
Accepted Manuscript

Renovating blockchain with distributed databases: An open source system

Muhammad Muzammal, Qiang Qu, Bulat Nasrulin

PII: S0167-739X(18)30873-2
DOI: https://doi.org/10.1016/j.future.2018.07.042
Reference: FUTURE 4360

To appear in: Future Generation Computer Systems

Received date : 11 April 2018
Revised date : 7 June 2018
Accepted date : 17 July 2018

Please cite this article as: M. Muzammal, Q. Qu, B. Nasrulin, Renovating blockchain with
distributed databases: An open source system, Future Generation Computer Systems (2018),
https://doi.org/10.1016/j.future.2018.07.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2018.07.042

Renovating Blockchain with Distributed Databases:
An Open Source System

Muhammad Muzammala,b, Qiang Qua,∗, Bulat Nasrulinc

aShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
bDepartment of Computer Science, Bahria University, Islamabad

cShenzhen College of Advanced Technology, University of Chinese Academy of Sciences

Abstract
A blockchain is a decentralised linked data structure that is characterised by its inherent re-
sistance to data modification, but it is deficient in search queries primarily due to its inferior
data formatting. A distributed database is also a decentralised data structure which features
quick query processing and well-designed data formatting but suffers from data reliability.
In this work, we showcase ChainSQL, an open-source system developed by integrating the
blockchain with the database, i.e. we present a blockchain database application platform
that has the decentralised, distributed and audibility features of the blockchain and quick
query processing and well-designed data structure of the distributed databases. ChainSQL
features a tamper-resistant and consistent multi-active database, a reliable and cost effec-
tive data-level disaster recovery backup and an auditable transaction log mechanism. The
system is presented as an operational multi-active database along with the data-level dis-
aster recovery backup and audibility features. A comprehensive experimental evaluation is
performed to demonstrate the effectiveness of the system.
Keywords: Blockchain, Distributed Databases, Blockchain Application

1. Introduction

Digital or crypto currencies such as, Bitcoin [1], Ethereum [2], Ripple [3] and others, have
recently witnessed a tremendous interest from the user as well as the developer community [4,
5, 6]. The crypto currencies are essentially smart contracts between users which are executed
using a data structure referred to as ‘blockchain’. Thus, a blockchain stores transactions
whilst satisfying the following two constraints: (i) anyone should be able to write to the
blockchain, and (ii) there should not be any centralised control.

A blockchain is a database and an application software on top of it [7] that dictates the
data definition and data update mechanism for the blockchain. A blockchain not only allows

∗Corresponding author
Email addresses: muzammal@siat.ac.cn;muzammal@bui.edu.pk (Muhammad Muzammal),

qiang.qu@siat.ac.cn (Qiang Qu), bulat@siat.ac.cn (Bulat Nasrulin)

Preprint submitted to Future Generation Computer Systems July 23, 2018

to add new data to the database but it also ensures that all the users on the network have
exactly the same data. Thus, a blockchain is a distributed and decentralised linked data
structure for data storage and retrieval which also ensures that the data is resistant to any
modification.

One of the limitations of blockchain is its inherent deficiency in search query processing [8]
primarily due to the linked data storage and the absence of a well-defined data indexing
structure for various queries. Bitcoin, for instance, is the most notable blockchain network;
however, it has two limitations: (i) it takes a considerable amount of time, possibly up to
ten minutes, for a transaction to be issued and verified and the final confirmation may take
up to an hour, and (ii) a new block can only be generated by miners which requires extensive
computational efforts.

Databases, in addition to having a defined data structure are optimised for fast query
processing, but are not resistant to data modifications [9]. More specifically, distributed
databases have the following limitations: (a) database can be tampered either by a malicious
user or by the database administrator, (b) the backup-based disaster recovery scheme of the
database cannot be normally activated in the event of a system failure and causes data loss,
and (c) the multiple copies of the database are not always entirely consistent and the data
synchronisation operations are required to resolve data conflicts.

Therefore, a blockchain-based database system is desirable that has the features of the
blockchain and the distributed databases combined together such that the inherent resis-
tance of the blockchain to data modification and the query speed of the distributed databases
are simultaneously achieved. This is not obvious as the blockchain and the distributed
database are two different data structures and are designed to serve entirely different busi-
ness needs. For example, whilst distributed database queries are designed based on the ‘par-
allelism’ paradigm, for instance, inter- and intra-query parallelism or multiplex approaches,
blockchain is a strictly sequential data structure that is aimed at guaranteeing data integrity.
Similarly, the privacy of the user data, although is a concern in the distributed databases,
it is a design requirement in a blockchain. The presence of the notion of ‘trust’ in a dis-
tributed database and its absence in a blockchain is also a primary design consideration and
has contrasting consequences.

However, the decentralised and trustless data storage in blockchain could be employed to
advantage as follows. As a node in the blockchain network has its own copy of the blockchain
data, if node X requires to execute fast queries on the blockchain, it can execute the local
copy of the blockchain to generate a local database, and thus the integrity of the data is
verified by the blockchain and the fast queries are executed on the local database.

In this work, we showcase ChainSQL1, a novel database powered blockchain system
that integrates the blockchain with the distributed databases to yield a system that has
the integrity of the blockchain and the fast query processing of the distributed databases.
We illustrate three usecases of ChainSQL; each of which is implemented as a middleware
between the enterprise application and the underlying database:

1The source code for ChainSQL is available online at: https://github.com/ChainSQL/chainsqld

2

(1) The first usecase is a multi-active database middleware that connects the enterprise
application with the database system. The middleware provides both symmetric and
asymmetric encryption for data security. The expandability of the blockchain network
is achieved by integrating a new node into the blockchain network seamlessly and
when the new node is established as a ‘valid’ production node, it can participate in
operations such as consensus and synchronous data writing, similar to the existing
production nodes.

(2) The second usecase is a database disaster recovery middleware that connects the
database production nodes with the disaster recovery nodes. During disaster recov-
ery, a backup node is elevated to a production node and it is ensured by the disaster
recovery centre that the backup node has exactly the same data as the production
node. In case of a production node failure, the user seamlessly switches to the ‘new’
production node which is a node in the recovery centre to complete the task.

(3) The third usecase is an audibility feature that enables flexible access control along
with tracing support. The audibility is controlled by the owner of the data and is
performed by a read-only ‘grant’ access to the auditor that can read the data for the
auditing purposes.

The details about the aforementioned usecases are presented in Section 5.

ChainSQL Significance. Distributed databases feature enhanced transparency, easy ex-
pansion, better data-loss resistance and optimised query performance, but suffer from data
reliability and consistency. The most compelling requirement for a distributed database is
the notion of ‘trust’ as it requires a centralised control mechanism to maintain the authen-
ticity of the data. Blockchain, on the contrary, is a ‘trustless’ data structure that ensures
data reliability and integrity at its core. However, blockchain lacks in throughput and query
performance. We propose the integration of the distributed databases with the blockchain.
We argue that this is a promising idea and should be incorporated into the blockchain sys-
tems to address the challenges that have been already resolved by the distributed databases
but still require attention in blockchain systems. ChainSQL solves the data integrity and
reliability issues of the distributed databases by using the blockchain technology and still
keeps the fast query processing of the distributed databases.

