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A B S T R A C T

The use of fluid viscous dampers (FVDs) together with isolators, frequent in near-fault buildings, is effective in
reducing displacements of the isolation layer. Such a hybrid system is also beneficial in the case of inter-storey
isolation with the aim of limiting P-Δ effects. However, previous research on base isolation shows that this
additional damping may also be detrimental, as inter-storey drifts and floor accelerations may increase.

This paper analyses the effectiveness of FVDs for enhanced seismic performance of systems with inter-storey
isolation. A seven-floor building, with natural and lead rubber bearings between the second and third levels, was
used as a case study, and a multi-objective optimal design was performed to identify the best damper parameters.
In particular, time-history analyses with various natural records were carried out and two competing objectives
were examined: minimisation of the deflection of the isolation layer and minimisation of the total drift of the
superstructure.

The results show not only the effectiveness of optimal FVDs but also the fact that their optimal linearity
degree depends to a great extent on the non-linear seismic response of the structure, i.e., on the type of
earthquake. The simplest design approach, consisting of applying an optimization algorithm for each design
accelerogram, did not seem, in this case, to be sufficient to identify the best overall design solution. The design
consequences of these findings are discussed.

1. Introduction

Inter-storey seismic isolation has attracted increasing interest in
recent years, particularly in densely populated areas, as an alternative
mitigation strategy to base isolation for both new and existing build-
ings. As the name suggests, the isolation system is incorporated be-
tween storeys rather than at the base of the structure, in view of ar-
chitectural concerns, feasibility of construction, and performance
benefits. Although base isolation for multi-storey buildings is a well-
known technique applied worldwide, it may sometimes clash with
substantial economic and technical problems, which may limit its ap-
plication.

In particular, installing base isolation is straightforward for new
buildings, but becomes complicated and expensive for existing ones,
since excavation and temporary support works are required. Instead,
the installation of inter-storey isolation is relatively simple and gen-
erally less expensive and disruption-free. It also allows extra floors to be
constructed on an existing building (if its vertical capacity allows this)
without increasing the total base shear demand, and thus represents an

innovative and realistic retrofitting approach [1,2].
Firstly, base isolation is not as effective for medium/high-rise

buildings as inter-storey isolation, because of the flexibility and
bending-type behaviour of the latter [3]. Secondly, storey isolation can
greatly increase design flexibility in high-rise and multipurpose build-
ings, by separating them into two independent structural parts which
can be designed with different shapes, materials and functions, thus
allowing them to become unique architectural features [4]. Examples of
this application to irregular high-rise buildings are the Iidabashi First
Building [4] and the Shiodome Sumitomo Building [5] in Japan, two
multipurpose buildings having substructure and superstructure with
different structural shape. In China, this technique was used to isolate
50 buildings (seven- or nine-storey RC frames) in Beijing, built on top of
a two-storey platform covering a very large (∼3 km2) railway area [6].
Built relatively recently, in the National Taiwan University campus, the
Civil Engineering Research Building is a nine-storey pre-cast RC struc-
ture with an inter-storey isolation system installed between the second
and third floors, which also includes viscous dampers [7]. Lastly,
moving the isolation layer to the upper storeys reduces the need for a
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seismic gap, which is necessary to accommodate the expected dis-
placement of isolators, but also expensive and sometimes impractical in
densely-built urban areas.

This isolation strategy, which can be achieved by inserting isolators
inside the columns of a chosen storey (especially for retrofitting ap-
plications) or between RC slabs (i.e., the top and base of the sub-
structure and superstructure, respectively), substantially converts the
masses above the isolation layer into tuned masses, retaining their
structural functions in addition to the control function; in other words,
the principle of operation may be appropriately described as a non-
conventional tuned mass damper (TMD) with a large mass ratio [8].

Fluid viscous dampers (FVDs) and other damping devices are often
used together with isolators. Their primary function is to reduce the
seismic demand which, in some cases, requires isolation devices of
considerable size and cost to avoid their buckling or rupture. This is
particularly true in the case of near-fault (NF) ground motions, char-
acterized by intense long-period pulses of motion, for which several
authors have shown the need for additional damping [9–11]. However,
such hybrid systems are also very effective in the case of inter-storey
isolation, reducing P-Δ effects due to drift between the structural parts
separated by the isolation layer.

Kelly [12] questioned the usefulness of this supplementary damping
on the basis of analytical treatment of a linear two degrees-of-freedom
(DOF) base-isolated structure. He concluded that it reduced the effi-
ciency of the isolation system by exciting higher modes, leading to
higher floor accelerations and inter-storey drift. This was disputed by
Hall [13] who, through time-history analyses of a 2-DOF linear system,
demonstrated that supplementary damping can reduce the displace-
ment demand of the isolation system and may also reduce drift. Further
studies demonstrating these advantages of added linear viscous
damping were performed by other authors, such as: Hall and Ryan [14],
who carried out response history analyses on high damping rubber
bearings and linear viscous dampers; Jangid and Kelly [15], who stu-
died the effects of isolation damping on the performance of various
isolation systems under near-fault motion; Alhan and Gavin [16], who
performed time and frequency domain analyses on an eight-storey
structural model, isolated with both linear viscously damped and non-
linear yielding hysteretic systems; Politopoulos [17] who, again in-
vestigating a base-isolated 2-DOF system, confirmed the conclusions of
Hall [13], and also showed how additional damping can reduce floor
spectra values in the vicinity of the first mode - at the expense, how-
ever, of a possible increase of the same values near higher modal fre-
quencies. Providakis [18,19] and Fathi et al. [20] have recently pro-
vided other numerical studies on supplementary linear viscous
damping; Providakis studied two realistic base-isolated RC buildings,
examining both lead rubber bearings (LRB) and single friction pen-
dulum (FPS) isolators, and Fathi et al. investigated ideal moment-re-
sisting steel frames, base-isolated with LRB devices. Some of their
conclusions were similar: for instance, an increase in the damping ratio
reduces the base displacement for both near-fault (NF) and far-fault
(FF) earthquakes, while sometimes amplifying floor accelerations.
However, results regarding inter-storey drift are conflicting; according
to Providakis [18,19], if the damping ratio increases, drift decreases in
the case of NF and increases in that of FF, which may be the result of
‘too much damping’ in the weaker FF motions.

Some interesting applications of FVDs in isolation systems, in the
USA and particularly in California, are reported in Wolff et al. [21].
These authors observed that, despite the now widespread use of non-
linear FVDs, the application of FVDs in isolation systems has progressed
toward using linear dampers. Another example in which linear FVDs
were placed in a storey isolation system is the previously mentioned
building in the National Taiwan University campus [7].

A non-linear FVD (i.e., with damping exponent α of less than 1)
dissipates more energy per cycle than a linear one (i.e., with α ap-
proximately equal to 1), considering the same maximum damping force
and displacement amplitude. It also provides a safeguard by limiting

the transmission of damping force at high velocities beyond the design
value [22,23]. Instead, in the case of sinusoidal or similar motions, a
linear damper allows containment of the total force at maximum dis-
placement, when the damping force is ideally nil. According to
Ziyaeifar and Noguchi [3], in partial mass isolation, a high damping
force reduces the isolation effect, blocking the sliding gap offered by the
isolation layer. This fact practically sets a limit for the appropriate value
of the linear damping ratio, which may be increased when a non-linear
viscous device is used, as it is capable of providing lower damping force
together with a higher energy dissipation rate. However, tests con-
ducted by Wolff et al. [21], who compared the effectiveness of linear
and non-linear FVDs, used together with low damping rubber bearings
and high damping FPS isolators, showed that linear damping is more
suitable to contain increases in inter-storey drift and floor acceleration,
particularly in the case of high damping isolators, despite the apparent
advantages of non-linear devices.

