
A survey of Android exploits in the wild

Huasong Meng *, Vrizlynn L.L. Thing, Yao Cheng, Zhongmin Dai,
Li Zhang
Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore, 138632, Singapore

A R T I C L E I N F O

Article history:

Received 31 January 2018

Accepted 26 February 2018

Available online 8 March 2018

A B S T R A C T

The Android operating system has been dominating the mobile device market in recent years.

Although Android has actively strengthened its security mechanisms and fixed a great number

of vulnerabilities as its version evolves, new vulnerabilities still keep emerging. Vulnerabil-

ity exploitation is a common way to achieve privilege escalation on Android systems. In

order to provide a holistic and comprehensive understanding of the exploits, we conduct

a survey of publicly available 63 exploits for Android devices in this paper. Based on the

analysis of the collected real-world exploits, we construct a taxonomy on Android exploi-

tation and present the similarities/differences and strength/weakness of different types of

exploits. On the other hand, we conduct an evaluation on a group of selected exploits on

our test devices. Based on both the theoretical analysis and the experimental results of the

evaluation, we present our insight into the Android exploitation. The growth of exploit cat-

egories along the timeline reflects three trends: (1) the individual exploits are more device

specific and operating system version specific; (2) exploits targeting vendors’ customization

grow steadily where the increase of other types of exploits slows down; and (3) memory

corruption gradually becomes the primary approach to initiate exploitation.

© 2018 Elsevier Ltd. All rights reserved.

Keywords:

Android

Mobile security

Privilege escalation

Exploit

Survey

1. Introduction

Smart mobile devices are indispensable in people’s lives nowa-
days. Along with the development of mobile technology and
the prevalence of Internet services, smart mobile devices
become the principal digital assistant that people use for in-
formation acquiring, instant messaging, online socialization,
Internet financing and other Internet services.The market share
of devices with Android operating system keeps growing since
its release in 2008 and has been dominating the mobile system
market for a long time. According to the latest market statis-
tics done by IDC, Android managed to capture 85.0% of the
worldwide smartphone market share by the 1st quarter of 2017
(IDC, 2017). In the meantime, the global shipment of new

Android devices is experiencing an average of 10% growth each
year since 2015 (Linda, 2016). Due to people’s heavy reliance
on mobile devices and the popularity of Android mobile
systems, the privacy concern and security issues on Android
systems catch great attention from mobile users, industry
players and academic researchers. At the same time, it also
makes Android the prominent target of attackers. Unfortu-
nately, Android vulnerabilities keep emerging and have
successfully been turned into their exploitation even though
Android has strengthened its security mechanisms and fixed
a great number of vulnerabilities as its version evolves.

Vulnerability exploitation is a common way to achieve higher
privilege on Android systems. Exploiting Android devices has
been a popular topic since Android was firstly introduced in
2008. There are numerous exploits being implemented in the

* Corresponding author.
E-mail addresses: menghs@i2r.a-star.edu.sg (H. Meng), vriz@i2r.a-star.edu.sg (V.L.L. Thing), cheng_yao@i2r.a-star.edu.sg (Y. Cheng), daiz@

i2r.a-star.edu.sg (Z. Dai), zhang_li@i2r.a-star.edu.sg (L. Zhang).
https://doi.org/10.1016/j.cose.2018.02.019
0167-4048/© 2018 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.02.019&domain=pdf
mailto:menghs@i2r.a-star.edu.sg
mailto:vriz@i2r.a-star.edu.sg
mailto:cheng_yao@i2r.a-star.edu.sg
mailto:daiz@i2r.a-star.edu.sg
mailto:daiz@i2r.a-star.edu.sg
mailto:zhang_li@i2r.a-star.edu.sg
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE


Android history. From the users’ perspective, an exploit program
can help them to bypass the security mechanism of their
Android devices to achieve better control of their devices by
obtaining a higher privilege, e.g., rooting their devices. On the
other hand, the exploitation could also be misused to gain the
control of victims’ devices where the attacker can obtain fi-
nancial profit from selling users’ privacy (e.g., account
information). We intend to provide a holistic and comprehen-
sive understanding of the exploits that can be used to attain
higher privileges in Android system. It would be helpful in terms
of understanding how individual exploits work and how the
trend of the exploits on Android would be.

In this paper, we are going to present a survey on all the
publicly available Android exploits gathered on the Internet.
We provide a taxonomy of the Android exploits and analyze
the similarities/differences and strengths/weaknesses. We dem-
onstrate the trend of Android exploits by analyzing the
development of each exploit category. Furthermore, we evalu-
ate a group of exploits on our test devices. In summary, our
contribution could be summarized into three points:

1) To the best of our knowledge, this is the first complete and
exhaustive survey on publicly available Android exploits. By
analyzing each exploit, we filter out those exploits with the
same way of working but different nicknames and finally
distill 63 different exploits. By referring to our survey, a reader
can easily find out the affected device models and Android
versions of a publicly released exploit as well as the vul-
nerabilities behind it.

2) This paper conducts a comparative and in-depth analysis
of existing real-world Android exploits for the first time. We
propose a taxonomy and accordingly initiate a classifica-
tion of these exploits. We also carry out a comparison among
different types of the exploits. By analyzing similarities/
differences and strengths/weaknesses of each type of
exploits, we point out the evolution of exploitation through-
out the history of Android and forecast the future trends
of the exploitation on Android devices.

3) With a large volume of information of these exploits being
collected, we select a group of exploits by matching their

targeting devices and Android versions to our test devices.
Then we conduct an experiment to validate those se-
lected exploits. By observing the experimental results, we
present our evaluation result and discuss our findings
correspondingly.

In the following section, we will first introduce the back-
ground of Android security mechanism and typical Android
privilege escalation. We then propose a taxonomy on Android
exploitation considering various perspectives in Section 3. In
Section 4, we present the list of exploits gathered from mul-
tiple online sources, followed by analysis based on our
classification results. As an important part of this survey, we
also use a number of devices to evaluate applicable exploits.
Section 5 shows the evaluation outcome and presents the dis-
cussion based on our findings. After that, the paper is concluded
in Section 6.

2. Background

2.1. The architecture of Android

Android is a mobile operating system built upon a Linux kernel.
Fig. 1 shows the layered architecture of Android. The concise
architecture of Android can be depicted into 4 layers, kernel
layer, middleware layer, framework layer, and application layer.
The Linux kernel is the bottom layer of the Android platform
which provides the basic functionalities of operating systems
such as kernel drivers, power management and file system.The
layer above the kernel is called Android middleware layer, which
contains essential elements of Android as a mobile platform
(Rangwala et al., 2014). There are two parts in Android
middleware layer, i.e., the native components and the Android
runtime system. Within the native components, the Hard-
ware Abstraction Layer (HAL) defines a standard interface to
bridge the gap between hardware and software. Compared with
the drivers located in the kernel layer, Android HAL holds most
of the hardware vendor specific implementation, for example,
the APIs of audio device and camera (Google, 2017a; Muthumani,

Fig. 1 – A layered architecture of Android operating system.

72 c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



2015). The other two key components in the native compo-
nents part are the native libraries and daemons which are
written in C/C++. The native daemons handle all interaction
with the system in native level.The native libraries, like SQLite,
Webkit, SSL, and OpenGL, could greatly enrich the function-
ality and compatibility of Android platform for the development
purpose. The Android runtime system contains the core li-
braries and runtime environment. A Java process virtual
machine named Dalvik was used as the only runtime envi-
ronment until the Android version 4.4. Thereafter, Android
introduced a new runtime scheme called Android Runtime (ART)
to replace the Dalvik virtual machine in later versions
(Wikipedia, 2017a). Compared with the Just-In-Time (JIT) com-
pilation used by Dalvik virtual machine, the Ahead-Of-Time
(AOT) compilation provided by ART has been proven to have
significant improvement in performance as well as energy con-
sumption (Google, 2017b; Georgiev et al., 2014). On top of the
Android runtime system is the application framework which
is used most often by app developers as it handles many el-
ementary functionalities of Android applications. For instance,
the view system provides a rich and extensible collection of
UI components; content providers enable an app to access or
share data with other apps. All previously mentioned compo-
nents build the foundation for application execution on Android
platform.

2.2. Security mechanism of Android

There are two main security mechanisms on Android. One is
the Android permission-based mechanism which is per-
formed in Android application framework layer. The other one
is Linux user-based privilege mechanism which is enforced in
the kernel layer. An app must be granted with the correspond-
ing permissions by the operating system prior to its access to
the resources from the other parties (Google, 2017c).

The permission-based security mechanism is implemented
at the Inter-Component Communication (ICC) level. As Android
plays the role of reference monitor to mediate all ICC estab-
lishment, it regulates all ICC by assigning each application or
component a pre-defined permission label. In this way, Android
operating system will deny any ICC operation which asks for
the permission beyond the pre-defined permission scope.
Android introduces four permission levels for its access control
mechanism. The lowest permission level is called normal. The
permissions at this level can be granted as long as the devel-
oper declared them in the manifest file of an app, such as
Internet access, vibration, and NFC usage. A higher permis-
sion level is named dangerous and the permissions at this level
can only be granted after obtaining user’s consent during the
execution, for example accessing user’s photos. The other two
levels are signature and signature and system, which are de-
signed for risky permissions.The former is only granted to those
apps signed by a trusted party and the latter is granted by apps
signed by Google and phone vendors (Google, 2017g).

Regarding the user-based security mechanism, each appli-
cation on Android runs with a unique user identity, so that the
underlying Linux system could provide the system-level iso-
lation to refrain from damage caused by programming flaws
(Bishop, 1996). However, there are some exceptions to system-
defined privileged users, for example root, system and radio

(Shabtai et al., 2010). A privileged user can initiate more than
one process on Android system without the need to switch
identity, and all of those processes are granted exact same privi-
lege as the privileged user, which constitutes a potential security
loophole in the Android system. Starting from Android system
version 4.3, a Security-Enhanced Linux (SELinux) model has
been enforced to upgrade the Discretionary Access Control (DAC)
to the latest Mandatory Access Control (MAC). The access ca-
pability on Android has ceased to be solely determined by the
file system ownership. Under the governance of SELinux, every
process has to run at the minimum privilege level which is
strictly regulated by a number of SELinux security policies
(Shabtai et al., 2010; Google, 2017d).

2.3. Privilege escalation

Privileged access gives users the freedom to maximize the uti-
lization of their Android devices. In Android, besides the
“system” user, there is another pre-defined user called “root”
which follows the “superuser” concept of Linux operating
systems. The root user is provided with a full control of the
system and furthermore, could access the user’s data without
any restriction (Bishop, 1996; Faden, 1999). In consideration of
user privacy and system reliability, Google has neither pro-
duced any Android versions enabled with root permission nor
encouraged people to root their devices since Android has been
publicly released (Chris, 2012). Users will have to find a way
to escalate their privileges if they want to achieve any func-
tionality or customization which is not essentially granted by
the Android system. Once users obtain root user privilege, they
are able to back up apps and data in their preferred ways,
recover files which are deleted by mistake, disable the adver-
tisements or uninstall apps pre-loaded into the system image
(OneClickRoot, 2017). According to a survey in 2014, over 27.44%
of Android users rooted their device to uninstall useless and
redundant built-in apps (Kristijan, 2014). From many users’ point
of view, rooting is a good resolution to their pain points during
the use of the device. That may explain the reason why rooting
has extremely high demands and is a popular topic in An-
droid’s world.

The process of rooting an Android device varies with ver-
sions of the operating system and hardware configuration.
Rooting could be classified into two types depending on whether
flashing the device is required or not (Zhang et al., 2015). The
traditional rooting, which is so-called “hard root”, attains root
privilege by directly flashing superuser binary into the device.
Hard root process comes with 3 steps: (1) unlocking the
bootloader; (2) flashing a customized recovery image with
superuser binary embedded; (3) installing a superuser permis-
sion management tool such as SuperSU (Yu, 2015; Martyn, 2016).
The hard root method is simple but may lead to erasing all the
data on the internal storage. The other type of rooting is called
“soft root” or “indirect root”. Soft root mostly refers to the sce-
nario that the root privilege is obtained by running a software
or process to exploit Android vulnerabilities. The soft root
usually comes with a temporary privilege escalation on an active
process. Nonetheless, it is also possible to make the rooting
status permanent by making use of the current privileged
process to copy the superuser binary to the system directory.
Compared with hard root, soft root has a wider support on

73c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



different Android devices as it doesn’t require a flash image
for a specific device model and Android version. More impor-
tantly, soft root can root a device without any data loss.

