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Abstract

Anomaly intrusion detection in big data environments calls for lightweight models that are able to achieve real-time performance
during detection. Abstracting audit data provides a solution to improve the efficiency of data processing in intrusion detection.
Data abstraction refers to abstract or extract the most relevant information from the massive dataset. In this work, we
propose three strategies of data abstraction, namely, exemplar extraction, attribute selection and attribute abstraction. We
first propose an effective method called exemplar extraction to extract representative subsets from the original massive data
prior to building the detection models. Two clustering algorithms, Affinity Propagation (AP) and traditional k-means, are
employed to find the exemplars from the audit data. K-Nearest Neighbor (k-NN), Principal Component Analysis (PCA)
and one-class Support Vector Machine (SVM) are used for the detection. We then employ another two strategies, attribute
selection and attribute extraction, to abstract audit data for anomaly intrusion detection. Two http streams collected from
a real computing environment as well as the KDD’99 benchmark data set are used to validate these three strategies of data
abstraction. The comprehensive experimental results show that while all the three strategies improve the detection efficiency,
the AP-based exemplar extraction achieves the best performance of data abstraction.

Key words: Data reduction, intrusion detection, anomaly detection, computer security

1 Introduction

The importance of computer network security is growing
with the pervasive involvement of computers in people’s
daily lives and in business processes within most orga-
nizations. As an important technique in the defense-in-
depth network security framework, intrusion detection
has become a widely studied topic in computer networks
in recent years.

In general, the techniques for intrusion detection can be
categorized as signature-based detection and anomaly
detection. Signature-based detection (e.g., Snort [31])
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relies on a database of signatures from known malicious
threats. Anomaly detection, on the other hand, defines
a profile of a subject’s normal activities and attempts
to identify any unacceptable deviation as a potential at-
tack. Typically, machine learning techniques are used to
build normal profiles of a subject. Any observable be-
havior of a system, such as a network’s traffic [13,19], a
computer host’s operating system [11,36] or a mobile ap-
plication [2,39], can be used as the subject information.

Anomaly detection has a potential to detect unfore-
seen attacks. As new attacks appear very frequently and
signature-based detection methods may be overwhelmed
by an abundance of polymorphic attacks, using anomaly
detection sensors to discover zero-day attacks has be-
come a necessity rather than an option [8]. We are en-
tering the era of “big data” [23]. The increasing volume
of information generated by enterprises, the rise of so-
cial media and the Internet are fueling an exponential
growth of data. Anomaly intrusion detection techniques

Preprint submitted to Information Science 10 October 2016



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

are therefore challenged by the demand to process more
massive data in higher dimensions at high speeds. A
practical and efficient Intrusion Detection System (IDS)
capable of detecting potential attacks is required so that
resolutions can be implemented as quickly as possible.

In general, as shown in Figure 1, there are four steps in
anomaly intrusion detection: data collection, attribute
construction, model building and anomaly detection.
Prior to building the models, attributes are typically nor-
malized [42]. Many methods [3,4,7,12,16,17,24,32,36,44,45]
have been employed for anomaly intrusion detection.
However, most of them mainly focus on attribute con-
struction [12,16,17,32,44] or on detection algorithms
[3,4,7,24,35,36,45]. In this paper, we aim at building a
lightweight IDS with enhanced capability to process big
data. Intuitively, the approach to high-speed processing
of massive audit data in intrusion detection is to reduce
the amount of data without losing the valuable infor-
mation in the data before the detection model is built.
We call this process data abstraction. In this work, we
introduce a “data abstraction” step between the “at-
tribute construction” and the“model building” steps,
as shown in Figure 1. This step yields a dataset we call
abstracted audit data.

We propose three strategies to perform the data abstrac-
tion. The first strategy is to perform attribute abstrac-
tion after the attributes have been constructed. In this
paper, we use Principal Component Analysis (PCA) to
transform audit data in a high-dimensional space onto
a space of fewer dimensions. The transformed attributes
in the low-dimensional space are not part of the origi-
nal attributes. The second strategy is attribute selection,
which locates a subset of original attributes to repre-
sent the whole data. In this work, we employ Informa-
tion Gain (IG) to select a small subset of key attributes
from the originals. Different from attribute abstraction
or attribute selection where we analyze the attributes,
we propose a third strategy called exemplar extraction
which focuses on the data samples. The process of exem-
plar extraction is also based on the training data. The
strategy is to extract a smaller set of representative ex-
emplars from the large amount of training data, so that
the training is based on a smaller set and the test is based
on a compressed detection model. An exemplar refers to
a factual data item (e.g., a http request, a network con-
nection) that represents a number of similar data items.
Compared to randomly sampling data items (e.g., Net-
flow based network intrusion detection [5]), exemplars
summarize massive audit data and thus better represent
the audit data for anomaly detection.

For exemplar extraction, we employed two clustering
methods, a newly developed Affinity Propagation (AP)
[10] as well as traditional k-means [21] to cluster the orig-
inal training data before the detection model is built.
After the clustering process is finished, each cluster can
be represented by an exemplar for AP, and by a mean

center for k-means. We then use the exemplars or the
cluster centers as the data input for building the de-
tection models. In this way, the data is largely reduced
while the valuable information is preserved to build a
lightweight detection model with fewer exemplars for
processing. This paper extends our previous work [40,43]
by conducting more extensive experiments and compar-
ing the three strategies of data abstraction in terms of
the accuracy and efficiency of the detection. In addition,
we comprehensively discuss the advantages and the dis-
advantages of these three strategies of data abstraction
during the detection.