ChainSQL Highlights. ChainSQL features a secure design due to the authorisation re-
quirement to access the personal user data. The transactions are stored in the blockchain
whereas the actual data is stored in the database. The data is distributed to improve service
availability. Many-to-one disaster recovery architecture allows a single backup centre to be
used with multiple production nodes. The backup database can be operated without data
recovery. Thus, ChainSQL not only provides the instantaneity of the traditional database
but also the security of the blockchain. It can be easily configured with commonly used
traditional databases such as MySQL2 by way of APIs. As the database log is immutable,
the history database actions are preserved, therefore, it allows auditing using the data stored

2www.chainsql.net/api_mysql.html

3

Blockchain

Consensus

DatastoreNetwork

Validation

Cryptography

Figure 1: The components of a typical blockchain system.

in the blockchain. Another exciting feature is the integration of the blockchain with new
applications via ChainSQL interface rather than the database interface. This enables incor-
poration of the security and audibility features of the blockchain into the existing database
systems.

The rest of this paper is organised as follows. An overview of blockchain systems and
related concepts are stated in Section 2. ChainSQL as a blockchain database application
platform is presented in Section 3 and the consensus algorithm is described in Section 4.
The ChainSQL usecases are elaborated in Section 5. The system is empirically evaluated
in Section 6, and Section 7 concludes this work.

2. Blockchain Technology and Systems

Blockchain technology has come to forth recently. A variety of applications using the
blockchain technology are being proposed spanning a multitude of domains including finance,
healthcare, supplychain, online games, social media and others. However, current blockchain
systems suffer from issues such as low throughput and inefficient query processing, therefore,
the applicability of the blockchain technology is still limited in different application domains.
In this section, we overview the blockchain technology and systems and discuss the recent
developments in the field.

We first discuss the architecture of blockchain systems.

2.1. Blockchain Architecture
A blockchain is a cryptographically-secure transactional singleton machine with shared

state [2] and is packaged as a set of concepts shown in Figure 1. An outline of blockchain
components is as below:

4

1. Datastore is the blockchain data structure that holds all the blockchain data.
2. Consensus is the blockchain agreement mechanism that ensures the data integrity in

the system.
3. Validation is the process that ensures the correct state transition in the blockchain.
4. Peer-to-peer network is a distributed computing environment that performs the blockchain

system operations (1-3 above).
5. Cryptography ensures the security and privacy of the data in blockchain.

We now proceed with some details.

2.1.1. Datastore
Datastore is a state-machine replication [10] based sequential-access data structure which

has the entire blockchain data replicated on each node in the blockchain network. The
transactions are assembled into blocks such that every consequent block is connected to
the previous block via a hash-value. As the blocks are only forward reachable, a change
in a blocks’ hash-value affects all the subsequent blocks, and thus violates the integrity of
the blockchain. As shown in Figure 2, a block has two parts: (i) a header with metadata
and (ii) a set of associated transactions. The integrity of the blockchain is established by
traversing the headers of the blocks in the chain whereas the current states of the accounts
and transactions are needed for validation. The size of the blockchain is a concern due to
the sequential access, therefore, techniques similar to Merkle tree [11] have been proposed
to speedup the validation process. Similarly, graph based approaches [12, 13, 14] have also
been proposed that store blocks and transactions in a graph format rather than a list.

2.1.2. Consensus
A blockchain is a trustless decentralised entity that has consensus as its operational

engine. Consensus algorithms have long been studied in distributed systems and recently
are drawing attention from researchers for blockchain systems. See the study [15] for a
comprehensive overview of consensus algorithms for blockchain systems.

Typically, a blockchain is a state transition system where a state is the current status
of the stakeholders in the blockchain. As shown in Figure 3, each new transaction changes
the state of the system. A set of transactions are bundled into blocks which are signed and
hashed together. Thus, blocks define the blockchain transition from one state to another.
It should be clear that the consensus protocol is fundamentally different across blockchains
and has motivations in technology as well as business. However, a consensus algorithm has
to define a set of rules to achieve an agreement on the transactions and the order in which
they appear. It should also be noted that the consensus problem in asynchronous systems
with stochastic processes is known to be ‘hard’ for deterministic termination [16]. Therefore,
a consensus algorithm has to make some simplifying assumptions for termination. Partial
synchrony, process reliability, probabilistic termination are examples of such assumptions.

The Proof-of-Work (PoW) [17] based algorithm proposed by Nakomoto [1] for the Bitcoin
is probably the most well-known consensus algorithm. PoW is a probabilistic consensus
algorithm where miners solve cryptographic challenges, which are hard to solve but easy

5

Prev: PH1

Merkle Root: MH1

Prev: PH2

Merkle Root: MH2

Prev: PH3

Merkle Root: MH3

MH2_1MH2_2

MH2_3MH2_4

Transaction TH1 Transaction TH2 Transaction TH3 Transaction TH4

MH2_5MH2_6

Figure 2: A typical datastore and associated block representation.

to verify, and are rewarded accordingly. To solve these cryptographic challenges requires
extensive computational efforts; therefore, the use of PoW consensus in real-life application
scenarios is limited due to efficiency and scalability constraints. An alternative to PoW is
the concept of Proof-of-Stake (PoS) where a peer is rewarded based on the stakes in the
system. PoS works on the assumptions that (i) if an adversary acts maliciously it looses its
stake, and (ii) the adversary nodes can not exceed 1/3 of the total nodes. PoS solves the
energy consumption problem of PoW but only works under some assumptions [18].

Examples of emerging consensus algorithms inspired from practical Byzantine fault tol-
erance [19] include Hyperledger Fabric [20]. Practical Byzantine fault tolerant consensus
algorithms [19] rely on 3-step all-to-all communication with complexity O(n2), where n is
the number of nodes in the network. Recent proposals include a leader-based consensus
algorithm [20] where a leader is elected for a number of rounds to optimize communication
workload by decreasing the average network communication complexity.

2.1.3. Validation
The integrity of the blockchain is maintained by a validation process which aims to avoid

issues such as double spending in crypto-currencies. For crypto-currencies [21], a transaction
is validated as a set of following checks: (i) transaction is cryptographically valid, i.e. it

6

State A

User A: 10
User B: 5
User C: 2

Transaction
User A: -1
User B: +1

Signature

63616b6520
6973206120 State B

User A: 9
User B: 6
User C: 2

Figure 3: The consensus process as a state-machine replication. When a transaction is applied, it changes
the state of the peer from state A to state B.

has a verifiable signature, (ii) transaction format is valid, i.e. all the transaction fields have
a valid range, and (iii) transaction state is valid, i.e. the transaction spending constraints
are satisfied. It is obvious that the receiver’s existential identity should also be verified to
avoid financial loss. The validation mechanism employed by Ethereum is by way of smart
contracts. A smart contract is an agreement between interested parties and is executed only
if a set of pre-defined constraints are satisfied. A smart contract is executed in parallel for a
distributed environment [22]. Smart contracts must be defined in a transparent and shared
space to provide better security for the system [23]. A study [24] presents a review on the
prevalent validation protocols including smart contracts. Sergey et al. [25] show that smart
contract implementations lack formal methods for verification and it is still questionable
whether current usecases need a Turing-Complete feature as it creates additional attack
vectors.