Although not new, this topic is still of great interest. The main ef-
fects of additional damping on base-isolated buildings are clear, but
recent results obtained by several authors are not always easy to
compare, because they are also strongly influenced by the initial hy-
potheses, including damper features. In addition, the use of FVDs in
buildings isolated at storey level, rather than at the base, has its own
peculiarities, and the effectiveness of FVDs for the improved seismic
performance of such structures has not yet been investigated.

Within this context, this paper presents a multi-objective optimization
study of an FVD mounted on an inter-storey isolation system, consisting of
both natural rubber bearings (NRBs) and lead rubber bearings (LRBs). For
this purpose, a reference seven-storey building was examined, with sub-
structure and superstructure modelled as linear and separated between the
second and third floors by an isolation layer with non-linear hysteretic
behaviour depending on both displacement (due to LRBs) and velocity
(due to the FVD). Time-history simulations were performed for various
natural accelerograms, scaled to the same peak ground acceleration (PGA)
of 0.25 g, for comparison. Although several multi-objective structural op-
timization studies have been carried out over the last 20 years, this type of
investigation, to the authors’ knowledge, still seems to be missing in the
scientific literature. For example, as regards storey isolation, optimization
studies concern the number and position of the isolation layers along the
height of the building [24,25] and the properties of its isolators [8,26];
whereas, as regards FVDs, these studies concern their optimal allocation
inside buildings [27] and optimal parameters in controlling vibration in
stay cables for bridges [28,29], but only a few of them deal with FVD
optimization when used together with isolators, and they also focus only
on linear dampers [30]. Indeed, previous studies of the effectiveness of
additional damping in base-isolated buildings have always been addressed
by assuming FVD features. In particular, in this study, the fast, élitist Non-
dominated Sorting Genetic Algorithm NSGA-II [31] was used to find a set
of optimal Pareto solutions, or optimal combinations of damper para-
meters, i.e., damping coefficient c (ranging from 1 to 107 N(s/m)α) and
exponent α (0.1–1.0). For this purpose, two objective functions were
chosen and pursued simultaneously, which are: minimisation of isolation
layer deflection, and minimisation of total superstructure drift. Further-
more, the following constraint was assumed in the analysis: the total drift
of the superstructure must be limited to that calculated without using
FVDs. The results show the potential of optimal FVDs in improving the
seismic response of isolated inter-storey buildings, and include the max-
imum values of base shear force, FVD force, inter-storey drift and floor
acceleration of both superstructure and substructure, shown as ratios be-
tween the cases with and without dampers, and plotted versus isolator
drift reduction due to the dampers. Certain correlations between the fre-
quency-domain velocity response of the isolation layer and the linearity
degree and performance of the FVD are highlighted, and show that op-
timal α depends to a great extent on the non-linear seismic response of the
structure, and thus on seismic action. Lastly, the design consequences of
these research findings are discussed.
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2. Case study: building model and seismic input

2.1. Storey-isolated building model

The building model examined here is shown in Fig. 1(a). It includes
a two-floor substructure and a five-floor superstructure elevated above
the storey-isolation system.

The isolated superstructure (including the isolation system) is very
similar to an existing base-isolated office building with an RC frame
structure, whereas the substructure is ideal and was chosen for the
purposes of this study, considering a different structural solution with
respect to the superstructure. That is, the masses of the first and second
floors are similar to those of the upper storeys, whereas the storey
lateral stiffness of the substructure is about three times higher than that
of the first superstructure storey, as shown in Table 1: this shows the
case of a lightweight substructure used for commercial purposes, with a
floor extension larger than that of the RC superstructure. This type of
irregular building in elevation, with an office or residential multi-storey
RC building constructed over a wider substructure of different use and
material, is increasingly common in highly populated residential areas
(as is the case in China). In addition, growing interest and greater
confidence in the storey-isolation technique are becoming evident.

The isolation system, consisting of LRBs and NRBs, which are the
most commonly used isolators in China, is considered to be placed
between the second and third slabs. A total number of 14 LRBs and 6
NRBs were installed in the real project, providing an overall elastic
stiffness k of the isolation system of 118.4 kN/mm and a post-yield
stiffness rk of 16.7 kN/mm (i.e., a post-yielding stiffness ratio r of
0.141). These values are assumed for the isolation system of our case
study, whose overall hysteretic characteristics are described below. The
post-yield stiffness is such as to lead to a vibration period of the base-
isolated structure of about 3 s.

A generic FVD is then added to the isolation layer, the parameters of
which are calculated in the next section, to obtain optimal design so-
lutions.

Table 2 (left) and Fig. 1(b) provide the main modal results, modal
frequencies and shapes, respectively, considering post-yield stiffness rk
of the isolation system; Table 2 also shows the modal contributions. The
first mode is less representative of the overall dynamics of the building
when compared with that of a base-isolated structural system equiva-
lent to the superstructure. In addition, the most significant higher
modes are the third and fourth, which have similar frequencies but
different shapes: the fourth deforms the isolation layer to a greater
extent.

The dynamic equation governing the motion of such a building
model for each time instant t is:

+ + + + = −t t t t t tMx C x K x r r MI¨ ( ) ̇ ( ) ( ) F ( ) F ( ) ü ( )isst st is vd vd g (1)

t t tx x x( ), ̇ ( ), ¨ ( ), expressed as …t t t[x ( ) x ( ) x ( )]1 2 7
T and so on, are

the vectors of the relative storey displacement, velocity and accelera-
tion, with respect to the base of the building and represent the output of
the dynamic equation. tü ( )g is the acceleration time series of ground
motion, and I represents the unitary rigid displacement vector of the
structure in the direction of the earthquake (horizontal) which, in this
case study, is equal to the identity vector.

M is the matrix of mass (of size [7× 7]), which can be directly

Fig. 1. (a) Seven-storey building model with storey isolation; (b) modal shapes considering LRBs yielded; (c) damping models assumed for substructure (Rayleigh)
and superstructure (proportional to stiffness).

Table 1
Stiffness, masses and height of building model.

Storey (inter-storey height:
hf=3.7m, his=1.3m)

1st 2nd 3rd 4th 5th 6th 7th

Stiffness (kN/mm) 1330 1140 – 380 300 300 250
Mass (tons) 850 850 960 830 800 800 500

Table 2
Results of modal analysis (LRBs yielded) and structural damping ratios ζi (Eq.
(6)) without LRBs and FVD.

Mode Angular
frequency
ω [rad/s]

Modal
contribution
[%]

ζl,i due to
substructure
[%]

ζu,i due to
superstructure
[%]

ζTot,i due
to total
structure
(without
LRBs and
FVD) [%]

1 2.0 70.6 0.01 0.02 0.03
2 12.8 0.1 0.01 2.59 2.59
3 24.0 8.6 1.55 3.49 5.03
4 24.3 18.5 3.40 1.54 4.94
5 32.2 0.0 0.00 6.75 6.75
6 37.2 0.0 0.00 7.80 7.80
7 60.7 2.1 5.00 0.00 5.00
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derived from Table 1. Cst and Kst are the matrixes of damping and
stiffness of the building, without considering the isolation layer, and
thus have the form:

= ⎡
⎣⎢

× ⎤
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where, Kl and Cl are the stiffness and damping matrixes for the lower (l)
part of the building and Ku and Cu are the same matrixes for the upper
(u) part.