Two http traffic data sets collected in a real computing
environment as well as the KDD’99 benchmark data are
used to validate the three strategies of data abstraction.
The extensive test results show that the AP-based ex-
emplar extraction significantly improves the detection
efficiency and achieves a more robust detection perfor-
mance than the information-gain-based attribute selec-
tion or the PCA-based attribute abstraction.

In this paper, we make three contributions:

• We propose three strategies of data abstraction to ac-
celerate the process of intrusion detection in massive
data using lightweight models: exemplar extraction,
attribute selection and attribute abstraction. We com-
pare the three strategies in terms of detection accu-
racy and efficiency. The comprehensive study provides
a valuable reference for the processing of big data in
intrusion detection.

• We employ Affinity Propagation (AP) to extract ex-
emplars from the massive training data. We thus build
a lightweight IDS based on a smaller data set extracted
from original training data such that the detection is
based on a compressed model. We prove this process
of extracting exemplars to be effective for anomaly
intrusion detection. In most cases, the AP-based ex-
emplar extraction outperforms attribute abstraction
and attribute selection in terms of detection efficiency.
To the best of our knowledge, this is the first work to
extract exemplars from audit data for intrusion detec-
tion with AP.

• We use two types of data, real http traffic data and
synthetic KDD’99 benchmark data, to validate the
three strategies of data abstraction for intrusion de-
tection. We provide extensive test results that demon-
strate the effectiveness and high-speed performance of
our methods for lightweight anomaly intrusion detec-
tion.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the related work. Section
3 describes the three strategies of data abstraction for
anomaly intrusion detection. Extensive experiments and
comparative results are reported in Section 4 and Sec-
tion 5. Concluding remarks follow in Section 6.
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Fig. 1. Steps for anomaly intrusion detection

2 Related Work

Our work focuses on data reduction in anomaly intrusion
detection based on http traffic and network data. The
related work thus can be summarized into two subsec-
tions. In the first subsection, we survey anomaly detec-
tion techniques in general, Web-based anomaly intrusion
detection and network-based anomaly intrusion detec-
tion methods. We review data reduction techniques for
anomaly intrusion detection in the second subsection.

2.1 Anomaly intrusion detection

Anomaly intrusion detection has been an active research
area. Network traffic as an important data source has
been widely used for anomaly intrusion detection. Cretu
et al. [8] cleaned a training data set of network traf-
fic by combining it with the “micro-model” in a vot-
ing scheme to remove some of the attacks in the data.
Krüegel and Vigna [17] were the first to use http traf-
fic (web server log files) to detect attacks against web
servers and web-based applications. They investigated
the parameters (e.g., length and structure) contained in
the client queries to detect potential attacks.

Ariu et al. [1] proposed an HMMPayl-based method for
detecting web-based attacks. HMMPayl uses payload
represented by a sequence of bytes as data input and
used Hidden Markov Models (HMM) for the analysis.
Lee and Kim [18] proposed a system called WarningBird
to detect suspicious URL for Twitter. The system inves-
tigated correlated redirect chains of URLs found in many
tweets. Razzaq et al. [26] presented an ontology-based
approach that specifies web application attacks using the
context of consequence, semantic rules and specifications
of application protocols by analyzing the specified por-
tion of user requests. Robertson et al. [27] addressed the
problem of undertraining using global knowledge built
by exploiting similarities between web application pa-
rameters of a similar type.

Based on the 1998 DARPA Intrusion Detection Evalu-
ation Program, Lee et al. [19] extracted 41 attributes
for each network connection and formed a well-known
KDD Cup 1999 data [15]. The attributes of each network
connection include basic attributes (e.g., protocol type),

content attributes (e.g., number of “root” accesses) and
traffic attributes (e.g., percentage of connections to the
same service in a two-second time window). Many re-
search groups [3,4,7,13,19,25,35,36,38,45] have used the
KDD’99 data to validate their detection methods. Davis
and Clark [9] reviewed data preprocessing techniques
for anomaly based network intrusion detection, but they
mainly focused on network traffic analyzed and on fea-
ture construction and selection methods used.

Most existing anomaly detection methods mainly focus
on attribute construction or on detection algorithms.
They have used either most of the attributes constructed
from audit data or most of the original data to build
detection models. For example, many network intrusion
detection methods that have used KDD’99 data as their
data source used most of the 41 attributes for the de-
tection [3,4,7,19,20,35–37,45]. However, some of the at-
tributes may be redundant or may even be the effect
of noise and therefore may decrease the performance of
an IDS. Moreover, many data may be very similar or
even exactly the same, using all the data hence decreases
the efficiency of building the detection models. Different
from related work, to avoid these these types of redun-
dancies, in this paper, we are motivated to abstract mas-
sive data so as to build lightweight models for efficient
intrusion detection.

