of two competing 2D encryption algorithms

by different degrees. In contrast with two 1D encryption methods, the proposed

ICS-IE is faster than the 1D encryption algorithm in [20], but is slower than the445

one in [16]. The reason lies in that the method in [16] only considers a switch to

determine two different chaotic maps, while the proposed one is based on ICS

that possesses more complexity chaotic structures. Among all methods, ICS-IE

obtains the best encryption performance with a small additional running time.

450
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7. Conclusions

This paper presented ICS-I and ICS-II as two novel structures of chaotic

maps. Integrating three seed maps, they are all able to generate several more

complicated chaotic maps, which have better chaotic behaviors. We also pro-

posed a novel image encryption algorithm to evaluate the developed chaotic455

maps. Simulation results and extensive security analysis have shown that ICS-

IE algorithm achieved satisfactory performance in image encryption.
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