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Abstract

This paper investigates the problem of distributed consensus control for multi-agent systems

under denial-of-service (DoS) attacks. Different from the existing results where DoS attacks

on all the channels are same, in this paper, the adversaries compromise each channel inde-

pendently. The objective is to design distributed controllers such that the consensus is still

achieved in the presence of DoS attacks. Both state-feedback and observer-based controllers

are considered. First, the decay rates under different attack modes are obtained by solving

a class of linear matrix inequalities. Second, sufficient conditions on the duration of the DoS

attacks, under which the consensus is still achieved, are proposed. The difficulty that there

is no one-to-one match between the obtained decay rates and DoS duration limitations, is

overcome by introducing the equivalent decay rates corresponding to channels. Moreover, the

computational complexity is reduced greatly by introducing a novel scaling method. Finally,

two examples are presented to illustrate the effectiveness of the proposed approaches.

Keywords: Multi-agent systems, Distributed consensus control, Observer-based controller,

Linear matrix inequality, Denial-of-service attacks

1. Introduction

Cyber-physical systems (CPSs) has been intensively studied over the past few years,

such as stability analysis [7, 18], sliding-mode observer [33], fault/attack detection [22], and

control problems [21, 31], for its immense field of application, such as power grid systems,

deep sea exploiting systems, and multi-agent systems (MASs).

Compared with the general computing systems where attacks limit their impact to the

cyber realm, CPSs where attacks even can impact the physical world for the tight integra-
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tion of computation, networking, and physical process are more vulnerable [30]. Therefore,

security problems for CPSs have attracted considerable attention: the performance degrada-

tion under stealthy integrity attacks [23], secure state estimation under sparse sensor attacks

[19, 28], security control and distributed filtering under deception attacks [3, 4] and stability

analysis under denial-of-service (DoS) attacks [27].

Especially, for the widespread applications of MASs [5], such as wireless sensor networks

[1], spacecraft systems [2], service robots [12], and formation control of unmanned vehicles

[15], the consensus of MASs has attracted intensive study, such as fault-tolerant consen-

sus control [29], adaptive tracking control problem [17], distributed event-triggered control

[13], and synchronization using observer [32]. While most of the previous results focus on

leaderless consensus, leader following consensus is considered in [14, 16]. Besides, as a kind

of CPSs, the security problems of MASs also have been intensively studied. For example,

[26] considers a line consensus network with misbehaving agents which can bee seen as the

sparse attacks considered in [19, 28], and [8] investigates distributed secure consensus for

MASs under DoS attacks.

DoS attacks which is one of the most common attacks in CPSs, compromise the systems

through rendering some or all components of a control system inaccessible. Especially,

while the agents of MASs always communicate with each other individually, MASs are more

vulnerable to DoS attacks since defending DoS attacks for all transmission channels is almost

impossible. Although secure consensus for MASs under DoS attacks has been considered

in [8, 9, 27], all the channels are seen as one channel from the angle of the adversaries

which limits the application of the existing methods. Instead, studying multiple transmission

channel case, where the adversaries can attack partial or all channels at any time with DoS

duration limitation, is more practical, and this is the major motivation of this study.

Although CPSs with multiple channels under DoS have been considered in our previous

result [20], the computational complexity has not been addressed well. Especially, while

the number of transmission channels grows linearly with the size of common linear systems,

as the size of MASs increases, the combinatorial transmission channels lead to explosive

growth of the computational complexity. Thus, besides analyzing the stability, more efforts

on addressing the computational complexity should be made for MASs.

This paper investigates the distributed secure consensus for MASs under DoS attacks.

The considered DoS attacks are energy-limited, and on different channels, they are indepen-

dent of each other. The main contributions of this work are summarized as follows:

(i) Both distributed state-feedback and observer-based controllers are proposed. To
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achieve secure consensus, the basic idea is to discard the information obtained from the

attacked channels.

(ii) While the adversaries can attack partial or all channels at any time, various attack

modes are considered. Based on the proposed two controllers, linear matrix inequality (LMI)

technique is utilized to obtain the decay rates under different attack modes. Especially, based

on the structure of the controller gain, a novel scaling method is introduced to reduce the

computational complexity.

(iii) Based on the obtained decay rates corresponding to attack modes, by introducing a

class of equivalent decay rates corresponding to communication channels, sufficient conditions

on the duration of the DoS attacks, under which the consensus is still achieved, are provided

in terms of inequalities.

The rest is organized as follows. In Section 2, the preliminaries are presented. Section 3

provides the decay rates under different attack modes. Section 4 analyzes the stability. Two

examples are given in Section 5, and Section 6 concludes this paper.

Notation : For a matrix P , P T denotes its transpose, He(P ) , P + P T , P < 0 denotes

negative definiteness, and λ(P ) denotes the smallest eigenvalue of P . Given vector vi ∈ Rn,

||vi|| is the Euclidean norm of vi, and col(v1, · · · , vn) = [vT1 , · · · , vTn ]T . R denotes the set of

reals and N denotes the set of natural numbers. Given two sets Γ1 and Γ2, Γ1\Γ2 is the

relative complement of Γ2 in Γ1, and |Γ1| is denoted as the cardinality of Γ1. For interval

D(t1, t2), |D(t1, t2)| is its length over [t1, t2). 1n denotes the n × 1 vector with all elements

equal to 1, and In denotes the n× n identity matrix. I and 0 represent identity matrix and

zero matrix with appropriate dimensions, respectively. ⊗ represents the Kronecker product.