2.2 Data reduction in anomaly detection

There are related work regarding data reduction for in-
trusion detection. Sung and Mukkamala [33] used Artifi-
cial Neural Networks (ANN) and SVM to identify some
important attributes based on the performance compari-
son with KDD’99 data. For example, an attribute is iden-
tified as important if the detection accuracy decreases
and/or computation time increases after the attribute
has been deleted from the training set. In our previous
work [40], we used Information Gain (IG) and the com-
bination of Bayesian Networks and decision tree classi-
fiers to select some key subsets from the 41 attributes.
We also used Principal Component Analysis (PCA) to
reduce the dimensions of the audit data for intrusion de-
tection [36,43,35]. Sengupta and Sen [29] proposed an
intrusion detection method by integrating Q-learning al-
gorithm and Rough Set Theory (RST) based on KDD’99
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data. Like PCA, Partial Least Square (PLS) was em-
ployed by Gan et al. [30] to extract attributes from the
KDD’99 data followed by Core Vector Machine (CVM)
for network intrusion detection. In Netflow-based net-
work anomaly detection, many methods sampled data
with a certain probability to deal with massive traffic
[5]. However, this approach involves sampling data (e.g.,
flow or packet) which is inherently inaccurate because
potentially useful information can be discarded.

Different from attribute selection [29,33] or randomly
sampling [5], in this paper, we employ a strategy that
finds exemplars from original data and then use the ex-
emplars for training and detection. We call this process
“exemplar extraction”. We aim to comprehensively com-
pare the accuracy and efficiency of exemplar extraction
with that of attribute selection and attribute abstrac-
tion method for fast anomaly detection. To the best of
our knowledge, this is the first work to make this type of
in-depth comparison between exemplar extraction, at-
tribute selection and attribute abstraction for anomaly
intrusion detection.

3 Abstracting big audit data for intrusion de-
tection

To compare the accuracy and efficiency the three strate-
gies of data abstraction, we use a number of classifiers
for results comparison. First, we use k-Nearest Neigh-
bor(NN) [37] and one class Support Vector Machine
(SVM) [28] for anomaly detection, as both two methods
have been shown effective for intrusion detection in our
previous work [37]. Second, we use Principal Compo-
nent Analysis (PCA) for attribute abstraction as this is a
widely used attribute transformation algorithm. In fact,
PCA itself can be considered to be an anomaly intrusion
detection method. Third, we use Information Gain (IG)
for attribute selection. Finally, for exemplar extraction,
we employ Affinity Propagation (AP) [10] and k-means
[21]. In this work, we only use normal data for building
normal models (using attack-free data for training the
model) based on which anomalies are detected.

3.1 No data abstraction: direct use of k-NN and one-
class SVM

3.1.1 k-NN based anomaly intrusion detection method.

k-NN is a method for classifying objects by finding the
closest training examples in the feature space. It uses
the class labels of the k most nearest neighbors to pre-
dict the class of the test vector. A data vector normally
consists of attributes. It represents an event or an object
(e.g., an http request, a network connection) that needs
to detect whether it is normal or not. In the remainder
of this paper, data vector and data item are used inter-

changeably. Euclidean distance is usually used for mea-
suring the similarity between two vectors T and X:

d(T,X) =‖ T −X ‖ (1)

Given a test vector T , the Euclidean distance between
the test vector and each vector in the training data set is
calculated. The k nearest neighbors of the test vector are
chosen to determine whether the test vector is normal
or not. In anomaly detection, we define the averaged k
closest distance score as anomaly index. If the anomaly
index of a test sequence vector is above a threshold, the
test vector is then classified as abnormal. Otherwise it
is considered as normal[41].

3.1.2 One-class SVM based anomaly intrusion detec-
tion method.

To facilitate comparison, we use one-class SVM pro-
posed by Schölkopf et al. [28] for anomaly detection.
One-class SVM algorithm is to map the data into a fea-
ture space H by a mapping function Φ(X), such that
the dot product in H can be computed using a kernel
k(Xi, Xj) = Φ(Xi) · Φ(Xj). The mapped data in H are
separated from the origin with maximum margin using
a hyperplane w ·Φ(X)− ρ = 0, while w is a weight vec-
tor and ρ is offset parameterizing the hyperplane in H. A
small ‖ w ‖ corresponds to a large margin of separation
from the origin.

Given training vectors X1, X2, ..., Xn belonging to the
normal class, the primal form of optimization function is

min
w,ξ,ρ

1

2
‖w‖2 +

1

νn

n∑

i=1

ξi − ρ,

subject to w · Φ(Xi) ≥ ρ− ξi and ξi ≥ 0,

where ν ∈ (0, 1] is an upper bound on the fraction of
data that may be outliers.

Solving the optimization problem, the decision function
is defined as

f(X) = sgn(w · Φ(X)− ρ) (2)

This function returns the value +1 in a “small” region
capturing the training data, and −1 elsewhere.

In anomaly detection, we use the normal data to learn
the function f(X). If the decision function (2) gives a
positive value for a test data item, it is classified as nor-
mal. Otherwise, it is considered as anomalous.

3.2 Attribute abstraction and anomaly intrusion detec-
tion with PCA

Principal Component Analysis (PCA) [14] is based on
transforming a relatively large number of variables into
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a smaller number of uncorrelated variables by finding a
few orthogonal linear combinations of the original vari-
ables with the largest variance.

Given a set of original observations be X1, ..., Xn, and
suppose each observation is represented by a row vector
of lengthm (the number of attributes), then the data set
can be represented by a matrix Xn×m. The average ob-
servation is defined as µ = 1

n

∑n
i=1Xi. The observation

deviation from the average is defined as Φi = Xi − µ.
The sample covariance matrix of the data set is defined
as C = 1

n

∑n
i=1 (Xi − µ)(Xi − µ)T .

