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A B S T R A C T

In data envelopment analysis, the existing methods for measuring the relative efficiencies of decision making
units (DMUs) are to compare DMUs relative to the best or the worst of all DMUs. In this paper, we consider both
the best DMU and the worst DMU as the reference DMUs and propose the normalized efficiency. Further, from
the optimistic and pessimistic viewpoints, we construct two DEA models to obtain the upper and lower bounds of
the normalized efficiency and then achieve an interval efficiency evaluation to rank all DMUs completely.
Finally, two examples are presented to illustrate the performance of the interval efficiency evaluation.

1. Introduction

Data envelopment analysis (DEA) has been proved to be an effective
approach for measuring the performance of a group of decision making
units (DMUs) with multiple inputs and multiple outputs. For a DMU,
the CCR efficiency, developed by Charnels, Cooper and Rhodes (1978),
is achieved by maximizing the ratio of the weighted sum of its outputs
to that of its inputs under the constraint that the ratio should not exceed
one for every DMU. Accordingly, the CCR efficiency is regarded as the
best relative efficiency.

The CCR efficiency evaluation can classify all DMUs into two
groups, namely CCR efficient units and CCR inefficient units, but cannot
rank all the DMUs completely. In recent years, a variety of DEA
methods have been proposed to rank the performance of all DMUs.
Adler, Friedman, and Sinuany-Stern (2002) divided these ranking
methods into six areas. Cross-efficiency evaluation and super efficiency
evaluation are the first and the second areas. Cross-efficiency evalua-
tion, first proposed by Sexton, Silkman, and Hogan (1986), requests
each DMU not only to be self-evaluated but also to be peer-evaluated.
Specifically, based on the CCR model, a DMU determines a set of
weights to evaluate the other DMUs. Yet, due to the non-uniqueness of
the CCR optimal weights, the secondary goals have to be proposed to
deal with the non-uniqueness issue. Doyle and Green (1994, 1995a)
constructed several aggressive or benevolent cross-efficiency models.
For more contributions to the cross-efficiency evaluation, readers are
referred to the literature (Chen 2002; Contreras 2012; Liang, Wu, Cook,
& Zhu, 2008a, 2008b; Oral, Amin, & Oukil, 2015; Wang & Chin 2010;

Wu, Sun, & Liang, 2012; Yang, Ang, Xia, & Yang, 2012; Jeong and OK
2013; Hong and Jeong 2017).

Andersen and Petersen (1993) considered a reference technology
spanned by all the other DMUs except the evaluated DMU and then
achieved the super efficiency evaluation. Indeed, when DMUs are
evaluated, the reference technology is crucial. Doyle and Green (1995b)
pointed out three reference points which occur naturally in everyday
comparison, namely comparison relative to the best, to the average or
to the worst of the rest. For each of these reference points of compar-
ison, they presented two DEA models to obtain the best performance
and the worst performance of each DMU, respectively, and then con-
structed the upper and lower bound evaluation.

The traditional DEA models are usually built to achieve the best
performance of DMUs from the optimistic viewpoint. Accordingly, the
maximum ratio of the weighted sum of outputs to the weighted sum of
inputs under some constraints is called the best relative efficiency or the
optimistic efficiency. In fact, the worst relative efficiency or the pessi-
mistic efficiency of a DMU, namely the minimum ratio of the weighted
sum of outputs to that of inputs under some constraints, should still be
paid enough attention to. The best relative efficiency and the worst
relative efficiency measure the two kinds of extreme performances of a
DMU. It is easily biased if considering only the best relative efficiency
or the worst relative efficiency while neglecting the other one.

Recently, many pessimistic DEA models have been presented to
obtain the pessimistic efficiency of a DMU. For example, Entani, Maeda,
and Tanaka (2002) proposed a pessimistic DEA model to minimize the
efficiency of each DMU under the constraint that the maximum
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efficiency among all DMUs is one, and achieved an interval efficiency
evaluation from the optimistic and pessimistic viewpoints. Wang, Chin,
and Yang (2007) proposed the worst relative efficiency, which is
measured by minimizing the efficiency of each DMU within the effi-
ciency range of greater than or equal to one, and then achieved a
geometric average efficiency evaluation based on the worst relative
efficiency as well as the CCR efficiency. Additionally, Wang and Yang
(2007) introduced a virtual anti-ideal DMU to obtain a lower bound,
which is further improved by Azizi and Jahed (2011), and developed
the upper and lower bound evaluation under the constraint that the
efficiency of each DMU is not greater than 1 and not less than the lower
bound. Toloo and Tichý (2015) not only proposed the multiplier form
of selecting model to obtain the maximum efficiency, but also applied
the envelopment form to achieve the maximum discrimination between
efficient units, which is a kind of the pessimistic efficiency. Ad-
ditionally, for DMUs with imprecise data, Despotis and Smirlis (2002)
achieved the upper and lower bounds for efficiency scores of DMUs.
Further, Azizi, Kordrostami, and Amirteimoori (2015) and Toloo,
Keshavarz, and Hatami-Marbini (2017) both presented optimistic and
pessimistic perspectives for obtaining efficiency evaluations. For DMUs
with random inputs and random outputs, Liu, Wang, and Lyu (2017)
developed two stochastic DEA models to obtain the upper and lower
bounds of the quantile efficiency and achieved an interval efficiency
evaluation.

Up to now, DEA models usually evaluate a DMU by comparing it
relative to another DMU, such as the best or the worst of all DMUs. In
everyday comparison, a superior object must be far from the worst
object as well as being close to the best. Stimulated by this idea, we
consider both the best DMU and the worst DMU as the reference DMUs
and propose a new relative efficiency, namely the normalized effi-
ciency. Further, from the optimistic viewpoint and pessimistic view-
point respectively, we construct two DEA models to obtain the upper
and lower bounds of the normalized efficiency and then achieve an
interval efficiency evaluation for all the DMUs.