2. Preliminaries

2.1. Algebraic Graph Theory

Consider a weighted undirected graph G = {V , E} where V ∈ {1, 2, · · · , N} and E ⊆
V2 represent the agent set and edge set, respectively. Ni = {j ∈ V|(j, i) ∈ E} is the

neighborhood set of agent i. If an edge ordered by (i, j) ∈ E , agent j can be directly

supplied with information from agent i, and each edge (i, j) is assigned a real-valued weight

aji > 0. If there is no edge connecting node i and node j, one has (i, j) /∈ E , aji = 0 and

(j, i) /∈ E , aij = 0. The Laplacian matrix of G is denoted by L = [lij], where

lii =
N∑

j=1

aij, lij = −aij for i 6= j. (1)
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Without loss of generality, λ1 ≤ λ2 ≤ · · · ≤ λN are the eigenvalues of L and νi is the

orthogonal eigenvector of L corresponding to λi. It is assumed that there is no self loop in

the graph, and the considered undirected graph G is connected.

2.2. System description

Consider an MAS with N identical general linear dynamics of agents described by

ẋi(t) = Axi(t) +Bui(t) (2)

where xi(t) ∈ Rn and ui(t) ∈ Rnu are the state and control input, respectively (i =

1, 2, · · · , N). A and B are matrices of appropriate sizes. While A is not Hurwitz stable,

it is assumed that (A,B) is stabilizable. Setting x(t) = col(x1(t), x2(t), · · · , xN(t)) and

u(t) = col(u1(t), u2(t), · · · , uN(t)), then the whole MAS with agents described by (2) can be

formulated as

ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗B)u(t). (3)

2.3. Denial-of-Service Attack

As one of the most common attacks in CPSs, DoS attacks compromise the systems

through rendering some or all components of a control system inaccessible. In this paper,

different from [8, 9, 27] where all the transmission channels are assumed to be under the

same DoS attack, it is assumed that DoS attacks on different channels (the edge (i, j) ∈ E)

are independent of each another. Besides, it is reasonable to assume that while channel (i, j)

is attacked, channel (j, i) is also attacked.

As discussed in [8], it needs to terminate attack activities and shift to a sleep period to

supply its energy for next attack. Then, similar to [20, 27], for each transmission channel

((i, j) ∈ E), the following assumption on DoS duration (the time attack lasts) is given.

Assumption 1. [27] (DoS Duration) There exist positive scalars ςij and µij < 1 such that

|D(i,j)(s, t)| ≤ ςij + µij(t− s) (4)

where D(i,j)(s, t) is the union of DoS intervals of channel (i, j) ∈ E over [s, t), i < j. µij
reflects the attack intensity: for edge (i, j), a maximum of 100µij% of communication denials
on the average are permitted.

Remark 1. Assumption 1 is inspired by the concept of average dwell time [34], and larger
µij implies more intensive attacks. Since edges (i, j) and (j, i) are seen as one channel, only
the edge (i, j) with i < j is considered, and D(i,j) = D(j,i). Besides, it should be also noted
that while [8] only considers two cases (under DoS or not), in this paper, various attack
modes (different channels (i, j) ∈ E are attacked: partial or all) should be considered which
is a major difficulty in this study.
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Then, some discussions on the attack modes are given. Define

Γ(t) = {(i, j) ∈ E|t ∈ D(i,j)(0,∞)} (5)

as the set of channels which are attacked at time t, and

ΞΓ(t1, t2) = (∩(i,j)∈ΓD(i,j)(t1, t2)) ∩ (∩(i,j)/∈ΓD̄(i,j)(t1, t2)) (6)

as the union of the intervals where the channels indexed by the set Γ ⊆ E are attacked and

the channels indexed by E\Γ are not attacked (t1 < t2 and D̄(i,j)(t1, t2) = [t1, t2]\D(i,j)(t1, t2)).

Remark 2. Actually, (5) provides an index for the attack modes. It is easy to see that
Γ(t) ⊆ E, and for any (i, j) ∈ Γ(t), one has (j, i) ∈ Γ(t). Thus, from Γ(t) = ∅ to Γ(t) = E,

there are 2
|E|
2 different attack modes. Then, (6) partitions the interval [t1, t2] into 2

|E|
2 sub-

intervals ΞΓ(t1, t2) which will play an important role in the following study. It is easy to see
that

∪Γ⊆EΞΓ(t1, t2) = [t1, t2] (7)

D(i,j)(t1, t2) = ∪Γ⊆E,(i,j)∈ΓΞΓ(t1, t2). (8)

2.4. Control Objective

This paper considers a class of MASs under DoS attacks where adversaries compromise

each channel independently. The goal is to develop a class of distributed control laws ui(t)

for the system (2) such that the consensus is still achieved under DoS attacks satisfying

Assumption 1:

lim
t→∞
||xi(t)− xj(t)|| = 0, ∀i, j = 1, 2, · · · , N. (9)

Remark 3. To achieve such goal, the following two steps will be adopted: (i) designing a
class of distributed control laws, (ii) analyzing the resilience to DoS attacks of the system (2)
under the proposed control laws. However, as discussed in Remark 1, since the adversaries
attack each channel independently, there are numerous cases (indexed by Γ ⊆ E) to be consid-
ered. Although CPSs with multiple channels under DoS have been considered in our previous
result [20], the computational complexity for analyzing the decay rates under different cases
has not been addressed well. In this paper, while the number of channels |E|/2 ≤ (N2−N)/2

may be very large (as shown in Remark 2, the number of attack modes is 2
|E|
2 ), an important

task is to provide an efficient way to analyze these decay rates.