Kl and Ku are directly obtained from the stiffness values of Table 1,
as shown in Eq. (3).
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Equivalent viscous damping was modelled differently for the two
structural parts (non-classical damping). In particular, the classic
Rayleigh formulation (Eq. (4)) was assumed for the substructure, as is
generally the case with fixed-base structures; instead, for the isolated
superstructure, a more appropriate stiffness-proportional damping
model (Eq. (5)) was adopted, according to Ryan and Polanco [32] and
Pant et al. [33]. Ml [2×2] and Mu [5×5] are clearly the matrixes of
mass for the two separated parts of the building. Rayleigh coefficients αl
and βl were calibrated, as shown in Fig. 1(c), by associating a damping
ratio ζ of 5% to the third and seventh mode frequencies (see Table 2),
which define the significant vibrational range of the substructure. As
regards the calibration of proportionality coefficient βu, Pant et al. [33]
suggested using ζ=1% at the first mode frequency (ω1), obtained with
the post-elastic stiffness of the isolation system, but also concluded that
stiffness-proportional damping may suppress higher mode effects for
tall base-isolated buildings, in which higher modes may be involved to
a greater extent. The latter consideration thus becomes relevant in the
case of storey isolation, due to the greater importance of higher modes.
According to these considerations and the modal contributions shown
in Table 2, it was decided to calibrate βu considering ζ=5% at ω3,
resulting in lower damping when compared with that suggested by Pant
et al. [33] (which corresponds approximately to ζ=5% at ω2, as shown
in Fig. 1(c)). To verify the goodness of these choices, Table 2 (right) lists
modal damping ratios ζi due to the substructure [Cl], superstructure
[Cu] and global structure [Cst] alone (without isolation system), cal-
culated according to the well-known Eq. (6) for classical damping
(where ϕi and ωi are the mode shape and angular frequency of mode i,
respectively), thus neglecting the off-diagonal coupling terms (negli-
gible) of the damping matrix expressed in modal coordinates. As can be
seen, the value of ζi for the significant higher modes is about 5% (the
usual value for RC structures), whereas that of the first mode turns out
to be very small: this is correct, in view of the negligible contribution of
deformation and thus damping, provided by the substructure and su-
perstructure for this mode, compared with that of the isolation layer.
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The contribution of the isolation layer is described by the last two
addenda of Eq. (1). In particular, force Fis(t) developed by the isolation
system, thus its dissipation, is modelled with the Bouc-Wen model [34]:

= + −t rkx t r kd z tF ( ) ( ) (1 ) ( )is y (7)

where r and k are respectively the post-yielding stiffness ratio and the
elastic stiffness of the isolation system (specified above), and dy is the
yielding displacement of the LRBs, which is 7.8mm in this case study.
Instead, z(t) is a function of time defining hysteretic behaviour, and
must satisfy the following non-linear first-order differential equation:

= − −−z t
d

Ax t β x t z t z t γx t z ṫ ( ) 1 ( ̇ ( ) | ̇ ( )| ( )| ( )| ̇ ( )| ( )| )
y

η η1

(8)

A, β, γ and η are non-dimensional parameters influencing the hys-
teretic loop shape [35]. Their values, shown in Table 3 together with
the other Bouc-Wen model parameters, were chosen to simulate the
experimental force-displacement loops provided by Kalpakidis and
Constantinou [36, p.132], resulting from a sinusoidal test (frequency
0.35 Hz, amplitude 114mm, LRB-diameter 500mm) fairly re-
presentative of our case study.

Lastly, the damping force Fvd(t) developed by the FVD is calculated
as:

=t c x xF ( ) | |̇ sgn( ̇)α
vd (9)

where, c and α are the damping coefficient and exponent, respectively.
To correctly consider the contributions of isolators and damper, in

terms of position in the motion equation, influence vectors ris and rvd,
which are equal in this study, are introduced:

= = −r r [0 1 1 0 0 0 0]T
is vd (10)

The total restoring force Fr(t) provided by the structure, according
to Eq. (11), can be subdivided into two contributions: one linear, due to
the elastic stiffness of both building and isolators K, and one non-linear,
provided only by the hysteretic behaviour of the isolators (see Eq. (7)):
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Substituting Eq. (11) in Eq. (1), we can write:

+ + + −
+ = −

t t t r kd z t
t t
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r MI
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from which, solving for tẍ( ), we obtain:

= − + + −
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−t t t r kd z t
t t

x M C x Kx r
r I

¨ ( ) ( ̇ ( ) ( ) (1 ) ( )
F ( )) ü ( )

yst is
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1
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Lastly, introducing the state space vector =t t t z tq x x( ) [ ( ) ̇ ( ) ( )]T T T,
Eq. (1) can be more conveniently expressed as a first-order differential
equation in state space, as below:

= = −t t t z t t tq x x f q Ḃ ( ) [ ̇ ( ) ¨ ( ) ̇( )] ( ( )) ü ( )T T T
g (15)

where f(q(t)) is a vector expressed as a function of state space vector q
(t) and B is a vector needed to take into account the correct position of

Table 3
Values of Bouc-Wen model parameters.

r
[–]

k
[kN/mm]

dy
[mm]

A
[–]

β
[–]

γ
[–]

η

[–]

0.141 118.4 7.8 1 1 1 2
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ground acceleration in the equation.
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2.2. Natural records examined

Eight different seismic inputs, chosen between the available natural
records of the PEER database [37], were implemented in Eq. (15) to
solve the dynamic equation of motion (or time-history analysis). Their
main details are shown in Table 4.

For purposes of comparison, all these natural records were scaled to
the same PGA of 0.25 g. Fig. 2 shows the acceleration and displacement
spectra of these scaled earthquakes.

3. Multi-objective optimal design of additional FVDs

3.1. Objective functions and NSGA-II genetic algorithm

The following calculations aimed at obtaining optimal design solu-
tions for the additional FVD; in other words, at finding the optimal
combinations of the FVD parameters, i.e., damping coefficient c and
exponent α. For this purpose, some design aims had to be defined,
generally related to minimisation of structural response parameters.

For example, studying the most effective position of isolation layers
throughout the height of a given building, Charmpis et al. [24] pro-
posed an elaborate objective function to minimise maximum floor ac-
celerations, with constraints on the maximum inter-storey drift, base
displacement and the cost of isolators. Reggio and De Angelis [8] and

Zhou et al. [26], who proposed analytical approaches to calculate the
optimal parameters of a mid-storey isolation system (using a simpler
reduced-order two-DOF model), considered as their design aim the
maximization of an energy performance index and the minimisation of
the maximum base shear force, respectively.

The main function of an FVD mounted in an inter-storey isolation
system is reduction of isolator deflection to minimise P-Δ effects on the
substructure; however, as shown in the scientific literature, extra
damping may be detrimental, because it may increase inter-storey drifts
and internal forces of the isolated structure. The optimal design pre-
sented here aimed at combining the following two objective functions
(OFs) simultaneously:

• minimisation of the relative displacement of isolation layer OF1;

• minimisation of the total drift of superstructure OF2.

A constrain condition, limiting the maximum total drift of super-
structure OF2,max to the maximum value reached in the case of isolation
without FVD, was also assumed. The OFs and the constraint are shown
in Eqs. (18) and (19):

= = −OF d t tmin | | min |x ( ) x ( )|iso
D

1 3 2 (18)

= = − ⩽OF d t t OF dmin | | min |x ( ) x ( )|;sup
D

sup2 7 3 2,max (19)

where diso
D and dsup

D represent the total drift of the isolators and super-
structure in the case of isolation system with FVD, respectively; diso
(used later in Figs. 5 and 6) and dsup represent the same parameters for
the case without FVD.

