
 

Communicated by Dr. Qingshan Liu

Accepted Manuscript

Improving Face Recognition with Domain Adaptation

Ge Wen, Huaguan Chen, Deng Cai, Xiaofei He

PII: S0925-2312(18)30112-7
DOI: 10.1016/j.neucom.2018.01.079
Reference: NEUCOM 19281

To appear in: Neurocomputing

Received date: 19 October 2017
Revised date: 8 January 2018
Accepted date: 28 January 2018

Please cite this article as: Ge Wen, Huaguan Chen, Deng Cai, Xiaofei He, Improving Face Recognition
with Domain Adaptation, Neurocomputing (2018), doi: 10.1016/j.neucom.2018.01.079

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neucom.2018.01.079
https://doi.org/10.1016/j.neucom.2018.01.079


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
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Ge Wen, Huaguan Chen, Deng Cai∗, Xiaofei He

The State Key Lab of CAD&CG, Zhejiang University, No.388 Yu Hang Tang Road, Hangzhou 310058, China

Abstract

Nearly all recent face recognition algorithms have been evaluated on the Labeled Faces in the Wild (LFW) dataset and many of
them achieved over 99% accuracy. However, the performance is still not enough for real-world applications. One problem is the
data bias. The faces in LFW and other web-collected datasets come from celebrities. They are quite different from the faces of
a normal person captured in the daily life. In other words, they are different in the face distribution. Replacing the training data
with the right distribution is a simple solution. However, the photos of common people are much harder to collect because of the
privacy concerns. So it is useful to develop a method that transfers the knowledge in the data of different face distribution to help
improving the final performance. In this paper, we crawl a large face dataset whose distribution is different from LFW and show
the improvement of LFW accuracy with a simple domain adaptation technique. To the best of our knowledge, it is the first time
that domain adaptation is applied in the unconstrained face recognition problem with million scale dataset. Besides, we incorporate
face verification threshold into FaceNet triplet loss function explicitly. Finally, we achieve 99.33% on the LFW benchmark with
only single CNN model and similar performance even without face alignment.

Keywords: Face recognition, domain adaptation, face verification loss

Introduction

Face recognition is the problem of identifying a specific in-
dividual, rather than merely detecting the presence of a human
face. It is widely used in public security, finance security, com-
mercial domain and so on. Due to its wide applications, face
recognition has become a core problem and one of the most
popular research topics in computer vision. It includes two dif-
ferent but related tasks, face verification (are these two pictures
the same person) and face identification (who is this person).
Face verification can be extended to solve face identification
task by repeating one-vs-one comparison. Nearly all recent
methods have been evaluated on the Labeled Faces in the Wild
(LFW) dataset [8]. In this paper, we focus on the face verifica-
tion task and report the performance on the LFW benchmark as
well.

The recent face recognition methods are based on convolu-
tional neural network [13], and have made a great progress,
even beating human beings on the LFW benchmark. But its
performance is still not enough for real-world applications. One
problem is the data bias[32]. The faces in LFW and other web-
collected datasets come from celebrities. They are quite differ-
ent from the faces of a normal person captured in the daily life.
In other words, they are different in the face distribution. Re-
placing the training data with the right distribution is a simple
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solution. But the photos of common people are much harder
to collect because of the privacy concerns. Besides, a generic
recognition system is required to be transferred to a domain-
specific application for performance. Both can be formulated
as Domain Adaptation[19], which transfers the knowledge in
the source domain to the target domain. In this paper, we crawl
a large face dataset called TaoMM whose distribution is differ-
ent from LFW and show the improvement of LFW accuracy
with a simple domain adaptation technique.

In the testing phase of face verification, the distance between
face pair is compared with a pre-computed threshold θ. If
dis < θ, the face pair is regarded as from the same person,
otherwise from different person. There is a similar threshold θ
in open-set face identification. Most face recognition methods
don’t consider the threshold in their optimization process ex-
plicitly. So there exists an optimization gap in their methods.
By incorporating the threshold into FaceNet [23] triplet loss
function explicitly, we reduce the LFW error rate by 26.9%.
DDML[7] use a similar idea, but our final formulation is a
triplet loss in an end-to-end framework.