2.1.4. Blockchain Network
Blockchain is a peer-to-peer network for information exchange between nodes where

transactions are relayed in the network using a secure broadcasting protocol. The stability
of information propagation is a concern in the network and Denial-of-Service (DoS) attacks
are common in public blockchains, such as Bitcoin and Ethereum. For example, in Bitcoin
network, large mining pools can attack smaller pools to get more incentives [26]. In Rip-
ple [27], a node implements a Unique Node List (UNL) and thus DoS attack is avoided as
traffic from the unwanted nodes is filtered out.

The protocols in blockchain networks are either for dense networks or for sparse networks.
Dense networks expand the peer connections to decrease the probability of malicious channels
along with the usage of authenticated channels with the guarantee that if the message is
signed it is delivered from the correct sender. In sparse networks, failures are measured as
distance between two Byzantine nodes. Transactions are spread faster without repetition
in a sparse network with a gossip protocol [28], but it is harder to achieve a deterministic
Byzantine fault tolerant agreement.

7

2.1.5. Security and Privacy
Security and privacy of the blockchain systems primarily relies on cryptography and

cryptographic assumptions. Blockchains are required to authorize users, define the account
balance and establish the validity of a transaction. One of the most important instruments
for the purpose are digital signatures [29]. A digital signature provides three properties: (i)
verification, i.e. it is easy to verify the authenticity of the signature, (ii) non-forgeability,
i.e. no one should be able to copy or forge it, and (iii) non-repudiation, i.e. once you sign
an object, it is impossible to un-sign it.

Digital signatures based on symmetric cryptography are a common practice. A private
key k is used to sign a transaction with hash-value H. In addition to a signature, each
transaction also has the public key of the user that is used for user identification. A digital
signature scheme based on elliptic curves [30] allows multi-signature transactions.

An example usage of symmetric cryptography in a blockchain system is shown in Figure 4.
Sender generates (public, private) key pair. Note that in a permission-less blockchain, user
can generate many key pairs as consensus protocol does not depend on the public key whereas
in permissioned blockchain, public key must be known to all the validating peers. Message
is signed and sent in the form of a transaction which is verified at the receiver by using a
verification algorithm that is compatible with a signing algorithm used by the sender. Thus,
a symmetric verification algorithm requires public key of the sender to identify the validity
of the signature. To achieve privacy, crypto-currencies use coin shuffling with mixing [31] or
zk-SNARKs [32]. More discussion on privacy and security issues in blockchain systems can
be found in the study [33].

2.2. Blockchain Evolution
The Bitcoin [1] proposal triggered the introduction of many crypto-currencies, and con-

sequently, many blockchain systems are being proposed. We now give an overview of the
blockchain evolution.

2.2.1. Blockchain 1.0
The recent interest in blockchain system started with the introduction of Bitcoin pro-

posed by Nakomoto [1]. The aim of the Bitcoin was to introduce transparent cross-border
payments. Bitcoin scripting language extends the system capability to represent asset ma-
nipulations, however it makes development of Bitcoin applications difficult as is evident by
a limited number of applications. Bitcoin issues include high power consumption due to
PoW consensus, low throughput, high latency and inability to make rich queries. These
drawbacks compelled the introduction of Blockchain 2.0.

2.2.2. Blockchain 2.0
Ethereum [2] introduced smart contracts that allow to run code written in Solidity on

top of blockchain. Ethereum maintains account and state Particia Merkle Tree and the
smart contract values in a (key, value) repository. Malicious never-ending smart contract are
prohibited by the introduction of ‘Ether’. Ether is the Ethereum fuel and is used for executing
smart contracts. The creation of Ethereum based business applications is restrictive because

8

Sender

Signing
Algorithm

Key Generation

Private Key Public Key

Message

Receiver

Public Key

Message
sent by signer

Verification
Algorithm

Public Key

Signature

Message

Transaction

Figure 4: An overview of the cryptography scheme for transactions in a blockchain. Sender uses private key
to sign a transaction and the public key of the sender is used to establish the transaction validity.

of two reasons: (i) the design of smart contract module is not optimized for a particular
business usecase, and (ii) there is no distinction between the data and the code storage.

Ripple [27] solves the scalability problem in Ethereum and Bitcoin by utilizing semi-
centralized ledger. Ripple consensus is based on a unique node list which is a set of trusted
nodes and these nodes participate in the consensus process. The consensus process it-
self is based on validation and votes and only requires as few seconds as demonstrated by
Armknecht et al. [34]. The business case for Ripple is interbank exchanges and financial
applications. Ripple supports a variety of databases and data analytics.

2.2.3. Beyond Blockchain 2.0
The study [5] is a detailed note on data processing for blockchain systems. A number

of initiatives have been taken from the data storage and retrieval perspective. For example,
Hyperledger Fabric [35] is an initiative that allows to create a private blockchain for an
enterprise. Fabric implements a pluggable consensus where each specific Fabric network can
utilize different consensus algorithm to achieve required level of fault tolerance. Vukolić [36]
argued that classical Byzantine Fault Tolerance consensus algorithms should be considered
to achieve stronger consistency. Gaetani et al. [37] and Blockstack [38] stress the need of
better data integrity with the current cloud environments.

A notable blockchain system is BigChainDB [39] that facilitates NoSQL document-based
database capabilities for fast queries with blockchain systems. The tamper-resistance is

9

Blockchain Network

Transaction

(a)(b) (c)

Sync

Blockchain
Query

Blockchain
Query &

Transaction

User

User Query &
Transaction

SQL
Query

ChainSQL
Client

Database

Blockchain
Node

ChainSQL
Client

User
Query

ChainSQL
Client Database

SQL Query

User

User
Query

Figure 5: An overview of the ChainSQL access mechanism; the blockchain network is accessed (a) directly
by the client for write operations, (b) by using an underlying database for read operations, or (c) by
configuring a database on a blockchain node for read-database or write-blockchain operations.

achieved by way of shared replication, reversion of disallowed updates or deletes, and cryp-
tographic signing of all transactions. However, one of the limitations of BigChainDB is the
support for MongoDB only and no support for SQL databases. The consensus algorithm in
BigChainDB is based on Paxos [40] that does not guarantee Byzantine fault tolerance. One
of the issues in BigChainDB is the absence of a unified language for queries to provide a
database-agnostic interaction which limits the database choice.

Another system (currently in development) is Catena3 that replaces transactions in a
blockchain system with a limited set of SQL expressions. However, the applicability of
Catena in business applications is limited due to the choice of the consensus protocol which
is based on PoW and is prone to system forks and low throughput.

In summary, blockchain is an interesting technology and many promising initiatives have
been taken recently. Still, it is just a beginning and a lot of research effort is required on
theory and systems.

3. ChainSQL: A Blockchain Database Application Platform

In this section, we give an overview of ChainSQL, a blockchain-based log database sys-
tem that has the integrity of the blockchain and the fast query processing of the distributed
databases, as the context for understanding the system that we present in Section 5.

One of the initial design considerations in a blockchain systems is the choice of the
underlying blockchain network. The choice is based on the intended application scenario.
The enterprise case for ChainSQL is to process high volume business transactions in geo-
separated financial institutions; therefore, Ripple is a suitable choice due to high throughput
and fast validation process.

We now present key design aspects in ChainSQL.