Android rooting is a double-edged sword, the superior privi-
lege obtained from rooting could not only provide users with
more permission to use their devices or assist the govern-
ment in the forensic investigation but also possibly expose all
user’s privacy and confidential information to the attacker
(Zhang et al., 2015). Hence rooting could be a big threat to users’
privacy and information security if it is conducted for the evil
purpose.

2.4. Vulnerabilities exploitation

The history of vulnerability exploitation on Android device could
be traced back to 2009, the second year when Android system
was released. In that year, Christopher Lais implemented a
utility called Volez to generate a crafted system recovery package.
By making use of the code defect in over-the-air (OTA) recov-
ery package verification on Android system, the Volez can add
anything into the official package in the promise of validity.
That exploit has been proved feasible on Motorola Droid when
the first OTA update was published (Lais, 2009; Drake et al.,
2014).

In 2010, Lucas Davi et al. presented an in-depth explana-
tion of the exploitation with a component-based attack model
(Davi et al., 2010). Suppose there is a non-privileged applica-
tion (A1) and a privileged application (A3) running on a device
simultaneously. The A1 does not have the permission to access
component of A3. However, by making use of the conceptual
weakness of permission mechanism of Android system, a non-
privileged caller in A1 could still have chance to access A3 if
there is an application in-the-middle (A2), who allows the access
from the unprivileged application A1 and meanwhile has been
granted the access to the privileged application A3. Therefore
the unprivileged application A1 might always be possible to
attain higher permission from another privileged application
if the medium A2 failed to implement necessary permission
checks, as shown in Fig. 2. In a real-world application, any privi-
leged software or service running on Android system can hold
the role of A2 in the model depicted by Lucas Davi et al. If there
is a vulnerability being found in this privileged software or
service, an exploit software, which plays the role of A1, can be
utilized by the adversary to corrupt the normal execution of
A2 and thereby obtain the superior privilege.

In 2011, Höbarth and Mayrhofer discussed more possibili-
ties to achieve privilege escalation by executing exploit program
(Höbarth and Mayrhofer, 2011). They focused on the Android
exploits that evolved from system level vulnerabilities and are
initiated through native executable programs, and they cat-
egorized Android exploits into 4 typical attack methods, such
as missing input sanitization, remapping shared memory, re-
striction of Anonymous Shared Memory (ashmem) access and
overflow of process number.

Vulnerabilities may not only come from the privileged soft-
ware made by Google but also possibly caused by defects from
Linux Kernel, System On Chip (SoC) design, manufacturer’s
Read-Only Memory (ROM), carrier addition and privileged third-
party applications. Once any vulnerability is found on the target
device, it may give us an opportunity to exploit and thereby
gain root permission (Google, 2014; Jon, 2014; Zhou et al., 2012).

The concern of exploitation based on the vulnerabilities has
already been raised up in early years of Android history (Sadun,
2009). Starting from 2011, researchers started actively looking
for security vulnerabilities on Android platform (Faruki et al.,
2015; Felt et al., 2011; Vidas et al., 2011). Almost at the same
time, various classification and survey of Android Common Vul-
nerabilities and Exposures (CVEs) were also conducted by
researchers (Zhang et al., 2015; Drake et al., 2014; Xu et al., 2016).
However, not all of the vulnerabilities can be exploited to es-
calate privilege and not all Android vulnerabilities come with
exploits that are ready-to-use. It costs plenty of time and effort
to understand vulnerability and come up with an exploit al-
gorithm. As Android has greatly strengthened the security
mechanism in recent years, the number of newly found ex-
ploitable vulnerabilities significantly reduced. However, new
vulnerabilities keep emerging and have evolved to exploits suc-
cessfully, such as use-after-free issue in Linux Kernel, Android
keystore stack buffer issue and security weakness in Android
Trustzone (Hay and Dayan, 2014; Shen, 2015; Xu and Fu, 2015).

3. Exploitation taxonomy

We propose a taxonomy for this survey to facilitate a holistic
and comprehensive understanding of the Android exploits.With
this taxonomy depicted in Fig. 3, we describe an exploit from
3 different perspectives – societal perspective, practical per-
spective, and technical perspective. From the societal aspect,
we discuss who the potential attacker is, what is his or her
motive in conducting the exploitation, and the possible con-
sequence (risk) if such exploitation has been exercised. From
the practical perspective, we discuss the pre-requisite for the
exploitation, the steps to conduct exploitation, and the ex-
pected outcome (output) with the execution of the exploit.
Finally, from the technical perspective, we discuss all the key
elements of an exploit in an attack analysis model, including
attack surfaces, attack vectors, and vulnerable targets.

3.1. Societal perspectives

3.1.1. (S1) Attacker and (S2) Motive
We use the term attacker to present the role of the entity who
initiates the exploitation regardless if he or she is the ownerFig. 2 – Component-based permission attack model.

74 c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



of the device or has malicious intention. In consideration of
moral and legal qualms, most of the exploits are introduced
to the public as a tool to enable devices’ owners to gain su-
perior privilege in their daily usage. However, it does not
guarantee the exploit will never be used by people with ma-
licious intent. Hacktivists and cyber-spies could profit from
making use of exploit programs to gain control of the victims’
device stealthily without users’ consent or awareness. Thieves
could continue using the stolen devices by obtaining supe-
rior privilege even if those devices have been locked by their
owner. Terrorists can use exploits to control and interrupt the
normal operation of people’s smartphones. Moreover, exploit
may also be used by the law enforcement agencies or inves-
tigators to obtain evidence for forensic purpose.

3.1.2. (S3) Possible consequence
Many exploits gain privilege with some side effects such as
process crash or memory tampering, which may turn target
device into an unstable status or even worse like being bricked
resulting in loss of warranty. However, the risk of exploita-
tion with malicious intention is much greater than the personal
usage by the device owner. Attackers may inject virus or
ransomware into the exploit program and install them in the
target device once the exploit program acquired the superior
privilege. The virus and ransomware could then reproduce

themselves to harm other target devices. By stealing the sen-
sitive information stored on the target device, the victim may
possibly suffer from financial loss and leakage of commercial
secret. The society may get into chaos and panics if the exploit
has been utilized by terrorist to spread horrors and sabotage
the communication functions on users’ mobile devices. On the
other hand, using exploits legitimately can bring greater pos-
sibility to the law enforcement agencies or investigators to find
the key evidence from the devices of people involved.

3.2. Practical perspectives

3.2.1. (P1) Execution channel and (P2) Condition
Execution channel describes the approach that an attacker takes
to the exploit program to conduct exploitation. Condition
defines the pre-requisite that must be satisfied before the attack
is exercised. An exploit may request more than one condi-
tions to ensure a successful execution. The condition set of an
exploit usually varies with the execution channel. With the
knowledge of execution channel and all the necessary condi-
tions of an exploit, we can construct a scenario to present the
exploitation process on a real device. Here we define 4 differ-
ent execution channels and we will discuss the conditions for
each execution channel in following paragraphs.

Fig. 3 – Android exploit attack taxonomy.

75c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



App Execution: App execution describes the scenario that an
attacker embeds the exploit code together with superuser binary
files into an APK file and installs it on the target device to ex-
ercise the exploitation.The app containing exploit payload could
be installed through on-device download or USB connection.
Once the APK file has been installed on the target device, the
privilege escalation can be triggered by any user’s interaction
within the app’s interface, or even automatically while the app
is running in the background. If the malicious code has been
successfully executed, the privilege of the running process will
be temporarily escalated, and then a persistent root could be
obtained if the process with superior privilege copied the
superuser binaries to the system executable directory within
the Android system (Sun et al., 2015).

As the crafted APK containing exploit payload has almost
zero chance to be published in Google Play market due to the
pre-publish security check, the attacker must make sure the
target device has enabled the “unknown source installation”
option to allow the APK installation, and followed by the ex-
ecution on the target device. Moreover, if the attacker wants
to manually transfer the APK file to the target device through
USB connection, the attacker also needs to ensure that the target
device has enabled USB debugging and trusted the USB con-
nection with the computer where the attack originates.

Shell Execution: Running executable scripts or binaries on the
target device could be regarded as the most direct and effec-
tive way to conduct exploitation. To exploit, the attacker needs
to connect the target device with the PC through USB connec-
tion, upload the script or executable binary along with all
relevant files to a temporary directory on the target device by
calling Android Debug Bridge (ADB for short) “push” command,
and then execute the scripts or binaries in an ADB shell. Com-
pared with the app execution, shell execution comes with a
lower implementation cost and higher flexibility to apply to
different operating system versions or device models. In ad-
dition, a successful shell execution usually results in a shell
window with superior privilege, which brings convenience and
freedom to the attacker to manipulate the target device.

Despite the strength that shell execution exploits have, there
are still some restrictions that we should not ignore while con-
ducting binary exploitation. Before the exploitation take place,
what the attacker needs includes (1) a PC with drivers for both
the target device and ADB installed; (2) the physical owner-
ship of the target device to connect the device to the PC through
USB at the moment of exploitation; (3) the password to unlock
the screen of the target device, if any, to grant authorization
and enable USB debugging and trusted connection.

Remote Execution: Remote execution is another optional ex-
ecution channel to conduct exploitation on Android devices.
It does not require the physical connection or APK installa-
tion. Instead, remote execution usually targets some native
components of Android system, such as Webkit or media play-
back library, to attain the privilege escalation in distance
(Seacord, 2015; Ben, 2010). In practice, the attack source may
be a piece of malicious code pre-loaded into a web page or a
crafted media file. The exploitation will be triggered at the
moment when the target device user starts viewing or pre-
viewing the crafted web page or media file. During the
execution, the attack source code could achieve privilege es-
calation and then initiate a remote connection between the

target device and attacker’s machine, and in the end, pass the
full control of the target device to the attacker.

Remote execution stands out from the other exploitation
channels that require a physical connection, and it is one of
the trends of future exploitation on Android devices owing to
many advantages it has (Wei et al., 2017). Firstly, the remote
execution has excellent camouflage and anonymity because
it is possible to attain high privilege on Android devices without
a physical connection and victim’s awareness. Moreover, as the
attack originates from the network rather than local files or
applications, it will be difficult for security mechanism in
Android system or third-party anti-virus applications to detect
the exploitation by local scanning or static analysis. Never-
theless, remote exploits still have some restriction when
applying the exploitation in the wild rather than the labora-
tory. Even though such exploitation is physical connection-
free, the attacker still needs to ensure that his or her attacking
device is connected to the same network with the target device
and the IP address of the attacking device must be filled in the
malicious payload code prior to the exploitation.

Others: Besides those 3 types of common execution chan-
nels, there is an exception in the history of Android exploitation
called Volez. Volez is the first ever publicly released exploit that
takes advantage of one or more vulnerabilities of the target
device to obtain root privilege. The Volez program can modify
the factory OTA recovery image and insert su binary into the
image. After that, the attacker copies the crafted image to the
device storage and triggers the device recovery. The device op-
erating system will be reset to factory status but has su binary
located in system executable directory, which means the user
of the device could easily gain root privilege by installing a
superuser management app or calling “su” command in the
ADB shell. As the Volez does not follow any attack channel where
we mentioned above, we classify it and any similar future ex-
ploits as “others”.

3.2.2. (P3) Expected privilege
Root privilege is the ultimate goal of privilege escalation on
Android platform, however, sometimes it does not need to be
mandatory as some functions like camera and screenshot do
not require root privilege to invoke. Gaining code execution in
Android System Server or Media Server could also be consid-
ered as a successful exploitation under certain circumstance
(Davi et al., 2010). Many exploits can help attacker gain root
privilege directly. Nevertheless, there are some exploits tar-
geting high privileges other than root, for example, the system
user privilege, the shell privilege, privileges within subsys-
tems of the target device like baseband or trusted executable
environment (TEE), etc.

3.3. Technical perspectives

3.3.1. (T1) Attack surface
Attack surface represents a set of interactions and compo-
nents where an exploit takes advantage and initiates the attack
routine. By observing various exploits, we summarize attack
surfaces used by these exploits, furthermore we categorize those
attack surfaces into 3 groups – they are remote attack sur-
faces, local attack surfaces, and physical attack surfaces. The

76 c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



remote attack surfaces and local attack surfaces represent dif-
ferent approaches that the attacker uses to interact with the
target device. On the other hand, the local attack surfaces
contain the components within the Android operating system
where the exploit takes advantage to escalate privilege. It is
worth mentioning that an exploit may have multiple attack
surfaces from different categories to constitute a successful
attack.

