
Mapping Binary Functions to a Practical Adiabatic
Quantum Computer
David Rosenbaum1, Marek Perkowski2

1Portland State University, Department of Computer Science
2Portland State University, Department of Electrical Engineering

Email: drosenba@cs.pdx.edu, mperkows@ee.pdx.edu

Abstract—Efficiently mapping binary functions to adia-
batic quantum computers is an important problem because
the resulting circuits can be used as oracles in Grover’s
algorithm. This paper presents a method for mapping
binary functions to a two-dimensional grid of qubits with
nearest neighbor interactions which is used in a prototype
from D-Wave Systems. This is done by writing the binary
function in a special form. This allows the binary function
to be implemented by converting each gate into a 3-
local Hamiltonian. These 3-local Hamiltonians are then
converted into two-local Hamiltonians which are mapped
to the grid of qubits.

I. INTRODUCTION

Adiabatic quantum computation is a promising com-
putational paradigm which D-Wave Systems claims to
have implemented on a prototype quantum computer
[4]. An advantage of adiabatic quantum computation
over the circuit model of quantum computation is that
it is possible to build non-reversible boolean logic op-
erations into the Hamiltonian whereas in the circuit
model of quantum computation additional ancilla qubits
must be added to implement non-reversible operations
using reversible gates. This allows adiabatic quantum
computation to utilize existing methods from classical
logic synthesis but requires circuits to be mapped to
the rectangular array of qubits utilized in the adiabatic
quantum device. Adiabatic quantum computation has
been shown to be polynomial time equivalent to the
circuit model of quantum computation [1]. This means
that it may be possible for adiabatic quantum algorithms
to achieve polynomial time speedups over their equiva-
lents in the circuit model of quantum computation. An
adiabatic quantum version of Grover’s algorithm [6] has
been devised which provides the quadratic speedup over
classical computation achieved in the circuit model of
quantum computation [3]. Because both the circuit and
adiabatic versions of Grover’s quantum algorithm [3]
rely on an oracle to identify the desired basis states,

constructing this oracle efficiently becomes an important
problem. In the circuit model of quantum computation,
the oracle takes the form of a unitary matrix that flips
the sign of the phase of each basis state that corre-
sponds to a solution. This oracle can be constructed
as a permutative circuit that inverts an ancilla qubit for
every solution state. Initializing the ancilla qubit to the
state 1√

2
|0〉 − 1√

2
|1〉 then results in a unitary operator

that will flip the sign of the desired basis states due
to phase kick-back. The adiabatic quantum version of
Grover’s algorithm takes the form of a Hamiltonian in
which the solution states correspond to low energy levels.
This oracle Hamiltonian can then be used to construct a
Hamiltonian that will evolve to one of the solution states.
Because the oracle is necessary for Grover’s algorithm,
implementing the Hamiltonian for the oracle is an im-
portant problem. Biamonte [2] developed a method for
mapping a binary circuit represented as a planar tree of
two-input single-output gates into 3-local Hamiltonians.
This method is illustrated by mapping the tree of gates
shown in figure 1(a) onto the two-dimensional grid of
qubits shown in figure 1(b). The operation I used in
nodes with exactly one input indicates that the value
of the node is copied from the input. In this paper, the
grid utilized in D-Wave’s prototype is used where each
node has eight neighbors. These 3-local Hamiltonians
are then decomposed into 2-local Hamiltonians which
allows the desired circuit to be implemented on an
adiabatic quantum computer. The main problem with
this method [2] is that it is not algorithmic and no
proof is provided that it is always even possible to map
the tree of gates to the two-dimensional grid of qubits.
Furthermore, no evidence is provided that this can be
done efficiently. Backtracking is also required when this
method is used because it is possible to reach a partial
solution from which the final solution cannot be reached.
This will cause any algorithm that uses this method
to run slowly for large problems without the use of

40th IEEE International Symposium on Multiple-Valued Logic

0195-623X/10 $26.00 © 2010 IEEE

DOI 10.1109/ISMVL.2010.57

270

40th IEEE International Symposium on Multiple-Valued Logic

0195-623X/10 $26.00 © 2010 IEEE

DOI 10.1109/ISMVL.2010.57

270

sophisticated heuristics. In this paper, a mapping method
is shown which is capable of mapping a binary function
to the two-dimensional grid of qubits while avoiding the
difficulties with layout that result from using the method
proposed by Biamonte [2]. Furthermore, the method
shown in this paper is completely algorithmic and also
does not require backtracking. Mapping is performed by
first writing the desired binary function in a special form
which can be implemented efficiently by decomposing
it to the Hamiltonians given by Biamonte [2].