3https://github.com/pixelspark/catena

10

User
Application

ChainSQL
API

Application

Database
Validation

Database
Commit

Database

Data
Validation

Data
Recording

Network
Consensus

Data
Forwarding

Network Node

Figure 6: The architecture of ChainSQL

3.1. User Management
We first discuss user management in ChainSQL. The cryptographic schemes supported

for user authorisation are both symmetric and asymmetric. A user is identified by a unique
public key and the tables owned by the user and the transactions initiated by the user
are signed with the user public key. The access to user table is regulated using grant
permission. ChainSQL supports customisable table access, i.e. grant permission to a
subset of records, attributes, or both. A user-based access mechanism defined in the master
table, TableList, as a triple (user, table, operations), enables transaction validation. The
master table also stores the indexes of the recent transactions and the associated datastore
entries for fast synchronization and validation. The peers are able to quickly synchronize
the unsynchronized parts using the master table.

The user in ChainSQL operates as one of the following: (i) as a complete-node that
participates in the consensus process and thus is responsible for the network integrity, (ii) as
a partial-node or a listen-in that is interested in transactions related to itself only, and (iii)
as a light-weight client connected to a complete-node for network operations. An overview
of the ChainSQL user access mechanism is shown in Figure 5.

3.2. ChainSQL Architecture
We now present the building blocks of ChainSQL for which an overview is given in

Figure 6 and the components are detailed below:

Application Interface. The access to the blockchain network is by way of an API. In the user
context, the instruction set for the network access commands is similar to usual database
operations and is therefore easy to use. The support for multiple programming languages
through APIs4 enhances the flexibility and applicability of ChainSQL. The user commands,
in SQL or JSON format, are signed and wrapped-up into network transaction format by the

4https://github.com/ChainSQL

11

API and if a transaction is authenticated, it is forwarded to the blockchain network for
consensus.

Network Consensus. To maintain the integrity of the data, network consensus is of funda-
mental importance. In ChainSQL, a transaction is authenticated as follows: a subset of the
network nodes selected by the implementation of a UNL scheme validate a transaction. If
consensus is not achieved on a transaction, the operation is rolled back and the transaction
is not added to the blockchain. The validation process is completed within a few seconds
and the user is updated promptly about the transaction status.

Database Operations. The blockchain network transmits the transaction data to the corre-
sponding database for processing. The database operations are performed in near real-time
and the validating and the backup nodes maintain the complete database record along with
user tables. A complete-node stores all the transactions on the network whereas a partial-
node stores only related transactions and headers.

Permission and Grant system. The user authorization in ChainSQL is by way of public
and private keys. Default read and write permissions on a table rest with the owner of the
table however, the owner can grant both read and write permissions to other users. The
database tables and the (user, table, access) relationship triples are stored in the master
table, ‘TableList’. Table synchronization is one of the following: default, auto or none.
The operations on a table are customized by the owner and the owner may choose among
operations, for instance, select, insert, update and delete. A check on the number of user
operations on a table can also be placed by the owner.

3.3. ChainSQL API
We now discuss the operations supported by the ChainSQL API. The API incorporates

rich semantics for multiple languages including C++ and Java, and supports queries in SQL
and JSON with special predefined format. The API support for Java and Javascript is
by way of remote procedure calls employing web socket interactions. The user queries, in
SQL or JSON format, are similar to a server-client communication environment and are
transformable one way or the other, conveniently. A sample query in both SQL and JSON
formats is shown in Figure 7.

The ChainSQL API supports (i) user commands, for example, create, update, delete
and insert, and (ii) financial commands such as create offer, update offer, make payment,
and others. When a user queries for information on the network, a ‘valid’ peer in possession
of read-only transaction data answers the query. As mentioned already, the queries can also
be performed on the local synchronized database of the user.

The database operations are of three types, namely sqlStatement, tableListSet and
sqlTransaction where sqlStatement is used to insert, update or delete records; tableListSet
is used to create or mutate user-tables; and sqlTransaction is used to perform a set of
operations atomically, i.e. as a single transaction. Data synchronization is controlled by the
user. A node may choose between synchronize-at-each-transaction and synchronize-at-each-
interval options. For a synchronize-at-each-transaction option, write operations are required

12

{
"method": "r_insert",
"params": [

{
"offline": false,
"secret": "xnoPBzXtMeMyMHUVTgbuqAfg1SUTb",
"tx_json": {

"TransactionType": "SQLStatement",
"Account": "zHb9CJAWyB4zj91VRWn96DkukG4bwdtyTH",
"Owner": "zHb9CJAWyB4zj91VRWn96DkukG4bwdtyTH",
"Tables": [

{
"Table": {

"TableName": "peersafe"}
}],
"Raw": [{ "age": 20, "name": "B"}]
}}]}

INSERT INTO peersafe (age, name)
VALUES (20, "B");

Figure 7: A sample query in SQL (below) and JSON (above) format using the ChainSQL API.

to be confirmed prior to subsequent write operations. A system table, SyncTableState,
defines the data synchronization mode.

Similarly, data privacy is also specified by the user and a table can be created by the
user with encryption flag ‘ON’ or ‘OFF’. The support for both symmetric and asymmetric
encryption is available. A user that wishes to access the data fetches the encrypted data
and also requests the access to the data. If the access is granted, the data can be accessed
accordingly using the public/private key combinations. Thus, data privacy is ensured and
data availability is also facilitated.

Another interesting feature is the event subscription for the ‘data change’ event for an
instance of data using the subscribeTable command. Data audit is performed (i) locally,
if user maintains a local database, and (ii) remotely on a peer, if a local database is not
maintained. In this case, user listens to each new datastore update and proof of validation
shared on the network. The datastore is queried for related transactions, i.e. the set of
transactions that modify the user data and have a grant approval for audit.

3.4. Data validation and forwarding
A transaction is cryptographically signed by a user, is packaged in appropriate query

format and is forwarded to the consensus module. ChainSQL peer validates the command
signature that uniquely identifies a user. As mentioned already, for the transaction data,
the encryption can be turned ‘ON’ or ‘OFF’ by the user. If data encryption is turned ‘ON’,
only the data owner or the authenticated user can access the data.

The validation process is based on pre-defined business rules. The business rules are

13

implemented primarily to prevent system forks. Therefore, if two conflicting transactions
are included in the datastore, only one transaction is validated in the datastore at most.
The default validation rules are built-in ChainSQL and are customisable as per business
needs. The validation is performed in three steps. Firstly, user permissions to perform the
transaction operations are validated. Secondly, the transaction fields and the correctness
of the transaction is validated. Thirdly, the consequence of the transaction execution is
validated on the local database.

In order to prevent replication and double-spending attacks, user provides a nonce num-
ber with each transaction. If two transaction with the same nonce number and hash are
submitted to the datastore, this is considered as an inconsistency and at most one of the
two is applied to the datastore.

4. ChainSQL Consensus

The consensus is at the core of a blockchain system and ensures the data integrity in the
network. The choice of a consensus protocol also determines the system throughput. Hence,
it is important to implement an appropriate consensus protocol. As the intended business
case for ChainSQL is enterprise financial transactions, the consensus protocol is based on
Ripple that satisfies following three constraints:

(1) Correctness: a non-valid transaction is confirmed during consensus if the number of
Byzantine faulty nodes are below the tolerance threshold.