The rest of the paper is organized as follows: Section 2 briefly re-
views the different formulations of DEA models. The best normalized
efficiency evaluation model and the worst normalized efficiency eva-
luation model are proposed and achieved in Section 3 and Section 4,
respectively. Based on the two models, the interval evaluation is de-
veloped in Section 5. Section 6 presents two examples to illustrate the
proposed approach. Concluding remarks are offered in Section 7.

2. Different formulations of DEA models

Suppose there are n DMUs with m inputs and s outputs to be eval-
uated. Let > = …x i m0 ( 1, 2, , )ij and > = …y r s0 ( 1, 2, , )rj be the input
and output values of DMUj ( = …j n1, 2, , ). In vector notation:

= … = … = …x yx x x y y y j n( , , , ) , ( , , , ) , 1, 2, , .j j j mj
T

j j j sj
T

1 2 1 2

For any evaluated DMUk ( = …k n1, 2, , ) and the given weights of
the m inputs and s outputs = …v v v v( , , , )m

T
1 2 , = …u u u u( , , , ) ,s

T
1 2 the

ratio of the weighted sum of the outputs to that of the inputs, namely
u y v x/T

k
T

k is considered as the efficiency of DMUk. The following CCR
model, proposed by Charnels et al. (1978), seeks a set of weights u v, to
maximize the efficiency of DMUk under a set of constraints:

=
⩾ ⩾

⩽ = …

E

j n

u v
max
0, 0

s.t. 1, 1, 2, , .

u y
v x

u y

v x

k
(1) T

k
T k

T
j

T j (1)

The CCR model is constructed from the optimistic viewpoint be-
cause it aims to maximize the efficiency of DMUk under a set of con-
straints. Considering the constraint =v x 1,T

k Charnels et al. (1978)
converted model (1) into a linear programming model as below:

=
=

− ⩽ = …
⩾ ⩾

u y
v x
u y v x
u v

E

j n

max
s.t. 1,

0, 1, 2, , ,
0, 0.

k
T

k
T

k
T
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(1)

(2)

If the optimal value of model (2), namely the CCR efficiency of
DMUk, is one, DMUk is called CCR weakly efficient. Now, denote by
Smax the set of the index numbers of all the CCR weakly efficient DMUs.
Precisely speaking, DMUk is CCR efficient if its CCR efficiency is 1 and
there exists an optimal solution ∗ ∗v u( , ) with > >∗ ∗v u0, 0.

Moreover, Cooper, Thompson, and Thrall (1996) pointed out that
CCR model is equivalent to the following model:

⩾ ⩾
u y v x

u y v x
j

u v
max
0, 0

/
max /

.
T

k
T

k
T

j
T

j
(3)

In model (3), the efficiency of DMUk is compared relative to the
maximum efficiency of all DMUs. Model (3) seeks a set of input and
output weights to maximize the ratio of the efficiency of DMUk to the
maximum efficiency. Therefore, the CCR efficiency is regarded as the
best relative efficiency. Meanwhile, a CCR weakly efficient DMU im-
plies that there must be a set of input and output weights to satisfy that
its efficiency is ranked first among all DMUs.

On the contrary, Entani et al. (2002) considered the minimization
problem of model (3) and proposed a pessimistic DEA model as below:

=
⩾ ⩾

u y v x
u y v x

E
j

u v
min
0, 0

/
max /k

T
k

T
k

T
j

T
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(1)

(4)

To solve model (4), Entani et al. (2002) derived the following
equivalent model:

i r
y x

j
y x

min
,

/
max /

.ik rk

ij rj
(5)

Based on models (1) and (4), Entani et al. (2002) developed the
interval efficiency evaluation. To avoid the injustice caused by only one
strategy, it is a good idea to evaluate all DMUs with interval efficiencies
obtained from the optimistic and pessimistic viewpoints.

Further, Wang et al. (2007) modified the constraints of model (1)
and proposed the worst relative efficiency evaluation model as below:

=
⩾ ⩾

⩾ = …

E
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(2) T
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Considering that the constraint =v x 1,T
k similarly, Wang et al.

(2007) converted model (6) to the following linear programming model
and achieved the worst relative efficiency evaluation:

=
=

− ⩾ = …
⩾ ⩾

u y
v x
u y v x
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(2)

(7)

If the optimal value of model (7) is one, Wang et al. (2007) called
that DMUk is inefficient. Now, denote by Smin the set of the index
numbers of all the inefficient DMUs. Further, it is easy to prove that
model (6) and model (7) are equivalent to the following model:

⩾ ⩾
u y v x

u y v x
j

u v
min
0, 0

/
min /

.
T

k
T

k
T

j
T

j
(8)

From the pessimistic point of view, model (8) evaluates the effi-
ciency of DMUk relative to the minimum efficiency of all DMU. Based
on model (8), an inefficient DMU indicates that there must exist a set of
weights such that its efficiency is ranked last among all DMUs.
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Modifying model (8) to a maximization problem, we have a new
optimistic DEA model as follows:

=
⩾ ⩾

u y v x
u y v x

E
j

u v
max
0, 0

/
min /

.k

T
k

T
k

T
j

T
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(2)

(9)

Theorem 1. Model (9) is equivalent to the following model:

i, r
y x

j
y x

max
/

min /
.ik rk

ij rj
(10)

The proof of Theorem 1 is shown in Appendix A. Based on model
(10), we can obtain the optimistic efficiency Ek

(2) easily rather than
solving linear programming problems.

In brief, models (1), (4), (6) and (9) all achieve the relative effi-
ciency evaluation. Specifically, models (1) and (4) evaluate DMUk re-
lative to the best of all the DMUs, while models (6) and (9) evaluate
DMUk relative to the worst of all the DMUs. Additionally, models (1)
and (9) aim to maximize the relative efficiency from the optimistic
viewpoint, while models (4) and (6) minimize the relative efficiency
from the pessimistic viewpoint.