Although maximum storey acceleration is an important parameter
of structural performance, particularly for seismic protection of struc-
tural contents, it was not within the optimization criteria, but only
verified as an output of the optimization problem, in order to obtain a
wider range of technically optimal solutions, for more comprehensive
assessment of the potential of the extra FVD. In addition, technical

Table 4
Main details of natural earthquakes examined (from PEER database [37]).

Earthquake Location Date Mw Distance from epicentre [km]

1. Big Bear California 1992/06/28 6.5 45
2. Superstition Hills California 1987/11/24 6.2 18
3. Duzce Turkey 1999/11/12 7.1 26
4. North Palm Springs California 1986/07/08 6.1 42
5. San Fernando California 1971/02/09 6.6 23
6. Chi-Chi Taiwan 1999/09/20 6.3 84
7. Imperial Valley California 1979/10/15 6.5 22
8. Irpinia Italy 1980/11/23 6.9 10

Fig. 2. Acceleration and displacement spectra of scaled natural records.
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effectiveness is not the only discriminating factor in choosing the best
design solution, as technical feasibility (e.g., maximum deformation of
isolation units) and costs must also be considered. Therefore, since
these aspects may also easily be verified subsequently for the techni-
cally optimal solutions obtained, a wider range of possible optimal
solutions is preferable, compared with a few solutions which optimize
many objective functions. Although this paper mainly focuses on as-
pects of technical effectiveness, the main design consequences of the
results shown below are discussed in Section 6.

The optimal values of the damper parameters were sought within
the following ranges: from 0.1 to 1.0 for α and from 1.0 to 107 Ns/m for
c. The conflicting aspects of the two objective functions are shown in
Fig. 3, in which the solutions to Eq. (15) appear in terms of diso

D and dsup
D

for the Superstition Hills earthquake and for all assumed ranges of c and
α.

The presence of multiple goals in solving a generic problem means
that a set of optimal solutions (also known as Pareto-optimal solutions)
must be obtained, instead of just one optimal solution. In general, if no
additional information is specified, none of these optimal solutions can
be considered better than another one, and this therefore requires the
determination of all possible Pareto-optimal solutions. Many multi-
objective evolutionary algorithms are now available [38] and these
multiple solutions can be found in a single simulation run.

Among these algorithms, the fast and élitist Non-dominated Sorting
Genetic Algorithm NSGA-II [31] has been widely used in practical op-
timization problems, and it was also chosen for the present study. First,
this algorithm creates an initial random parent population P0, of size N.
This population is then sorted according to the non-domination cri-
terion, assigning to each solution a rank (fitness) equal to its non-
domination level (1 is the best level, 2 the next-best, and so on) and
minimising it. An offspring population Q0, of size N, is then created by
binary tournament selection, recombination and mutation operators.
The generation at step k+ 1, starting from knowledge of the parent (P)
and offspring (Q) populations at step k, is summarised below:

• a combined population Rk of size 2 N, resulting from the combina-
tion of Pk and Qk, is formed;

• the solutions of the new population Pk+1, of size N, are chosen from
those of Rk based on two cascading criteria: of the solutions with
different non-domination rank, the one with lower (better) rank is
chosen; between solutions with the same rank, the one located in a
less crowded region is preferred, chosen by a crowded-comparison
operator;

• the new population Pk+1 is now used for binary tournament selec-
tion, crossover and mutation, to create a new offspring population
Qk+1 of size N; in this step, the crowded-comparison operator is still
used in the selection procedure, thus preserving diversity among
non-dominated solutions.

This procedure is continued for a certain number of generations
until the Pareto front becomes stable, yielding the required optimal
solutions. In this study, the number of generations and the population
size were set at 100 and 80, respectively. Table 5 also shows the other
main parameters assumed for the optimization algorithm.

To examine the constraint of Eq. (19), i.e., that dsup
D must be smaller

than dsup, the simple penalty function approach of Eq. (20) was used, in
which a penalty factor P (of a sufficiently large value) is added to
parameters diso

D and dsup
D of the candidate solutions (c, α) which do not

meet this condition, in order to discard them from the generation of the
next population.

> ⎧
⎨⎩

= +
= +

d d
d d P
d d P

if sup
D

sup
iso new
D

iso
D

sup new
D

sup
D

(20)

Time-history dynamic analyses (THAs) of the storey-isolated
building are performed by MATLAB software, solving Eq. (15) by a
custom-made code. This code is iteratively called by the optimization
algorithm, which is also implemented in a MATLAB code, in order to
find the Pareto-optimal solutions. For candidate solutions, the optimi-
zation code prepares the set of damper parameters to be inserted in the
dynamic analysis program, which then computes the corresponding
time-history responses. The THA results, expressed in terms of OFs, are
sent to the optimization code to determine the new candidate optimal
solutions.

3.2. Optimal designs and parameters of additional FVD

An example of the optimization algorithm iterations is shown in
Fig. 4 for the Superstition Hills earthquake. The initial generation
(Fig. 4(a)) shows some high values for OF1 and OF2, because of the
penalty function applied to candidate solutions exceeding the limit of
superstructure drift. However, these values fall very quickly and, im-
mediately after the first iterations, all candidate optimal solutions meet
the imposed constraint (Fig. 4(b)). In addition, the improvement in the
solutions is faster for the first generations than for the later ones, in
which the populations are closer to the Pareto optimal front, as Fig. 4(c)
and (d) shows.

Fig. 5 shows the Pareto fronts obtained for all analysed earthquakes.

Fig. 3. Conflicting aspects of two objective functions OF1 and OF2 of Eqs. (18) and (19), for Superstition Hills earthquake.

Table 5
Parameters for optimization algorithm NSGA-II [31].

Parameter Value

Number of generations 100
Population size 80
Crossover probability 0.9
Mutation probability 0.1
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These optimal solutions are expressed in terms of the value of objective
functions. The shape of these fronts is consistent with the conflicting
aspects shown in Fig. 3, i.e., reduction in the relative displacement of
isolation system OF1 corresponds to an increase in superstructure drift
OF2. For purposes of comparison, all the previous results are also
plotted together in the dimensionless graph of Fig. 6, which presents
ratio OF2/dsup versus ratio OF1/diso, directly showing the reduction in
drift due to the presence of the FVD, for both the isolation layer and the
superstructure and for all earthquakes. As shown in Fig. 6, in some
cases supplemental damping can greatly reduce isolator displacement
(OF1), while ensuring, at most, the same total drift of the super-
structure, with a reduction of up to 60%, as in the cases of the Big Bear
and Superstition Hills earthquakes. However, at other times, this re-
duction is much lower, indicating that extra damping may sometimes
be effective only at the expense of an increase in superstructure drift.

Fig. 7 shows the FVD parameters (damping exponent α and damping
coefficient c) required to obtain these Pareto-optimal solutions, i.e., the
output of the multi-objective design. The figure clearly shows that the
best performance of additional damping can be reached either by linear
(α≈ 1) or non-linear (α < 1) viscous dampers, depending on the type
of earthquake.

Because optimal FVD performance and parameters depend to a
great extent on the type of earthquake, Section 5 expands these re-
lationships in some interesting correlations.

4. Assessment of building behaviour with optimal FVDs

4.1. Building behaviour minimising isolator drift

The results presented in this section demonstrate building behaviour
when the optimal FVD used is the one that minimises the relative dis-
placement of the isolation system; in other words, for the optimal

Fig. 4. Evolution of Pareto-optimal solutions for Superstition Hills earthquake.