(2) Convergence: a valid node decides on a transaction in finite time.
(3) Agreement: all valid nodes eventually agree on exactly the same datastore state.

We first discuss some concepts related to the consensus protocol and then present the
consensus algorithm.

4.1. Consensus Dynamics
ChainSQL consensus is characterised by high throughput and fast validation time. The

output of a consensus round is an updated datastore state for which the network nodes take
different roles. We give some details below:

Consensus Objective. The objective of the consensus is to attain an agreed upon datas-
tore state. Formally, the objective of the consensus is to achieve the agreement among the
validation nodes with a known probability of Byzantine failures. Consensus must prevent
situations where two disjoint sets of nodes agree on different states of the datastore. There-
fore, a transaction is accepted or otherwise subject to majority support, or the decision is
postponed for the upcoming rounds. Thus, the outcome of a consensus round is a set of
transactions for which the consensus is achieved. In each consensus round, all the validated
and confirmed transactions are applied to the datastore.

14

Datastore State Transition. At each consensus stage, the current state of the datastore is
agreed upon as ‘valid’. The datastore state is identified with a sequence number which
increments over time. The sequence number contains the metadata about the transactions.
Each transaction has a code that indicates the changes to the datastore as a result of
transaction execution. Nodes in the blockchain network communicate with each other on a
subset of transactions labelled as ‘proposal set’. As for a transaction to be accepted, it has
to be known to the majority of the nodes in the network, the nodes communicate with each
other to prepare a proposal set that is agreed upon by the majority of the nodes to attain
the consensus.

Consensus Round. Each node receives and validates transactions only from a subset of nodes
considered as ‘trusted’, namely unique node list or UNL. Trust is a synonym for a verified
signature, i.e. network messages only from these servers are validated and processed. This
approach filters all external spam transactions and speeds up the consensus process. A
transaction is sent by a client to a subset of UNL broadcast nodes which broadcast the in-
formation to all UNL validation nodes. Next, the transaction is included in the proposal set
and is considered for validation. The transactions that are not considered in the upcoming
proposal set are considered for future rounds until the transaction lifetime expires. The
transaction lifetime is based on the last datastore set index. Note that broadcast nodes dis-
patch user transactions and respond to queries whereas validation nodes ensure the integrity
of the system by participating in the consensus process. Validation nodes serve as backup
nodes in the disaster recovery centre.

4.2. Consensus Algorithm
ChainSQL consensus is a multi-phase process where the first phase is transaction ex-

change, the second phase is initial proposal exchange and the third phase is the consensus
on the proposal set. The pseudo-code for the consensus round is presented in Algorithm 1
and the consensus utility routines are given in Algorithm 2.

During the first phase, the transactions in the current round X and undecided trans-
actions Rj−1 from the previous round are combined together to prepare a ‘proposal set’.
All the validation nodes broadcast undecided transactions to the nodes in the UNL. The
transactions in the proposal set need to be validated before being added to the datastore.
Thus, the transactions are validated and then applied to the new local datastore Lo. After
delay t1, the second phase commences and validation nodes exchange proposal set. Each
validation node creates proposal set p from transactions in Lo and then p is sent to the nodes
[s1...sn] in UNL.

When a node receives p from a node in UNL, the transactions in p are compared to the
transactions in Lo and for the transaction match, the match vote is updated. If a transaction
x is included in p from server s, vote from server s for the transaction x is updated in the
datastore.

The necessary and sufficient condition for consensus on a proposal set is a ‘majority
vote’. If a majority vote is not achieved, peers exchange new proposals with transactions
having number of votes ≥ τ ∗ |S|. The acceptance threshold τ is incrementally increased

15

Algorithm 1 An outline of the ChainSQL consensus algorithm

1 function ConsensusRoundj(Rj−1: undecided transaction set; S = [s1 . . . sn];
τ : acceptance threshold; δ: acceptance threshold step)

2 Lo ← ∅ ▷ Lo: New open ledger
3 Lc ← ∅ ▷ Lc: Closed ledger
4 Lo ← {all x ∈ X = Rj−1} ▷ Add undecided transactions from previous round
5 for all transaction x ∈ X do
6 ReceiveTransaction(x, Sender(x), O)
7 Delay(t1)
8 p ← Lo

9 Send initial proposal p to servers [s1 . . . sn] ∈ S
10 ReceiveProposal(Lo, p, si) from servers [s1 . . . sn] ∈ S
11 Lc ← ConsensusAchieved(Lo)
12 if Lc = ∅ then
13 repeat
14 p ← {∀x ∈ Lo | |x.votes| ≥ (τ) ∗ |S|}
15 Send p to [s1 . . . sn] ∈ S
16 ReceiveProposal(Lo, pi, si) from servers [s1 . . . sn] ∈ S
17 Lc ← ConsensusAchieved(Lo)
18 τ ← τ + δ
19 until Lc ̸= ∅
20 apply(Lc)
21 Rj ← Lc ∩ Lo ▷ Rj: remaining transactions for next round
22 return Rj

after each round to achieve consensus even though there is a disagreement in an earlier
round. In practice, the threshold values are set as, τ = 0.5, δ = 0.1, to achieve fast
convergence. The acceptance threshold for a transaction is initially set to 51% agreement.
If participants disagree on the proposal set, the threshold is increased gradually until no
disputed transactions are left.

When consensus is achieved on the datastore, it is applied to the database for the updates
to take affect. Undecided transactions in the previous round are forwarded to the subsequent
round. Validation nodes publish a cryptographic proof of the datastore update. If consensus
is achieved, each validation node has the same proof. The participants listen to the validation
proof and have one of the following possibilities:

(1) If the validation state Lc has the same state as the local datastore, consensus is
achieved.

(2) The validation nodes have disagreement on the datastore state due to state inconsis-
tency. The validation nodes synchronize the datastore state.

(3) If majority vote is not achieved, then the round is re-started. The consequence is a
loss in time, typically a few seconds. This happens when validation nodes do not have

16

Algorithm 2 ChainSQL consensus routines

1 function ReceiveTransaction(x: Transaction, s: Sender, Lo: Open Ledger)
2 if s ∈ S ∧ validate(x) then
3 Lo ← apply(x)
4 return Lo

5 function ReceiveProposal(Lo: Open Ledger, p: Proposal, s: Sender)
6 if s ∈ S then
7 for all x ∈ p do
8 Lo[x].votes ← Lo[x].votes ∪ s

9 return Lo

10 function ConsensusAchieved(Lo: Open Ledger, θ: vote threshold)
11 l ← ∅
12 for all x ∈ Lo do
13 if |x.votes| ≥ θ ∗ |S| then
14 l ← l ∪ x
15 return l

a consensus, but are to proceed to the next round.

Once the consensus is achieved on the proposal set, the proposal set is written to the
datastore to get the updated datastore state.

5. ChainSQL Usecases

In this section, we present three ChainSQL usecases: (i) a multi-active database mid-
dleware for connecting the user application with the underlying database; (ii) a disaster
recovery middleware that connects user application production nodes with the disaster re-
covery nodes; (iii) an audit middleware that is connected with the production centre to
process transaction traces.