3. The best normalized efficiency evaluation

In everyday comparison, the reference point is very important, and
various reference points will change the result of comparison. For ex-
ample, a father may be very pleased with his daughter if she gets 90
score in a test since her score is very close to the highest score, 95, in
the class. Further, she tells her father that the lowest score in the class is
89, and then the father may change his evaluation of his daughter in the
test. Naturally, he wishes his daughter’s score to be far away from the
lowest score as well as to be close to the highest.

In the traditional DEA models, a DMU is always compared relative
to another particular DMU, such as the best or the worst of all DMUs. To
evaluate DMUs comprehensively, we apply the idea of data normal-
ization and consider both the best DMU and the worst DMU as the
reference DMUs. It is noted that normalization is a method used to
standardize the data with different ranges and is usually performed
during the data preprocessing step.

For a set of output and input weights u v, , the following expression
is the normalized form of the efficiency of DMUk and is referred as to
the normalized efficiency of DMUk:

−

−
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The above normalized efficiency reveals the relative position of
DMUk relative to the best DMU and the worst DMU. For example, for a
set of output and input weights u v, , if the normalized efficiency of
DMUk is 0.5, then we know its efficiency u y v x/T

k
T

k is right in the middle
of the maximum efficiency and the minimum efficiency of all the DMUs.
Specially, if the normalized efficiency of DMUk is zero, then u y v x/T

k
T

k is
the minimum among all the DMUs.

From the optimistic viewpoint, we propose the following model to
maximize the normalized efficiency of DMUk:

=
⩾ ⩾
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The optimal value of model (11) is called the best normalized effi-
ciency of DMUk, which indicates the best relative efficiency of DMUk in
the interval formed by the best DMU and the worst DMU. It is certain
that the best normalized efficiency is in the interval [0, 1].

It is worthy pointing out that the significance of the best normalized

efficiency is different from the CCR efficiency. For example, if the CCR
efficiency of a DMU is 0.5, then we know that 0.5 is its best relative
efficiency compared to the best DMU, which means its weighted output-
input ratio is right the half of the maximum ratio of all the DMUs based
on the optimal weights. If the best normalized efficiency of DMUk is 0.5,
then there must exist a set of optimal weights ∗ ∗u v, satisfying that the
weighted output-input ratio of DMUk

∗ ∗u y v x( ) /( )T
k

T
k is right in the

middle of the maximum ratio and minimum ratio of all DMUs, namely
the mean of maximum ratio and minimum ratio.

Further, the best normalized efficiency has close relations to the
CCR efficiency. First, it is easy to see that the best normalized efficiency
of DMUk is 1 if and only if its CCR efficiency is 1. Second, if the CCR
efficiency of a DMU is less than 1, we can easily have that its best
normalized efficiency is less than its CCR efficiency.

Now, in order to obtain the best normalized efficiency of an arbi-
trary DMU, we resort to the following programming problem with a
given parameter ∈ …i n{1, 2, , }:

=
⩾ ⩾

⩽ = … ≠

−
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θ

l n l i

max
0, 0

s.t. , 1, 2, , ; .u y
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T
l
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The above model aims to seek a set of input and output weights to
maximize the normalized efficiency of DMUk under the constraint that
the efficiency of DMUi is just the worst of all the DMUs. Further, assume
that the worst relative efficiency of DMUi determined by model (7) is
just 1, namely ∈i Smin. This means that there must exist a set of input
and output weights such that the efficiency of DMUi is ranked last
among all the DMUs, and then the feasible region of model (12) is not
empty. Hence, calculating model (12) for all ∈i Smin, we can obtain the
best normalized efficiency of DMUk as follows:

= ∈θ θmax { }.k i S ki
max max

min (13)

To solve model (12), we reduce it to the following model:
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− =
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Here, = =b
k

E b
k

Emax{ }, max{ }k k1
(2)

2
(2) , where Ek

(2), Ek
(2) are the optimal

values of models (7) and (9), respectively.

Theorem 2. Models (12) and (14) are equivalent.
The proof of Theorem 2 is shown in Appendix A.

In model (14), if the variable b is a given value, then model (14) will
be a linear programming model. Let f b( )ki be the optimal value of the
following linear model:

=
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1
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where b is a parameter.
Evidently, model (14) can be expressed as below:

=
⩽ ⩽

θ
b b b

f bmax ( )ki ki
max

1 2 (16)

Then we can use the one-dimensional search method to obtain the
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global optimal value of model (16). Accordingly, we achieve the best
normalized efficiency evaluation based on models (13), (15) and (16).
Basically, for the best normalized efficiency evaluation approach, the
complete algorithm is summarized by the following steps:

Step 1: For each DMUk, = …k n1, 2, , , compute Ek
(1) by solving the

linear program model (2). If =E 1k
(1) , then the best normalized ef-

ficiency of DMUk is 1. Otherwise, go to steps 2–4.
Step 2: For each DMUk, = …k n1, 2, , , compute E E,k k

(2) (2) by solving
model (7) and model (9). Then we obtain = =S k E{ | 1}kmin

(2) ,
=b

k
Emax{ }k1

(2) and =b
k

Emax{ }k2
(2) .

Step 3: For ∈i Smin, solve =
⩽ ⩽

θ
b b b

f bmax ( )ki ki
max

1 2
by using one-

dimensional search method, where f b( )ki is obtained by solving
linear model (15).
Step 4: The best normalized efficiency of DMUk is obtained by
formula (13).

4. The worst normalized efficiency evaluation

The best normalized efficiency evaluation is developed from the
optimistic viewpoint. On the other hand, from the pessimistic view-
point, we convert model (11) to the following minimization problem:

=
⩾ ⩾
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.
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T
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T
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Model (17) intends to seek a set of input and output weights to
minimize the normalized efficiency of DMUk. Then the optimal value of
model (17) is referred to as the worst normalized efficiency of DMUk.
Like the best normalized efficiency, the worst normalized efficiency is
always in the interval [0,1] too. Specially, for DMUk, if its worst relative
efficiency calculated by model (7) is 1, then there must exist a set of
input and output weights such that its efficiency is the minimum of all
DMUs, and its worst normalized efficiency is certainly 0. Otherwise, if
the worst relative efficiency of DMUk calculated by model (7) is greater
than 1, then it is sure that the worst normalized efficiency of DMUk is
greater than 0.