Suppose (λ1, µ1), (λ2, µ2), ..., (λm, µm) arem eigenvalue-
eigenvector pairs of the sample covariance matrix C,
we choose k eigenvectors having the largest eigenvalues.
Often there are just few large eigenvalues. This implies
that k is the inherent dimensionality of the subspace
governing the “signal”, while the remaining (m − k)
dimensions generally contain noise. The dimensionality

of the subspace k can be determined by

∑k

i=1
λi∑m

i=1
λi
≥ α,

where α is the ratio of variation in the subspace to the
total variation in the original space. We form a (m× k)
(usually k � m for data reduction) matrix U , which
has columns comprising the k eigenvectors. The repre-
sentation of the data by principal components consists
of projecting the data onto the k-dimensional subspace
according to the rule Yi = (Xi − µ)U = ΦU .

The number of principal eigenvectors, U1, U2, ..., Uk,
used to represent the distribution of the original data,
is determined by α. They can also be regarded as the
attributes abstracted from the original data attributes.

For anomaly detection, given an incoming vector T
that represents a test sample, we project it onto the
k-dimensional subspace representing the normal behav-
ior. The distance between the test data vector Φ and its
reconstruction onto the subspace Φr is the distance be-
tween the mean-adjusted input data vectors Φ = T − µ
and Φr = (T − µ)UUT = ΦUUT [36]. If the test data
vector is normal, that is, if the test data vector is very
similar to the training vectors corresponding to normal
behavior, the test data vector and its reconstruction
should be very similar and therefore the distance be-
tween them should be small. Our intrusion identification
model is based on this property.

As PCA seeks a projection that best represents the data
in a least-square sense, we use the squared Euclidean
distance in the experiments to measure the distance be-
tween these two vectors: ε =‖ Φ − Φr ‖2. ε is charac-
terized as the anomaly index. If ε is below a predefined
threshold, the vector is then identified as normal. Oth-
erwise it is identified as anomalous.

3.3 Attribute selection with information gain

The Information Gain (IG) of a given attribute X with
respect to the class attribute Y (e.g., normal or one of
the attacks) is the reduction in uncertainty about the
value of Y after observing values of X. It is denoted
as IG(Y |X). The uncertainty about the value of Y is
measured by its entropy defined as

H(Y ) = −
∑

i

P (yi) log2 P (yi) (3)

where P (yi) is the prior probabilities for all values of Y .
The uncertainty about the value of Y after observing
values ofX is given by the conditional entropy of Y given
X defined as

H(Y |X) = −
∑

j

P (xj)
∑

i

P (yi|xj) log2 P (yi|xj) (4)

where P (yi|xi) is the posterior probabilities of Y given
the values of X. The information gain is thus defined as
IG(Y |X) = H(Y ) − H(Y |X). According to this mea-
sure, an attribute X is regarded as more correlated to
class Y than attributeZ if IG(Y |X) > IG(Y |Z). By cal-
culating information gain, we can rank the correlations
of each attribute to the class and select key attributes
based on this ranking.

3.4 Exemplar extraction with Affinity Propagation and
with k-means

3.4.1 Affinity Propagation based exemplar extraction.

Affinity Propagation (AP) is an exemplar-based cluster-
ing algorithm [10]. Let E = {e1, . . . , eN} be a set of data
items and let d(ei, ej) denote the distance (e.g., an Eu-
clidean distance) between items ei and ej : d(ei, ej) =
‖ei − ej‖.

The fitness function is defined by

E(c) =

n∑

i=1

S(ei, ec(i)) (5)

where c(i) is the index of the exemplar representing the
item ei in a cluster; S(ei, ej) is set to −d(ei, ej)

2 if i 6= j,
and otherwise is set to a small constant −s∗ (s∗ ≥ 0).
−s∗ represents a preference that ei itself be chosen as
an exemplar. AP finds the mapping c that maximizes
the fitness function E(c) defined by (5) to cluster the
data items. The resolution of this optimization problem
is achieved by a message passing algorithm [10].

In practical use, there may be some items that are
exactly the same in the audit data. In our study, we
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used Weighted AP (WAP) [46–48] because it adds more
weight to the multiple-appear items so as to let one of
them have more probability of being an exemplar. Let
data set E′ = {(ei, ni)} involve ni copies of item ei,
for i = 1, . . . , L. WAP considers the similarity metric
defined as

S′(ei, ej) =

{
−nid(ei, ej)

2 if i 6= j

−s∗ otherwise.

Unlike k-means or k-centers, AP has no need to pre-
define how many exemplars or clusters exist in the data.
Instead, AP specifies the penalty s∗ for allowing an item
to become an exemplar. Note that for s∗ = 0, the best
solution is a trivial one, selecting every item as an ex-
emplar.

3.4.2 K-means based exemplar extraction.

Given a set of observations (X1,X2, . . . ,Xn), where each
observation is an attribute vector, k-means clustering
aims to partition the n observations into k sets (k < n)
S = {S1, S2, . . . , Sk}. This is to minimize the within-
cluster sum of squares

k∑

i=1

∑

xj∈si
‖ Xj − µi ‖2 (6)

where µi is the mean of points in Si. It is clear that k-
means can only generate k-mean cluster centroids rather
than real exemplars.

4 Experiments

4.1 Overview

To comprehensively validate our methods, in this work,
we performed a large number of experiments. In detail,
we evaluate the three strategies of data abstraction on
three data sets by combining the following detection
methods and strategies together:

• exemplar extraction: AP + k-NN; k-means + k-
NN; AP + PCA; k-means + PCA; AP + SVM; k-
means + SVM.
• attribute selection: IG + k-NN; IG + PCA; IG +

SVM.
• attribute extraction: PCA.
• combinations: IG + AP + PCA; IG + AP + k-NN;

IG + k-means + k-NN; IG + k-means + PCA; IG +
AP + SVM; IG + k-means + SVM.