Fig. 5. Pareto front for earthquakes analysed, with indication of: diso and dsup, i.e., isolators and superstructure drift in the case without FVD; c and α, related to cases
of minimum OF1 (top) and maximum OF1 (below).

Fig. 6. Optimal solutions for OF1 and OF2, normalised to related drifts diso, dsup
obtained without FVD.
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solution with the minimum value of OF1 (OF1,min) or OF2/dsup=1.
In detail, Fig. 8 shows time-history responses in the case of the Big

Bear earthquake, in terms of total drift of the superstructure and re-
lative displacement of the isolators, comparing the case without and
with FVD. As expected from previous results, extra damping greatly
reduces isolator drift throughout the time interval of the earthquake,
but slightly amplifies the total drift of the superstructure (particularly at
the onset of the earthquake, in this case), although its maximum value
is limited to that obtained in the case of isolation without FVD (due to
the constraint set). The great reduction in isolator drift is also clear in
Fig. 9, which compares force-drift loops of the isolation system for cases
without and with FVD: in the latter case, the increase in damping ratio
is evident, although the total force is slightly less.

The multi-objective design, considering drift minimisation of both
isolators and superstructure, should lead to containment of shear forces
at the base of the building. A first check on how this parameter is af-
fected by additional damping is shown in Fig. 10, which shows the
time-history response of this parameter for the Big Bear earthquake,
and compares cases without and with FVD. The results confirm that, if
the superstructure response is appropriately managed by FVDs inserted

in the isolation system, they can also effectively reduce shear forces at
the base of the building.

Table 6 lists the results obtained for the extra damping effects on
both isolator drift and base shear force for all earthquakes analysed,
comparing the case without damper with that in which optimal FVD
minimises OF1.

Although only the total drift of the isolation layer and super-
structure were examined as OFs in this multi-objective design, some
other parameters also had to be checked, e.g., maximum floor accel-
eration and maximum inter-storey drift. In particular, to prevent critical
damage to valuable building contents during an earthquake, a max-
imum allowable value for absolute floor accelerations is considered in
practice, and this value is typically 0.2–0.3 g, according to contents
[24]. For some highly vulnerable special contents, such as precious
works of art or other unique objects, this value may be much lower.
However, in this case, specific isolation techniques directly applied to
the contents are available [39,40].

Figs. 11–14 show absolute peak and RMS (Root-Mean-Square
average) storey accelerations, together with maximum inter-storey
displacements and drift ratios, along the building height and for two
representative earthquakes, comparing cases without and with FVD (for
the latter, the optimal solution for OF1,min is still considered). The re-
sults confirm not only that supplementary damping may increase the
maximum accelerations and drifts of the superstructure, but also that it
is beneficial for the substructure, particularly when it is relatively high,
as in the Big Bear case (see next section).

Although the increase obtained for these performance parameters of
the superstructure seems moderate, even in absolute terms, sometimes
it may be not acceptable, due to specific design requirements. Since
these performance parameters are closely related to the added amount
of supplementary damping, which has the effect of locking the sliding
gap offered by the isolation layer [3], it would be interesting to evaluate
their variability versus reduced damper performance in terms of mini-
misation of isolator drift (i.e., introducing less damping), considering
all obtained optimal solutions, as presented below.

Fig. 7. Damping exponents α and coefficients c of FVD, associated with optimal
solutions found.

Fig. 8. Big Bear earthquake: (a) total drift of superstructure, and (b) relative
displacement of isolators, with comparison between case without and with FVD
(optimal solution for OF1,min).

Fig. 9. Big Bear earthquake: force–displacement hysteretic loop of isolation
system, for cases without and with FVD (optimal solution for OF1,min).

Fig. 10. Big Bear earthquake: shear force at base of building, for cases without
and with FVD (optimal solution for OF1,min).
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4.2. Assessment of various optimal design solutions

As excessive damping leads to undesirable effects on the super-
structure, in terms of maximum storey accelerations and inter-storey
drifts, the most appropriate FVD may not be the one which minimises
OF1, which provides the greatest supplementary damping of all the
optimal FVDs determined.

A comprehensive view of the trend of these performance para-
meters, for both substructure and superstructure, is therefore shown in
Figs. 15 and 16. In particular, Fig. 15 shows the trend of the ratio be-
tween maximum floor accelerations, with and without FVD, versus the
reduction in isolator drift; Fig. 16 shows the trend of a similar ratio, but
examining maximum inter-storey drifts, with and without FVD. As re-
gards the substructure, both these ratios generally have values lower
than 1, together with less influence on damper performance when
compared with those of the superstructure (particularly as regards the
acceleration ratio). These trends indicate that, if a slightly smaller re-
duction in isolator drift is accepted, then the highest values of these
ratios for the superstructure can effectively be reduced, if they are ex-
cessive or in the case of explicit design requirements, without sig-
nificantly affecting the response of the substructure. Such a re-
presentation of the results can thus help in choosing the best solution
among all the optimal ones obtained, taking into consideration design
requirements on a case-by-case basis.

Fig. 17(a) shows the ratio between the maximum base shear forces,
in cases with and without FVD, versus the drift reduction of the iso-
lators. For each earthquake, the optimal solution with the maximum
amount of additional damping (OF1,min) is generally that with the
lowest base shear force. In addition, for all the obtained optimal de-
signs, except the Imperial Valley case, the maximum value of the base
shear force is smaller when FVDs are used. Lastly, Fig. 17(b) shows the
trend of the maximum FVD force, which increases more than linearly
with decreasing isolator drift. These results are significant and may

affect the choice of the optimal damper, as they are closely related to
the cost of fluid viscous devices.

5. Examination of FVD parameters and performance

With the aim of examining the factors affecting the degree of line-
arity and the performance of FVDs, the main modal frequencies of the
overall structure and superstructure only are shown in Table 7. Due to
variations in isolator stiffness during the seismic response, two modal
analyses were performed on the total structure, considering both initial
(k) and post-yield (rk) stiffness of the isolation system and thus esti-
mating a frequency range for vibrational modes.

Also, the Fast Fourier Transform (FFT) of the relative velocity signal
of the isolation layer ( −t tẋ ( ) ẋ ( )3 2 ) is shown in Fig. 18 (left), for various
earthquakes and for cases without and with FVD (for optimal solution
OF1,min). The figure shows reductions in amplitude when dampers are
used, in the vicinity of the main modal frequencies of the overall
structure, which demonstrates the effectiveness of FVDs in mitigating
the seismic response. In addition, the following interesting correlations
with linearity degree α and the performance of the optimal FVDs can be
observed.

• When the FFT signal in the damper case is examined, if the ideal
envelope constructed on the velocity peaks shows a rapid monotonic
increment up to maximum-peak frequency, followed by an equally
rapid monotonic decrement for higher frequencies, optimal
damping exponent α tends to be 1, i.e., the optimal damper tends to
be linear. Vice versa, if the FFT signal presents equally important
peaks in the frequency range of the first mode, i.e., its envelope has
one or more plateaus, optimal α tends to be lower than 1, i.e., the
optimal FVD is non-linear. Therefore, a linear FVD turns out to be
preferable when the relative motion of the isolation layer tends to be
dominated by one main frequency, so that the linearity of the

Table 6
Reduction of isolator drift and base shear force, with optimal solution for OF1,min.