Note that model (17) is equivalent to the following model:
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⩾ ⩾
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To achieve the worst normalized efficiency evaluation, we develop
the following model to minimize the normalized efficiency of DMUk

under the constraint that the efficiency of DMUj is just the maximum
among all the DMUs:
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As stated above, a CCR weakly efficient DMU means that there must
exist a set of input and output weights such that its efficiency is ranked
first among all the DMUs. To ensure that the feasible region of model
(19) is not empty, it is sufficient and necessary that DMUj is CCR weakly
efficient. Hence, calculating model (19) for all ∈j S ,max we can express
the worst normalized efficiency of DMUk as follows:

= ∈θ θmin { }.k j S kj
min min

max (20)

Theorem 3. Model (19) is equivalent to the following model:
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Here, = =a
k

E a
k

Emin{ }, min{ }k k1
(1)

2
(1) , where E E,k k

(1) (1) are the optimal

values of models (4) and (1) respectively.

The proof of Theorem 3 is shown in Appendix A. Just because of the
decision variable a, model (21) is a nonlinear programming model. Like
model (14), yet we can still use a linear programming and one-di-
mensional research method to obtain the global optimal value of model
(21). For the worst normalized efficiency evaluation approach, we
summary the complete algorithm as below:

Step 1: For each DMUk, = …k n1, 2, , , compute Ek
(2) by solving the

linear model (7). If =E 1k
(2) , then the worst normalized efficiency of

DMUk is 0. Otherwise, go to steps 2–4.
Step 2: For each DMUk, = …k n1, 2, , , compute E E,k k

(1) (1) by model
(5) and model (2). Then we obtain = =S k E{ | 1}kmax

(1) ,
=a

k
Emin{ },k1

(1) and =a
k

Emin{ }k2
(1) .

Step 3: For ∈j Smax, solve model (21) based on one-dimensional
search method and obtain θkj

min.
Step 4: Compute the worst normalized efficiency of DMUk by for-
mula (20).

Specially, if all the DMUs are measured by only one input and only
one output, we have the following theorem about their best normalized
efficiency evaluation and the worst normalized efficiency evaluation:

Theorem 4. If r= 1 and m= 1, then the best normalized efficiency of each
DMU is equal to its worst normalized efficiency, and is expressed as follows:

= =
−

−
θ θ i

j i

min

max min
.k k

y
x

y
x

y

x
y
x

max min

k
k

i
i

j
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i
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5. The interval efficiency evaluation

The worst normalized efficiency and the best normalized efficiency
are the lower bound and the upper bound of the normalized efficiency
of a DMU respectively. This means, θ θ[ , ]k k

min max is the range of the
normalized efficiency of DMUk. In order to make full use of the interval
efficiency and have an overall assessment of the performance of all
DMUs, we utilize Hurwicz criterion approach, which was introduced by
Wang and Yang (2007), to rank interval efficiencies and calculate the
weighted average value of the upper and lower bounds to rank DMUs.

Definition 1. Let α be a parameter in [0, 1] and =A θ θ[ , ]k k k
min max be

the interval efficiency of DMUk, where θ θ,k k
min max are the worst

normalized efficiency and the best normalized efficiency respectively.
Then the Hurwicz index value of Ak is defined as:

= + − = …θ αθ α θ k n(1 ) , 1, 2, , .k
H

k k
max min (22)

Property 1. If >θ θi j
max max and >θ θi j

min min, then >θ θi
H

j
H with

∈α [0, 1].
Specially, when α=1 or 0, the Hurwicz index value becomes the

best normalized efficiency or the worst normalized efficiency respec-
tively. Here the parameter α can be considered as the assessor’s level of
optimism. If =α 0.5, then the assessor is optimistic. On the contrary,
the assessor is pessimistic when. If =α 0.5, the assessor is completely
neutral, and the Hurwicz index value is the average of the best
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normalized efficiency and the worst normalized efficiency. It is sug-
gested that the parameter α is set to 0.5 if the assessor's level of opti-
mism is unknown in the application of our approach.

Let =A θ θ[ , ],i i i
min max =A θ θ[ , ]j j j

min max be the interval efficiencies of
DMUi and DMUj. For the given ∈α [0, 1], if >θ θi

H
j
H , then we call DMUi

is superior to DMUj, and denote DMUi ≻ DMUj and ≻A A .i j Based on
Definition 1, the following property 1 is easily obtained.

Property 2. Suppose Aj is included in Ai. That is, ⩾θ θi j
max max, ⩽θ θi i

min min

and there is at least an inequality in the two formulas. Let

=
−

− − −
α

θ θ

θ θ θ θ0 ( ) ( )
j i

i i j j

min min

max min max min . Then, >θ θi
H

j
H if and only if the parameter

α is in α( , 1];0 <θ θi
H

j
H if ∈α α[0, )0 ; otherwise, =θ θi

H
j
H if α is just α0.