4.2 Data

In the experiments, we used two different types of data
for the evaluation. The first is a real http traffic dataset
1 collected, from the main http server of a intermediate
research institute in Europe. The second is the KDD’99
benchmark data [15].

4.2.1 Http data streams.

We detect web attacks with real http traffic streams. In
some ways our method is analogous to an anomaly de-
tection version of the Snort sensor [31], focusing on port
80. Two large http traffic data sets were collected on
the main Apache server. These two real traffic data sets
represent two attack scenarios in the network. The first
traffic (http large) contains rare attacks while the sec-
ond (http small) contains bursty attacks. We labeled the
data by three methods to guarantee the correctness of
the labeling information. Firstly, we examined the alert
information recorded by the signature-based IDS to find
known attacks, and then we used several anomaly detec-
tors to check for unknown anomalies. Finally we manu-
ally examine the data, especially the anomalies identi-
fied by the previous detectors.

The attacks in http large traffic mainly includes JS XSS
attacks, input validation error, URL decoding error,
SQL-injection attacks, PHP remote file inclusion at-
tacks and DoS attacks. The attacks in http small traffic
mainly includes JS XSS attacks, SQL-injection attacks
and PHP remote file inclusion attacks. In detail, the
http large traffic contains 36 attack requests distributed
in more than 5.7 million requests collected in 10 days
and 21 hours while the http small traffic contains 239
attacks occurring over a very short interval (between
request 7923th and 9743th after filtering) in more than
1.4 million requests collected in 3 days and 3 hours.
These two traffic data sets are described in Table 1.

Our method examines individual http requests and mod-
els the content of script inputs. To reduce noise contained
in the data streams, we filtered out most static requests
(e.g., .html, .wav, .txt, .swf) and widely known search
engine robots (e.g., googlebot, msnbot) before the detec-
tion, because a static request cannot be an attack to the
server. Note that we only filter out widely known attack-
free static requests to guarantee that no true attack is
removed from the data. The data are largely reduced by
this process of filtering.

We used character distribution of each path source in
http requests as the attributes. Character distribution
was first introduced for anomaly detection by Krüegel
and Vigna [17] who computed them in a coarse way.

1 All the preprocessed data and the programs used in this
paper are available upon request.
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Table 1
The http traffic used in the experiments

Data set Before Filtering After Filtering # normal # attack

File size # requests File size # requests requests requests

http large 1,536MB 5,700,949 53.5MB 265,752 265,716 36

http small 561.2MB 1,449,379 9.5MB 40,095 39,856 239

They first sorted the 256 ASCII characters by frequency,
aggregated them into 6 groups (0, 1-3, 4-6, 7-11, 12-15,
and 16-255), and computed one single uniform distribu-
tion model for these 6 groups for all attributes. Also,
they only modeled the query attributes. Their results
[17] showed that even the attributes of this type of coarse
character distribution detect most web attacks. Further-
more, Wang et al. [34] used full character distribution
of payload of network traffic for anomaly network detec-
tion and the results also showed its effectiveness. Nev-
ertheless, in this work, we seek to refine this computa-
tion by modeling the full-byte distribution of each path
source (including queries) in http requests. We find there
are 256 types of ASCII code in total but only 95 types
(between 33 and 127) appear in the http request. The
character distribution is computed as the frequency of
each ASCII code in the path source of a http request.
In contrast, we model. For example, the character dis-
tribution of printable ASCII codes of the path source
“/acacia/project/edccaeteras/wakka.php?wiki=Acti
onOrphanedPages/referrers” is computed as:

0 0 0 0 0 0 0 0 0 0 0 0 0 0.014 0.069 0 0 0 0 0 0 0 0 0 0

0 0 0 0.014 0 0.014 0 0.014 0 0 0 0 0 0 0 0 0 0 0 0 0 0.014

0.014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.125 0 0.083 0.028

0.125 0.014 0.014 0.028 0.056 0.014 0.042 0 0 0.028 0.028

0.056 0 0.0976 0.042 0.042 0 0 0.028 0 0 0 0 0 0 0 0 0 0 0

As a consequence, each http request (data item) is rep-
resented by a vector of 95 dimensions. Our goal is to
identify whether an item is normal or anomalous. There
are some other different attributes that can be extracted
from the http traffic [17,22]. The character distribution
can be regarded as a 1-gram method (w.r.t. n-gram
[32]) to consider the content of the http request. New
attributes can be added in our future work, but here,
we mainly focus on abstracting massive data for fast
anomaly detection.

4.2.2 KDD’99 data.

The raw KDD’99 data contains traffic in a simulated mil-
itary network that consists of hundreds of hosts. It has
been processed into about 5 million connection records
by Lee et al. [19] as part of the UCI KDD archive [15].
A connection is a sequence of TCP packets starting and
ending at some well-defined times, between which data
flows from a source IP address to a target IP address
under some well defined protocol [15]. In the data set,

each network connection is labeled as either normal, or
as a specific kind of attack. The network connection data
contains 41 attributes among which 34 are numeric and
7 are alphanumeric. We only used the 34 numeric at-
tributes in the experiments. Each connection in the data
set is thus transformed into a 34-dimensional vector as
data input for the detection.