Earthquake α [–] c [N(s/m)α·106] Isolator drift [mm] Base shear force [MN]

No FVD With FVD Reduction No FVD With FVD Reduction

Big Bear 0.999 5.095 133.8 54.0 −60% 9.2 7.3 −21%
Superstition Hills 0.373 2.283 135.1 55.9 −59% 9.9 8.3 −16%
Duzce 0.742 4.028 100.2 45.7 −54% 9.3 7.8 −16%
North Palm Springs 0.999 6.560 147.0 70.9 −52% 6.5 5.8 −11%
San Fernando 0.718 1.717 88.5 52.0 −41% 6.8 5.8 −15%
Chi-Chi 0.100 0.606 122.1 75.9 −38% 9.0 8.6 −5%
Imperial Valley 1.000 4.380 130.7 82.5 −37% 5.1 5.2 +2%
Irpinia 0.100 0.435 132.8 93.9 −29% 11.0 9.6 −13%

Fig. 11. Big Bear earthquake: (a) absolute peak acceleration, and (b) RMS acceleration along building height: comparison between case without and with FVD
(OF1,min).
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damper can effectively contain force values at maximum displace-
ments. As such a type of motion is generally representative for the
base isolation case, this evidence seems to be consistent with the
results of previous experimental studies on base-isolated structures
[21] that prove the greater suitability of linear damping in con-
taining increments of inter-storey drift and floor acceleration. In
addition, these considerations lead to realise that optimal linearity
degree of the extra FVD cannot easily be predicted in the case of
inter-storey isolation, as it depends to a great extent on the non-
linear seismic response of the structure with dampers. Fig. 18 (right)
also shows separately the force-displacement (F-D) loops due to the
isolation system and damper: the FVD loops associated with higher
values of α are mainly characterized by almost concentric cycles,
which increase in strength and displacement, whereas those related
to lower values of α show a series of small cycles with barycenters
which move along the displacement axis (e.g., compare Imperial
Valley, α=1.0, and Irpinia, α=0.1, particularly at maximum dis-
placement).

• An interesting correlation between the FFT signals and FVD per-
formance, in terms of drift reduction of the isolators, can also be
observed in the plots of Fig. 18, ranging from the best to the worst
FVD performance: when the excited frequencies in the first-mode
frequency range of the overall structure (∼0.3–0.7 Hz) increase, the
performance of the FVD decreases, i.e., to comply with the con-
straint on the total drift of the superstructure, the allowed maximum
reduction of isolator drift (OF1,min) becomes smaller. This seems to
be directly related to the maximum amount of supplementary
damping which can be conveniently introduced into the isolation
system, in view of its detrimental effects at higher modes
[3,12,13,21]. In fact, when the main excited frequencies are lower

(i.e., the earthquake excites the isolators mainly during their beha-
viour with post-yield stiffness), the reduction in amplitude of the
FFT signal due to the FVD is greater, indicating a greater amount of
extra damping.

To prove the best performance of the FVD in the case of lower ex-
cited frequencies, two methods were applied to quantify the supple-
mentary modal damping ratios for the analysed earthquakes, and the
results are compared. One consists of applying complex modal analysis
to estimate, for a certain mode i, damped angular frequency ωi,d, which,
together with the corresponding undamped frequency ωi,u, obtained
from classical eigenvalue analysis, allows us to estimate modal damping
ratio ζi according to the following well-known formula:

= −ζ
ω
ω

1i
i d

i u

,
2

,
2

(21)

Complex modal analysis requires the definition of a damping ma-
trix. To calculate damping ratios ζi due to structural damping only,
matrix [Cst] (as defined in Eq. (2)) can be used. Instead, to estimate the
values of ζi provided by the overall structure, including the isolation
layer, equivalent linear viscous damping coefficients cEq must be de-
termined, for both isolators and FVD, and opportunely added to the
previous matrix [Cst] (i.e., +cEq, − cEq; − cEq, + cEq in positions (2,2),
(2,3); (3,2) (3,3)). The values of these coefficients (see Table 8) were
determined in order to obtain the same maximum value of isolator drift
when a linear viscous damping model is implemented in TH analysis, in
place of the non-linear damping model initially adopted for the iso-
lators or FVDs. In the case of linear optimal FVDs, cEq is directly the
value of c of the damper. Once damping ratios are obtained for the cases
with and without (ζi,without) FVD, the additional damping contribution

Fig. 12. Irpinia earthquake: (a) absolute peak acceleration, and (b) RMS acceleration along building height: comparison between case without and with FVD
(OF1,min).

Fig. 13. Big Bear earthquake: (a) inter-storey displacement, and (b) drift ratio along building height: comparison between case without and with FVD (OF1,min).
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Δζi,FVD, due to the damper, can be calculated by the simple difference;
these values, concerning only the first mode, i.e. ζ1,without and Δζ1,FVD,
are listed in Table 9 (left).

Another method of estimating Δζ1,FVD is simply based on the
damped response spectra of isolated superstructure, calculated from
absolute accelerations of mass m2 ( +t tẍ ( ) ü ( )2 g ). Entering the damped
spectra with the first mode displacement d1 and period T1 of the iso-
lated superstructure, its first mode damping ratio ζ1, due to the isolation
layer with and without FVD, can be estimated, as Δζ1,FVD by the dif-
ference. This method is quite simple but requires some attention in
defining d1 and T1. For typical base-isolated structures, without ‘too
much damping’, d1 can be estimated as the total displacement of the
base, whereas with supplementary FVD, this simplification is no longer
appropriate and second-mode effects must be taken into account in
determining d1. As OF1 corresponds to the total base displacement of
the base-isolated superstructure, and the total superstructure drift OF2
is due almost solely to the second mode, a sufficient approximation of
d1 would be d1=OF1+OF2/2, since the second mode moves the top
and base of the superstructure in the opposite direction by about the
same amount (OF2/2), reducing the base displacement due to the first
mode (i.e., d1−OF2/2=OF1). Regarding T1, its undamped or damped
value may be used: although the latter is more appropriate, especially
when supplementary damping is high (FVD-OF1,min), the undamped
period is easier to calculate and generally sufficient to obtain an ac-
ceptable estimate of ζ1. However, the damped period may be simply
calculated iteratively, starting from the undamped period to estimate ζ1
and then applying Eq. (21). An example of the application of this
method is shown in Fig. 19 for the case of North Palm Springs.

The damping values resulting from the two methods, although not

equivalent, are correlated. ζ1 evaluated by the spectral method is re-
lated to the dynamic response of the base-isolated superstructure, and
thus to the total deformation of the isolation layer in the case of low
damping (for which linear modal analysis is valid). Instead, ζ1 obtained
by complex modal analysis of the overall structure is related to only one
part of this total deformation, corresponding to the first mode con-
tribution factor (0.7; see Table 2) in the case of low damping. Therefore,
if ζ1 is calculated by the spectral method, it should be scaled by about
0.7 (contribution factor) to be expressed as an equivalent first-mode
damping ratio of the overall structure, assuming for the sake of sim-
plicity that this equivalence remains constant even in the case of high
damping. The final values of ζ1,without and Δζ1,FVD by the spectral
method, i.e., scaled, obtained from undamped period T1, are also shown
in Table 9 (right): these results are comparable with those from com-
plex modal analysis.

According to the results shown in Table 9, the following con-
siderations may be made.

- Damper performance, in terms of drift reduction of isolators in the
case of OF1,min, generally increases as supplementary damping in-
creases: for the first four earthquakes in Table 9, with the best
performance, Δζ1,FVD is generally greater than 30% (up to about
50%), whereas it is lower than 20% in the last four cases.

- The only exception is the Big Bear case, which showed the best FVD
performance, although Δζ1,FVD was not very high (just under 30%).
This is clearly related to the low damping provided by the isolation
system (ζ1,without) which, for this earthquake, was the lowest of all
cases.