(T1.1) Physical Attack Surface: Establishing USB connection
between the attack machine and the target device is the first
step for many exploitations. USB is the primary wired inter-
face for Android devices to interact with other devices. In an
active Android operating system, there is a service named ADB
daemon (adbd) standing by all the time to facilitate the
command operation and data transmission through ADB
channel. Once a trusted ADB connection has been set up, the
attacker can deploy an exploit by either executing correspond-
ing commands to install a crafted application, or starting a shell
session to run an executive file with attack payload. For that
reason, USB is treated as the most ubiquitous physical attack
surface exposed to diverse exploits on Android platform. In ad-
dition to the USB, there are some other physical connection
methods applicable for some Android devices and theoreti-
cally feasible to be the attack surface of exploitation, for
example, the SD Card and the HDMI connection. However, until
the date of this paper being drafted, there is no publicly re-
leased exploit found to use any physical connection method
other than USB.

(T1.2) Remote (Client-side) Attack Surface: The remote attack
is always a very popular and attractive topic because it gets
rid of physical restriction. Rather than a physical connection,
the attacker could execute the exploit program over a com-
puter network.

The web browser application is one of the major attack sur-
faces in remote attacks. One possible attack could be exercised
by Document Object Model (DOM) manipulation through
JavaScript. The malicious script injected by the attacker could
dynamically modify the structure and content of current web
page once loaded by the browser. In fact, due to the rich func-
tionality of the browser application, there are a lot of
opportunities for the attacker to explore the local attack sur-
faces from it. Among the existing Android exploits we surveyed,
Webkit Use-After-Free is a typical browser attack which inserts
a script into the space that has just been freed, and hereby
achieves privilege escalation. Then it creates a remote shell
window to allow the attacker to remotely control the target
device.

Besides the browser, many web-powered applications on
Android platform also has very high possibilities to be chosen
as the attack surface during remote attacks. Most of the ap-
plications that work based on Internet service are implemented
by making use of standardized web service APIs and librar-
ies, for example, the SSL/TLS authentication and the embedded
browser engine called WebViews. The components using stan-
dard WebViews libraries and APIs will very possibly reveal the
potential attack surfaces. For example, in 2015, an exploit called
StageFright has been found to take advantage of media pre-
viewing library on some Android devices. It can gain control
of the victim’s device through a reverse shell by sending a
crafted media file which contains malicious payload and then

being previewed within victim’s device. A web-powered mobile
application is selected to be the attack surface during the dem-
onstration of StageFright exploitation.

Electronic mail (E-mail) client application is another po-
tential attack surface for the remote attack. As most of the
mainstream E-mail service providers allow users to attach any
type of file in their messages, the attacker could insert mali-
cious script into a document or media file and send to the
victim through an E-mail message, then deliver an attack to
the browser or other vulnerable applications to the victim’s
device.

(T1.3) Local Attack Surface: Local attack surfaces represent the
attack point initiated by a program or script which is already
executing on the victim’s device. For most of the exploit pro-
grams, the local attack surface is the first step and a necessity
of actual vulnerability exploitation. Here we summarize 6 dif-
ferent common attack surfaces in this category.

(T1.3.1) File System: Due to the Unix lineage of the Android
system, the file system is one of the most frequently men-
tioned attack surfaces to conduct the local attack. The file
system defines ownership and permission for each file entry.
Attackers will have a chance to exercise exploitation if there
is no sufficient restriction being enforced for the file permis-
sion assignment. One typical file system attack is taking
advantage of inadequate security implementation in init.rc file
to exercise a symbolic link attack (Drake et al., 2014). By chang-
ing /data/local folder permission to make it writable by the user
and shell group, the user can reboot the device and then set
the ro.kernel.qemu value to 1 in local.prop file. As the result,
the user of device obtains the root privilege. We will discuss
the real application of the exploitation targeting Android file
system in next technical perspective T3.

(T1.3.2) Daemons: ADB and Zygote are two daemons most
prevalently exploited by attackers. When we initiate an ADB
session on Android devices, the ADB daemon (adbd process)
starts running as the root user and then drops its privilege to
the shell user before it gets ready to be used. However, in old
versions of Android up to 2.2, the ADB daemon does not imple-
ment an adequate check to the return value of the setuid call
at the moment of dropping privilege from root to the shell user.
Similarly, the Zygote daemon also gives root user privilege to
all the processes forked from it, and then drops privilege once
the user who forks process from it has been confirmed. Since
both daemons are originated from root user, they become
popular attack surfaces to exercise an exploitation for root
access. We will explain more about this process later in daemon
abusing attack vector.

(T1.3.3) System Calls: System calls constitute an important
type of attack surface in the Android system. An attack can
exercise by making use of the vulnerabilities in the Linux kernel
of the Android system, invoking system calls with malicious
data or arguments and then tampering the system kernel to
attain higher privilege. For example, TowelRoot/futex exploit is
one of the best-known exploits in early versions of the Android
operating system. It takes advantage of code defects in relock
and requeue functions defined in futex.c in the Linux kernel
source code. When attackers running the exploit program, those
vulnerable functions will be called with malicious arguments
and in an inappropriate manner. As a result, the addr_limit
value of the current thread has been modified and the user

77c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



privilege of the current thread has been escalated correspond-
ingly. Another exploit libperf_event targets on the
perf_swevent_init function in the Linux kernel. It passes a nega-
tive integer as an argument of perf_swevent_init function to
crash the current thread and then achieves arbitrary code ex-
ecution to attain privilege for the attacker.

(T1.3.4) Drivers: In the Android platform, drivers usually rep-
resent a bundle of libraries or modules that bridge the gap
between user applications and a hardware or native system
service. In fact, there are lots of drivers existing in the oper-
ating system of an actual Android device.We group these drivers
into 3 types on the basis of their functionalities.

The first type of driver is called standard drivers (more of
Linux side), which are ported from the Linux kernel. This type
of drivers usually serves as enablers of the basic hardware, such
as Bluetooth and audio. The attacker can migrate a driver vul-
nerability or issue residing in the Linux system to the Android
platform. For example, there is an exploit called dirtyCow which
is essentially found on Linux platform but later proved that
works on the Android operating system, too. It makes use of
race conditioning vulnerability in tty (controlling terminal)
driver, turns the read-only mapping of a file to writable status
and finally gains privilege.

Another type of driver is Android specified drivers, which
are implemented to support the exclusive functionalities of the
Android system on the basis of the Linux kernel. Many fea-
tures of the Android system such as the Anonymous Shared
Memory (ashmem), binder, logger, and power management, are
all enabled by Android specific drivers. Drivers belonging to this
category can be treated as attack surface to conduct exploi-
tation. For instance, a famous exploit during the early stage
of the Android history called KillingInTheNameOf and its variant
psneuter exploit are all using ashmem driver as the local attack
surface.

Last but not the least, the vendor drivers also play a key
role in the local attack surface family. Due to the uneven quality
of the drivers’ implementation by diverse hardware vendors,
the APIs offered by vendor drivers often bring defects and there-
fore are used by attackers to conduct exploitation. Based on
our findings, the first exploit that uses vendor driver as the
attack surface is named levitator and released in 2011 (Drake
et al., 2014). It takes advantage of the defect in APIs offered
by PowerVR SGX chipset driver to corrupt the kernel memory
and gain privilege. From then on, the exploits using vendor
drivers as the primary local attack surface emerged quickly and
reserved a significant proportion among all exploits since 2013.

3.3.2. (T2) Attack vector
Attack vector represents the concrete attack method used by
an exploit program to gain privilege. The pair of attack vector
and attack surface depicts an attack model of exploitation. For
some complex exploits, there may be more than one attack
vectors existing during different phases of an attack. We sum-
marize the attack vectors for different exploits according to the
taxonomy of attack surface we made.

(T2.1) Daemon Abusing: As we mentioned previously, the ADB
daemon (adbd) in Android system is designed to drop its privi-
lege from the root to shell before itself being presented for user
interaction. But unfortunately, the ADB daemon does not prop-
erly check the return value of setuid function in Android

versions prior to 2.3, which leaves a chance of gaining root privi-
lege by interrupting the privilege dropping process to attackers.
In 2010, Sebastian Kraphmer found there is a threshold value
specifying the maximum number of co-existing ADB pro-
cesses that the Android system could normally accomplish the
privilege dropping action (Drake et al., 2014). Once the thresh-
old value is being reached, the newly initiated ADB processes
are presented to the user with root privilege.This kind of attack
was later used in Sebastian’s exploit named RageAgainstTheCage.
Thereafter, abusing ADB has been mentioned again in 2012 in
Z2 exploit. By making use of security issues in ADB backup func-
tion on some Sony Xperia devices, the exploit program creates
a race condition and injects a privileged symbolic link into the
system – by doing so the read-only system properties could
be tampered and eventually the ADB will run as root user.

Abusing Zygote process is another example of daemon
abusing on Android device. Zygote serves as the father process
in the Android system, where all Android applications are
started by being forked from the Zygote process. However, this
forking procedure has similar privilege assigning routine with
ADB daemon. When a new process is forked by Zygote, the
Zygote by default gives the newly generated process with root
privilege and then drops its privilege if the new process is ini-
tiated by the local user. Some exploits, such as Zimperlich/
zygote jailbreak and Zysploit, make use of the similar defects in
Zygote that the privilege lowering stage can be bypassed once
the number of processes under one specific application user
ID (UID) has reached its maximum value. As the result, the up-
coming processes forked by Zygote under same application UID
will run as root user.

(T2.2) File Permission and Symbolic Link Attack: File permis-
sion and symbolic link (symlink) attacks have been used in
many exploits in Android versions up to 4.1. During the Android
booting up, an init function will be called to execute the com-
mands listed in init.rc script. The initialization commands
contain a couple of folder creation (mkdir) actions, changing
permission (chmod) actions and changing owner (chown)
actions. Attackers usually look for security issues from this ini-
tialization procedure, and then create a symlink within the
space where they are going to set with higher privilege. By doing
this, attackers are able to make protected directories user-
writable and then they can overwrite the local.prop file and
set ADB user to root.

As most of these exploits make use of security issues in the
third-party customized system image rather than stock Android,
the file permission and symlink attack exploits are overall brand
specific or device model specific, for example, the TacoRoot for
HTC models, TwerkMyMoto for Motorola models and NachoRoot
for Asus models. This type of attack vectors has been miti-
gated since Android version 4.2 as Android added extra security
semantics in the execution of init script to prevent the per-
mission and file system from being exploited.

(T2.3) Shared Memory Remapping: As mentioned earlier,
Android has its own shared memory subsystem called ashmem.
Android offers a number of richer and simpler APIs to pro-
grammers for performance improvement by enabling developers
to utilize shared memory wisely. Android system allows any
user to create and map a region in shared memory, and then
execute read and write actions in a very efficient manner. Un-
fortunately, the ashmem might also be used by the attacker to

78 c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



map and tamper the protected contents. Taking the exploit
KillingInTheNameOf as example, due to the fact that system does
not properly restrict local user to access the system proper-
ties space in early versions of the Android operating system
like 2.x, the attacker could remap the space where local.prop
is located, and thereby change the ro.secure property to make
the ADB process bypass the privilege dropping operation in
future booting.

(T2.4) Memory Corruption: Memory corruption is the attack
vector that is commonly adopted for exploiting kernel and driver
vulnerabilities. It occupies larger proportion among all avail-
able attack vectors for exploitation on the Android platform,
especially after carrying a large scale of bug fixing and greatly
strengthening Android security mechanism of Google since past
few years ago. Memory corruption is a broad concept that de-
scribes all the approaches to alter the normal execution of the
target device by memory manipulation. Many typical memory
corruption methods like stack overflow, integer overflow,
dereference of the null pointer and format error, could be found
in available Android exploits.

To conduct an attack, the attacker usually chooses a privi-
leged process as the target and then carries out memory attack
by all means to crash the target process. Once the memory ma-
nipulation has been successfully achieved, the attacker may
have a chance to execute arbitrary code on behalf of the privi-
leged process and thereby gain soft root on the target device.
For example, the Use-After-Free Remote Code Execution on Webkit
uses null point dereference as attack vector to exploit;
GingerBreak crashes the vold daemon by feeding a negative
integer to it to cause an integer overflow; and zergRush invokes
a libsysutils.so function with the wrong number of argu-
ments passing in, leading to a Return Oriented Programming
(ROP) chain to obtain soft root.

As the memory corruption is possible to occur at the
moment of every function invocation during the execution of
Android native program, there is no lack of memory corrup-
tion in our exploit survey results. It is hard to prevent memory
corruption completely when compared with other types of
attack vectors.