These attributes are divided into three groups: basic
attributes of individual TCP connections, traffic at-
tributes and content attributes within a connection
suggested by domain knowledge. There are 494,021 con-
nection records in the training set in which 97,278 are
normal and 396,744 are attacks. There are 22 types of
attacks in the data set in total and these attacks fall
into one of 4 categories: DoS: denial-of-service (e.g.,
teardrop); PROBE: surveillance and other probing
(e.g., port scanning); R2L: unauthorized access from a
remote machine (e.g., password guessing); U2R: unau-
thorized access to local superuser (root) privileges by a
local unprivileged user (e.g., buffer overflow attacks).

In the attack data set, because DoS attacks take quite
a large proportion in the attack data and they are rel-
atively easy to detect [36], we randomly selected 20%
from each DoS attack category to form the DoS attack
data. All PROBE, R2L and U2R attacks are used in our
work. For normal data, we randomly selected 7000 con-
nections for training and other 10000 for the test. The
original data and the data used in our work is described
in Table 2. In the experiments, we normalize the KDD’99
data with statistical normalization method before con-
ducting the detection.

5 Comparative results

5.1 Experiment settings

For exemplar extraction, to generate a different num-
ber of exemplars, the preference parameter (−s∗) of AP
needs to be set to various values. In total there are N2

values that can be set as −s∗ to generate the exemplars.
In the experiments, we set (l ∗N2)-th largest value of
the N2 similarities between all pairs of items as −s∗ and
set l = 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, respectively. For
k-means, to facilitate comparison, we set k as the same
number of exemplars generated by AP to generate clus-
ters. For attribute abstraction with PCA, as mentioned
earlier, α is the ratio of variation in the subspace to the
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Table 2
The KDD’99 data (number of connections) used in the experiments

Data set Normal (#) DoS (#) PROBE (#) R2L (#) U2R (#)

Origin 97,278 391,458 4,107 1,126 52

Training 7,000 0 0 0 0

Test 10,000 78,291 4,107 1,126 52

total variation in the original space. If α is chosen as
99.9%, then the variation in the subspace spanned by
the former k eigenvectors has only 0.1% loss of variation
in the original space. Basically a larger α results in bet-
ter representation of the original space with subspace.
Usually there is a tradeoff between α and the detection
efficiency. In this work, we set α as 99.9% in the exper-
iments to obtain satisfactory detection results. This is
also consistent with our previous finding in [35,36].

Different from exemplar extraction or attribute abstrac-
tion in which only normal data is needed for training,
attribute selection requires additional attack data. For
http traffic data, we used all the normal training data
(http large and http small) and randomly selected half
the attack data to rank the importance of attributes. For
KDD’99 data, we used all the normal training data and
randomly selected a subset of attack data for the rank-
ing. For detection algorithm k-NN, we set k = 1 and it is
thus in fact Nearest Neighbor (NN). We made our own
MATLAB programs for all the algorithms except SVM
for which LibSVM tools [6] were used.

The three data sets and the number of exemplars gen-
erated with AP from their corresponding training data
are described in Table 3. Table 4 shows the number of
attributes after attribute selection using IG and after
attribute extraction with PCA.

We performed extensive experiments on the three data
sets with different combinations of detection algorithms
(i.e., k-NN, SVM, PCA) and strategies of data abstrac-
tion (i.e., PCA, IG, AP and k-means). In this paper, we
report the exemplars extracted and attributes selected,
the detection speed and the detection accuracy.

5.2 Exemplars extracted and attributes selected

An exemplar is nicely representative of itself and some
other data items. As shown in Figure 2, an exemplar is a
factual data item (i.e., an http request) presented in rows
while an attribute is a value describing the data item and
is presented in columns. For instance, the second http
request is extracted by AP from the http large data set
as an exemplar and attribute 2, 5 and 92 are selected by
IG for anomaly detection.

Two exemplars extracted by AP based on the http large
traffic data are shown as

1. /axis/publications/login.php?ref=/axis/publications

/add.php&forgot=y

2. /mascotte/Stages/?ID=138&annee=2006 2007&lang=fr

The two exemplars are clearly shown to represent a set of
similar http requests in the training data. For attribute
selection with IG, the experiments show that only 52
out of 95 attributes (characters) contribute to the de-
tection. The important attributes (characters) are listed
(ranked by their contribution to the detection) as

. / r ? e \ - = w c o — ) ( ; b g t p h j A f ¿ ” a k O P m

s ¡ u v d R [ ] I 5 X * % T l i 7 , ‘ x W

The attributes “. / r ?” have high ranking w.r.t. the con-
tribution to the detection because many attack requests
contain them. For example, an http request of a remote
file inclusion attack is “./query.php?loginID=/content
/base/build/explorer/none.php?..:..:..:..:..:..:..:etc:passwd”,
where the mentioned attributes appear frequently.

The attributes abstracted by PCA, however, are not the
original ones, as they represent attributes in a new fea-
ture space.

5.3 Detection efficiency

For exemplar extraction, the computation time for gen-
erating exemplars, for training the models and for the
detection is summarized in Table 5. For attribute selec-
tion, the computation time for attribute selection (IG),
for training the models and for the detection is listed in
Table 6. All the experiments were carried out on a ma-
chine with Intel Dual Core 2.80GHz and memory 4GB.