- The damping ratio provided by the isolators (ζ1,without) ranges from

Fig. 14. Irpinia earthquake: (a) inter-storey displacement, and (b) drift ratio along building height: comparison between case without and with FVD (OF1,min).

Fig. 15. For all earthquakes examined: ratio between maximum floor accelerations, with and without FVD, for (a) substructure and (b) superstructure, versus drift
reduction of isolators.
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approximately 10% to 20%, being dependent on the maximum de-
flection achieved by the isolation layer.

Lastly, Fig. 20 shows the additional damping ratios Δζi, estimated
with complex modal analysis, provided by isolation system and dam-
pers (case OF1,min) to the principal modes i of the overall structure. It is
interesting to note how the Δζ provided by the isolators acts particu-
larly on modes 1 and 4, whereas Δζ due to the FVD acts on modes 1 and
3. This may be explained by recalling that mode 4 has a deformation of
the isolation layer and a participation factor which are greater than
those of mode 3: indeed, if the isolators contribute to mode 4 more than
to mode 3, the optimal FVD must minimise its contribution to mode 4
(the most important higher mode), in order to contain the detrimental
effects of Δζ on higher modes.

The need to limit the amount of supplementary damping, to contain
the excitation of the higher modes of the overall structure and conse-
quently the inter-storey drifts and floor accelerations of the super-
structure, is clear in Fig. 21, which shows the elastic displacement re-
sponse spectra of mass m3 (above the isolation layer) calculated from its
absolute accelerations ( +t tẍ ( ) ü ( )3 g ), for cases without and with FVD
(OF1,max and OF1,min) for two earthquakes. These spectra can be used to
estimate the maximum displacements, relative to the isolation layer, of
the superstructure modes (see Table 7), because the superstructure may
be viewed as a fixed building above the isolation system. The main
considerations are listed below.

• The modal periods of the overall structure match the spectral ex-
citations, demonstrating the accuracy of the calculations.

• The spectral displacement corresponding to the first period of vi-
bration of the superstructure, is compatible with total drift OF2
obtained from the THA (see Fig. 5).

• The case with maximum additional damping (OF1,min) is associated
with the greatest excitation of the superstructure modes, particu-
larly evident for the higher modes.

6. Discussion: design consequences of research findings

The results reported above, besides demonstrating the effectiveness
of optimal FVDs for improved seismic performance of inter-storey iso-
lated buildings, show the close link of optimal α on the non-linear
seismic response of the structure, and therefore on the earthquake ex-
citation (unknown at the design stage). Therefore, although a two-di-
mensional optimization algorithm must be used to solve the

Fig. 16. For all earthquakes examined: ratio between maximum inter-storey drifts, with and without FVD, for (a) substructure and (b) superstructure, versus drift
reduction of isolators.

Fig. 17. For all earthquakes examined: (a) ratio between maximum base shear forces, with and without FVD, and (b) maximum FVD force, versus drift reduction of
isolators.

Table 7
Modal frequencies f of overall structure and fixed-base superstructure, from
eigenvalue analysis.

f (mode) [Hz] f (1st) f (2nd) f (3rd) f (4th)

Overall structure Isolation stiffness: k 0.70 2.22 3.82 4.24
rk 0.32 2.04 3.82 3.87

Superstructure: 1.22 3.33 4.76 5.88
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optimization problem, its ‘direct’ application to each earthquake, which
is the simplest design approach, does not seem to be sufficient to in-
dicate the best design solution, as it may provide very different α values
which cannot be averaged.

The choice of earthquakes with frequency contents more similar to
each other (i.e., from the same seismic zone) and of a linear isolation
system instead of the non-linear one examined in this study, may lead to
simpler and more generalisable results regarding optimal α.

Fig. 18. Left: FFTs of relative velocity signal of isolation layer for cases without and with FVD (OF1,min). Right: force-displacement loops in case with FVD, shown
separately for isolation system and FVD.
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Nevertheless, uncertainties regarding the definition of the seismic input
are significant, and the design of an isolation system must also take into
account its function of lateral restraint (sufficient elastic stiffness) under
non-seismic lateral service loads which, in the case of isolators with
perfectly linear behaviour, should be provided by other devices.

In view of the above, some alternative solutions, proposed below,
aim at providing answers to practical design needs regarding the choice
of the best FVD system.

6.1. Optimal design of linear FVDs

This solution exploits the possibility of averaging the optimal values
of c for the various earthquakes, to the detriment of less good structural
performance when the optimal FVD is non-linear.

Figs. 22 and 23 compare the structural performance obtained with
the above-determined non-linear optimal FVDs with that calculated by
using optimal linear FVDs; the latter dampers were obtained by setting
α at 1 and optimizing only c (on the basis of the same objective func-
tions OF1 and OF2). In particular, Fig. 22 compares all the optimal so-
lutions of linear and non-linear FVDs in terms of the drift reduction of
isolators (OF1/diso) and superstructure (OF2/dsup); Fig. 23 shows the
ratio between the maximum values, obtained with linear and non-linear
FVDs in the case OF1,min, of several parameters: isolator drift, inter-
storey drift and floor acceleration of both substructure and super-
structure, and damper force. In the case of the optimal linear damper:

- the maximum drift of isolation layer OF1,min (Fig. 23(a)) obviously
increases with decreasing α of the related non-linear FVD, but not
excessively (up to 30%);

- the maximum floor acceleration and inter-storey drift of both sub-
structure and superstructure (Fig. 23(b)) are not very different from
those of the case with non-linear FVD (from −15% to 10%);

- the maximum force of the damper (Fig. 23(c)), which appears to be
the most greatly influenced parameter, may increase considerably
(even up to 300%) compared with that of the non-linear FVD.

Despite optimal linear dampers dissipate slightly less energy, which
explains the higher values of OF1,min, this dissipation occurs with non-
optimal hysteresis, which contrasts the potentially beneficial effect of
less damping on structural performance (in particular, for the super-
structure) and may lead to significantly increased damper forces.

According to these results and considerations, the optimal design of
FVDs may be simplified by considering linear dampers as a first at-
tempt: if the resulting structural performance meets the design ex-
pectations in terms of OF1 and the damper solution is economically
feasible, based on the maximum damper force, then this design may be
acceptable, even if it is not the truly optimal one.

6.2. Optimal design of FVDs by using a surrogate response model

According to the experience gained from this study, a convenient
approach for design purposes consists of applying the optimization al-
gorithm to a surrogate response model, rather than directly to the
structural response for each accelerogram (as done in this study, al-
lowing detailed assessment of the potential of the supplementary
FVDs). The surrogate model consists of analytical functions of c and α
(FVD parameters) which can predict the average response of the
structural performance parameters (and thus OF1, OF2, …). This model
can be determined by initially carrying out a series of parametric TH
analyses, with appropriate combinations of c and α within their ranges
of interest, and then interpolating the structural response values,
averaged among the various accelerograms, with a response surface
defined in the c-α plane, which defines the surrogate model for a
structural performance parameter. Therefore, multi-objective optimi-
zation of the surrogate model equations (assumed to be OFs to be
minimised) leads to an overall optimal solution instead of a local one,
i.e., to a single Pareto front for all accelerograms analysed, and hence to
the average optimal parameters of the FVD for the structure in question.

Such an approach, logically and numerically more complex, ac-
quires scientific relevance when applied to several structural config-
urations rather than to a single case study, in order to provide general
and simplified results to support the preliminary design of FVDs for
inter-storey isolation systems. For this goal, which differs from that of
the present study, a simplified three-lumped-mass structural model
would seem more appropriate [41], and the isolation system to be in-
vestigated should, in the first place, be linear.