Proof. Based on Definition 1, the inequality >θ θi
H

j
H means

+ − > + −α θ α θ α θ α θ· (1 )· · (1 )· ,i i j j
max min max min

which is equivalent to

− − − > −α θ θ θ θ θ θ[( ) ( )] .i i j j j i
max min max min min min

If ⩽θ θi i
max max, ⩽θ θi i

min min and there is at least an inequality in the
two formulas, it is easy to have that − − − >θ θ θ θ( ) ( ) 0i i j j

max min max min and

= ∈
−

− − −
α [0, 1]

θ θ

θ θ θ θ0 ( ) ( )
j i

i i j j

min min

max min max min . Hence, >θ θi
H

j
H if and only if

∈α α( , 1]0 . Similarly, we have that <θ θi
H

j
H if and only if ∈α α[0, ).0

Additionally, it is obvious that =θ θi
H

j
H if α is just α0. □

From Property 2, we have that the comparison of two sets of interval
efficiencies will be affected by the parameter α. Further, Wang and
Yang (2007) presented the following theorem to show the sensitivity
analysis to α.
Theorem 5. Let = = …A θ θ i n[ , ] ( 1, 2, , )i i i

min max be a set of interval
efficiencies. For a given level of optimism, α0, if the ranking is

≻ ≻…≻A A Ai i in1 2 , then there exists an interval for level of optimism, α,
which is determined by ∩α α( , ) [0, 1]L R , where

=
⎧
⎨
⎩

−

− − −
− − − >

⎫
⎬
⎭

+

+ +
+ +( ) ( )

α
θ θ

θ θ θ θ
θ θ θ θmax |( ) ( ) 0 ,L j

i i

i i i i
i i i i

min min

max min max min
max min max minj j

j j j j
j j j j

1

1 1
1 1

=
⎧
⎨
⎩

−

− − −
− − − <

⎫
⎬
⎭

+

+ +
+ +( ) ( )

α
θ θ

θ θ θ θ
θ θ θ θmin |( ) ( ) 0 .R j

i i

i i i i
i i i i

min min

max min max min
max min max minj j

j j j j
j j j j

1

1 1
1 1

When α varies within the above interval, the ranking among the
interval efficiencies remains unchanged.

6. Numerical examples

Example 1. Consider a numerical example in Table 1, where five DMUs
are evaluated in light of one input and two outputs.

Table 2 reports four kinds of interval efficiency evaluation results.
The second column shows Entani et al.'s evaluation results (Entani
et al., 2002) where the upper bound of each DMU is its CCR efficiency
and the lower bound is calculated by model (5). Obviously, the max-
imum efficiency is at most one. Specially, the CCR efficiencies of DMU4

and DMU5 are both one. In fact, the two DMUs are CCR weakly

efficient. It is worthy pointing out that the minimum efficiency of all the
DMUs by the CCR model and model (5) varies with different examples.
In this example, the minimum efficiency is the lower bound efficiency
of DMU1, namely 0.1333.

The interval efficiencies shown in the third column are achieved by
models (7) and (9). Because models (7) and (9) both measure the ef-
ficiency of a DMU relative to the worst DMU, these efficiency evalua-
tion results of the five DMUs are at least one. Similarly, the maximum
efficiency of all the DMUs by models (7) and (9) differs in different
examples. In this example, the maximum efficiency is 7.5, which is the
upper bound efficiency of DMU5.

The fourth column reports Wang and Yang's evaluation results
(Wang and Yang, 2007). Wang and Yang (2007) introduced a virtual
anti-ideal DMU to obtain a lower bound and then developed the in-
terval efficiency evaluation of each DMU under the constraint that the
efficiency of each DMU is not greater than 1 and not less than the lower
bound. In this example, the input of the virtual anti-ideal DMU is still 1,
and each output of the virtual anti-ideal DMU is the minimum of the
five DMUs, namely 2 and 6, respectively. Then the lower bound is the
CCR efficiency of the virtual anti-ideal DMU, namely 0.375.

It is well known that the CCR efficiency of a DMU will remain un-
changed even if the inputs and outputs are multiplied or divided by the
same nonnegative value. Yet Wang and Yang's evaluation does not
possess this property. For example, if the input and the outputs of DMU1

are divided by 2, then the output vector of the virtual anti-ideal will be
modified as (1, 3.5)T . Accordingly, the evaluation results of some DMUs
achieved by Wang and Yang (2007) will be changed. For example, the
interval efficiency evaluation of DMU2 will be adjusted to [0.2188,
0.4068] from [0.3750, 0.3952].

The interval normalized efficiencies instituted by the worst nor-
malized efficiency and the best normalized efficiency are shown in the
fifth column. It is seen that the best normalized efficiencies of the CCR
efficient DMUs, namely DMU4 and DMU5, are both 1 too, and the best
normalized efficiencies of the other DMUs are less than their CCR ef-
ficiencies respectively. On the other hand, the worst normalized effi-
ciencies of DMU1 and DMU2 are both 0, which means that there must
exist a set of weights to make the efficiency of DMU1 (or DMU2)
minimum of the five DMUs. In fact, the efficiency scores calculated by
model (4) are also 1 and rank the last among the five DMUs, as can be
seen in the third column of Table 2. It is worthy pointing out that the
minimum and the maximum of the interval normalized efficiencies are
certainly 0 and 1, respectively.

Now, we compare the CCR efficiency evaluation and the best nor-
malized efficiency evaluation of the 5 DMUs. The best normalized ef-
ficiency of each DMU is smaller than its CCR efficiency except two CCR
weakly efficient DMUs, namely DMU4 and DMU5. Additionally, in the
second column of Table 2, the CCR efficiencies of DMU1 and DMU2 are
0.4375 and 0.4068 respectively. Then DMU2 lags behind DMU1 based
on the CCR efficiency evaluation. It is interesting that the best nor-
malized efficiency evaluation changes the rank orders of the two DMUs.
Specifically, the best normalized efficiency of DMU1 is 0.100 and

Table 1
Data for 5 DMUs with one input and two outputs.

DMU x y1 y2

1 1 2 7
2 1 4 6
3 1 5 15
4 1 9 16
5 1 15 7

Table 2
The interval evaluation results of 5 DMUs.