It is seen from Tables 5 that the detection efficiency for
all the detection algorithms is significantly improved by
the process of exemplar extraction. For example, while
using all the data to build the detection models, k−NN
needs 7670 seconds for the detection of web attacks in
http large data set, but only 235 seconds are required for
the detection with 298 exemplars extracted from 8000
items by AP. Generating exemplars is not time consum-
ing. For instance, generating 298 exemplars costs only 94
seconds. As a result, in a best case scenario, the process
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Table 3
Three data sets and the number of their exemplars generated from the training data with AP

Data # # # exemplars

training test l = l = l = l = l = l =

items items 1/2 1/4 1/8 1/16 1/32 1/64

http large 8000 257751 298 384 461 532 678 977

http small 7000 33095 420 529 613 692 781 975

KDD’99 7000 93576 191 327 614 1172 / /

Table 4
The number of attributes after reduction in the three data sets

Data set # attributes # attribute after PCA # attribute after IG

http large 95 66 52

http small 95 71 52

KDD’99 34 23 16
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Fig. 2. Exemplars and attributes in the http traffic data

of exemplar extraction improves the computation time
by more than 23 times in the best case. In most cases AP
is more efficient than k-means for generating exemplars.

As expected, Table 6 shows that attribute selection with
IG also improves the detection efficiency. For example,
k-NN requires 7170 seconds for the detection of web at-
tacks in http large data set with original data (95 at-
tributes). In contrast, it only needs 4114 seconds with
reduced attributes (52 attributes). By comparing the
computation time during the detection in Table 5 and
in Table 6, we see that exemplar extraction with AP is
more effective than attribute selection for enhancing the
detection efficiency.

5.4 Comparative detection results

The comparative results on http large data set are shown
in Figures 3 and 4. These curves in the Figures rep-
resent ROC (Receiver Operating Characteristic) of the
Detection Rates (DR), calculated as the percentage of
intrusions/attacks detected against False Positive Rates
(FPR), calculated as the percentage of normal events
falsely classified as intrusions/attacks.

Figure 3 shows that using a smaller set of exemplars re-
sults in similar or improved detection accuracy in many
cases. Normally, as the number of exemplars increases,
the detection accuracy is improved too. However, as
shown in the Figures, selecting approximately 10 per-
cent of the total number of data items as exemplars gives
satisfactory detection results. In many cases the results
are better than using all the data.

AP performs similar to k-means in exemplar extraction
for k-NN and PCA based detection methods. It outper-
forms k-means for SVM-based detection. Similarly, Fig-
ure 4 shows that IG-based attribute selection improves
detection rates. Thus k-NN appears to be more effective
than PCA or SVM for the detection of anomalies in http
large data.

Comparison with KDD’99 data in Figure 5 shows that
exemplar extraction is a good tool. Selecting a smaller
set of exemplars for training has either no affect on detec-
tion accuracy and in most cases it even improves the de-
tection accuracy. These results are consistent with those
on http traffic, and show that k-NN is better than PCA
or SVM for anomaly detection.
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Table 5
The computing time (sec.) for anomaly detection with or without exemplar extraction process (AP and k-means).

Data set training data time for generating exemplars time for anomaly detection

AP k-means k-NN PCA SVM

8000 items / / 7670 36 919

298 exemplars 94 99 235 3 28

384 exemplars 108 128 294 2 36

http large 461 exemplars 246 207 478 2 43

532 exemplars 251 225 645 2 51

678 exemplars 97 394 617 3 63

977 exemplars 125 275 628 2 94

7000 items / / 592 29 101

420 exemplars 139 190 29 0.3 5

529 exemplars 141 365 38 0.3 6

http small 613 exemplars 158 215 45 0.3 8

692 exemplars 158 408 48 0.3 8

781 exemplars 176 495 56 0.3 10

975 exemplars 162 307 67 0.7 12

7000 items / / 989 11 74

191 exemplars 548 302 27 0.3 2

KDD’99 327 exemplars 557 414 46 0.3 3

614 exemplars 611 603 83 0.3 6

1172 exemplars 753 1023 153 0.6 12

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

False positive rate

D
et

ec
tio

n 
ra

te

 

 

knn on 298 exemplars
knn on 384 exemplars
knn on 461 exemplars
knn on 532 exemplars
knn on 678 exemplars
knn on 977 exemplars
knn on all 8000 training data

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

False positive rate

D
et

ec
tio

n 
ra

te

 

 

knn on 298 exemplars
knn on 384 exemplars
knn on 461 exemplars
knn on 532 exemplars
knn on 678 exemplars
knn on 977 exemplars
knn on all 8000 training data

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

False positive rate

D
et

ec
tio

n 
ra

te

 

 

PCA on 298 exemplars
PCA on 384 exemplars
PCA on 461 exemplars
PCA on 532 exemplars
PCA on 678 exemplars
PCA on 977 exemplars
PCA on all 8000 training data

(a) AP + k-NN (b) k-means + k-NN (c) AP + PCA

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

False positive rate

D
et

ec
tio

n 
ra

te

 

 

PCA on 298 exemplars
PCA on 384 exemplars
PCA on 461 exemplars
PCA on 532 exemplars
PCA on 678 exemplars
PCA on 977 exemplars
PCA on all 8000 training data

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

False positive rate

D
et

ec
tio

n 
ra

te

 

 

knn on 298 exemplars
knn on 384 exemplars
knn on 461 exemplars
knn on 532 exemplars
knn on 678 exemplars
knn on 977 exemplars
knn on all 8000 training data

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

False positive rate

D
et

ec
tio

n 
ra

te

 

 

SVM on 298 exemplars
SVM on 384 exemplars
SVM on 461 exemplars
SVM on 532 exemplars
SVM on 678 exemplars
SVM on 977 exemplars
SVM on all 8000 training data