3. Distributed Control Laws

In this section, two secure distributed control laws are proposed, and the major objective

is to analyze the decay rates for the closed-loop system under different attack modes indexed

by (5).
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3.1. Distributed State Feedback Controller

In this subsection, the following distributed state-feedback consensus controller is adopted:

ui(t) = K
∑

j∈Ni,(j,i)/∈Γ(t)

aij(xj(t)− xi(t)) (10)

where K ∈ Rn×n is the controller gain to be designed. (10) is similar to the existing state-

feedback controllers in [25, 29], and the difference is that the attack mode Γ(t) is taken into

account. The basic strategy for security is to discard the term xj − xi while (j, i) ∈ Γ(t).

Remark 4. It should be noted that although the attack mode Γ(t), which is actually unknown
for each agent, is utilized in (10), not all the elements in Γ(t) are necessary. It is easy to see
that for agent i, if j ∈ Ni, whether (j, i) ∈ Γ(t) is known (while xj is unavailable, (j, i) ∈ Γ(t)
is confirmed by agent i, and vice versa) which ensures that the proposed controller (10) is
feasible.

Then, substituting (10) into (3) yields

ẋ(t) = (IN ⊗ A− (L − LΓ(t))⊗BK)x(t) (11)

where LΓ(t) is defined as L with aij (utilized in (1), (j, i) /∈ Γ(t)) replaced by 0. Considering

that the undirected graph G is connected, L is symmetric and positive semi-definite, and

λ2 > 0 (defined in Section 2.1). Setting Ψ = [1N/
√
N ν] and M = IN − (1N1

T
N)/N where

ν = [ν2, · · · , νN ], νi is defined in Section 2.1 (Lνi = λiνi), the following properties are

obtained

ΨTΨ = ΨΨT = IN , ΨTLΨ = diag{0, λ2, · · · , λN} (12)

ΨTLΓΨ = diag{0, νTLΓν}, L − LΓ ≥ 0 (13)

ML = LM = L, MLΓ = LΓM = LΓ. (14)

Defining an error vector δi = xi − x̄(t) where x̄(t) = 1
N

∑N
i=1 xi(t), one has

δ(t) = (M⊗ In)x(t) (15)

where δ(t) = col(δ1(t), · · · , δN(t)). Based on (11), (14) and (15), the time derivative of δ is

obtained:

δ̇(t) = (IN ⊗ A− (L − LΓ(t))⊗BK)δ(t). (16)

Next, the following theorem analyzes the decay rates of the system (11) with controller

(10) under different attack modes.
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Theorem 3.1. For a connected undirected graph G with agents (2), given scalars αΓ, if there
exist positive symmetric definite matrices X and R such that

IN−1 ⊗ (He(AX)− αΓX)− 2(Λ− ΛΓ)⊗BRBT < 0 (17)

where Λ = diag{λ2, · · · , λN}, ΛΓ = νTLΓν, and Γ ⊆ E, then the following inequalities are
guaranteed

V̇ (t) ≤ αΓV (t), t ∈ ΞΓ(0,∞) (18)

where

V (t) = δT (t)(IN ⊗ P )δ(t) (19)

and P = X−1, under the distributed state-feedback consensus controller (10) with

K = RBTP. (20)

Proof. Choose V (t) as a Lyapunov function candidate. Based on (5) and (6), for t ∈ ΞΓ(t),

it follows from (16) that

V̇ (t) = δT (IN ⊗He(PA)− 2(L − LΓ(t))⊗ PBK)δ (21)

where δ = δ(t). Setting δ̃ = (ΨT ⊗ In)δ = col(δ̃1, · · · , δ̃N), one has δ̃1 = (1TN/
√
N ⊗ In)(M⊗

In)x(t) = 0. Then, it follows from (21) that

V̇ (t)
(a)
= δ̃T (IN ⊗He(PA)− (ΨT (L − LΓ(t))Ψ)⊗ 2PBK)δ̃

(b)
=δ̃T2:N(IN−1 ⊗He(PA)− 2(Λ− ΛΓ(t))⊗ PBK)δ̃2:N

(c)

≤αΓ(t)δ̃
T
2:N(IN−1 ⊗ P )δ̃2:N

(d)
= αΓ(t)V (t) (22)

where δ̃2:N = col(δ̃2, · · · , δ̃N), (a) holds for that ΨTΨ = IN (given in (12)), (b) holds for

that δ̃1 = 0, (c) is obtained by pre- and post-multiplying (17) by IN−1 ⊗ P with the help

of (20), and (d) holds for that δ̃1 = 0 and ΨΨT = IN . While (22) implies (18), the proof is

completed.

In Theorem 3.1, αΓ should be chosen such that (17) is feasible for all Γ ⊆ E , and as

shown in (18), αΓ are the decay rates. However, since there are 2
|E|
2 different Γ (as discussed

in Remark 2), solving (17) with Γ ⊆ E is very hard for large systems. In the following, a

corollary is given to reduce the computation requirement at the cost introducing of some

conservatism.
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Corollary 3.2. For a connected undirected graph G with agents (2), given scalars α0, α∅,
αE and α{(i,j),(j,i)}, if there exist positive symmetric definite matrices X and R such that

He(AX)− α{(i,j),(j,i)}X − 2λ(i,j)BRB
T < 0 (23)

He(AX)− α∅X − 2λ2BRB
T < 0 (24)

He(AX)− αEX < 0 (25)

α0X − (He(AX)− 2λNBRB
T ) < 0 (26)

where λ(i,j) = λ(Λ − Λ{(i,j),(j,i)}), i < j and (i, j) ∈ E (Λ is defined in Theorem 3.1), then
(18) with given α∅ and

αΓ = min{α0 −
∑

i<j,(i,j)∈Γ

(α0 − α{(i,j),(j,i)}), αE}, Γ 6= ∅ (27)

is guaranteed under the distributed state-feedback controller (10) with K defined in (20).