5.1. Multi-active Database Middleware
Multi-active database is a middleware that connects the enterprise application with the

underlying database. The underlying database is either a traditional relational database or a
NoSQL database. All the data definition and data manipulation operations for the database
are recorded in an operation log that is maintained using the blockchain technology and is
immutable, i.e. it cannot be modified or deleted.

User application calls ChainSQL API to send the transaction to a network node. Once
the consensus is achieved on the transaction, each validation peer has exactly the same
datastore state. The nodes are configured with the database to synchronise all incoming
database operations. As shown in Figure 8, a user can either directly query the blockchain

17

Direct Blockchain Query

Fast Database Query

Local Database

Blockchain Synchronised
Database

Blockhain Network

Figure 8: ChainSQL as a multi-active database.

or keeps a synchronised local database for fast queries. If the user keeps a local database,
then one of the network nodes serves as a backup node. The write to the blockchain is by
way of ChainSQL consensus protocol.

In case of a node failure, the user switches to another node on the network seamlessly.
This ensures zero-recovery-time and a multi-active database deployment in real-time. The
fault node is restored from the most recent checkpoint during the recovery process. An
example database failure is shown in Figure 9. Since local database of the user is not
available, each user query is forwarded to one of the nodes. If a node does not respond,
query is sent to another node in the network.

One of the concerns in a multi-active database is the security of data when it is being
transmitted across the network. The middleware provides both symmetric and asymmetric
encryption schemes from which the user can choose the appropriate security mechanism for
the data. The supported encryption schemes include secp256k1 and elliptic-curve signatures
ed25519. Another important aspect of the multi-active middleware is the expandability of
the blockchain network nodes. A new node can automatically get the log from an existing
node in the network and can replay that log to generate its own version of the datastore
which is the same as other network nodes. Once it is established that the new node has
the same datastore state as the other network nodes, it can also participate in consensus
build-up and synchronous data writing.

5.2. Multi-disaster Recovery Middleware
Multi-disaster Recovery is also a middleware that connects the database production

nodes of the enterprise application with the disaster recovery nodes. The architecture of the
multi-disaster recovery middleware is shown in Figure 10. As mentioned earlier, the user
operations are recorded as log files, e.g. Binlog, Redo Log and so forth, in the production
centre and are analysed prior to a blockchain transaction generation. During disaster recov-

18

SQL Query

User

Database

Database
Query

Blockchain Query

Blockchain

Figure 9: ChainSQL crash recovery with a local database failure

Production
Database Production Node 1

Application Program

User
Command

Backup
Database

Database
Operation

Data
Forwarding

Network
Consensus

Backup Node 1

Database
Operation

Blockchain
Record

Network
Consensus

Backup
Node N

Backup
Node 2

Figure 10: The architecture of the database disaster recovery middleware.

ery, the first step is to achieve the consensus for the blockchain network that must include
the backup node such that the backup node has exactly the same data as every node on the
blockchain network. When a new block is generated, the backup node reads the block and
sends it to the disaster recovery centre. The recovery centre performs the database backup
using the transaction data. Thus, if a node fails at the production centre, the users switch
to the recovery centre to complete the task. This is achieved by elevating a backup node to
the status of a production node.

The data of the production centre is transmitted to the disaster recovery centre imme-
diately and the log is re-executed to achieve the recovery.

Business Application. An important application scenario where ChainSQL has been used
is in a financial environment. The business requires the core business data to be protected
and the most recent data to be available across the whole business process. The encryption
based tamper-resistance feature of the ChainSQL along with the multi-active database

19

Owner Auditor

Grant
Permission

Updated
Table

Blockchain Network

Figure 11: ChainSQL for audit

ensures security of the customer data and continuous business operations. In case of a node
failure, the data-level disaster recovery backup system activates seamlessly, thus ensuring
the continuity of the business operations.

5.3. Audibility
The immutability of a blockchain brings audibility as an inherent feature to the blockchain

systems. In a typical scenario, user A performs a grant operation for users B and C on
table T . Grant operation is recorded as a blockchain transaction and the transaction with
grant access is signed and sent to concerned peers. When the grant operation transaction
is finalized and is included in the datastore, A updates account access information.

User B requests a select query on table T and sends it to ChainSQL node P which is a
complete node. Node P fetches the identity of user B from the signature of the query. Since
user B has permissions to perform select query on table T , node P executes the query and
returns the result to B. A typical transaction pipeline for data audit is shown in Figure 11.

User C has permissions to make read-only queries on table T . User C maintains a
local database which is synchronised with the blockchain network and listens to the relevant
updates. Each time a new datastore state is committed by the nodes, a proof of validation
is multicast to the network. Each time a new datastore state is committed, user C requests
node P an update. In the request, user C specifies the most recent closed datastore index.
Node P creates an update message and sends the datastore headers starting from the most
recent closed records of user C. Besides headers, node P sends an order of transactions that
should be applied to the datastore. These transactions are related only to table T . Thus,
ChainSQL allows a trustless client-server interaction, where user can maintain a database
with related data only without the overhead to store the entire blockchain.

Business Application. ChainSQL combines features of data replication and immutability
with flexible access control. As blockchains’ inherent immutability prevents ex-post-facto
changes, auditor maintains a local database and requests access from a specific user. User
grants permission and the auditor fetches all user data from ChainSQL network nodes.

20

5 10 15 20 25 30 35 40
Number of nodes

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
 p

er
 se

c) ChainSQL
Ripple

0 500 1000 1500 2000 2500 3000
Number of transactions per proposal

0

350

700

1050

1400

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
 p

er
 se

c)

(a) Throughput vs. Transaction per proposal (b) Throughput vs. Number of nodes

Figure 12: ChainSQL throughput

Auditor can perform queries on the local database and can report results to the blockchain
network.

6. Empirical Evaluation

We evaluate the performance of ChainSQL with the help of experiments. We consider
parameters such as latency, throughput, scalability, and convergence and perform extensive
experiments to demonstrate the effectiveness of the system. We first describe experimental
setup.

Setup. We perform the experiments on Amazon EC2 cloud and consider virtual machine
instances upto 40. We do not consider the number of nodes beyond 40, as we observe a
stable behaviour for ChainSQL in comparison with Ripple. The experiments are executed
on c5.large instances. The system directly uses secp256k1 signature code from Ripple.
Alternatively, a ecliptic-curve signatures ed25519 can also be used. A predefined transac-
tion pool is considered for system evaluation and the transactions are fetched at random
for each user from the pool. Each transaction updates the datastore state and is recorded
in the blockchain. The results are generated as end-to-end measurements from the users’
perspective. For the latency and throughput measurements, we employ a test application
that sends transactions to the system and populates counts based on the transaction con-
firmation time. Unless specified otherwise, we set the number of nodes to 20, transactions
per proposal to 1500, δ = 0.1, and requests per second to 2000. Each set of experiments is
executed 10 times and the averages are reported.