(T2.5) Remote Shell Control: All the attack vectors we list in
previous paragraphs are corresponding to local attack. In ad-
dition to local attack, the attacker also has to own an extra pair
of attack vector and surface to conduct a remote attack. Setting
up a remote shell control is the most commonly used attack
vector to conduct a remote attack. A remote shell control is
not initiated by the attacker but triggered by the user of the
target device – usually in an unaware manner. To prepare a
remote attack, the attacker needs to implement the payload
code which is able to start an ADB shell through the reverse
TCP or HTTP connection to the attacker’s machine, and then
embed the code into the exploit program. Thereafter the at-
tacker just needs to wait until the payload is triggered, followed
by a reverse shell launched by the target device.

Gaining remote shell control does not bring the attacker with
a root superior privilege. However, it links a remote circum-
stance up with local attack methods and thereby makes
exploitation without physical connection possible. In our survey,
we can find the presence of remote shell control in all remote
exploits, for example, the Use-After-Free Remote Code Execution
on Webkit and StageFright.

(T2.6) Others: Among the exploits we found during this
survey, there are some outdated, unrepresentative or undis-
closed attack vectors. For example, an exploit named StumpRoot
doesn’t provide any disclosure of technical details or source
code to the public. The attack vector used by exploit Volez is
outdated and unrepresentative when compared with other ones.
In this paper, we classify those uncommon and unknown attack
vectors as “others”.

3.3.3. (T3) Vulnerable target
Vulnerable target describes the source of vulnerability where
the attacker targets. An exploit could only be designed and
implemented once the vulnerable target is confirmed.The miti-
gations of Android exploits are tailored to the vulnerable target
correspondingly. In this paper, we present 5 different types of
vulnerable targets to cover the existing cases of Android
exploitation.

(T3.1) File System: The file system as a type of vulnerable
target, is the most common focus of the file permission and
symbolic link attack (refer to Section 3.3.2, Technical perspec-
tive T2.2). All Android exploits targeting file system are achieved
by conducting file permission and symbolic link attack. The ul-
timate goal of an exploit targeting Android file system is to
change the ownership of file for either content tampering or
illegal execution. For example, changing the value of
ro.kernel.qemu to 1 in the local.prop file.

Most of the vulnerabilities relating to this type of Android
exploit are caused by the vendors’ customization in Android,
therefore the exploit attacking Android file system usually varies
with devices’ manufacturer and hardware configuration. The
file system exploits used to be a common type of exploits on
Android platform until the Android version 4.2 when the
O_NOFOLLOW semantics has been introduced to prevent the
symbolic link attack (Google, 2017e). Since version 4.3, Android
enforces the SELinux model to regulate all permission in-
volved activities within Android system.

(T3.2) System Component: We group all the Google-
implemented components located in middleware layer,
framework layer and application layer of Android architec-
ture (refer to Fig. 1) as “system components”. We use the
term “system exploits” to represent exploits targeting vulner-
abilities from system components. The Android components
which provide either interface to native level development or
user space access are often exploited by attackers. For example,
the system services, native libraries, daemons, and Android
shared memory (ashmem). The first ever publicly released
exploit program on Android platform is a system exploit
called “Volez”, which manipulates the system recovery service
to place superuser binary into the system executable direc-
tory on victim’s device. There are some other milestones
where exploits are categorized as system exploits, such as
the KillingInTheNameOf that takes advantage of ashmem access
issue to gain root access, the RageAgainstTheCage that targets
vulnerabilities in Android adbd daemon to achieve privilege
escalation; and the StageFright that can exploit the library
with the same name in Android system to obtain high privi-
lege in silence.

Compared with other 4 groups of vulnerable targets, the
system components’ vulnerabilities are relatively easier to be
fixed by Android. The mitigation of system exploits usually

79c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



comes with a timely Android security patch or an operating
system update.

(T3.3) Linux Kernel: We use Linux kernel to represent those
vulnerable targets located in kernel layer components other
than the file system, which includes Linux kernel drivers,
process manager, and network controller. Unlike the Android
system vulnerabilities, Linux kernel vulnerabilities are mostly
found from the source code of the Linux kernel rather than
Google’s implementation in Android. Therefore, many vulner-
able targets that exploit other operating systems in Linux family
can also be migrated to Android platform. The exploitation tar-
geting Linux kernel on Android platform has been firstly
introduced in an exploit program named “exploid” in 2010. The
exploid selects init daemon in Linux kernel as the target, ex-
ploits a vulnerability by initiating memory corruption and gains
root privilege from the daemon.

Because the root user is designed as a part of privilege ar-
chitecture in the Linux kernel, it is difficult for the components
running on the Android platform to prevent privilege escala-
tion initiated from the kernel exploits. Furthermore, due to the
fact that the evolution of Linux kernel is usually slower than
the evolution of Android, it makes it harder in Android to iden-
tify and fix kernel vulnerabilities within a short period. As a
consequence, the Linux Kernel exploit usually works on mul-
tiple continuous version of Android systems.

(T3.4) Vendor Driver: The exploits in this category target hard-
ware abstraction layer (HAL) implementation. The history of
vendor driver exploits could be dated back to 2010. Levitator
is the first Android exploit that conducts an attack on devices
with specific hardware configuration containing PowerVR SGX
chipset. As the Android experienced a rapid growth in the past
few years, the great flexibility and diversity in hardware con-
figuration on Android platform makes vendor driver exploits
one of the major type of the exploitation.

Vendor driver exploits exclusively have 2 advantages. Firstly,
compared with TEE exploits, vendor driver exploits can esca-
late privilege to “system” or “root” level and return to the user
control directly; meanwhile, unlike the kernel exploits or system
exploits, vendor driver exploits make use of vulnerabilities
caused by the add-ons from various vendors rather than
Android implementation, which means Android cannot ex-
haustively and effectively fix all the issues via its version update
and hence may not be able to prevent from any induced ex-
ploitation in short time. Therefore, for the foreseeable future,
we believe that the vendor driver exploits will still be the ma-
jority of new exploits.

(T3.5) Trusted Execution Environment: Attacking trusted ex-
ecution environment (TEE) is a novel attempt at privilege
escalation. In 2015, a researcher called “laginimaineb” pub-
lished a series of blog articles and the proof-of-concept source
code to explain his idea to gain TEE level privilege from
Qualcomm TrustZone, which marks the first time that the TEE
was exploited (laginimaineb, 2015).

Compared with exploits targeting other types of vulner-
able targets, the TEE exploits have a very strict requirement
but low practicability. Sometimes TEE exploits require a device
flashed with customized ROM or that has Address Space Layout
Randomization (ASLR) disabled. However, the outcome of a suc-
cessful exploitation is just the privilege within TEEOS module
rather than the root user.The attacker may not be able to attain

full control of the victim device, instead, the attacker could gain
access to the credential data like fingerprint or iris image, which
is very sensitive as well. Currently TEE exploits are still in the
theoretical stage, however, it is an inspiration to the future ex-
ploitation when security mechanism of the Android system
becomes too strong to obtain root directly.

4. Survey and classification

We conduct a survey of publicly released Android exploits
from multiple sources and we find 63 exploits covering all
Android versions up to 7.0. By reading their descriptions,
searching for available source codes and studying correspond-
ing vulnerabilities, we collect rich details of these 63 exploits.
In this paper, we summarize all the key details that are
useful for upcoming analysis, and we organize them into a
table. Table 1 shows the complete collection of all 63 exploits
including their names, authors, release years, attack details,
details of corresponding recorded vulnerabilities, affected
devices and Android versions and our evaluation outcome. In
order to distinguish an exploit from the others and facilitate
our analysis, we focus on practical and technical perspec-
tives of Android exploitation and we select 3 classification
criteria from the taxonomy we proposed in the previous section.
In the remaining contents of this section, we present our
classification based on these 3 selected criteria and then we
discuss our observation on each of them.1 The classification
is also included in Table 1.

4.1. Execution channel

We find all three kinds of execution channels from the 62 ex-
ploits except Volez. For convenience, we call those exploits using
app execution channel as “app exploits”, those exploits trig-
gered by shell scripts through the physical connection as “shell
exploits”, and those exploits executed by embedded payload
code via remote environment will be notated as “remote ex-
ploits”. Fig. 4 demonstrates the distribution of exploits according
to execution channels.

App Exploit. There are 19 exploits coming with a stand-
alone APK file, reserving 30.6% among all exploits in our
collection. All those exploits, except GingerBreak and TowelRoot,
could only work on devices in a specific hardware configura-
tion or in some exact models. The GingerBreak takes advantage
of vulnerabilities in vold daemon and has been fixed in updates
of Android version 2.3.4 and 3.0 in 2011, which are consid-
ered as a pretty early stage of Android history. Another exploit
named TowelRoot used to be popular due to its long list of sup-
porting device; however, its functionality to successfully gain
root privilege stops at Android version 4.4.4, which is another
outdated system nowadays (Wikipedia, 2017b). Therefore, we
can optimistically conclude that most of the Android devices
in the market are safe against existing APK exploits.

1 As we mentioned in our taxonomy, we define those exploits with
outdated, unrepresentative or undisclosed attack vectors as others.
We do not consider exploits from this category in upcoming dis-
cussion due to their uncommonness.

80 c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



Table 1 – Survey result of android exploits.

Year Exploit Author Execution
channel1

Attack
vector2

Vulnerable
target3

Vulnerability
(CVE)

Vulnerability
type (CWE)

Target devices Affected
versions

Verified

2009 1 Volez Christopher Lais (Zinx) O O SYS N.A. N.A. Motorola Droid 2.0 and 2.0.1 –

2010 2 exploid Sebastian Krahmer S M KRN CVE-2009-1185 Input Validation (CWE-20) All Up to 2.3.4 ✓

3 RageAgainstTheCage Sebastian Krahmer S D SYS N.A. N.A. All Up to 2.2 ✓

4 Use-After-Free Remote Code

Execution on Webkit

Itzhak Avraham R R,M SYS CVE-2010-1807 Input Validation (CWE-20) Unspecified4 2.0 to 2.1 –

5 Zimperlich/zygote jailbreak Sebastian Krahmer S D SYS N.A. N.A. All Up to 2.2 ✓

2011 6 KillingInTheNameOf Sebastian Krahmer S A SYS CVE-2011-1149 Permissions, Privileges and

Access Control (CWE-264)

All 2.1 to 2.2.2 ✓

7 psneuter ashmem exploit Scott Walker (scotty2) S A SYS CVE-2011-1149 Permissions, Privileges and

Access Control (CWE-264)

All Unspecified ✓

8 levitator Jon Larimer and Jon

Oberheide

S M VND CVE-2011-1350;

CVE-2011-1352

Information Leak/Disclosure

(CWE-200) Buffer Errors

(CWE-119)

Devices with the

PowerVR SGX chipset

1.0 to 2.3.5 –

9 Webkit use-after-free MJ Keith R R,M SYS CVE-2010-1119 Resource Management Errors

(CWE-399)

Unspecified 2.0 to 2.1.1 –

10 Zysploit Joshua Wise (jwise) S D SYS N.A. N.A. All Up to 2.2 ✓

11 GingerBreak Sebastian Krahmer A M SYS CVE-2011-1823 Numeric Errors (CWE-189) All 2.1 to 2.3.3, 3.0 –

12 sock_sendpage local root/

asroot/Wunderbar

Christopher Lais (Zinx) S M KRN CVE-2009-2692 Buffer Errors (CWE-119) All Up to 3.2.6 –

13 zergRush Revolutionary S M SYS CVE-2011-3874 Buffer Errors (CWE-119) All 2.2.x till 2.2.2, 2.3.x till

2.3.6

–

14 TacoRoot Justin Case (jcase) S P FLS N.A. N.A. EVO 4G and some other

HTC models

2.x –

2012 15 NachoRoot Justin Case (jcase) S P FLS N.A. Permissions, Privileges and

Access Control (CWE-264)

ASUS Transformer

Prime

4.0 to 4.0.4 –

16 TPSparkyRoot sparkym3 S P FLS N.A. Permissions, Privileges and

Access Control (CWE-264)

ASUS Transformer

Prime

4.0 to 4.0.4 –

17 mempodroid/mempodipper/

mem exploit

Jay Freeman (saurik) S P KRN CVE-2012-0056 Permissions, Privileges and

Access Control (CWE-264)

Acer A200 Tablet, Galaxy

Nexus, Motorola RAZR,

Nexus S, Asus

Transformer Prime

4.0.1 to 4.0.3 –

18 Z2 Root Exploit Sacha (xsacha),

cubundcube and

Andreas Makris (bin4ry)

S D SYS N.A. N.A. Many Sony Xperia

models, 3.x and 4.x

before 4.1.1

Unspecified –

19 LG lit giantpune A M VND CVE-2012-4220 N.A. LG (with LM3530

backlight driver)

Unspecified –

20 Exynos Abuse/Sam (exynos-

mem) Exploit

alephzain S M VND CVE-2012-6422 Permissions, Privileges and

Access Control (CWE-264)

Samsung (Exynos 4

based)

Unspecified ✓

21 diaggetroot goroh kun A M VND CVE-2012-4220 HTC J Butterfly Unspecified –

81
c
o
m
p
u
t
e
r
s

&
s
e
c
u
r
it

y
7
6

(2
0
1
8
)
7
1
–
9
1



Table 1 – Continued

Year Exploit Author Execution
channel1

Attack
vector2

Vulnerable
target3

Vulnerability
(CVE)

Vulnerability
type (CWE)

Target devices Affected
versions

Verified

2013 22 Qualcomm Gandalf camera

driver exploit

alephzain S M VND CVE-2013-2595 Permissions, Privileges and

Access Control (CWE-264)

Many models made by

Asus, Huawei, LG etc.