DMU Entani et al.’s
models

Model (7) and
model (9)

Wang and
Yang’s models

Our normalized
efficiency models

1 [0.1333,
0.4375]

[1.0000,
1.1667]

[0.3750,
0.4375]

[0.0000, 0.1000]

2 [0.2667,
0.4068]

[1.0000,
2.0000]

[0.3750,
0.3952]

[0.0000, 0.1538]

3 [0.3333,
0.9375]

[2.1875,
2.5000]

[0.8203,
0.9375]

[0.2308, 0.9000]

4 [0.6000,
1.0000]

[2.5625,
4.5000]

[0.9609,
1.0000]

[0.5385, 1.0000]

5 [0.4375,
1.0000]

[1.1667,
7.5000]

[0.4375,
0.7944]

[0.1000, 1.0000]

W. Liu, Y.-M. Wang Computers & Industrial Engineering 125 (2018) 135–143

139



smaller than that of DMU2, namely 0.1538.
For each DMU, the worst normalized efficiency and the best nor-

malized efficiency constitute an efficiency interval, which is graphically
portrayed in Fig. 1. Obviously, the interval efficiency of DMU4 is at the
top of Fig. 1, and the interval efficiencies of DMU1 and DMU2 are both
at the bottom of Fig. 1. Additionally, DMU3 and DMU5 have the large
range of interval efficiencies. Specifically, for DMU5, although its best
normalized efficiency is 1, yet its worst normalized efficiency is just 0.1,
which means that there is a set of weights making the efficiency of
DMU5 very close to the minimum of all DMUs. In fact, DMU5 has the
peculiar outputs. Specifically, the first output of DMU5 is the maximum
of all DMUs, whereas its second output is the second lowest. Thus, from
the optimistic viewpoint, the best normalized efficiency model makes
the highest evaluation for DMU5. While the worst normalized efficiency
model makes a low evaluation for it from the pessimistic viewpoint.

To rank all the DMUs, we consider interval efficiencies
= = …A θ θ i[ , ], 1, 2, ,5k k k

min max , and calculate their Hurwicz index
values with =α 0.25, 0.5, 0.75, which are reported in Table 3. From it,
we see that the ranking of the 5 DMUs is DMU4 ≻ DMU3 ≻ DMU5 ≻
DMU2 ≻ DMU1 when =α 0.25, 0.5. In fact, based on Theorem 3, the
ranking remains unchanged if ∈α (0, 0.5667), which means that the
assessor is pessimistic or neutral. Yet, if the assessor is optimistic and α
is set in (0.5667, 1), then the ranking orders of DMU3 and DMU5 will
exchange, which is seen in the fourth column of Table 3.

Example 2. Now, we evaluate the scientific research performance of 12
key universities of science and engineering in China. This data set is
from an investigation of the science and technology work of China's

universities in 2016, and is shown in Table 4, where the inputs are the
number of academic and teaching staff (x1) and the expenditure on
science and technology (x2) measured in thousand RMB, and the
outputs are the numbers of the published scientific and technological
works (y1), academic papers published in foreign and national
periodicals (y2), intellectual property rights (y3), and the amount of
technology transfer (y4) measured in thousand RMB.

For the scientific research performance of the 12 universities in
China, four kinds of interval efficiency evaluation results are reported
in Table 5. The best normalized efficiency and the worst normalized
efficiency are the upper and lower bounds of our interval normalized
efficiency respectively, which are shown in the fifth column of Table 5.
It is seen that the maximum upper bound and the minimum lower
bound of the interval normalized efficiencies of all DMUs are 1 and 0
respectively. Specifically, the best normalized efficiencies of DMU1,
DMU3, DMU4, DMU6 and DMU7 are 1. It is noted that the CCR effi-
ciencies of the 5 DMUs are also 1, which is seen from the second column
of Table 5. On the other hand, the worst normalized efficiencies of
DMU2, DMU4, DMU5, DMU8, DMU9, DMU10 and DMU12 are zero. For
each of the seven DMUs, this means there must exist a set of weights to
satisfy its efficiency to be the minimum of all DMUs.

For each interval efficiency evaluation, the lower and upper bounds
are achieved from the pessimistic viewpoint and the optimistic view-
point respectively. Thus, there may be significant differences between
them for some DMUs. For example, based on each of the four kinds of
interval efficiency evaluations shown in Table 5, the lower and upper
bounds of DMU4 differ greatly. Specifically, its CCR efficiency is 1, yet
the efficiency achieved by model (5) is just 0.0184. The efficiencies
achieved by model (7) and model (9) are 1 and 14.8849 respectively. It
is more interesting that its worst and best normalized efficiencies are 0
and 1 respectively.

As stated above, the optimistic and pessimistic models are achieved
from the optimistic viewpoint and the pessimistic viewpoint respec-
tively. In our views, it is more reliable to evaluate and rank DMUs based
on the optimistic efficiency and the pessimistic efficiency simulta-
neously. We calculate the Hurwicz index values of the four kinds of
interval efficiencies with =α 0.5, namely the average of the upper and
lower bounds of interval efficiencies, and then obtain the ranking or-
ders of the 12 DMUs, which are shown in Table 6.

In Table 6, three kinds of evaluation results except Wang and Yang'
models put DMU1 first. However, for some DMUs, there are differences
among the ranking results of the four kinds of evaluation methods. To
further analyze the averages of the four kinds of interval efficiency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DMU1 DMU2 DMU3 DMU4 DMU5

Fig. 1. The interval efficiencies of example 1.

Table 3
Hurwicz index values for 5 DMUs.

DMU Hurwicz index values

=α 0.25 =α 0.5 =α 0.75

1 0.0250 (5) 0.0500 (5) 0.0075 (5)
2 0.0385 (4) 0.0769 (4) 0.1154 (4)
3 0.3981 (2) 0.5654 (2) 0.7327 (3)
4 0.6538 (1) 0.7693 (1) 0.8846 (1)
5 0.3250 (3) 0.5500 (3) 0.7750 (2)

Table 4
Data for 12 universities of China.