Lastly, as already stated, structural response as optimized in this
study is not the only discriminating factor when choosing the best de-
sign solution, as technical feasibility (i.e., technical issues related to the

Table 8
Linear viscous damping coefficients cEq, for both isolators and FVD (cases
OF1,max and OF1,min), respectively equivalent to their non-linear energy dis-
sipation in terms of isolator drift reduction (OF1).

Earthquake cEq_Isolators [Ns/
m∙106]

cEq_FVD-OF1,max

[Ns/m∙106]
cEq_FVD-OF1,min

[Ns/m∙106]

Big Bear 1.58 0.79 5.10
Superstition Hills 2.73 3.68 9.20
Duzce 4.07 5.20 7.52
North Palm Springs 1.90 2.26 6.56
San Fernando 2.99 1.59 3.30
Chi-Chi 2.43 3.01 3.80
Imperial Valley 2.72 1.21 4.38
Irpinia 3.31 1.20 2.25

Table 9
First mode damping ratios in case without FVD, ζ1,without, and additional damping ratios provided by FVD, Δζ1,FVD (for both cases OF1,max and OF1,min), from complex
modal analysis and spectral method.

Earthquake Isolator drift reduction [%] (case OF1,min) First mode damping ratios

From complex modal analysis From spectral method

ζ1,without [%] Δζ1,FVD [%] ζ1,without [%] Δζ1,FVD [%]

OF1,max OF1,min OF1,max OF1,min

Big Bear −60 7.5 3.5 24.5 7.5 5.5 29
Superstition Hills −59 12.5 18 51.5 10.5 19.5 45
Duzce −54 19.5 27.5 42.5 18.5 29 42.5
North Palm Springs −52 9 10.5 33 8.5 13.5 27.5
San Fernando −41 14 7.5 16 14 8 19
Chi-Chi −38 11.5 14.5 18.5 10.5 9 17
Imperial Valley −37 12.5 5.5 21.5 10.5 5.5 16.5
Irpinia −29 15.5 5.5 11 15 7.5 13
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actual implementation of the isolation units combined with FVDs) and
costs must also be considered. Once the most effective solutions have
been identified, technical feasibility can easily be verified later; in ad-
dition, since the main aim of the extra FVD is to minimise P-Δ effects on
the substructure (hence the deflection of the isolation layer), verifica-
tion of isolator deformation should not be limiting: otherwise, the
structural system and particularly the stiffness of the isolation layer
should be redesigned more appropriately (however, this is beyond the
aim of this study).

The final choice of the FVD system is certainly influenced by solu-
tion costs. In particular, to assess the economic viability of the various
solutions, three components must be examined: the cost of the FVD
system, which mainly depends on the maximum force and stroke of the
damper, and the cost of the isolation system [42] and of the sub-
structure, the last two being less when FVD performance improves (due
to the reduction of both the deflection demand for the isolators and P-Δ
effects, and thus stresses, on the substructure). This economic assess-
ment, which would not have added scientific value to the proposed
study (this being focused on a case study to evaluate in detail both the
potential of the extra FVD and the dependencies of its optimal degree of
linearity), should be more appropriately implemented in a parametric
study like the one proposed above, which examines various structural
configurations and uses a surrogate response model: in this case, the
costs of the various solutions (or changes in cost compared with re-
ference costs) may be used to define another OF to be minimised, in
order to determine the best solutions from both technical and economic
points of view, always with the aim of providing general results, albeit

simplified, to support the design process.

7. Conclusions

This work investigates the effectiveness of FVDs for the improved
seismic performance of building structures with inter-storey isolation
systems. In particular, a seven-floor building was considered as the case
study, with natural and lead rubber bearings placed between the second
and third floors; a multi-objective optimal design procedure (genetic
algorithm NSGA-II) was applied to identify the optimal parameters
(damping constants c and exponents α) of dampers which, placed inside
the isolation system, allow simultaneous minimisation of isolator dis-
placement OF1 and total drift of the superstructure OF2, while per-
forming time-history analyses with various natural records. The two
objective functions (OF) are in conflict with each other, leading to the
need for an optimization algorithm. Although the numerical results
depend on the structural configuration of the case study, it is reasonable
to believe that the potential shown by FVD systems, optimized to work
together with an inter-storey isolation system, is a general result.

The main highlights are listed below.

• The supplementary damping provided by optimal FVDs allows an
effective reduction (up to 60%) of the relative displacement of iso-
lation layer OF1, while maintaining acceptable values for maximum
inter-storey drift and floor acceleration of the superstructure.
However, these values, which are slightly higher than those in the
case without FVD, can be reduced if lower damper performance in

Fig. 19. North Palm Springs: application of spectral method to estimate first-mode damping ratios.

Fig. 20. Additional damping ratio Δζ provided by (a) isolation system and (b) FVD (case OF1,min), obtained from complex modal analysis for main modes of overall
structure.

Y. Liu et al. Engineering Structures 169 (2018) 276–292

290



terms of OF1 is acceptable.

• The dynamic response of the substructure is generally improved
with optimal FVDs, particularly for high supplementary damping
values.

• Optimal FVDs can also effectively reduce the total base shear force
by up to 20% for the highest additional damping values.

• The maximum force developed by optimal FVDs increases more than
linearly with decreasing OF1. This may be important in choosing the
best FVD, as this force is closely related to the cost of the damper.

• Damper effectiveness depends to a great extent on the non-linear

seismic response of the structure, with or without damper, since it is
correlated with the values of the first mode frequencies most excited
(more than one, due to the yield of the LRB isolators). Considering
the case OF1,min, the equivalent additional damping ratio, in-
troduced by the FVD inside the structure, falls approximately in the
range +10% (Irpinia earthquake) up to +50% (Superstition Hills
earthquake). These values also indicate that, in some cases, FVDs
may be not effective enough to justify their use.

• The optimal degree of linearity of an FVD is also strongly influenced
by the non-linear seismic response of the structure - in this case,
with the damper: it thus depends on the seismic input. This leads us
to conclude that, for the type of structure and non-linear isolation
system analysed, no value of α is more beneficial than another value
based on structural data only; therefore, a two-dimensional multi-
objective optimization algorithm (or a genetic algorithm such as
NSGA-II) should be used. However, when the relative motion of the
isolation layer with dampers tends to be dominated by a main fre-
quency, results show that the optimal dampers tend to be linear
(α=1), and vice versa. Since this type of motion is generally re-
presentative in the base isolation case, this evidence seems to be
consistent with the results of previous experimental studies on base-
isolated structures [21].

• With the aim of simplifying the design of the optimal dampers,
generally non-linear, the structural performance obtained with non-
linear optimal FVDs was compared with that achieved with optimal
linear FVDs (α=1). These comparisons show that optimizing linear
FVDs, computationally simpler, can still lead to reasonable design

Fig. 21. Elastic displacement response spectra (ζ=5%) of mass m3 (above isolators), without and with FVD.

Fig. 22. Optimal solutions for OF1 and OF2, for both linear and non-linear
optimal FVDs, normalised to related drifts (diso, dsup) obtained without FVDs.

Fig. 23. Ratio between maximum values, obtained with linear and non-linear FVDs of case OF1,min, of several parameters: (a) OF1,min; (b) inter-storey drift and floor
acceleration of substructure and superstructure; (c) damper force.
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solutions (if economically feasible). In addition, if α is equal to 1, the
optimal values of c for various earthquakes can be averaged, and
this simplifies the identification of the overall optimal solution.

Lastly, a general discussion on the design consequences of research
findings is provided.
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