Unspecified ✓

23 Motochopper/

fb_mem_exploit

Dan Rosenberg (djrbliss) S M KRN CVE-2013-2596 Numeric Errors (CWE-189) Motorola (Atrix HD, Razr

HD, Razr M) and other

devices with

Snapdragon S4 series

Up to 4.2 ✓

24 libperf_event Hiroyuki Ikezoe S M KRN CVE-2013-2094 Numeric Errors (CWE-189) Nexus 4 and Some

Japanese models made

by HTC, Fujitsu, Sharp,

Sony and LG

4.0 to 4.3.1 (Linux Kernel

version before 3.8.9)

✓

25 LG Sprite software backup/

LGPwn exploit

Justin Case (jcase) A P FLS CVE-2013-3685 (R)5 Race conditions 43 LG Optimus models Unspecified –

26 libfj hdcp fi01 S M VND N.A. N.A. F05D, ISW11F and some

other Docomo Fujitsu

models

Unspecified –

27 Defy republic init_runit Justin Case (jcase) S M VND CVE-2013-4777;

CVE-2013-5933

Configuration (CWE-16) Buffer

Errors (CWE-119)

Motorola Defy XT 2.3.7 –

28 libdiag Exploit Hiroyuki Ikezoe S M VND N.A. Input Validation (CWE-20)

Numeric Errors (CWE-189)

Many models made by

NEC, Fujitsu, etc

Unspecified –

29 Boromir (camera-isp) exploit* alephzain A M VND N.A. N.A. Many models (MTK

based)

Unspecified –

30 Gemli (dev/DspBridge)

exploit*

alephzain A M VND N.A. N.A. Many models (TI OMAP

36XX based)

Unspecified –

31 Frodo (exynos-mem) exploit* alephzain A M VND N.A. N.A. Many models (Exynos

based)

Unspecified –

32 Legolas (graphics/fb) exploit* alephzain A M VND N.A. N.A. Many models (Exynos

based)

Unspecified –

33 Aragorn (video1) exploit* alephzain A M VND N.A. N.A. Many models (Exynos

based)

Unspecified ✓

34 Merry (s5p-smem) exploit* alephzain A M VND N.A. N.A. Many models (Exynos

based)

Unspecified –

35 Android put_user/get_user

exploit (Metasploit module)

fi01, cubeundcube and

timwr

R R,M KRN CVE-2013-6282 Input Validation (CWE-20) Unspecified Linux kernel before

3.5.5 on the v6k and v7

ARM platforms, fixed in

Jul 2013

✓

36 TwerkMyMoto Justin Case (jcase) S P FLS N.A. N.A. Motorola Razr I 4.1.2 –

37 Pippin (memalloc) exploit* alephzain A M VND N.A. N.A. Many K3V2 based

models made by

Huawei

Unspecified –

38 Gollum (amjpegdec) exploit* alephzain A M VND N.A. N.A. Unspecified (AMLogic

based)

Unspecified –

39 Faramir (camera-sysr)

exploit*

alephzain A M VND N.A. N.A. Many models (MTK

based)

Unspecified –

82
c
o
m
p
u
t
e
r
s

&
s
e
c
u
r
it

y
7
6

(2
0
1
8
)
7
1
–
9
1



Table 1 – Continued

Year Exploit Author Execution
channel1

Attack
vector2

Vulnerable
target3

Vulnerability
(CVE)

Vulnerability
type (CWE)

Target devices Affected
versions

Verified

2014 40 Barahir (Vcodec) exploit* alephzain A M VND N.A. N.A. Many models (MTK

based)

Unspecified –

41 WeakSauce Justin Case (jcase) and

Sean Beaupre (beaups)

A P FLS CVE-2014-3847 (R) N.A. HTC One m7, m7 on

Verizon, m8 and Droid

DNA

4.1 to 4.4.4 –

42 Qualcomm buffer overflow in

acdb audio driver

(msm_acdb_exploit)

fi01 S M VND CVE-2013-2597 Buffer Errors (CWE-119) Unspecified Linux kernel 2.6.x - 3.x

before Jun 2013

–

43 Pie/vold asec Justin Case (jcase) S P SYS N.A. N.A. Moto X on locked

carrier

2.2.1 to 4.4.2 –

44 TowelRoot/futex exploit George Hotz (geohot) A M KRN CVE-2014-3153 Permissions, Privileges and

Access Control (CWE-264)

All Up to 4.4 ROMs built

before Jun 2014

✓

45 StumpRoot IOMonster, Justin Case

(jcase), autoprime and

PlayfulGod

A O VND N.A. N.A. Many models made by

LG

Unspecified –

46 Android Browser exploit

(ht_webkit_Android4)

Hacking Team R R,M SYS CVE-2011-1202;

CVE-2012-2825;

CVE-2012-2871

Input Validation (CWE-20) Unspecified 4.0 to 4.3 –

2015 47 ObjectInputStream local root Di Shen (retme7) A M VND CVE-2014-4322;

CVE-2014-7911

N.A. Nexus 5 4.4.4 ✓

48 libmsm memory corruption

in camera driver

(libmsm_vfe_read_exploit)

Hiroyuki Ikezoe S M VND CVE-2014-4321 (R);

CVE-2014-4324 (R);

CVE-2014-0975 (R);

CVE-2014-0976 (R);

CVE-2014-9409 (R)

Input Validation (CWE-20) Unspecified Unspecified –

49 PingPongRoot Keen Team A M KRN CVE-2015-3636 Other (NVD-CWE-Other)

Uninitialized data structure

Samsung Galaxy S6,

Samsung Galaxy S6

Edge, HTC One (M9)

5.0 to 5.1.0 –

50 Mate7 TrustZone Exploit Di Shen (retme7) S M TEE CVE-2015-4421 (R);

CVE-2015-4422 (R)

N.A. Huawei Mate7 Unspecified –

51 Mtkfb Exploit nforest@KeenTeam S M VND N.A. N.A. Unspecified (MTK

MT658X and MT6592

based)

Unspecified –

52 Full TrustZone exploit for

MSM8974

laginimaineb S M TEE N.A. N.A. Nexus 5 A crafted ROM built

based on 4.4.4

–

53 QSEECOM driver memory

corruption

laginimaineb S M TEE CVE-2014-4322 Buffer Errors (CWE-119) Unspecified Unspecified –

54 StageFright Remote Code

Execution (Metasploit module)

Joshua Drake (jduck)

and NorthBit

R R,M SYS CVE-2015-1538;

CVE-2015-1539;

CVE-2015-3824;

CVE-2015-3826;

CVE-2015-3827;

CVE-2015-3828;

CVE-2015-3829

Buffer Errors (CWE-119)

Numeric Errors (CWE-189)

Nexus 5, Nexus 6, Nexus

7 and Samsung Galaxy

S5 (SM-G900V)

5.0 to 5.1.1 ✓

83
c
o
m
p
u
t
e
r
s

&
s
e
c
u
r
it

y
7
6

(2
0
1
8
)
7
1
–
9
1



Table 1 – Continued

Year Exploit Author Execution
channel1

Attack
vector2

Vulnerable
target3

Vulnerability
(CVE)

Vulnerability
type (CWE)

Target devices Affected
versions

Verified

2016 55 mediaserver code-exec laginimaineb S M SYS CVE-2014-7920 (R);

CVE-2014-7921 (R)

Permissions, Privileges and

Access Control (CWE-264)

Unspecified 4.3 to 5.1 –

56 sensord local root s0m3b0dy S M VND N.A. N.A. LG L7 and other devices

have sensord deamon

Unspecified –

57 Metaphor Hanan Beer@NorthBit R R,M SYS CVE-2015-3864 Numeric Errors (CWE-189) Nexus 5 5.0 to 5.1.1 –

58 iovyroot/pipe inatomic idl3r S M KRN CVE-2015-1805 Code (CWE-17) LG G Flex 2, many

models made by Sony,

Huawei and other

brands

4.4.3 to 6.0 ✓

59 Use-After-Free camera driver

exploit

betalphafai (Edward

Hung)

S M VND CVE-2015-0568 Use After Free (CWE-416) Unspecified (Qualcomm

MSM 7x30)

Unspecified (Linux

kernel 3.0.x)

–

60 QSEE TrustZone laginimaineb S M TEE CVE-2015-6639 Permissions, Privileges and

Access Control (CWE-264)

Nexus 6 Unspecified –

61 prctl_vma_exploit betalphafai (Edward

Hung)

S M KRN CVE-2015-6640 Permissions, Privileges and

Access Control (CWE-264)

Unspecified 5.1.1 and 6.0 ✓

62 Qualcomm TrustZone laginimaineb S M TEE CVE-2016-2431 Permissions, Privileges and

Access Control (CWE-264)

Unspecified Unspecified –

63 Dirty Cow (dirtyc0w) timwr S M KRN CVE-2016-5195 Race Condition (CWE-362) Unspecified Up to 7.0 –

1
Legend for execution channels: (A) App Execution Channel; (S) Shell Execution Channel; (R) Remote Execution Channel and (O) notates Other Channels.

2
Legend for attack vectors: (A) Shared Memory (ashmem) Remapping; (D) Daemon Abusing; (P) File Permission and Symbolic Link Attack; (M) for Memory Corruption; (R) Remote Shell Control and (O) Others.

3
Legend for vulnerable targets: (FLS) File System; (KRN) Linux Kernel; (SYS) System, (TEE) Trusted Execution Environment and (VND) Vendor Drivers.

4
The term “Unspecific” means the information has neither been disclosed by the author nor mentioned by any trusted source from Internet.

5
The annotation “(R)” after a CVE identifier represents as “RESERVED”, which has been reserved for use by a CVE Numbering Authority (CNA) or researcher without all details being publicly disclosed.

*Discrete exploits integrated in framaroot root application. Those exploits could be initiated by either running a shell command or app execution.

84
c
o
m
p
u
t
e
r
s

&
s
e
c
u
r
it

y
7
6

(2
0
1
8
)
7
1
–
9
1



Shell Exploit. Shell exploits take the majority of our col-
lection according to Fig. 4. We totally collect 37 shell exploits
in this survey, which comprise over 59% of the entire collec-
tion. Among these 37 shell exploits, three exploits (Defy republic
init_runit, TwerkMyMoto and Pie/vold asec) come with Java source
codes that the attacker has to compile and compress them into
an executable JAR file to conduct the exploitation; three ex-
ploits targeting the file system (TacoRoot, NachoRoot and
TPSparklyRoot) are provided with an ADB shell script rather than
executable binaries; and the 31 exploits left are all C codes
which the attacker needs to configure the project with speci-
fied hardware architecture (e.g. arm64 or x86) (Google, 2017f)
and build with Android Native Development Kit (NDK) to gen-
erate executable binaries. According to the information listed
in Table 1, those 37 exploits cover all Android system ver-
sions up to 6.0 and most of the mainstream device models.
Therefore in the case of all three pre-requisites (refer to Section
3.2.1, Practical perspective P2) of shell execution have been com-
promised to the attacker, an Android device will have a great
probability to be successfully exploited if those shell exploits
have been put into a proper combination and executed.

Remote Exploit. Other than local USB connection, ADB also
provides developers with access to an unprivileged interac-
tion through a remote shell. In our collection, 9.7% of exploits
are classified as remote exploits. There are two exploits tar-
geting the Android StageFright library vulnerabilities, three
exploits targeting the Android Webkit library vulnerabilities,
and one exploit attaining root privilege by taking advantage
of a Linux kernel vulnerability. Taking StageFright Remote Code
Execution (hereafter referred to as StageFright for short) as an
example, it is a typical remote exploit that the attacker can
gain root privilege of the target device by hosting a crafted web
page containing media payload source code. The exploit will
be triggered automatically and executed once the user starts
browsing the crafted web page, and in the end, the exploit will
initiate a remote shell process to the attack machine to pass
the control of the target device to the attacker.