Proof. It follows from (23)-(25) that

Ω− IN−1 ⊗ αΓX + 2ΛΓ ⊗BRBT < 0 (28)

where Ω = IN−1 ⊗He(AX)− 2Λ⊗BRBT , holds for Γ = ∅, E and {(i, j), (j, i)}.
Then, for αΓ = α0 −

∑
i<j,(i,j)∈Γ(α0 − α{(i,j),(j,i)}) (Γ 6= ∅), one can deduce that

Ω− IN−1 ⊗ αΓX + 2ΛΓ ⊗BRBT

(a)

≤ Ω− IN−1 ⊗ αΓX −
∑

i<j,(i,j)∈Γ

(Ω− IN−1 ⊗ α{(i,j),(j,i)}X)

(b)

≤ (
|Γ|
2
− 1)(IN−1 ⊗ α0X − Ω)

(c)
< 0 (29)

where (a) is obtained from (28) and the fact that ΛΓ =
∑

i<j,(i,j)∈Γ Λ{(i,j),(j,i)}, (b) holds for

that αΓ = −(|Γ|/2− 1)α0 +
∑

i<j,(i,j)∈Γ α{(i,j),(j,i)}, and (c) is finally obtained from (26).

Meanwhile, for αΓ = αE (Γ 6= ∅), considering that L − LΓ ≥ 0 (given in (13)), it is easy

to see that

Ω− IN−1 ⊗ αΓX + 2ΛΓ ⊗BRBT ≤ IN−1 ⊗ (He(AX)− αEX) ≤ 0 (30)

where (25) is utilized. Finally, (28), (29) and (30) imply that (17) holds for all Γ ⊆ E . Then,

the proof is completed with the help of Theorem 3.1.

Remark 5. Compared with Theorem 3.1 containing 2
|E|
2 LMIs (17) of order (N−1)n, Corol-

lary 3.2 containing |E|
2

+3 LMIs of order n requires much less computing resources. However,
it should be also noted that Corollary 3.2 is more conservative than Theorem 3.1, and such
fact will be shown in Section 5-Example. Besides, since Γ(t) is unknown, for the time-varying
system (11) indexed by Γ(t), a common state-feedback controller gain K is designed based on
the common Lyapunov function (19) at the cost of introducing some conservatism. Mean-
while, (30) implies that (18) holds for all αΓ = αE . Then, while αE < 0 (A is Hurwitz
stable), the agent group will achieve consensus under any DoS attacks. Thus, after (2), A is
assumed to be not Hurwitz stable which implies that αE ≥ 0.
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3.2. Distributed Observer-based Controller

In this subsection, the following distributed observer-based consensus controller is adopted:

˙̂xi(t) =(IN ⊗ A− L⊗BK)x̂i(t) + [F 0
i Fi]


 I iN ⊗ I

(Ai −AiΓ(t))⊗ I


 (x̂i(t)− x(t)) (31)

ui(t) =K
∑

j∈Ni,(j,i)/∈Γ(t)

aij(xj(t)− xi(t)) +K
∑

j∈Ni,(j,i)∈Γ(t)

aij(x̂
i
j(t)− xi(t)) (32)

where x̂i(t) = col(x̂i1(t), · · · , x̂iN(t)) is the state estimation available for the agent i (x̂ij is the

estimation of xj available for the agent i), K and [F 0
i Fi] are the controller and observer

gains to be designed, respectively. Compared with the state-feedback controller (10), for each

agent, an observer is proposed to estimate the global state with the help of local information,

and the state estimation is utilized in (32) for faster convergence rate.

It follows from (32) that

(IN ⊗B)u(t) = −(L ⊗BK)x(t) +
N∑

j=1

((IjN)TAjΓ(t) ⊗BK)(x(t)− x̂j(t)) (33)

where u(t) is defined before (3), AiΓ and I iN are the ith row of AΓ and IN , respectively, AΓ is

defined as LΓ (defined in (11)) with the diagonal elements replaced by 0. Substituting (33)

into (3), one has

ẋ(t) = (IN ⊗ A− L⊗BK)x(t) +
N∑

j=1

((IjN)TAjΓ(t) ⊗BK)ej(t) (34)

where ei = x− x̂i. Then, combining (31) and (34) yields

ėi(t) =(IN ⊗ A− L⊗BK + F 0
i (I iN ⊗ I) + Fi((Ai −AiΓ(t))⊗ I))ei(t)

+
N∑

j=1

((IjN)TAjΓ(t) ⊗BK)ej(t)

where Ai is the ith row of A, A is defined as L with lii replaced by 0. Next, the dynamics

of the collective vector e = col(e1, · · · , eN) is expressed as

ė(t) =(A1,Γ(t) + A2,Γ(t))e(t) (35)

where A1,Γ = diag{A1
1,Γ, · · · ,AN

1,Γ}, Ai
1,Γ = IN ⊗ A− (L − (I iN)TAiΓ)⊗ BK + F 0

i (I iN ⊗ I) +

Fi((Ai − AiΓ) ⊗ I), A2,Γ is defined as 1N ⊗ [(I1
N)TA1

Γ ⊗ BK, · · · , (INN )TANΓ ⊗ BK] with the

diagonal block (I iN)TAiΓ⊗BK replaced by 0. Now, based on (34) and (35), the dynamics of

the augmented vector col(δ(t), e(t)) (δ is defined in (15)) is expressed as

δ̇(t)
ė(t)