(d) k-means + PCA (e) AP + SVM (f) k-means + SVM

Fig. 3. Results on http large data set with exemplar extraction.
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Fig. 4. Results on http large data set with exemplar extraction after attribute selection with IG.
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Fig. 5. Results on KDD’99 data with exemplar extraction as well as its performance after attribute selection with IG.
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Table 6
The computing time (sec.) for anomaly detection after attributes were selected with IG (52 out of 95 attributes for http
data and 16 out of 34 attributes for KDD’99 data, see Table 4)

Data set training data exemplars time cost classifying time cost

AP k-means k-NN PCA SVM

8000 items / / 4114 21 558

293 exemplars 218 59 116 1.2 19

378 exemplars 180 70 154 1.2 25

http large 452 exemplars 187 79 175 1.2 31

538 exemplars 190 90 215 1.2 37

653 exemplars 291 100 287 1.3 44

1029 exemplars 200 114 448 1.5 70

7000 items / / 382 17 72

395 exemplars 84 86 20 0.2 3

497 exemplars 87 102 26 0.2 4

http small 592 exemplars 85 116 31 0.2 5

664 exemplars 97 133 35 0.2 6

736 exemplars 371 148 39 0.2 6

819 exemplars 247 146 45 0.3 7

7000 items / / 806 7 51

130 exemplars 475 158 16 0.2 1

KDD’99 246 exemplars 894 354 29 0.2 2

470 exemplars 720 559 53 0.2 3

895 exemplars 1732 1008 101 0.3 6

6 Concluding remarks

The amount of data in anomaly intrusion detection is
becoming increasingly massive in current computing en-
vironments. Building a lightweight model for anomaly
intrusion detection to achieve real-time detection there-
fore becomes an important challenge. In this paper, we
abstract big audit data by finding a small set of exem-
plars from a large set of original data. An exemplar is
nicely representative of other data items. Exemplars are
identified among data items and clusters of data items
are formed around these exemplars. The exemplars are
then fed as data input for training the detection mod-
els. This method improves detection efficiency for two
reasons: first, only a smaller set of data needs to be pro-
cessed for the training, and second, the detection process
only needs to be based on a compressed model. For a
comparative view of different strategies of data abstrac-
tion in intrusion detection, in this paper we also intro-
duced Information Gain based attribute selection and
PCA based attribute abstraction for anomaly detection.

PCA is a widely used attribute abstraction algorithm
that performs a coordinate rotation that aligns the trans-
formed axes with the directions of maximum variance.

The new coordinates can be regarded as the new at-
tributes abstracted from the originals. However, PCA is
effective only when the observed data has a high signal-
to-noise ratio, as the principal components with larger
variance correspond to interesting dynamics and lower
ones correspond to noise. Therefore, PCA is not effec-
tive when data items are all centralized. In cases where
variance is low, exemplar extraction is more suitable be-
cause it works through grouping similar data items to
form a cluster in which the most representative factual
data item are selected as an exemplar.

Most existing methods have used all data items or all
attributes for anomaly intrusion detection. However, be-
cause some data items or attributes could be redundant
or even represent only noise, including all data items
can have a negative impact on the detection perfor-
mance. The correlated data items or redundant features
thus should be reduced before the detection models are
built. Exemplar extraction considerably improves intru-
sion detection by reducing reduplicate and similar data
items that usually exist in the original data set. To il-
lustrate the ability of exemplar abstraction to minimize
duplicates in the data sets, we used the KDD’99 data set
to find that only 1172 data items were unique out of 7000
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training items. Similarly, in the http large data set, only
1943 data items were unique among 8000 data items,
and in http small data set, only 2308 out of 7000 were
unique. Using a clustering algorithm Affinity Propaga-
tion (AP) [10], we extract real exemplars from original
data and used traditional k-means clustering method to
generate average exemplars.

Attribute selection can also improve detection efficiency.
In this paper, we used Information Gain (IG) to rank the
attributes. To generate an effective subset of attributes
from the original set, IG requires a large amount of at-
tack data and normal data. In practice, however, a large
amount of attack data is difficult to collect. This may,
in some circumstances, prevent the use of IG based at-
tribute selection method for intrusion detection.

Two http data sets collected from a real computing en-
vironment as well as the KDD’99 data have been used to
validate the two strategies of data abstraction. The ex-
tensive experimental results confirm that both AP and
k-means clustering methods improve the accuracy and
efficiency of anomaly intrusion detection through exem-
plar extraction. In many cases AP outperforms k-means.
For example, the test results show that the AP based
exemplar extraction method improves the detection ef-
ficiency by 23 times compared to k-NN. In addition, AP
has two major advantages over k-means. First, AP ex-
tracts factual exemplars from the data while k-means
can only generate averaged ones. This is important be-
cause an exemplar has a physical significance in many
cases, which in practice means, a set of real http re-
quests can be extracted, replacing the originals. Second,
AP does not need to define the number of clusters (ex-
emplars) beforehand while k-means does. This is an im-
portant advantage because it is often difficult to have a
priori knowledge of this data, especially for a very large
amount of streaming data like http traffic. The process
of exemplar extraction is more robust than attribute
selection with IG and than attribute abstraction with
PCA. To enhance detection performance, we recommend
to perform exemplar extraction (in particular AP-based
exemplar extraction) prior to building detection models.

In the future, we will explore more attributes of http
traffic to improve detection performance of anomalies
and address the problem of “concept drift” in audit data.
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