4.2. Attack vector

Classification by attack vector provides an intuitive percep-
tion to the methodology of Android exploitation. Based on the
taxonomy proposed in the Section 3, we summarize attack
vectors into 6 different categories. We demonstrate the growth
of exploits in different attack modes throughout the history
of Android system in Fig. 5.

Daemon Abusing Exploit. In this survey, we find four
exploits that gain privilege by abusing daemons running on
the Android system. Among the four daemon abusing ex-
ploits, the RageAgainstTheCage and Z2 Root exploit exhaust the
ADB daemon (adbd) to interrupt the privilege dropping pro-
cedure of all future generated ADB sessions; the other two
exploits – Zimperlich/zygote jailbreak and Zysploit impose similar
routine to the Zygote daemon as the Zygote daemon also
has privilege lowering mechanism while generating new
process. The issues of these two daemons have been progres-
sively fixed since the Android system version 2.3 was released
at the end of 2010. According to our observation, the growth

Fig. 4 – Type distribution of exploits by execution channel.

Fig. 5 – Growth of Android exploits with different categories of attack vectors from 2009 to 2016.

85c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



of this kind of attack has not appeared anymore in 2012 and
afterward.

File Permission and Symbolic Link Exploit. File permis-
sion and symbolic link attacks are also known as permission
attack or symlink attack elsewhere. There are 8 exploits gaining
root privilege by initiating a permission attack. Except for the
mempodroid/mempodipper exploit that makes use of a loophole
from the Android file permission to directly modify process
memory file, all the remaining 6 exploits take advantage of poor
security mechanism in critical directories or files, create a sym-
bolic link to either local.prop or uevent_helper and then tamper
the privilege assignment of the ADB shell service. As a result,
a successful exploit will return user an ADB session running
as root user.The permission mechanism on Android file system
is mature, safe and well organized. However, the attacker could
still find a flaw to exercise attack due to the negligence or defect
within the implementation of Android device manufacturer.
Owing to the improvement of Android security mechanism and
enhancement in security awareness from the device vendors,
it is rare to see new file permission and symbolic link attack
in recent years.

Shared Memory Exploit. Similar to daemons’ abusing, shared
memory remapping is another common approach to gain privi-
lege in early versions of the Android system. We find two
exploits that gain privilege by attacking the Android shared
memory (ashmem) – KillingInTheNameOf and psneuter ashmem
exploit. Both of them achieve privilege escalation by remap-
ping the shared memory region and tampering the value of
user ID assigned to ADB console. The ashmem vulnerability
could be fixed by adding a number of authentication checks
at the moment that the shared memory is accessed by any app
or process from user space. In fact, the relevant ashmem vul-
nerability has been fixed in very short time. As Fig. 5 depicts,
the number of shared memory attack cease to grow since 2011.

Memory Corruption Exploit. Memory corruption is the major
attack vector throughout the history of the Android exploita-
tion. Memory corruption exploits reserve over the half of all
available exploits since the very beginning phase of the Android
exploitation. Moreover, the memory corruption even becomes
the only feasible local attack vector to gain privilege in 2015
and 2016. It is also worth noting that besides the quantita-
tive growth, the diversity of memory corruption methods has
been greatly enriched as well. During the early years, the
memory corruption technique only covered format error (e.g.
exploid) and null pointer dereference (e.g. Use-After-Free Webkit).
But now, the memory corruption exploitation on the Android
platform almost covers all the memory manipulation on con-
ventional platforms, such as return-oriented programming. As
it is impossible to completely prevent memory corruption in
native level development for Android platform, we believe that
memory corruption exploits will continue to play the primary
role within Android exploit family in future.

Remote Shell Control Exploit. Compared with other attack
modes, remote shell control usually requires the user of the
target device, on purpose or unknowingly, to trigger the attack
process. Conducting remote shell control attack could indi-
rectly create an interface for the attacker and convert a remote
attack to a local attack for further privilege escalation. For that
reason, the remote shell control is usually executed together
with a certain local attack vector to complete the privilege es-

calation operation for the attacker in distance. Remote shell
control attack has a great advantage in camouflage and ano-
nymity, which are two important features of a good exploitation.
In this survey, we find 6 exploits that make use of this attack
vector to achieve remote attack throughout the history of
Android exploits. As mentioned earlier in Section 3.2 (Practi-
cal perspective P2), a successful remote shell control exploit
requires the attacker to be under the same network with the
victim’s device and moreover to know the IP address of the
victim’s device prior to generating exploitation payload. Due
to those reasons, even the growth of remote shell control ex-
ploits has never ceased since they were firstly introduced in
2010, the complicated execution procedure and strict condi-
tions make the remote shell control still not yet a mainstream
attack vector when compared with memory corruption.

4.3. Vulnerable target

Classification by vulnerable target could tell us where the ex-
ploitation originates. Moreover, we can gain an insight of the
Android exploits in defense perspective by grouping the ex-
ploits by their vulnerable targets and analyzing the quantitative
trend throughout the history of the Android system. Accord-
ing to the taxonomy in the previous section, we differentiate
the vulnerable targets of all exploits into five groups of com-
ponents within software part of the Android device. The
classification result is also in Table 1 and we depict the quan-
titative trends of exploits with different vulnerable targets in
Fig. 6.

File System Exploit. We find six cases of file system exploi-
tation among 63 Android exploits, and all six file system exploits
use file permission and symbolic link attack to gain privilege.
By analyzing each of those 6 exploits, we notice that the device
manufacturers’ implementation is the root cause of the ex-
ploitation. We find that all of them are applicable to a small
range of device models under the same brand, and the places
where exploitation takes place are either the initialization
scripts or the privileged factory software (e.g. backup and restore
app). The history of file system exploits starts in 2011 when
an exploit for some specific HTC models named “TacoRoot” has
been released. In early 2012, the author of TacoRoot, Justin Case,
released a variant called NachoRoot, which uses similar attack
but is designed for a different set of device models. Shortly after
that, another similar exploit TPSparkyRoot also has been pub-
lished within the same forum, targeting same devices as
NachoRoot. The other three exploits, LG Sprite software backup/
LGPwn exploit, TwerkMyMoto and WeakSauce, have subsequently
been released between 2013 and 2014 by Justin Case. At the
same time, both Google and device manufacturers have greatly
improved the security mechanism of Android devices. As the
result, new file system exploits have ceased to appear since
2015.

System Component Exploit. System implementation is the
second largest exploit target. There are a total of 16 system ex-
ploits released in the Android history, reserving over 25% among
all surveyed Android exploits. Except for Volez which targets
system recovery service and is counted as a special case for
the early Android versions, all the remaining 15 system ex-
ploits are targeting native libraries, daemons or ashmem. Two
exploits, KillingInTheNameOf and psneuert, take advantage of

86 c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



ashmem access issue and were published in 2011. Six ex-
ploits use daemons as their targets. The daemons which have
been abused for exploitation include vold, zygote and adbd.
Furthermore, there are seven exploits that conduct attacks by
invoking system calls to specific libraries. The targeted vul-
nerable libraries include Webkit, libsysutils, StageFright and media
server libraries.

It is noticeable to mention that the ashmem exploits only
appear in the new exploit list of 2011 due to the quick fix. Con-
sidering the limited number of daemons that are accessible
by user space processes, the growth of exploits caused by
daemon abusing was suspended in 2014. Starting from 2015,
all newly released system exploits are achieved by memory cor-
ruption against native libraries. There are a large number of
libraries in the Android system implementation and each of
them provides unique functionality and interface. Compared
with ashmem exploits and daemon exploits which target only
one or a few number of vulnerabilities, protecting the librar-
ies from memory corruption attack is a more challenging work
for Android.

Linux Kernel Exploit. Starting from the first Linux kernel
exploit “exploid” which is released in 2010, the number of Linux
kernel exploits (hereafter referred to as kernel exploits for short)
keeps growing every year. In this survey, we collect 11 kernel
exploits with their release date spanning from 2010 to 2016.
From the static analysis made on those 11 exploits, we find
there is only one kernel exploit called prctl_vma_exploit (2016)
that is exclusive to the Android platform. All the other 10 kernel
exploits are created as variants and share same vulnerabili-
ties and attack routines with corresponding exploits for Linux
operating system. Moreover, our analysis shows that kernel li-
braries and driver interfaces are the most frequently chosen
vulnerable targets by Linux kernel exploits. Attackers often make
use of flaws in input validation to create memory corruption
while invoking kernel services. We also find that many Android
exploits with long life cycle and wide support to different
devices are kernel exploits. For example, the TowelRoot de-

clares to be able to root all devices installed with Android
version up to 4.4; and PingPongRoot could easily root over 100
models of latest device models at that time like Samsung S6/
S6 Edge and HTC One.

Vendor Driver Exploit. There are 25 vendor driver exploits
being included in our survey. We find that all vendor driver ex-
ploits are achieved by memory corruption except for the
StumpRoot exploit (2013) which does not have enough details
disclosed. In addition, we also find that vendor driver ex-
ploits usually come in a group to achieve the maximum effort
and compatibility. For example, in 2012, an exploit making use
of Samsung driver has been published by “alephzain”. It is es-
sentially named Exynos Abuse but later changed to Sam exploit
when it is merged with some other vendor driver exploits
written by the same author in 2013. The new bundle of various
vendor driver exploits has been published as a one-click app
on XDA forum with the name “framaroot”. According to au-
thor’s statement, the framaroot has integrated 12 different
vendor driver exploits by 2014, covering over 450 device models
from multiple brands (Alephzain, 2013).

Trusted Execution Environment Exploit. We find five TEE ex-
ploits during this survey. There are four of “laginimaineb”
Qualcomm TrustZone exploits and 1 Huawei TEE exploit named
Mate7 TrustZone exploit in our survey collection. By reading the
authors’ instructions of those exploits and analyzing their
source code, we find that all of them can only achieve limited
code execution with specific TEE level privilege, rather than
flashing superuser binary or returning a root shell to the at-
tacker. Therefore, in the current stage, TEE exploits still have
obvious disadvantage in practicability and convenience when
compared with others.

5. Evaluation and discussion

We perform an evaluation to observe the execution of ex-
ploits and validate their functionalities on Android devices.The

Fig. 6 – Growth of Android exploits with different categories of vulnerable targets from 2009 to 2016.

87c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



testing has been conducted based on 18 different Android
devices that we have. These 18 devices cover a wide range of
manufacturers and system versions, including not only early
and classical models in the Android history like HTC Hero, but
also those later devices which are sold in smartphone market
such as Samsung Galaxy S7. We filter out those exploits which
are not compatible with our testing devices. Furthermore, we
also remove an old exploit called sock_sendpage that we cannot
manage to compile. As the result, there are 17 exploits being
selected and formally tested in our evaluation. Those 17 ex-
ploits can be found in Table 1 where the check-marks are
inserted within the column titled “verified”.

5.1. Preparation

Before conducting the evaluation, we make sure every test
device has Internet access and that both “USB debugging” and
“unknown sources” options are enabled. Moreover, for the
purpose of authenticity and accuracy, we also verify both root
status and bootloader status of the target device to be nega-
tive before testing each exploit.We depict the 18 Android devices
including their device models, hardware architectures and
system versions in Table 2.

5.2. Methodology and criteria

There are two ways to gain root privilege among the 17 ex-
ploits chosen; the exploitation through physical access, and
the exploitation through remote access. In this subsection, we
describe the procedure of the exploitation imposed to our
testing devices with respect to the two methods we mentioned.

1) Exploitation through Physical Access: According to the classi-
fication of exploits introduced in Section 4, both APK exploits
and shell exploits are executed through USB connection
between the attacker PC and the target device. All se-

lected exploits except StageFright and put_user/get_user are
imposed to the target device through the ADB channel.

TowelRoot is a typical APK exploit. In our evaluation, we install
the APK by running “install” command through ADB and manu-
ally approve the installation on the target device. As TowelRoot
is known as “one-click root solution”, it is supposed to root any
compatible device by just clicking the “root” button shown by
the exploit app on screen. Besides TowelRoot, there is another
APK called Framaroot, which is released by “alephzain”, inte-
grating a number of his exploits into one app. The installation
of Framaroot is the same as TowelRoot. The only difference
between TowelRoot and Framaroot is that the latter one offers
a list of check-boxes to allow users to select which stand-
alone exploit to execute. As the APK exploitation could not
directly pass the gained privilege to the attacker, it usually
copies a pre-loaded “su” binary to the system executable di-
rectory while the app has successfully obtained the privilege.
To validate the outcome of exploitation, we can install superuser
management apps such as Root Checker2 or SuperSU3 to check
if the target device has been rooted or not.