Data augmentation is a very common preprocessing step for
CNN based method[11], as a CNN model contains millions
of parameters and is prone to overfitting. Most face recogni-
tion methods [29, 26, 25, 27, 4, 30] align face in both training
and testing phase. It seems contradictory to apply data aug-
mentation after face alignment. In this paper, we replace face
alignment in training phase with aggressive data augmentation.
Surprisingly, similar accuracy is achieved on LFW benchmark
with or without face alignment during testing, which is different
from prior results[18, 23].

Preprint submitted to Neurocomputing February 3, 2018
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Our contributions can be summarized as follows:

• We crawl a million scale face dataset called TaoMM,
whose distribution is different from LFW, and we show
the improvement of LFW accuracy with a simple domain
adaptation technique even with a million scale target do-
main dataset.

• Face verification threshold θ is incorporated into FaceNet
triplet loss function explicitly, with which the error rate on
LFW is reduced by 26.9%.

• We achieve 99.33% on the LFW benchmark with only
single CNN model and similar performance even without
face alignment by applying aggressive data augmentation.
We achieve 99.28% without face alignment which is better
than FaceNet [23] 98.87% under the same circumstance.

Related Work

Our method is related to numerous works on face recognition
and domain adaptation, which we briefly discuss below.

Face Recognition

Owing to deep learning, lots of breakthroughs have been
made in recent years in face recognition [29, 26, 25, 27, 4, 23,
30].

[29, 26, 18, 14] train a face feature extractor by employing
classification loss. Then [29] uses weighted χ2 distance as face
verification metric which is trained using a linear SVM. [26]
reduces the feature dimension to 150 by PCA and learns a Joint
Bayesian model [2] with the features. [18, 14] tune the ex-
tracted feature for verification in Euclidean space by using a
metric learning method with a triplet loss training scheme. In
order to develop more effective feature representations, [25, 27]
train the feature extractor with joint classification and verifica-
tion loss. [30] proposes a new supervision signal called center
loss. By combining classification loss and center loss, they train
a robust CNN to obtain discriminative features. In addition to
the preceding two stages methods, [23] employs an end-to-end
learning process which is the same as ours. It directly learns
an embedding into an Euclidean space for face verification by
triplet loss.

Most face recognition methods [29, 26, 25, 27, 4, 30] align
face in both training and testing phase. Several complex face
alignment methods have been developed, e.g. 2D similarity
transformation [29, 26, 25, 27, 4, 30], 3D alignment [29, 4],
frontalization [29]. [18, 23] find that using 2D alignment on
training data only provides slightly or no performance improve-
ment but performing 2D alignment on testing images does im-
prove some performance. [18] augments data by random crop-
ping and flipping, but most other methods don’t as they have
already aligned the face images. In this paper, we employ ag-
gressive data augmentations including random cropping, flip-
ping, rotation, scaling, color channel augmentation etc.

Domain Adaptation

Domain adaptation aims to transfer knowledge between re-
lated source and target domains whose distributions are differ-
ent [19]. Many domain adaptation (or transfer learning) ap-
proaches have been proposed for computer vision applications
[19, 5, 17, 3]. [5, 17] learn the features on the large-scale Ima-
geNet [22] dataset in a supervised setting first, and then trans-
fer them to different tasks with different labels. The key idea is
that the internal layers of CNN can act as a generic extractor of
image representation, which can be pre-trained on one dataset
e.g. ImageNet. [3] proposes a novel double-path deep domain
adaptation network to model the data of clothes images from
constrained and unconstrained conditions jointly.

There are several prior works which apply domain adapta-
tion to face recognition[20, 24, 16, 10, 1]. CMU Multi-PIE
face dataset [6] contains 337 subjects with 15 poses, 20 illu-
minations, 6 expressions and 4 different sessions, which is the
most popular dataset for applying domain adaptation method
to face recognition. In most experiments [20, 24, 16], frontal
faces were taken as the source domain and different poses were
taken as the target domain. [10] proposes an unsupervised do-
main adaptation method via targetizing the source domain im-
ages bridged by the common subspace learning and applies it
to domain adaptation across view angle, ethnicity and imaging
condition. The datasets used in the preceding methods are cap-
tured in the lab with lesser variance. But in this paper, data of
both source and target domain are captured in the wild and con-
tain million scale images. [1] presents a generative Bayesian
transfer learning algorithm and tests on challenging datasets.