DMU University x1 x2 y1 y2 y3 y4

1 Tsinghua University 5506 3,636,283 50 4976 48 500,525
2 Beihang University 2189 2,150,830 23 3536 28 1553
3 Beijing Institute of

Technology
2413 2,102,809 28 2677 12 163,858

4 Tianjin University 2794 2,179,348 2 5751 13 14,925
5 Dalian University of

Technology
2818 1,254,213 33 1878 8 1250

6 Northeastern University 2303 1,524,399 76 2062 13 44,000
7 Harbin Institute of

Technology
3679 2,190,971 29 6892 65 12,480

8 Tongji University 5988 2,472,129 14 3542 30 2940
9 University of Science and

Technology of China
2442 1,966,802 9 3665 2 35,860

10 South China University of
Technology

2836 1,199,259 9 2780 4 45,069

11 University of Electronic
Science and Technology of
China

2257 1,149,589 22 2489 12 6134

12 Northwestern
Polytechnical University

2249 1,473,336 11 311 14 10,670
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evaluation, we calculate Spearman's rank correlation coefficients for
the four kinds of evaluation results and show them in Table 7. Ob-
viously, the rank correlation coefficients among Entani et al.'s evalua-
tion, Wang and Yang's and ours are all greater than 0.9, which means

that the three kinds of evaluation results are very similar in the ex-
ample. Yet, they are very different from the average efficiency eva-
luation determined by models (7) and (9). Additionally, Entani et al.'s
evaluation and ours are the most similar because their rank correlation
coefficient is the maximum among the correlation matrix, namely
0.9790. In fact, based the two kinds of evaluations, the top 5 DMUs are
the same, namely DMU1 ≻ DMU6 ≻ DMU3 ≻ DMU7 ≻ DMU4, which is
seen in Table 6.

For Entani et al.'s interval efficiencies and ours, we further calculate
Hurwicz index values of the two kinds of interval efficiencies with

=α 0.25, 0.75 and obtain the ranking orders of DMUs, which are re-
ported in Table 8. It is seen that the ranking orders of some DMUs
change when the parameter α is adjusted to 0.25 or 0.75 from 0.5 based
on Hurwicz index values of Entani et al.'s interval efficiencies. For ex-
ample, DMU12 ranks 11th when =α 0.5, while it ranks the last when

=α 0.75. By contrary, based on Hurwicz index values of our normalized
interval efficiencies, the ranking is stable in the example because the
ranking orders of all DMUs are the same when =α 0.25, 0.5, 0.75. In
fact, based on Theorem 3, the ranking will remain unchanged if

∈α (0, 1).

7. Conclusion

The CCR model measures the best relative efficiency of a DMU by
maximizing the ratio of the weighted outputs to the weighted inputs
under the constraint that the maximum ratio of all DMUs is 1. Hence, all
DMUs are compared relative to the best DMU. Considering that a su-
perior object must be far from the worst object as well as being close to
the best, we evaluate DMUs relative to the worst DMU as well as the
best DMU. Then, we propose the normalized efficiency and achieve the
best normalized efficiency and the worst normalized efficiency re-
spectively. Further, we build the interval efficiency evaluation and rank
all DMUs completely based on the upper and lower bounds of the

Table 5
The interval efficiency evaluation results of 12 universities.

DMU Entani et al.’s models Model (7) and model (9) Wang and Yang’s models Normalized efficiency models

1 [0.2752, 1.0000] [1.8585, 204.9371] [0.0558, 1.0000] [0.2040, 1.0000]
2 [0.0052, 0.9285] [1.0000, 15.6181] [0.0300, 0.9285] [0.0000, 0.9158]
3 [0.1924, 1.0000] [1.1566, 153.0881] [0.0347, 1.0000] [0.0475, 1.0000]
4 [0.0184, 1.0000] [1.0000, 14.8849] [0.0300, 1.0000] [0.0000, 1.0000]
5 [0.0049, 0.7343] [1.0000, 28.6708] [0.0300, 0.7343] [0.0000, 0.6866]
6 [0.2097, 1.0000] [1.4059, 54.3265] [0.0422, 1.0000] [0.1357, 1.0000]
7 [0.0373, 1.0000] [2.3562, 29.1748] [0.0707, 1.0000] [0.0326, 1.0000]
8 [0.0054, 0.4555] [1.0000, 11.9339] [0.0300, 0.4555] [0.0000, 0.4163]
9 [0.0343, 0.8231] [1.0000, 33.1052] [0.0300, 0.8231] [0.0000, 0.7911]
10 [0.0798, 0.8765] [1.0000, 52.0475] [0.0300, 0.8765] [0.0000, 0.8634]
11 [0.0299, 0.8177] [1.3822, 20.8534] [0.0415, 0.8177] [0.0251, 0.7850]
12 [0.0522, 0.4099] [1.0000, 10.6956] [0.0300, 0.4099] [0.0000, 0.3209]

Table 6
Hurwicz index values of four kinds of interval efficiencies with =α 0.5.

DMU Entani et al.’s
models

Model (7) and
model (9)

Wang and
Yang’s models

Our normalized
efficiency models

1 0.6376 (1) 103.3978 (1) 0.5279 (2) 0.6020 (1)
2 0.4669 (7) 8.3090 (9) 0.4793 (6) 0.4579 (6)
3 0.5962 (3) 77.1223 (2) 0.5174 (4) 0.5238 (3)
4 0.5092 (5) 7.9425 (10) 0.5150 (5) 0.5000 (5)
5 0.3696 (10) 14.8354 (7) 0.3821 (10) 0.3433 (10)
6 0.6048 (2) 27.8662 (3) 0.5211 (3) 0.5679 (2)
7 0.5187 (4) 15.7655 (6) 0.5353 (1) 0.5163 (4)
8 0.2304 (12) 6.4669 (11) 0.2427 (11) 0.2082 (11)
9 0.4287 (8) 17.0526 (5) 0.4265 (9) 0.3956 (9)
10 0.4781 (6) 26.5237 (4) 0.4532 (7) 0.4317 (7)
11 0.4238 (9) 11.1178 (8) 0.4296 (8) 0.4051 (8)
12 0.2311 (11) 5.8478 (12) 0.2200 (12) 0.1605 (12)

Table 7
Spearman's rank correlation coefficients of four kinds of evaluation results.