 =


IN ⊗ A− L⊗BK A3,Γ(t)

0 A1,Γ(t) + A2,Γ(t)




δ(t)
e(t)


 (36)
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where A3,Γ = [(M1)TA1
Γ ⊗ BK, · · · , (MN)TANΓ ⊗ BK], Mi is the ith row of M, and the

first row block is obtained from (34) similar to (16).

First, while K is given (using Theorem 3.1 or Corollary 3.2), the following theorem

provides a class of appropriate observer gains F 0
i and Fi, and analyzes the decay rates.

Theorem 3.3. For a connected undirected graph G with agents (2), given scalars αΓ, if there
exist positive symmetric definite matrices P and P̃ , and matrices S0

i and Si such that
[
A0,Γ (νT ⊗ I)AP

3,Γ

∗ He(AP̄
1,Γ + P̄A2,Γ)− αΓP̄

]
< 0 (37)

where P̄ = IN ⊗ P̃ , A0,Γ = He(IN−1 ⊗ PA − Λ ⊗ PBK) − αΓIN−1 ⊗ P , AP
3,Γ is defined as

A3,Γ with BK replaced by PBK, AP̄
1,Γ is defined as A1,Γ with Ai

1,Γ replaced by P̃ (IN ⊗ A −
(L − (I iN)TAiΓ)⊗BK) + S0

i (I
i
N ⊗ I) + Si((Ai −AiΓ)⊗ I), and Γ ⊆ E, then (18) with

V (t) = δT (t)(IN ⊗ P )δ(t) + eT (t)P̄ e(t) (38)

is guaranteed under the distributed observer-based consensus controller (32) with

F 0
i = P̃−1S0

i , Fi = P̃−1Si. (39)

Proof. Considering the Lyapunov function candidate (38), for t ∈ ΞΓ(t), the time derivative

of V (t) is obtained from (36)

V̇ (t) = 2


δ(t)
e(t)



T 
IN ⊗ PA− L⊗ PBK AP

3,Γ(t)

0 P̄A1,Γ(t) + P̄A2,Γ(t)




δ(t)
e(t)


 . (40)

Similar to (22), it follows from (40) that

V̇ (t)=2


δ̃2:N

e(t)



T 
IN−1 ⊗ PA− Λ⊗ PBK (νT ⊗ I)AP

3,Γ(t)

0 P̄A1,Γ(t) + P̄A2,Γ(t)




δ̃2:N

e(t)




≤αΓ(t)V (t) (41)

where (37), (39) and the fact that δ̃1 = 0 are utilized (δ̃ is defined before (22)). Thereby

proving the theorem.

Similar to the discussions after Theorem 3.1, Theorem 3.3 is also not suitable for large

systems. Then, by specifying

F 0
i = (Ai − κI iN)T ⊗BK, Fi = (I iN)T ⊗BK (42)

where κ is a positive scalar, Ai
1,Γ defined in (35) becomes

Ai
1,Γ = IN ⊗ A− L̃i ⊗BK (43)

where L̃i = L + κ(I iN)T I iN − He((I iN)TAi), which is independent of attack mode Γ. Then,

the following corollary is provided.
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Corollary 3.4. For a connected undirected graph G with agents (2), given scalars κ, α0, α∅
and α{(i,j),(j,i)}, if there exist positive symmetric definite matrices X and R such that

He(AX)− α{(i,j),(j,i)}X − 2λ̃(i,j)BRB
T < 0 (44)

He(AX)− α∅X − 2λmBRB
T < 0 (45)

α0X − (He(AX)− 2λMBRB
T ) < 0 (46)

where λ̃(i,j) = λ(diag{Λ,Λ1, · · · ,ΛN}−Ψ̃{(i,j),(j,i)}), i < j and (i, j) ∈ E, λm = min(λ2, λ11, · · · , λN1),
λM = max(λN , λ1N , · · · , λNN),

Ψ̃Γ =




0 Ψ̃1
Γ · · · Ψ̃N

Γ

∗ Ψ̃11
Γ · · · Ψ̃1N

Γ

∗ ∗ . . .
...

∗ ∗ ∗ Ψ̃NN
Γ


 ,

Ψ̃i
Γ = (Miν)TAiΓΨi, Ψ̃ij

Γ = ΨT
i ((IjN)TAjΓ + (AiΓ)T I iN)Ψj (i 6= j) and Ψ̃ii = 0, Ψi is an

orthonormal matrix such that ΨT
i L̃iΨi = Λi = diag{λi1, · · · , λiN}, and λil is the lth smallest

eigenvalue of L̃i (i, j = 1, · · · , N), then (18) with V (t) defined in (38) (P = P̃ = X−1),
given α∅ and

αΓ = α0 −
∑

i<j,(i,j)∈Γ

(α0 − α{(i,j),(j,i)}), Γ 6= ∅, (47)

is guaranteed under the distributed observer-based consensus controller (32) with (20) and
(42).