Method

Similarly to most recent face recognition methods, we em-
ploy a deep convolutional neural network which learns its
weights directly from the pixels of the face. By using large
dataset of labelled faces, CNN model can learn the invariance
to pose, illumination and other variational conditions.

The framework of training contains pre-training and train-
ing phase as shown in Figure 1. The following sections will
describe the details of both phases as well as the network struc-
ture.

Domain Adaptation

In this paper, the datasets of both source and target domain
are large enough to train a model from scratch. Here we want
to employ all data to improve the face recognition performance
in the target domain. But simply combining the data of source
and target domain and throwing into the model achieves worse
performance than the model only trained by the data of target
domain.

In order to transfer the knowledge in source domain to tar-
get domain, we employ a simple domain adaptation (or transfer
learning) technique similar to [5, 17], which is achieved by pre-
training.

In the pre-training phase, the deep CNN model is boot-
strapped by considering the problem of classifying N unique
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Figure 1: The framework of training.

Figure 2: Face verification loss. The anchor(blue) and the positive(blue) have
the same identity. The anchor(blue) and the negative(green) have different iden-
tity. The face verification loss try to minimize the distance between same iden-
tity and maximize the distance between different identity, and consider the face
verification threshold θ in the same time.

identities, and we use the softmax log-loss function as opti-
mization objective which is common for classification problem.
[26, 18] employ the preceding method to obtain a discriminative
feature extractor for face recognition. But here the feature ex-
tractor is not our target. After learning from labelled data with
different distribution, we transfer the weights of the pre-trained
model to the model in training phase and initialize the model
with these weights instead of random sampling. Later, instead
of refining last layer, we refine all weights by an end-to-end
framework based on face verification loss.

Face Verification Loss

We employ an end-to-end learning in the training phase,
which follows the approach of FaceNet[23]. The face verifi-
cation loss directly reflects what we want to achieve in face
verification and open-set face identification problems.

The CNN model fθ (x) maps an image x into a feature space
of d-dimensional hypersphere. In the testing phase of face veri-
fication, the distance between face pair is compared with a pre-
computed threshold θ. If dis < θ, the face pair is regarded as
from the same person, otherwise, from different person. Here
we want to ensure that the distance from an image xa

i (anchor)
of a specific person to all other images xp

i (positive) of the same
person is less than θ. Meanwhile, the distances from an image

xa
i (anchor) to all other images xn

i (negative) of different persons
are larger than θ. This is visualized in Figure 2. So for a perfect
face verification model, the following inequality holds,
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where α is the margin. T is all possible triplets
(
xa

i , x
p
i , x

n
i

)
that

can be generated from the datasets with xa
i and xp

i from the same
person, xa

i and xn
i from different persons. By using constraints

in Eq. (1), we can derive Eq. (1) in the paper of FaceNet [23]
simply, but not opposite. It means our constraints are stricter
than that of FaceNet by considering the face verification thresh-
old θ.

By combining the constraints in Eq. (1), our loss function is
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where N is the number of triplets in T . α is set to 0.2 in all
our experiments. λ is the weight of two different errors. In
practical applications of face verification, we want high True
Accept Rate at extreme low False Accept Rate. So we should
use large λ to punish the error of the second term. But in LFW,
both errors are equal. λ = 1 is used in this paper. θ is a hyper-
parameter, which is set to 0.8.

It is easy for randomly generated triplets to satisfy the con-
straints of Eq. (1), especially the second constraint as randomly
picked two persons are less likely to be similar in appearance.
So it is crucial to select the triplets that violate the constraints
in Eq. (1). We use a similar strategy in FaceNet.