System Throughput and Scalability. We first measure the throughput and scalability of the
system. We report system throughput, i.e. number of transactions per second, as we increase
the number of nodes from 5 to 40. In another set of experiments, we increase number of
transactions per proposal and report the system throughput. In the first set of experiments,
Figure 12(a), it can be observed that ChainSQL achieves throughput comparable to Ripple,

21

0 1000 2000 3000 4000 5000
Requests per second from users

0

1500

3000

4500

6000

7500

M
ea

n
la

te
nc

y
(m

s)

5
10
20
40

0.03 0.05 0.08 0.10 0.12 0.15 0.18 0.20
Acceptance threshold step

0

1000

2000

3000

4000

Ti
m

e
to

 c
on

ve
rg

en
ce

 (m
s)

(a) Mean latency vs. Number of user requests (b) Convergence time vs. acceptance step δ

Figure 13: ChainSQL latency

Database apply

26.0

Data Forwarding53.0

Data Validation

14.0
Application validation

7.0

Figure 14: System time distribution

i.e. 1200 transactions per second. Also, a slight decrease in throughput is witnessed with
the increase in network size, both for ChainSQL and Ripple. The overall behaviour of
ChainSQL is consistent with that of Ripple with little performance downgrade. Note
that unlike Ripple, ChainSQL does not only supports financial transactions and is more
flexible. In another set of experiments, Figure 12(b), we study the effect of proposal size
on system throughput. For the experiments, we considers 20 nodes in the network, and
increase proposal size gradually to observe system throughput. It can be seen that the
throughput of the system increases with an increase in the proposal size and reaches the
peak value at 1500 transactions per proposal. For more than 1500 transactions per proposal,
the system throughput deteriorates. For the rest of the experiments, we set the transactions
per proposal to 1500.

Transaction Latency. The latency is the delay in transaction confirmation, i.e. the differ-
ence in time between transaction submission and confirmation. We report mean latency in

22

milliseconds as we increase requests per second from 1000 to 5000, and number of nodes from
5 to 40. The proposal size is set to 1500. The results, Figure 13(a), show that the latency
increases linearly with the number of requests per second. Similarly, when the number of
nodes in the network increase, mean latency also increases due to the increased network
communication. However, the overall behaviour of the system remains stable, e.g. average
latency for 5 nodes is 2000 ms, and increases to 3500 ms for 40 nodes.

Convergence. An interesting parameter, Acceptance threshold δ, determines the convergence
rate for the system. We set the number of nodes to 20, proposal size to 1500, requests
per second to 2000, and study the convergence behaviour for changing δ. It can be seen,
Figure 13(b), that the least time to convergence is achieved for δ = 0.1. For values, smaller
or higher than 0.1, the convergence time increases.

Transactions Time-slice. We also compute statistics on the transaction execution stages to
get an insight into the transaction execution. We set the number of nodes to 20, proposal
size to 1500, δ = 0.1, and compute the time-slice for each transaction execution stage. It
can be seen, Figure 14, that network delay is the most time consuming phase in transaction
execution.
Remark. ChainSQL is a blockchain system that also supports fast queries by way of
integrating database with the blockchain. The performance of the system for the DDL
queries, i.e. create, alter, and drop, and DML queries (except select), i.e. insert, update,
and delete, is similar to the blockchain network Ripple. Note that the blockchain based DDL
and DML queries are slow due to the requirement of the consensus. However, as the select
queries do not change the datastore state, they are executed fast by integrating a database
with the blockchain at the node level.
In summary, the performance of ChainSQL is comparable (i) to Ripple for the queries that
change the datastore state and (ii) to database for queries that do not change the datastore
state.

7. Conclusion and Future Work

In this paper, we presented ChainSQL and its novel applications through three usecases
that are implemented as a middleware between the user application and the database. The
first usecase is a tamper-resistant multi-active database, the second usecase is a data-level
disaster recovery backup and the third is an audit middleware. The effectiveness of the sys-
tem is demonstrated with the help of a detailed experimental study. ChainSQL is the first
system of its kind that features the tamper-resistance of the blockchain and the fast query
processing of the distributed databases. The utility of the ChainSQL is evident from its
business usecases in domains including finance and supplychain, therefore, it offers promising
application scenarios for future. A number of considerations from system implementation
point of view are also in the pipeline. For instance, the support for big data analytics in
ChainSQL, and the implementation of complex indexes for query optimisation.

23

Acknowledgement

The work was partially supported by the CAS Pioneer Hundred Talents Program [grant
number Y84402, 2017], SIAT-Peersafe IoT Security Lab supported by PeerSafe and Peer-
Come in Beijing and Shenzhen, respectively [grant number Y7Z0181001, 2017], and CAS
President’s International Fellowship Initiative [grant number 2018VTB0005, 2018]. The au-
thors would also like to acknowledge the application development contributions made by
Xiaoming Lu, and Chengcheng Ji.

References
[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, https://bitcoin.org/bitcoin.pdf (2009).
[2] G. Wood, Ethereum: A Secure Decentralised Generalised Transaction Ledger,

http://gavwood.com/paper.pdf (2015).
[3] D. Schwartz, N. Youngs, A. Britto, The ripple protocol consensus algorithmOnline; accessed: 08-Jan-

2018.
[4] D. D. Rosa, Blockchain programming, http://davidederosa.com/basic-blockchain-programming/,

online; accessed: 09-Jan-2018 (2015).
[5] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, J. Wang, Untangling blockchain: A data

processing view of blockchain systems, CoRR abs/1708.05665. arXiv:1708.05665.
[6] B. Nasrulin, M. Muzammal, Q. Qu, ChainMOB: Mobility analytics on blockchain, in: 19th IEEE

International Conference on Mobile Data Management, MDM 2018, Aalborg, Denmark, June 25-28,
2018, 2018, pp. 292–293.

[7] S. Suzuki, J. Murai, Blockchain as an audit-able communication channel, in: 2017 IEEE 41st An-
nual Computer Software and Applications Conference (COMPSAC), Vol. 2, 2017, pp. 516–522.
doi:10.1109/COMPSAC.2017.72.

[8] A. Wright, P. D. Filippi, Decentralized blockchain technology and the rise of lex cryptographia, Available
at: https://ssrn.com/abstract=2580664 (Mar 2015).

[9] C. P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and technolo-
gies: A survey on big data, Information Sciences 275 (Supplement C) (2014) 314 – 347.
doi:https://doi.org/10.1016/j.ins.2014.01.015.

[10] F. B. Schneider, Implementing fault-tolerant services using the state machine approach: A tutorial,
ACM Computing Surveys (CSUR) 22 (4) (1990) 299–319.

[11] M. Szydlo, Merkle tree traversal in log space and time, in: International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2004, pp. 541–554.

[12] S. Popov, O. Saa, P. Finardi, Equilibria in the Tangle, arXiv.org (2017)
arXiv:1712.05385arXiv:1712.05385.

[13] Y. Sompolinsky, Y. Lewenberg, A. Zohar, SPECTRE - A Fast and Scalable Cryptocurrency Protocol.,
IACR Cryptology ePrint Archive, 2016.

[14] Q. Qu, S. Liu, F. Zhu, C. S. Jensen, Efficient online summarization of large-scale dynamic networks,
IEEE Trans. Knowl. Data Eng. 28 (12) (2016) 3231–3245.

[15] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, G. Danezis, Consensus in
the age of blockchains, CoRR abs/1711.03936. arXiv:1711.03936.

[16] M. J. Fischer, N. A. Lynch, M. S. Paterson, Impossibility of distributed consensus with one faulty
process, Journal of the ACM (JACM) 32 (2) (1985) 374–382.