Proof. Considering (20), (43) and the facts that ΨT
i Ψi = 1 and ΨT

i L̃iΨi = Λi, pre- and

post-multiplying (37) with P = P̃ = X−1 by diag{IN−1 ⊗X,ΨT
1 ⊗X, · · · ,ΨT

N ⊗X} and its

transpose, respectively, yields

diag{Ã, Ã1, · · · , ÃN}+ Ψ̃Γ ⊗BRBT < 0 (48)

where Ã = IN−1⊗(He(AX)−αΓX)+Λ⊗BRBT , Ãi = IN⊗(He(AX)−αΓX)+Λi⊗BRBT .

It is easy to see that (48) is equivalent to (37).

Finally, based on the fact that Ψ̃Γ =
∑

i<j,(i,j)∈Γ Ψ̃{(i,j),(j,i)}, the proof can be completed

by following the exact same argument of Corollary 3.2.

Remark 6. Compared with Theorem 3.3 containing 2
|E|
2 LMIs (37) of order (N−1)n+N2n,

by specifying the observer gains in (42), Corollary 3.4 only contains |E|
2

+ 2 LMIs of order
n. Thus, adopting Corollary 3.4 reduces the computational complexity greatly. Besides, it
should be noted that compared with the state-feedback controller (10), while the observer-
based controller (32) is adopted, the Laplacian matrix L should be known for each agent.
Meanwhile, since the number of estimator grows with the number of neighbors which may
lead to more installation costs, the proposed controller (32) is not suitable for large systems.
In Section 5-Example, it will be shown that the controller (32) provides faster convergence
rate than (10).
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4. Stability Analysis

In Section 3, Theorems 3.1, 3.3 and two corollaries are provided to analyze the decay

rates for the closed-loop system under different attack modes Γ (Γ ⊆ E , and (i, j) ∈ Γ and

(j, i) ∈ Γ hold simutaniously). Based on these obtained decay rates αΓ, this section focuses

on analyzing the stability of the closed-loop system under DoS attacks.

Theorem 4.1. For a connected undirected graph G with agents (2), if there exist a Lyapunov
function V (t) satisfying (18) under controller (10) (or (32)) and scalars θij1 and θij2 such that

θij1 − θij2 ≥ 0 (49)

αΓ − (
∑

(i,j)∈Γ

θij1 +
∑

(i,j)∈E\Γ
θij2 ) ≤ 0 (50)

µ̄ =
∑

(i,j)∈E
(µijθ

ij
1 + (1− µij)θij2 ) < 0 (51)

where (i, j) ∈ E and Γ ⊆ E, then the agent group achieves consensus (9) despite the DoS
attacks satisfying Assumption 1.

Proof. Assume that ζk (k ∈ N, ζ0 = 0) are the time instants where Γ(t) changes (at least

one DoS off/on (or on/off) transition occurs).

(i) For t ∈ [ζk, ζk+1), (18) implies

V (t) ≤eαΓ(ζk)(t−ζk)V (ζk)

≤eDkV (ζ0)=eD(0,t)V (0) (52)

where Dk = αΓ(ζk)(t− ζk) +
∑k

m=1 αΓ(ζm)(ζm − ζm−1), D(0, t) =
∑

Γ⊆E αΓ|ΞΓ(0, t)|.
(ii) It follows from (50) that

D(0, t) ≤
∑

Γ⊆E
(
∑

(i,j)∈Γ

θij1 +
∑

(i,j)∈E\Γ
θij2 )ΞΓ(0, t)

=
∑

(i,j)∈E
(θij1

∑

Γ⊆E,(i,j)∈Γ

|ΞΓ(0, t)|+ θij2
∑

Γ⊆E,(i,j)/∈Γ

|ΞΓ(0, t)|)

(a)
=
∑

(i,j)∈E
((θij1 − θij2 )|D(i,j)(0, t)|+ θij2 t)

(b)

≤µ̄t+ ς̄ (53)

where ς̄ =
∑

(i,j)∈E(θ
ij
1 −θij2 )ςij, (a) is obtained from (8) and the fact that

∑
Γ⊆E,(i,j)/∈Γ |ΞΓ(0, t)| =

|[0, t]/D(i,j)(0, t)| = t− |D(i,j)(0, t)|.
(iii) Finally, it follows from (52) and (53) that limt→∞ V (t) = 0 which yields

lim
t→∞
||δ(t)|| = 0. (54)
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where the fact that λ(P )||δ(t)||2 ≤ V (t) holds for both V (t) defined in (19) and (38) is

utilized. While (54) implies (9), the agent group achieves consensus despite DoS attacks and

the proof is completed.

Remark 7. Although the decay rates αΓ have been provided in Section 3, since αΓ corre-
sponding to attack modes Γ and D(i,j) corresponding to channels (i, j) are unmatched which
is the major difficulty for studying the systems with multiple channels under DoS attacks, the
technique for switched systems with stable and unstable subsystems which has been adopted
in [8] does not apply here. Thus, in Theorem 4.1, a class of equivalent decay rates θij1 and
θij2 which are corresponding to the cases that the channel (i, j) ∈ E is and is not under DoS
attacks, respectively, is introduced. Moreover, while the disturbance is taken into account,
similar to Theorem 4.1 in our previous result [20], input-to-state stability is available.