Every mini-batch contains 30 persons and 10 images for each
person. We add additional 60 images of other persons in each
mini-batch. For every image xa

i in the mini-batch, we choose
all possible images of the same person xp

i . Meanwhile, negative
image xn

i is selected randomly which fulfils

γθ <
∥∥∥ f

(
xa

i
) − f

(
xn

i
)∥∥∥2

2
< θ + α/2 (3)
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type
output

size
depth #1 × 1

#3 × 3
reduce

#3 × 3
double #3 × 3

reduce
double
#3 × 3

Pool +proj

conv1(7 × 7/2) 112 × 112 × 64 1
max pool(3 × 3/2) 56 × 56 × 64 0
conv2(3 × 3/1) 56 × 56 × 192 1 64 192
max pool(3 × 3/2) 28 × 28 × 192 0
inception (3a) 28 × 28 × 256 3 64 64 64 64 96 avg + 32
inception (3b) 28 × 28 × 320 3 64 64 96 64 96 avg + 64
inception (3c) 28 × 28 × 576 3 0 128 160 64 96 max + pass
inception (4a) 14 × 14 × 576 3 224 64 96 96 128 avg + 128
inception (4b) 14 × 14 × 832 3 0 96 128 96 128 max + pass
inception (5a) 7 × 7 × 576 3 176 96 160 80 112 avg + 128
inception (5b) 7 × 7 × 576 3 176 96 160 96 112 max + 128
avg pool 1 × 1 × 576 0
fully connected 1 × 1 × 128 0
L2 normalization 1 × 1 × 128 0

Table 1: CNN model used in this paper, which is simplified from inception-v2

where γ controls the difficulty of negative image. Too hard or
too easy is not beneficial for convergence. We choose 0.8 for γ
and the generated negative exemplars are called semi-hard.

Deep Convolutional Neural Network
In this paper, we use a CNN model called inception-v2 [9]

which appends batch normalization layer after convolutional
layer in the GoogleNet [28] for accelerating training. In or-
der to achieve faster prediction speed, we simplify inception-v2
by removing inception (4b), (4c), (4d) and reducing the number
of feature maps in inception (4e), (5a), (5b). Please see Table 1
for more details.

For the embedding model, every face image is mapped to
a L2 normalized feature vector in 128D space. For the pre-
training model, we append fully connected layer and softmax
loss layer after the average pooling layer. Layers before the
average pooling layer are exactly the same between embedding
model and pre-training model, so weights can be transferred
between these two models.

In all our experiments, we train the CNN using Stochastic
Gradient Descent(SGD) with standard back propagation[21].
In pre-training phase, we start with a learning rate of 0.2 and
decay half for every 5 epochs. The pre-training models are
trained on one GPU (GTX TITAN X) for 25 epochs and spend
89.4 hours. In training phase, we start with a learning rate of
0.04 and decay half for every 10 epochs. The models are trained
on twos GPUs (GTX TITAN X) for 20 epochs and spend 18.6
hours.

Datasets and Evaluation

Public Datasets
Labeled Faces in the Wild(LFW)[8] is the most widely used

benchmark for face verification. It contains 5,749 celebrities
and 13,233 images which are collected from the web. We fol-
low the Unrestricted, Labeled Outside Data Protocol and report

the mean classification accuracy as well as the standard error of
the mean.

CASIA-WebFace[31] is one of the largest public datasets for
face recognition. It contains 10575 actors/actress and 494,414
images which are crawled from the IMDB movie website.

VGGFace[18] is another large public dataset which contains
2,622 celebrities and 2.6M images. The label of VGGFace is
quite noisy because of the semi-automatic dataset collection
method. We only use the good part of the images in the final
model which contains 982,803 images. However, only 845,878
ones (VGGFace-Good) can be downloaded because of the bro-
ken link.

The preceding three datasets are all celebrities’ faces and
collected from the web. In another word, they are nearly the
same in face distribution. We combine CASIA-WebFace and
VGGFace-Good together, which contains nearly 1.3M images
in total, and use it for the training phase.

TaoMM Dataset

TaoMM Dataset is crawled from a website of fashion model
platform 1. There are a lot of photos in the album of fash-
ion models. Most photos contain only one face of the fashion
model. So there is no labelling effort at all.

TaoMM Dataset is a large dataset for face recognition, and
we will make it freely available to the research community. It
contains 37,511 fashion models and 3.2M images which in-
clude many kinds of variations in face, e.g. pose, occlusion,
hair style, make-up and expression. But it contains only young,
beautiful Chinese women, so it is quite different from LFW
in the face distribution. Figure 3 shows some example im-
ages. Simply ignoring the difference and throwing the TaoMM
dataset into training data will lead to a reduction in face recog-
nition performance.