For those shell exploits, we build the source code and export
the executable binary in platform specified version that cor-
responds to the target device’s hardware configuration, such
as ARMv7 and ARMv8; then we push the executable binary to
a temporary location in the target device system directory (gen-
erally /data/local/tmp) through ADB, open an ADB shell service,
change the user mode of recently uploaded executable binary
to make it executable by the shell user, and finally execute that
exploit binary. In most cases, a successful shell exploitation
will invoke the setuid call to escalate the current user to the
“root” and in the end return to the same ADB terminal.

2 Root Checker is identified as com.joeykrim.rootcheck.
3 SuperSU is identified as eu.chainfire.supersu.

Table 2 – List of devices.

Device model and Code name SoC model OS

1 HTC Magic (HMA) Qualcomm MSM7200A 1.6
2 HTC Hero (HHE) Qualcomm MSM7200A 1.6
3 HTC One X PJ46100 (H1X) Nvidia Tegra 3 (AP33) 4.0.3
4 HTC One E9+ 0PJX100 (HE9) MediaTek Helio X10 M (MT6795M) 5.0.2
5 HTC 10 2PS6200 (H10) Qualcomm Snapdragon 820 (MSM8996) 6.0.1
6a LG Nexus 4 LG-E960 (NX4-4) Qualcomm Snapdragon S4 Pro (APQ8064) 4.2.2
6b – – (NX4-5) – 5.1.1
7a LG Nexus 5 LG-D821 (NX5-4) Qualcomm Snapdragon 800 (8974-AA) 4.4.4
7b – – (NX5-5) – 5.0.1
8 LG Nexus 7 (2013) LG-K008 (ME571K) (NX7) Qualcomm Snapdragon S4 Pro (APQ8064) 4.3
9 Samsung Nexus 10 GT-P8110 (NX10) Exynos 5 Dual 5250 4.2.2
10 Samsung Galaxy S2 GT-I9100 (GS2) Exynos 4 Dual 4210 4.0.3
11 Samsung Galaxy Note GT-N7000 (GN1) Exynos 4 Dual 4210 4.0.4
12 Samsung Galaxy S4 GT-I9505 (GS4) Qualcomm Snapdragon 600 (APQ8064AB) 4.2.2
13 Samsung Galaxy Note 3 SM-N9005 (GN3) Qualcomm Snapdragon 800 (8974-AA) 4.4.2
14 Samsung Galaxy S5 SM-G900F (GS5) Qualcomm Snapdragon 801 (8974-AC) 5.0
15 Samsung Galaxy S6 SM-G920I (GS6) Exynos 7 Octa 7420 5.1.1
16 Samsung Galaxy Note 5 SM-N920I (GN5) Exynos 7 Octa 7420 5.1.1
17 Samsung Galaxy A8 Duos SM-A800F (GA8) Exynos 5 Octa 5430 6.0.1
18 Samsung Galaxy S7 SM-G930FD (GS7) Exynos 8 Octa 8890 6.0.1

88 c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1



2) Exploitation through Remote Access: Compared with the prior
solution, the remote exploitation could gain privilege of the
target device in more casual and easier manner. There are
two remote exploits being tested in our evaluation,
StageFright and put_user/get_user. The evaluation of both ex-
ploits is conducted through Metasploit4 which is a well-
known penetration testing software. By making use of a
designated Metasploit module, an app containing payload
is generated, then the attacker, by all means, installs the
app on the target device. After that, the attacker only needs
to open the receiving port on the attack PC and keep lis-
tening in the Metasploit terminal. Once the app is launched
on the target device, the payload code will automatically
execute and initiate a reverse connection to the attacker.
As a result, a shell process with superior privilege could be
observed through a reverse TCP channel opened in the
Metasploit interface on the attacker PC.

5.3. Measurement and result

The target devices presented in Table 1 are the theoretical
prediction made based on the author’s instruction, exploits’
source code, and runtime behavior. And then we conduct the
evaluation in accordance with the target devices summa-
rized by us.

Taking RageAgainstTheCage as an example, we can find from
the author’s instruction that the exploit takes advantage of the
vulnerability of Android system with version up to 2.3.4 and
it does not vary with manufacture or any third-party configu-
ration. Therefore we assume all Android devices loaded with
systems with versions below 2.3.4 will be vulnerable to that
exploit, and then we select devices that satisfy such require-
ment for evaluation.

However, there is another scenario that the author does not
provide the detailed list of target devices of his/her exploit, like
libperf_hdcp and TowelRoot. In that case, we do the static analy-
sis on source code first, followed by a runtime analysis if the
static analysis does not reveal any clue of target devices. In the
source code of libperf_hdcp, we find a list of 25 constant strings
looking like device model names. By searching each of them
on the Internet, we finally confirm the list of target devices
which includes LG Nexus 4 and a number of Japanese brand
devices. Sometimes we encounter difficulty to conduct static
analysis, for example, the TowelRoot as its source code is not
provided. Based on the knowledge that the vulnerability used
in that exploit only exists in Android system prior to version
4.4, we conduct an exhaustive testing on all our devices with
system versions below 4.4. By observing the runtime logs, we
find that besides the “succeed” and “fail”, all devices which are
not compatible with TowelRoot will print “try default” and fol-
lowed by exit without any output regarding the exploitation
outcome.

Finally, we note down the device models successfully ex-
ploited by the selected exploits as shown in Table 3.

After testing all 17 exploits on their designated devices, we
have reproduced 15 out of 17 exploits on the actual devices.
For the evaluation of the other 2 exploits, namely Zysploit and
prctl_vma_exploit – we have not observed any positive result from

executing them on all our devices that are supposed to be com-
patible. According to the result of the evaluation, there are 12
devices being successfully exploited for at least once in our ex-
periment. The LG Nexus 4 (4.2.2) compromises to 5 exploits,
which marks the highest number among 18 devices.The runner-
up in the ranking of successful exploitation is LG Nexus 5 (5.0.1),
which has been exploited for 3 times. In contrast, some latest
device models including Samsung Galaxy A8 Duos, S7 and Note
5, are found to be immune from all the tested exploits.

5.4. Discussion

By doing this evaluation, we find that most of the exploits are
able to gain privilege effectively on actual devices if all the re-
quirements have been satisfied. At the same time, we also
perceive that the real-world Android exploitation is not as
simple and easy as what media describes in their articles.

Firstly, it is almost impossible to implement a new exploit
that universally applies to all Android devices. The Android
system has greatly improved its security mechanism during
the past few years. Meanwhile, Google is also actively upgrad-
ing the Linux kernel along with the evolution of the Android
system. As a result, those universal exploits like
RageAgainstTheRage (up to Android version 2.2) and
KillingInTheNameOf (up to Android version 2.2.2) have become
history and we could seldom see new universal exploits being
released nowadays.

Secondly, the high degree of hardware and software frag-
mentation in the Android ecosystem makes exploitation a
challenging task. As more and more exploits use memory cor-
ruption technique to achieve privilege escalation, any slight
difference in either Android version or hardware configura-
tion may lead to variation of the address of a specific library
in memory space, and thereby restricts the effect of exploita-
tion. Not to mention the diversity in different manufacturers,
the diversity in one device model family (e.g. Samsung Galaxy
S6) already makes exploit difficult. Taking Ping Pong Root as an4 Metasploit is available at https://www.metasploit.com/.

Table 3 – Evaluation outcome.

Exploit ID and name Result Explanatory note

(2) exploid ✓ Devices: HHE
(3) RageAginstTheCage ✓ Devices: HMA
(6) KillingInTheNameOf ✓ Devices: HHE
(7) psneuter ashmem exploit ✓ Devices: HHE
(10) Zysploit ✘ No observation
(20) Exynos Abuse/Sam ✓ Devices: GS2, GN1
(22) Qualcomm Gandalf camera ✓ Devices: NX4-4
(23) Motochopper/fb_mem ✓ Devices: NX4-4
(24) libperf_event ✓ Devices: NX4-4, NX7
(33) Aragorn ✓ Devices: GS2, GN1
(35) Android put_user/get_user ✓ Devices: NX4-4, NX7,

NX10

(44) TowelRoot/futex exploit ✓ Devices: NX4-4, NX7,
GS4

(47) ObjectInputStream root ✓ Devices: NX5-4
(54) StageFright ✓ Devices: NX5-5
(58) iovyroot/pipe inatomic ✓ Devices: NX5-5
(61) prctl_vma_exploit ✘ No observation
(63) DirtyCow ✓ Devices: HE9, H10,

NX5-5

89c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1

https://www.metasploit.com/


example, it is known as a powerful root solution for Samsung
Galaxy S6 family that claimed to support hundreds of differ-
ent ROMs. However, we do not manage to find any ROM version
compatible to the Galaxy S6 model in our lab. In the evalua-
tion, we find that any incompatibility caused by inconsistency
of Android versions and device models is very likely to make
an exploit not work as it claims – this may explain the two nega-
tive results occurred during our evaluation.

Lastly, periodic security update mechanism, which has been
adopted by more and more manufacturers, is transforming the
traditional mitigation of exploitation. Nowadays protecting an
Android device from being exploited could be done in a more
effective and agile way rather than waiting for major version
update of Android. Some manufactures like Google and
Samsung actively push their regular security update or patch
in a monthly manner to maximize the protection against the
latest security threat. Compared with the major version update
of Android, the security update may not easily be traced and
analyzed. Therefore, from the perspective of exploitation, an
attacker’s exploit is very possible to be no longer effective if
he/she exploits a vulnerability which is publicly disclosed. From
the user’s perspective, the risk of your Android device to be
exploited could be significantly reduced if you enable peri-
odic security patch update on your device.

Overall, our survey and experimental results unveil three
trends of the Android exploits’ evolution: (1) compared with
the Android exploits released in early stage of Android history,
the new Android exploits are more device specific and Android
version specific – one exploit may only be compatible with one
or a few device models with specific range of Android ver-
sions; (2) as the security mechanism of both the Android system
and Linux kernel have been significantly strengthened, ex-
ploits targeting Linux kernel and Android system components
experience decline; and vendors’ customization becomes the
prominent attack target in newly released exploits; and (3) due
to the diversity of approaches and difficulty of absolute pre-
vention, the memory corruption gradually becomes the primary
attack vector to gain privilege on Android platform.

6. Conclusion

In this paper, we did a survey of publicly released Android ex-
ploits and proposed a taxonomy of Android exploits from
multiple perspectives by analyzing the collected real-world ex-
ploits and conducting an evaluation of these exploits on a set
of devices. We analyzed the characteristics of each category
and presented the trend view of the Android exploits along the
timeline from the technical perspective based on the exploit
data. We also shared our discussion and outlook gained from
the observation of evaluation.

R E F E R E N C E S

Alephzain. XDA Forums - [ROOT] Framaroot, a one-click apk to
root some devices, 2013. Available from: https://forum.xda-
developers.com/apps/framaroot/root-framaroot-one-click-
apk-to-root-t2130276. [Accessed 14 March 2018].

Ben W. Researchers expose Android WebKit browser exploit,
2010. Available from: http://www.zdnet.com/article/
researchers-expose-android-webkit-browser-exploit/.
[Accessed 14 March 2018].

Bishop M. UNIX security: threats and solutions, 1996.
Chris H. The case against root: why Android devices don’t come

rooted, 2012. Available from: https://www.howtogeek.com/
132115/the-case-against-root-why-android-devices-dont-
come-rooted/. [Accessed 14 March 2018].

Davi L, Dmitrienko A, Sadeghi A-R, Winandy M. Privilege
escalation attacks on Android, in: International Conference
on Information Security. Springer, 2010, Conference
Proceedings, pp. 346–360.

Drake JJ, Lanier Z, Mulliner C, Fora PO, Ridley SA, Wicherski G.
Rooting your device. In: Android hacker’s handbook. John
Wiley & Sons; 2014. p. 73–81, [chapter 3].

Faden G. RBAC in UNIX administration, in: Proceedings of the
fourth ACM workshop on Role-based access control. ACM,
1999, Conference Proceedings, pp. 95–101.

Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M,
et al. Android security: a survey of issues, malware
penetration, and defenses. IEEE Commun Surv Tutorials
2015;17(2):998–1022.

Felt AP, Finifter M, Chin E, Hanna S, Wagner D. A survey of
mobile malware in the wild, in: Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and
mobile devices. ACM, 2011, Conference Proceedings, pp. 3–14.

Georgiev AB, Sillitti A, Succi G. Open source mobile virtual
machines: an energy assessment of Dalvik vs. ART. In: OSS.
2014. p. 93–102.