Remark 8. It is easy to see that (49)-(51) can be verified by using LMI toolbox. However,

since Γ ⊆ E which implies that the number of inequalities (50) is 2
|E|
2 , solving (50) may

be very time-consuming for large systems. Considering that for any sets Γ1 ⊆ Γ2, αΓ2 +
(
∑

(i,j)∈Γ2
θij1 +

∑
(i,j)∈E\Γ2

θij2 ) ≥ min{αΓ1 , αΓ2} + (
∑

(i,j)∈Γ1
θij1 +

∑
(i,j)∈E\Γ1

θij2 ) under the

limitation (49), for given sets Γ̃ and Ẽ satisfying that Γ ⊆ Γ̃ and αΓ approximates αΓ̃ for
any Γ ∈ Ẽ, inequalities (50) indexed by Γ ∈ Ẽ can be replaced by one inequality (50) with αΓ

and Γ replaced by maxΓ∈Ẽ{αΓ} and Γ̃, respectively. Based on such idea, the computational
complexity can be reduced.

In the following, another theorem, which can be verified directly (without the help of

LMI toolbox) but introduces more conservatism, is proposed.

Theorem 4.2. For a connected undirected graph G with agents (2), given scalars α0 (defined
in Corollary 3.2 and Corollary 3.4) and αΓ, if one of the following is true,

α∅ + (αM − α∅)
∑

i<j,(i,j)∈E
µij < 0 (55)

ᾱ0 −
∑

i<j,(i,j)∈E
µijΥ(i,j) < 0 (56)

where αM = max{αΓ}, Γ ⊆ E, ᾱ0 = max{α0, α∅}, Υ(i,j) = α0 − α{(i,j),(j,i)}, then the agent
group achieves consensus (9) in the presence of the DoS attacks satisfying Assumption 1.

Proof. Based on the fact that αΓ ≤ αM , one can deduce that

D(0, t) ≤α∅|Ξ∅(0, t)|+ αM
∑

∅⊂Γ⊆E
|ΞΓ(0, t)|

(a)
=α∅t+ (αM − α∅)

∑

∅⊂Γ⊆E
|ΞΓ(0, t)|

(b)

≤µ̄t+ ς̄ (57)

where µ̄ = α∅+(αM −α∅)
∑

i<j,(i,j)∈E µij and ς̄ =
∑

i<j,(i,j)∈E ςij, (7) is utilized in (a), and (b)

is obtained from (4) and the facts that
∑
∅⊂Γ⊆E |ΞΓ| ≤

∑
i<j,(i,j)∈E D(i,j) and αM − α∅ > 0.
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Based on (27) and (47), it is easy to obtain that

D(0, t) ≤α∅|Ξ∅(0, t)|+
∑

∅⊂Γ⊆E
(α0 −

∑

i<j,(i,j)∈Γ

Υ(i,j))|ΞΓ(0, t)|

≤ᾱ0

∑

Γ⊆E
|ΞΓ(0, t)| −

∑

i<j,(i,j)∈E
Υ(i,j)

∑

Γ⊆E,(i,j)∈Γ

|ΞΓ(0, t)|

(a)
=ᾱ0 −

∑

i<j,(i,j)∈E
Υ(i,j)|D(i,j)(0, t)|

(b)

≤µ̄t+ ς̄ (58)

where µ̄ = ᾱ0 −
∑

i<j,(i,j)∈E µijΥ(i,j), ς̄ =
∑

i<j,(i,j)∈E Υ(i,j)ςij, (a) is obtained from (7) and

(8), and (b) is obtained from Assumption 1 and the fact that Υ(i,j) < 0 (obtained by adding

(23) and (26)).

From (57) and (58), both (55) and (56) imply that D(0, t) ≤ µ̄t + ς̄ holds with µ̄ < 0.

Then, the proof is completed by following the same argument of Theorem 4.1.

Remark 9. Based on the obtained decay rates αΓ, Theorems 4.1 and 4.2 are provided to
analyze the biggest µij defined in (4) such that the consensus is still achieved under DoS
attacks satisfying Assumption 1. Besides, it should be noted that for any ςij <∞, (52) and
(53) (or (57), (58)) imply that (54) is always achievable if µ̄ < 0.

Remark 10. In this paper, for an undirected graph, a class of secure distributed consensus
controller for multi-agent systems under DoS attacks has been provided. However, it should
be noted that if the communication graph becomes directed [11], the proposed methods will fail
to work. The major difficulty comes from that the symmetric property of Laplacian matrix,
which is utilized in Section 3, is lost for directed graphs. Thus, how to extend the proposed
method on fixed undirected graph to the directed one requires further study. Besides, while
this paper considers a fixed graph, the proposed methods also fail to work for time-varying
graphs, such as Markovian network topologies [10]. Because of the randomly changing edges,
the resilient consensus control problem for time-varying graphs which is more challenging
will be studied in the future work.

5. Example

Example 1: In this example, a group of three agents in R2 is considered, and the dynamics

of the agents are described by (2) with

A =


 0 1

0.2 −2


 , B =


0

1


 .

Assuming that the considered communication graph is complete, and aij = 1 for i 6= j. The

initial condition x(0) = col(x1(0), x2(0), x3(0)) = [5 4 − 4 − 5 3 − 3]T .
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In the following, the proposed state-feedback and observer-based distributed consensus

controllers (10) and (32) are applied to the considered MAS to show the effectiveness of the

proposed methods.

Step 1. Theorems 3.1, 3.3 and Corollaries 3.2, 3.4 are adopted to provide the decay rates

αΓ where Γ ⊆ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}, and the results are shown in Table 1.

Table 1: Decay rates αΓ and DoS duration µij .