Entani et al.’s
models

Model (7) and
Model (9)

Wang and
Yang’s models

Our models

Entani et al.’s
models

1.0000 0.7902 0.9371 0.9790

Model (7) and
model (9)

0.7902 1.0000 0.6573 0.7413

Wang and Yang’s
models

0.9371 0.6573 1.0000 0.9580

Our models 0.9790 0.7413 0.9580 1.0000

Table 8
Hurwicz index values of two kinds of interval efficiencies for 12 universities.

DMU Entani et al.’s models Normalized efficiency models

=α 0.25 =α 0.5 =α 0.75 =α 0.25 =α 0.5 =α 0.75

1 0.4564 (1) 0.6376 (1) 0.8188 (1) 0.4030 (1) 0.6020 (1) 0.8010 (1)
2 0.2361 (7) 0.4669 (7) 0.6977 (6) 0.2290 (6) 0.4579 (6) 0.6869 (6)
3 0.3943 (3) 0.5962 (3) 0.7981 (3) 0.2856 (3) 0.5238 (3) 0.7619 (3)
4 0.2638 (6) 0.5092 (5) 0.7546 (5) 0.2500 (5) 0.5000 (5) 0.7500 (5)
5 0.1872 (10) 0.3696 (10) 0.5519 (10) 0.1717 (10) 0.3433 (10) 0.5150 (10)
6 0.4073 (2) 0.6048 (2) 0.8024 (2) 0.3518 (2) 0.5679 (2) 0.7839 (2)
7 0.2780 (5) 0.5187 (4) 0.7593 (4) 0.2745 (4) 0.5163 (4) 0.7582 (4)
8 0.1179 (12) 0.2304 (12) 0.3430 (11) 0.1041 (11) 0.2082 (11) 0.3122 (11)
9 0.2315 (8) 0.4287 (8) 0.6259 (8) 0.1978 (9) 0.3956 (9) 0.5933 (9)
10 0.2790 (4) 0.4781 (6) 0.6773 (7) 0.2158 (7) 0.4317 (7) 0.6475 (7)
11 0.2268 (9) 0.4238 (9) 0.6208 (9) 0.2151 (8) 0.4051 (8) 0.5950 (8)
12 0.1416 (11) 0.2311 (11) 0.3205 (12) 0.0802 (12) 0.1604 (12) 0.2406 (12)
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normalized efficiency.
Compared with the traditional DEA methods, our evaluation

method has some attractive advantages. First of all, for the given input
and output weights, the normalized efficiency is obtained by normal-
izing the output-input ratio of a DMU, and it measures the position of a
DMU in the interval built by the best DMU and the worst DMU. Hence,
it is fairer for all DMUs to compare the normalized efficiencies. Second,
from the optimistic viewpoint and the pessimistic viewpoint, we
achieve the upper and lower bounds of the normalized efficiency re-
spectively. It is more comprehensive to evaluate DMUs by considering
the best normalized efficiency and the worst normalized efficiency si-
multaneously. Last but not least, based on the interval efficiency, we
can rank all DMUs with the assessor’s given level of optimism. Although

the assessor’s level of optimism could affect the ranking of all DMUs, yet
there exists an interval of the parameter α such that the ranking is
stable.
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Appendix A

Proof of Theorem 1. If the weight vectors u v, are both confined that only one element is 1 and the other elements are all 0, then model (9) will be
reduced to model (10). Considering model (9) and model (10) are both the maximization problems, we have that the optimal value of model (9),
namely Ek

(2), is not smaller than the optimal value of model (10). Suppose E*k is the optimal value of model (10). Then ⩾E E*k k
(2) .

Note that model (9) and model (10) are equivalent to the following models respectively:
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Hence, =E E*k k
(2) , and then model (9) and model (10) are equivalent. □

Proof of Theorem 2. Considering the constraint =u y v x/ 1T
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T
i and =v x 1T

k , easily we have that model (12) is equivalent to the following model:

=

=
− =
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T
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T
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T
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T
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T
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T
j

max 1
1

T
k

(25)

Based on model (8) and model (9), we know that

= ⎧
⎨⎩ ⩾ ⩾

⎧
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T

T

T

T

T

T

Let = =b
k

E b
k

Emax{ }, max{ }k k1
(2)

2
(2) . Obviously, ⩽ ⩽b b1 1 2. Then we can add the constraint ⩽ ⩽b b b1 2 in model (25). Additionally, the difference

of model (14) and model (25) mainly lies in the fourth constraint. Considering the second constraint of model (14) and ⩽ ⩽b b1 1 , we have that the
fourth constraint of model (14) is equivalent to the following term:
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⩽u y v x bmax / .j
T

j
T

j

Let ∗θ be the optimal value of model (14) and ∗ ∗ ∗u v b, , be the optimal solutions. Assume = <∼ ∗ ∗ ∗u y v xb bmax ( ) /( ) .j
T

j
T

j It follows that ∼∗ ∗u v b, , is

feasible to model (14) and = <∗ −
−

−
−∼

∗

∗

∗
θ u y u y

b b
( ) 1

1
( ) 1

1

T
k

T
k , which contradicts the knowledge that ∗θ is the optimal value of model (14). Therefore, we have

that =∗ ∗ ∗u y v x bmax ( ) /( )j
T

j
T

j , and model (14) is equivalent to model (25) and model (12). □

Proof of Theorem 3. Considering the constraint that =v x 1T
k and =u y v x/ 1T

j
T

j , we convert model (19) into the following model:
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(26)

Based on model (4) and model (1), we know that
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Let = =a
k

E a
k

Emin{ }, min{ }k k1
(1)

2
(1) . Then we can add the constraint ⩽ ⩽a a a1 2 in model (26). Additionally, noting that the objective function of

model (26) will increase with decreasing the value of a, we can modify the fourth constraint of model (26) as ⩾u y v x a/T
i

T
i . That is, model (26) is

equivalent to model (21). Hence, model (19) and model (21) are equivalent. □
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