Google. Google android security 2014 report, 2014, p. 7. Available
from: https://source.android.com/security/reports/
Google_Android_Security_2014_Report_Final.pdf. [Accessed 14
March 2018].

Google. Architecture – Android Open Source Project; 2017a.
Available from: https://source.android.com/devices/
architecture. [Accessed 14 March 2018].

Google. ART and Dalvik – Android Open Source Project; 2017b.
Available from: https://source.android.com/devices/tech/
dalvik/. [Accessed 14 March 2018].

Google. System and Kernel Security – Android Open Source
Project; 2017c. Available from: https://source.android.com/
security/overview/kernel-security.html. [Accessed 14 March
2018].

Google. SELinux concepts – Android Open Source Project; 2017d.
Available from: https://source.android.com/security/selinux/
concepts. [Accessed 14 March 2018].

Google. Security Enhancements in Android 4.2 — Android Open
Source Project; 2017e. Available from: https://
source.android.com/security/enhancements/
enhancements42. [Accessed 14 March 2018].

Google. ABI Management – Android Developers; 2017f. Available
from: https://developer.android.com/ndk/guides/abis.html.
[Accessed 14 March 2018].

Google. Android Developers; 2017g. Available from: https://
developer.android.com/guide/topics/manifest/permission-
element.html. [Accessed 14 March 2018].

Hay R, Dayan A. Android keystore stack buffer overflow, 2014.
Höbarth S, Mayrhofer R. A framework for on-device privilege

escalation exploit execution on Android, Proceedings of
IWSSI/SPMU, 2011.

IDC. IDC: Smartphone OS Market Share, 2017. Available from:
https://www.idc.com/promo/smartphone-market-share/os.
[Accessed 14 March 2018].

Jon S. Practical Android exploitation, 2014. Available from:
http://theroot.ninja/PAE.pdf. [Accessed 14 March 2018].

Kristijan L. Over 27.44% Users Root Their Phone(s) In Order To
Remove Built-In Apps, Are You One Of Them? 2014. Available

90 c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1

http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0010
https://forum.xda-developers.com/apps/framaroot/root-framaroot-one-click-apk-to-root-t2130276
https://forum.xda-developers.com/apps/framaroot/root-framaroot-one-click-apk-to-root-t2130276
https://forum.xda-developers.com/apps/framaroot/root-framaroot-one-click-apk-to-root-t2130276
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0015
http://www.zdnet.com/article/researchers-expose-android-webkit-browser-exploit/
http://www.zdnet.com/article/researchers-expose-android-webkit-browser-exploit/
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0020
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0025
https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0030
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0030
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0030
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0030
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0035
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0035
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0035
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0040
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0040
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0040
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0045
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0045
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0045
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0045
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0050
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0050
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0050
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0050
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0055
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0055
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0055
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0060
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0065
https://source.android.com/devices/architecture
https://source.android.com/devices/architecture
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0070
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0075
https://source.android.com/security/overview/kernel-security.html
https://source.android.com/security/overview/kernel-security.html
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0080
https://source.android.com/security/selinux/concepts
https://source.android.com/security/selinux/concepts
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0085
https://source.android.com/security/enhancements/enhancements42
https://source.android.com/security/enhancements/enhancements42
https://source.android.com/security/enhancements/enhancements42
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0090
https://developer.android.com/ndk/guides/abis.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0095
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0100
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0100
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0100
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0105
https://www.idc.com/promo/smartphone-market-share/os
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0110
http://theroot.ninja/PAE.pdf
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0115
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0115


from: https://www.androidheadlines.com/2014/11/50-users-
root-phones-order-remove-built-apps-one.html. [Accessed 14
March 2018].

laginimaineb. Bits, Please! – Getting arbitrary code execution in
TrustZone’s kernel from any context, 2015. Available from:
http://bits-please.blogspot.sg/2015/03/getting-arbitrary-code
-execution-in.html. [Accessed 14 March 2018].

Lais C. Volez – Zen Thought, 2009. Available from:
http://www.zenthought.org/content/project/volez. [Accessed
14 March 2018].

Linda S. Strategy Analytics: Android Captures Record 88 Percent
Share of Global Smartphone Shipments in Q3 2016, 2016.
Available from: https://www.strategyanalytics.com/strategy-
analytics/news/strategy-analytics-press-releases/strategy-
analytics-press-release/2016/11/02/strategy-analytics-
android-captures-record-88-percent-share-of-global-
smartphone-shipments-in-q3-2016. [Accessed 14 March 2018].

Martyn C. How to root Android phone, tablet, install custom
ROM: beginner’s guide, 2016. Available from:
http://www.pcadvisor.co.uk/how-to/google-android/how
-root-android-phone-tablet-unroot-summary-3342120/.
[Accessed 14 March 2018].

Muthumani. Android HAL and Device driver architecture, 2015.
Available from: https://www.e-consystems.com/blog/system-
on-module-SOM/android-hal-and-device-driver-architecture/.
[Accessed 14 March 2018].

OneClickRoot. Top 10 Root Apps for Android, 2017. Available
from: https://www.oneclickroot.com/top-root-apps/.
[Accessed 14 March 2018].

Rangwala M, Zhang P, Zou X, Li F. A taxonomy of privilege
escalation attacks in Android applications. Int J Secur Netw
2014;9(1):40–55.

Sadun E. Android security vulnerability discovered – Ars
Technica, 2009. Available from: https://arstechnica.com/
information-technology/2009/02/android-security-
vulnerability-discovered. [Accessed 14 March 2018].

Seacord RC. Mobile device security, in: Proceedings of the 3rd
International Workshop on Mobile Development Lifecycle.
ACM, 2015, Conference Proceedings, pp. 1–2.

Shabtai A, Fledel Y, Elovici Y. Securing Android-powered mobile
devices using SELinux. IEEE Secur Priv 2010;8(3):36–44.

Shen D. Exploiting Trustzone on Android, Black Hat US, 2015.
Sun S-T, Cuadros A, Beznosov K. Android rooting: methods,

detection, and evasion, in: Proceedings of the 5th Annual ACM
CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices. ACM, 2015, Conference Proceedings, pp. 3–14.

Vidas T, Votipka D, Christin N. All Your Droid Are Belong to Us: A
Survey of Current Android Attacks, in: WOOT, 2011,
Conference Proceedings, pp. 81–90.

Wei F, Li Y, Roy S, Ou X, Zhou W. Deep ground truth analysis of
current android malware, in: International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2017, pp. 252–276.

Wikipedia. Android (operating system) — Wikipedia, The Free
Encyclopedia; 2017a. Available from: https://en.wikipedia.org/
w/index.php?title=Android_(operating_system)&oldid
=794843196. [Accessed 14 March 2018].

Wikipedia. Android version history – Wikipedia, The Free
Encyclopedia; 2017b. Available from: https://en.wikipedia.org/
w/index.php?title=Android_version_history&oldid=781928647.
[Accessed 14 March 2018].

Xu M, Song C, Ji Y, Shih M-W, Lu K, Zheng C, et al. Toward
engineering a secure android ecosystem: a survey of existing
techniques. ACM Comput Surv (CSUR) 2016;49(2):38.

Xu W, Fu Y. Own your android! Yet another universal root, in:
WOOT, 2015, Conference Proceedings.

Yu KF. Rooting an android device, DTIC Document, Report, 2015.
Zhang H, She D, Qian Z. Android root and its providers:

a double-edged sword, in: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security. ACM, 2015, Conference Proceedings,
pp. 1093–1104.

Zhou Y, Wang Z, Zhou W, Jiang X. Hey, you, get off of my market:
detecting malicious apps in official and alternative android
markets, in: NDSS, vol. 25, 2012, Conference Proceedings, pp.
50–52.

Huasong Meng received his Master of Computing degree in
Infocomm Security at National University of Singapore in 2016 and
B.Eng. (Hon.) degree in Computer Science at Nanyang Technologi-
cal University in 2014. He is currently serving as a research engineer
at Institute for Infocomm Research, A*STAR, Singapore. His working
experience covers mobile security implementation for govern-
ment, banking and financial industry. His research areas include
mobile system security, vulnerability analysis and blockchain.

Dr. Vrizlynn Thing is the Head of Cyber Security & Intelligence De-
partment at the Institute for Infocomm Research, A*STAR. She is
also an Adjunct Associate Professor at the National University of
Singapore, and holds the appointment of Honorary Assistant Su-
perintendent of Police (SpecialistV) at the Singapore Police Force,
Ministry of Home Affairs. During her career, she has taken on various
roles to lead and conduct cyber security R&D that benefits our
economy and society. She participates actively as the Lead Scien-
tist of collaborative projects with industry partners and government
agencies, and takes on advisory roles at the national and interna-
tional level.

Yao Cheng received her Ph.D. degree in Computer Science and Tech-
nology from University of Chinese Academy of Sciences in 2015.
She is currently a scientist at Institute for Infocomm Research,
A*STAR, Singapore. Her research interests are in the information
security area, focusing on vulnerability analysis, privacy leakage
and protection, malicious application detection, and usable secu-
rity solutions.

Zhongmin Dai leads the System Security Group of Cyber Security
and Intelligence Department at the Institute for Infocomm Re-
search (I2R), A*STAR, Singapore. He received his Bachelor of
Computing and Master of Computing from National University of
Singapore, in 2014 and 2017 respectively. His research interests
include digital forensics, vulnerability analysis, cyber-security issues
for autonomous vehicles and IoT.

Li Zhang received the B.Eng. (Hons.) and Ph.D. degrees from Nanyang
Technological University (NTU), Singapore, in 2010 and 2015, re-
spectively. He served as a security evaluator for smart cards in UL
before joining the Cyber Security and Intelligence Department at
the Institute for Infocomm Research (I2R), Agency for Science,Tech-
nology and Research (A*STAR) as a research scientist. His research
interests include vulnerability detection, malware analysis and clas-
sification, and hardware security and trust.

91c om pu t e r s & s e cu r i t y 7 6 ( 2 0 1 8 ) 7 1 – 9 1

https://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
https://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0120
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0120
http://bits-please.blogspot.sg/2015/03/getting-arbitrary-code-execution-in.html
http://bits-please.blogspot.sg/2015/03/getting-arbitrary-code-execution-in.html
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0125
http://www.zenthought.org/content/project/volez
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0130
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0130
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0135
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0135
http://www.pcadvisor.co.uk/how-to/google-android/how-root-android-phone-tablet-unroot-summary-3342120/
http://www.pcadvisor.co.uk/how-to/google-android/how-root-android-phone-tablet-unroot-summary-3342120/
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0140
https://www.e-consystems.com/blog/system-on-module-SOM/android-hal-and-device-driver-architecture/
https://www.e-consystems.com/blog/system-on-module-SOM/android-hal-and-device-driver-architecture/
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0145
https://www.oneclickroot.com/top-root-apps/
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0150
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0150
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0150
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0155
https://arstechnica.com/information-technology/2009/02/android-security-vulnerability-discovered
https://arstechnica.com/information-technology/2009/02/android-security-vulnerability-discovered
https://arstechnica.com/information-technology/2009/02/android-security-vulnerability-discovered
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0160
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0160
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0160
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0165
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0165
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0170
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0175
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0175
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0175
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0175
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0180
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0180
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0180
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0185
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0185
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0185
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0185
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0190
https://en.wikipedia.org/w/index.php?title=Android_(operating_system)&oldid=794843196
https://en.wikipedia.org/w/index.php?title=Android_(operating_system)&oldid=794843196
https://en.wikipedia.org/w/index.php?title=Android_(operating_system)&oldid=794843196
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0195
https://en.wikipedia.org/w/index.php?title=Android_version_history&oldid=781928647
https://en.wikipedia.org/w/index.php?title=Android_version_history&oldid=781928647
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0200
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0200
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0200
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0205
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0205
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0210
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0215
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0215
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0215
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0215
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0215
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0220
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0220
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0220
http://refhub.elsevier.com/S0167-4048(18)30166-4/sr0220

	 A survey of Android exploits in the wild
	 Introduction
	 Background
	 The architecture of Android
	 Security mechanism of Android
	 Privilege escalation
	 Vulnerabilities exploitation

	 Exploitation taxonomy
	 Societal perspectives
	 (S1) Attacker and (S2) Motive
	 (S3) Possible consequence

	 Practical perspectives
	 (P1) Execution channel and (P2) Condition
	 (P3) Expected privilege

	 Technical perspectives
	 (T1) Attack surface
	 (T2) Attack vector
	 (T3) Vulnerable target


	 Survey and classification
	 Execution channel
	 Attack vector
	 Vulnerable target

	 Evaluation and discussion
	 Preparation
	 Methodology and criteria
	 Measurement and result
	 Discussion

	 Conclusion
	 References