αΓ Γ = ∅ |Γ| = 2 |Γ| = 4 |Γ| = 6 µij

Theorem 3.1 -4.1 -4.1 0.2 0.2 0.62

Corollary 3.2 -2.9 -0.8 0.22 0.22 0.58

Theorem 3.3 -3.2 -2.2 0.3 0.8 0.6

Corollary 3.4 -1.7 -0.07 1.8 1.8 0.32

Step 2. Based on the decay rates obtained in Step 1, Theorem 4.1 is adopted to analyze

the stability, and the maximum allowable µij are also provided in Table 1 (µ12 = µ13 = µ23).

As discussed in Remark 1, µij reflects the attack intensity. For example, in Table 1, µij = 0.62

implies that for each edge (i, j) ∈ E , a maximum of 62% of communication denials on the

average are permitted under the consensus controller (10) obtained by using Theorems 3.1.

In other words, larger µij implies better resilience to DoS attacks.

While Table 1 provides the decay rates αΓ and maximum allowable DoS duration µij,

by adopting the controllers (10) and (32) obtained in Step 1 (K = [1.0936 0.5199]), the

following two figures are provided. The first figure in Figure 2 shows the state responses

under controller (10) without DoS. The lower two figures of Figure 2 show the state responses

under the DoS attacks shown in Figure 1.

Based on the description above, under the proposed controllers, the consensus of the

considered MAS is still achieved in the presence of DoS attacks. Besides, Figure 2 shows that

the observer-based controller (32) provides faster convergence rate than the state-feedback

one (10).

Example 2: In this example, the following LC oscillator network [24, 29] is considered.

The dynamic of each agent is described as


v̇i
ċi


 =


 0 1/C

−1/L 0




vi
ci


+Bui(t)
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Figure 1: DoS signals (DoS (i, j) = 1 means that

channel (i, j) is under attack).
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i is the first element of

xi).
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where vi, ci, C = 0.5 and L = 1 are the voltage, current, capacitor and inductance of each LC

oscillator, respectively. The considered communication graph is shown in Figure 3, the Lapla-

cian matrix L = EWET where E is given in (65) of [29] and W = diag{1.5, 2, 1, 2, 1.5, 1}, and

the initial condition is x(0) = col(x1(0), x2(0), x3(0), x4(0), x5(0)) = [1 2 3 4 5 6 7 8 9 10]T .

Figure 3: Communication graph.

While Example 1 illustrates the effectiveness of the proposed methods, this example

focuses on discussing the computational complexity. Compared with Example 1 where only

8 different attack modes Γ should be considered, in this example, total 26 = 64 different Γ

should be considered (Γ ⊆ {(1, 3), (3, 1), (1, 4), (4, 1), · · · , (4, 5), (5, 4)}).
First, to obtain the decay rates αΓ, Theorems 3.1, 3.3, and Corollaries 3.2, 3.4 are per-

formed by using MATLAB R2014a on a desktop equipped with an Intel Core i7-6700 pro-

cessor operating at 3.4 GHz and 4 GB of memory. For controller (10), while solving LMIs

in Theorem 3.1 costs 0.1015s, solving LMIs in Corollary 3.2 only costs 0.0113s. Besides, for

controller (32), while solving LMIs in Theorem 3.3 costs 12.25s, solving LMIs in Corollary

3.4 only costs 0.0074s. These facts verify the discussions in Remarks 5 and 6. Meanwhile, it

should be also noted that although Corollaries 3.2 and 3.4 reduce the computational complex-

ity greatly, as shown in Figures 4 and 5, Theorems 3.1 and 3.3 provides better convergence

performance (Table 1 also verifies such fact).

Second, based on the decay rates αΓ obtained by using Theorem 3.1 (α∅ = −3, αΓ = −1.5

(|Γ| = 2), αΓ = 3.1 (Γ = E)), Theorems 4.1 and 4.2 are utilized to analyze largest DoS

duration µij under which the consensus is achieved. For convenience, it is assumed that µij

are same for all (i, j) ∈ E . Then, adopting Theorem 4.1 provides µij = 0.1791 at the cost

of 0.1213s, and it is easy to verify that (55) in Theorem 4.2 holds for µij = 0.0819 which is

only half of 0.1791.

Based on the description above, although adopting Corollaries 3.2 and 3.4 to obtain the

desired controllers requires much less computing resources, the controllers obtained by using
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Theorems 3.1 and 3.3 provide better performance. Besides, based on the same decay rates

αΓ, while verifying (55) and (56) in Theorem 4.2 is very easy, LMI technique can be utilized

to verify (49)-(51) in Theorem 4.1 with larger µij, which reflects greater resilience to DoS

attacks, derived.
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Figure 4: State responses under controller (10).
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Figure 5: State responses under controller (32).

6. Conclusions

In this paper, the problem of distributed consensus control for MASs under DoS attacks

has been investigated. While the adversaries compromise each channel independently, vari-

ous attack modes have been considered. Based on the proposed distributed state-feedback

and observer-based controllers, the decay rates under different attack modes are obtained by

solving LMIs. Besides, a novel scaling method has been proposed to reduce the computa-

tional complexity at the cost of introducing some conservatism. Then, based on the obtained

decay rates, sufficient conditions on the duration of DoS attacks, under which the stability is
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still guaranteed, have been proposed. It is shown that under the proposed distributed state-

feedback and observer-based controller, the consensus is achieved despite the DoS attacks

satisfying the proposed conditions. For future work, we can extend the proposed results for

event-triggered consensus [6], and such problem is challenging for that whether the event is

triggered may be unknown for the existence of DoS attacks.
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