1https://mm.taobao.com
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(a) TaoMM

(b) LFW

Figure 3: Example images from TaoMM and LFW dataset. The face distribu-
tions of two datasets are quite different.

Experiments

Implementation Details

Our implementation is based on the popular MXNet2 frame-
work. All our experiments are carried on NVIDIA GTX TITAN
X GPU with 12GB on-board memory, one for the pre-training
phase and two for the training phase. Two GPUs are required
because of the large mini-batch size 360 and the complexity of
the CNN model. The code will be released public on GitHub
later.

Faces are detected using the method described in [15]. If face
alignment is required, face is aligned to the canonical position
by three points, left eye, right eye and the center of mouth. We
don’t align face in the training phase (similar to [18, 23]), in-
stead we employ an aggressive data augmentation process. We
use the data augmentation method provided by the ImageRe-
cordIter of MXNet. Detailed parameters are listed as follows.
The specific definition for each parameter can be found in the
official document of MXNet3.

• rand crop = True
• rand mirror = True
• max rotate angle = 20
• max random scale = 1.1
• min random scale = 0.9
• random h, random l, random s = 20
• max aspect ratio = 0.1
• max shear ratio = 0.1

2https://github.com/dmlc/mxnet
3https://mxnet.apache.org/api/python/io/io.html?highlight=

imagereco#mxnet.io.ImageRecordIter

The fθ (x) outputs D = 128 feature vectors. Given a face
image x, ten 224 ∗ 224 pixel patches are cropped from the four
corners and the center with horizontal flip (similar to [18]), and
feature vectors from these patches are L2 normalised after con-
catenation. We can crop one, two or five patches, which is a
trade off between accuracy and prediction speed.

We measure the similarity between two images through the
simple cosine similarity without any feature reduction method
e.g. PCA.

Component analysis

This section evaluates the effect of different options of the
system on the LFW benchmark. Table 2 shows the results.

Face Verification Loss: Face verification threshold θ is in-
corporated into FaceNet triplet loss function explicitly. By em-
ploying more appropriate loss function, we reduce the LFW er-
ror rate by 26.9% which can be seen from Table 2 rows 1 and
2.

Domain Adaptation: As we can see from Table 2 rows 2 and
3, simply combining the data of source and target domain and
throwing into the model achieves worse performance than the
model only trained by the data of target domain because of the
different distributions between source and target domain. In this
paper, we apply a simple domain adaptation technique to trans-
fer the knowledge in the source domain to the target domain.
Here both source domain and target domain contains millions
of images. It is intuitive to believe that domain adaptation won’t
make any difference as we have millions labelled images of the
target domain which is large enough to train a CNN model from
scratch. As can be seen from Table 2 rows 2 and 4, we can still
reduce the LFW error rate by 27.4% with domain adaptation.
Please note that the models in Table 2 rows 1, 2 and 3 are all
pre-trained with VGGFace dataset, so the improvement is not
due to pre-training but domain adaptation.

Test Alignment: As can be seen from Table 2 rows 4 and
6, rows 5 and 7, using alignment on test images does improve
the performance. But the improvement is so small that can be
omitted. This result is quite different from FaceNet, 99.63%
with test alignment and 98.87% without test alignment. When
comparing performance without test alignment, we achieve bet-
ter than FaceNet even if FaceNet is trained with a much larger
dataset (200M images). We believe that it is the contribution
of aggressive data augmentation. It brings three advantages.
Firstly, it saves the time of face alignment in the prediction
phase. Secondly, face alignment leads to a loss of identity in-
formation. Lastly, it is hard to align face in some extreme cases,
e.g. profile face.

Prediction Speed

In the practical application of face recognition, prediction
speed as well as accuracy will be taken into consideration es-
pecially for online (real time) application. As we can see from
Table 3, there is a trade off between prediction speed and accu-
racy, higher accuracy lower prediction speed. But we achieve
99.33% in the online mode with 55.6 samples/sec.
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No. Face Verification Loss Domain Adaptation
TaoMM in

Training Data
Patches Test Alignment LFW Accuracy(%)

1 No No No 1 Yes 98.40
2 Yes No No 1 Yes 98.83
3 Yes No Yes 1 Yes 98.48
4 Yes Yes No 1 Yes 99.15
5 Yes Yes No 10 Yes 99.33
6 Yes Yes No 1 No 99.08
7 Yes Yes No 10 No 99.28

Table 2: Performance evaluation on LFW with different options.