[17] C. Dwork, M. Naor, Pricing via processing or combatting junk mail, in: Annual International Cryptol-
ogy Conference, Springer, 1992, pp. 139–147.

[18] A. Kiayias, A. Russell, B. David, R. Oliynykov, Ouroboros: A provably secure proof-of-stake blockchain
protocol, in: Annual International Cryptology Conference, Springer, 2017, pp. 357–388.

[19] M. Castro, B. Liskov, et al., Practical byzantine fault tolerance, in: OSDI, Vol. 99, 1999, pp. 173–186.

24

[20] C. Cachin, Architecture of the hyperledger blockchain fabric, in: Workshop on Distributed Cryptocur-
rencies and Consensus Ledgers, 2016.

[21] M. Risius, K. Spohrer, A blockchain research framework - what we (don’t) know, where we go from
here, and how we will get there, Business & Information Systems Engineering 59 (6) (2017) 385–409.
doi:10.1007/s12599-017-0506-0.

[22] I. Sergey, A. Hobor, A Concurrent Perspective on Smart Contracts., Financial Cryptography Workshops
10323 (3) (2017) 478–493.

[23] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, G. Danezis, Chainspace: A Sharded Smart Con-
tracts Platform, arXiv.org (2017) arXiv:1708.03778arXiv:1708.03778.

[24] P. L. Seijas, S. J. Thompson, D. McAdams, Scripting smart contracts for distributed ledger technology.,
IACR Cryptology ePrint Archive.

[25] I. Sergey, A. Kumar, A. Hobor, Scilla - a Smart Contract Intermediate-Level LAnguage., CoRR.
[26] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, T. Moore, Game-theoretic analysis of ddos attacks

against bitcoin mining pools, in: International Conference on Financial Cryptography and Data Secu-
rity, Springer, 2014, pp. 72–86.

[27] D. Schwartz, N. Youngs, A. Britto, The ripple protocol consensus algorithm (2014), Ripple Labs.
[28] R. Pass, L. Seeman, A. Shelat, Analysis of the blockchain protocol in asynchronous networks, in: Annual

International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2017,
pp. 643–673.

[29] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryp-
tosystems, Communications of the ACM 21 (2) (1978) 120–126.

[30] D. Johnson, A. Menezes, S. Vanstone, The elliptic curve digital signature algorithm (ecdsa), Interna-
tional journal of information security 1 (1) (2001) 36–63.

[31] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, E. W. Felten, Mixcoin: Anonymity for
bitcoin with accountable mixes, in: International Conference on Financial Cryptography and Data
Security, Springer, 2014, pp. 486–504.

[32] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, Zerocash: Decentralized
anonymous payments from bitcoin, in: Security and Privacy (SP), 2014 IEEE Symposium on, IEEE,
2014, pp. 459–474.

[33] I. Lin, T. Liao, A survey of blockchain security issues and challenges, I. J. Network Security 19 (5)
(2017) 653–659.

[34] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, E. Zenner, Ripple - Overview and Outlook.,
TRUST 9229 (Chapter 10) (2015) 163–180.

[35] E. Androulaki, et al., Hyperledger fabric: A distributed operating system for permissioned blockchains,
CoRR abs/1801.10228. arXiv:1801.10228.

[36] M. Vukolic, Eventually returning to strong consistency, IEEE Data Eng. Bull. 39 (1) (2016) 39–44.
[37] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, V. Sassone, Blockchain-based database

to ensure data integrity in cloud computing environments.
[38] M. Ali, J. C. Nelson, R. Shea, M. J. Freedman, Blockstack: A global naming and storage system secured

by blockchains., in: USENIX Annual Technical Conference, 2016, pp. 181–194.
[39] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy, G. McMullen, R. Hen-

derson, S. Bellemare, A. Granzotto, Bigchaindb: a scalable blockchain database, BigChainDB,
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf.

[40] T. D. Chandra, R. Griesemer, J. Redstone, Paxos made live: an engineering perspective, in: Proceedings
of the twenty-sixth annual ACM symposium on Principles of distributed computing, ACM, 2007, pp.
398–407.

25

and

inte

Data

Info

wor

anal

mobility int

rnational co

a Engineeri

rmation Scie

kshops in V

lysis.

MUHAM

science

Shenzhe

Science

data, an

QIANG

Techno

Guangd

Security

He rece

and the

interest

efficient

telligence. H

onferences,

ng, the IEE

ences. He wa

VLDB 2018,

BULAT

Federa

2015 a

in She

Academ

distrib

MMAD MUZ

from the U

en Institute

s, China. Hi

nd blockchain

QU is an ass

logy, Chines

dong Provinc

y. He is a can

eived the MS

e PhD degr

ts are in da

t and scalab

His recent re

including AC

EE Transact

as TPC mem

VLDB 2017,

T NASRULIN

al University

and 2017, re

nzhen Colle

my of Scie

uted comput

ZAMMAL re

University of

e of Advanc

is research

n systems.

sociate profe

se Academy

cial R&D Ce

ndidate of th

Sc degree in c

ee from Aa

ta‐intensive

ble algorithm

esearch has

CM SIGMOD

tions on In

mber of seve

 ICDM 2015

received his

and MS in D

espectively. H

ege of Advan

ences. His

ting, and sm

eceived the

Leicester, U

ced Techno

interests are

essor at Shen

of Sciences

enter of Bloc

he CAS Poine

computer sc

arhus Univer

application

m design, blo

been publis

D, VLDB, AAA

telligent Tr

ral prestige

5, and APW

s BS in Appli

Data Science

He is curren

nced Techno

research in

mart contract

Ph.D. degr

U.K. He is cu

logy, Chine

e in data m

nzhen Institu

s (CAS), and

ckchain and

eer Hundred

ience from P

rsity. His c

s and syste

ockchain, dat

shed in lead

AI, the IEEE

ansportation

conferences

EB‐WAIM 2

ed Mathem

 from Innop

tly pursuing

ology, Unive

terests incl

ts.

ree in comp

urrently with

ese Academ

mining, unce

utes of Adva

d the directo

d Distributed

Talents Prog

Peking Unive

current rese

ems, focusin

ta sense‐ma

ing journals

transaction

n Systems,

s, and he cha

2017 on mo

atics from K

polis Universi

g the PhD de

ersity of Chi

ude blockc

puter

h the

y of

rtain

nced

or of

d IoT

gram.

ersity

earch

g on

king,

s and

ns on

and

aired

bility

Kazan

ity in

egree

nese

hain,

Highlights

The highlights of this work are as follows:

 We present, ChainSQL, a blockchain database application platform that has
the decentralised, distributed and audibility features of the blockchain and
quick query processing and well-designed data structure of the distributed
databases

 ChainSQL features a tamper-resistant and consistent multi-active database, a
reliable and cost effective data-level disaster recovery backup and an
auditable transaction log mechanism.

 ChainSQL solves the data integrity and reliability issues of the distributed
databases by using the blockchain technology and still keeps the fast query
processing of the distributed databases.

 The incorporation of the security and audibility features of the blockchain
into the distributed database systems by the implementation of a blockchain
network.

 The support for both NoSQL and SQL databases is a desirable feature of the
system and enhances applicability of the system.

	Renovating blockchain with distributed databases: An open source system