Patches
Offline Mode
(samples/sec)

Online Mode
(samples/sec)

LFW
Accuracy(%)

1 839.7 129.5 99.15
2 419.8 119.3 99.22
10 84.0 55.6 99.33

Table 3: Prediction speed of our single model with different patches. Time
is measured on the server with GTX TITAN X and Intel i7-5930K. We only
includes feature extraction phase after face alignment. Here offline mode (or
batch mode) means all face images are already prepared in the prediction phase
and processed by GPU in a large mini-batch size e.g. 128. While online mode
(or real time mode) means face image comes one by one in the prediction phase
and processed by GPU in a small mini-batch size which contains 1 to 10 patches
of the face image. Due to the characteristics of GPU parallelism, prediction is
faster in offline mode than online mode.

#Models
#Patches

Prediction Speed
(samples/sec)

1/1 129.5
1/2 119.3
1/10 55.6
2/1 64.75
10/1 12.95

Table 4: Prediction speed of our CNN model with different models and patches.
Time is measured on the server with GTX TITAN X and Intel i7-5930K. We
only includes feature extraction phase after face alignment. Here prediction
speed is measured in the online mode which is more close to practical applica-
tion of face recognition. Due to the characteristics of GPU parallelism, 1 model
and 10 patches is 4.3 times as fast as 10 models and 1 patch.

Lots of methods achieve higher accuracy by an ensemble of
tens of models[14, 27, 25, 26], at the cost of slowing down pre-
diction speed ten times. In this paper, we use multi-patches with
single model instead of multi-models with single patch. As can
be seen from Table 4, multi-patches with single model is much
faster than multi-models with single patch in prediction speed.

Comparison with the state-of-the-art

Table 5 shows the performance of our model and the state-of-
the-arts on LFW. Both accuracy and standard error of the mean
are reported. The standard errors are omitted if not provided. In
consideration of both training and prediction efficiency, we use

multi-patches with single model instead of multi-models with
single patch. It can be observed that we achieve comparable re-
sults to the state of the art with only single model. When com-
pared with single model and single patch, we achieve similar re-
sults as BaiduFace which is the best in the Table 5. We achieve
99.28% without face alignment which is better than FaceNet
[23] 98.87% under the same circumstance.

Conclusion

In this paper, we crawl a million scale face dataset called
TaoMM whose distribution is different from LFW. By employ-
ing a simple domain adaptation technique, we improve the
LFW accuracy even with a million scale target domain dataset.
By incorporating face verification threshold θ into FaceNet
triplet loss explicitly, we reduce the LFW error rate by 26.9%.
Finally, We achieve 99.33% on the LFW benchmark with only
single CNN model and similar performance even without face
alignment by applying aggressive data augmentation. When
compared without face alignment, we achieve 99.28% which
is better than FaceNet 98.87%, even if FaceNet uses a much
larger dataset with 200M images, about 44 times of ours.

Further work will focus on applying more complex domain
adaptation technique to fully exploit the knowledge in the
source domain to help improving the performance of target do-
main. We will also look into the effect of large λ in Eq. (2)
when we pursue high True Accept Rate at extreme low False
Accept Rate in face verification.
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Method
LFW

Accuracy(%)
Training

Data
#Models
#Patches

BaiduFace[14]
99.77 ± 0.06 1.2M 70/1

99.13 1.2M 1/1
FaceNet[23] 99.63 ± 0.09 200M 1/1
FaceNet[23]
(No Alignment)

98.87 ± 0.15 200M 1/1

DeepID2+[27] 99.47 ± 0.12 0.29M 25/1

Ours
99.33 ± 0.10 1.3+3.2M 1/10
99.15 ± 0.12 1.3+3.2M 1/1

Ours
(No Alignment)

99.28 ± 0.10 1.3+3.2M 1/10
99.08 ± 0.12 1.3+3.2M 1/1
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