II. INTRODUCTION TO ADIABATIC QUANTUM

COMPUTATION

This section will cover the basic principles of adi-
abatic quantum computation and will present some of
the Hamiltonians developed by Biamonte [2]. Rather
than applying operations to an input state as in the
circuit model of quantum computation, the adiabatic
model of quantum computation is based on the evolution
of Hamiltonians. A Hamiltonian is a hermitian matrix
that represents the energy of a quantum system. The
eigenvalues of a Hamiltonian correspond to the energies
of the eigenvectors. The state |ψ(t)〉 of a quantum system
with the Hamiltonian H(t) at time t and initial state
|ψ(0)〉 is governed by Schrödinger’s equation [5]

i~
d |ψ(t)〉
dt

= H(t) |ψ(0)〉 (1)

The Hamiltonians given by Biamonte [2] will now be
presented. Let σ be the 2× 2 hermitian matrix such that
σ |0〉 = |0〉 and σ |1〉 = − |1〉. Let σi = I2i−1⊗σ⊗ I2n−i

where n is the number of qubits. Qubits can be initialized
using the Hamiltonian I2n−σi

2 to set the ith qubit to
|0〉 and the Hamiltonian I2n+σi

2 to set the ith qubit
to |1〉. This is because during adiabatic quantum com-
putation the state of the system evolves to a minimal
energy state. Since the eigenvectors of the Hamiltonian
I2n−σi

2 are |x1 . . . xi−10xi+1 . . . xn〉 with eigenvalue 0
and |x1 . . . xi−11xi+1 . . . xn〉 with eigenvalue 1, using
this Hamiltonian will cause the state of the ith qubit to
evolve to |0〉. Similar reasoning can be employed to ex-
plain why the Hamiltonian I2n+σi

2 initializes the ith qubit
to |1〉. Another useful Hamiltonian is I2n−σiσj

2 which
causes the ith and jth qubits to evolve to the same value.
This works because σi |x1 . . . xn〉 = (−1)xi |x1 . . . xn〉
so I2n−σiσj

2 |x1 . . . xn〉 = 1+(−1)xi+xj+1

2 |x1 . . . xn〉. Since
1+(−1)xi+xj+1

2 |x1 . . . xn〉 = 0 · |x1 . . . xn〉 if xi = xj and
1+(−1)xi+xj+1

2 |x1 . . . xn〉 = |x1 . . . xn〉 if xi 6= xj , the
energy of any basis state |x1 . . . xn〉 is 0 if xi = xj
and is 1 if xi 6= xj . Biamonte also showed how to
realize any two-input single-output gate using two-local

Hamiltonians [2] except exclusive OR (EXOR) and its
negation (EQUIV) which can be implemented with 2-
local Hamiltonians by adding additional qubits.

x1 x2

x3 x4

x5 x6

(a) An example tree of gates

x1

x2

x3

x4

x5

x6

∧

∧

∧

I

∨ ∨

6

5

4

3

2

1

1 2 3 4

(b) A possible grid of qubits

Fig. 1. An example of Biamonte’s method for mapping trees of
gates to two-dimensional grids of qubits

III. A GENERALIZED SUM OF PRODUCTS

A sum of products (SOP) is a simple formula that can
be used to express any binary function. This is done by
writing a binary function s of the variables x1, . . . , xn
as

s(x1, . . . , xn) =

m∨
i=1

pi (2)

where

pi =

n∧
j=1

vi,j (3)

Each vi,j must be in the set {1, xj , xj} and m is the
number of products in the SOP. Using the method shown
by Biamonte [2], it is possible to implement all 16 binary
gates with two inputs and a single output using 3-local
Hamiltonians. All of these 3-local Hamiltonians can be
written as sums of 2-local Hamiltonians except for the
3-local Hamiltonians used for EXOR and EQUIV. This
allows all of these gates to be implemented directly
except for EXOR and EQUIV which must be decom-
posed to gates in the NPN classification of AND. Thus,

271271

all gates except EXOR and EQUIV are of the same
cost. This means that a more general summation formula
should be used because this will allow some functions
to be implemented using far fewer products which will
result in smaller number of qubits used. Since most of
the operations in a SOP occur inside products, these
operations should have small costs. However, the number
of operations used to sum the products is comparatively
small so even if these operations are fairly expensive, it
will not significantly increase the overall cost of the cir-
cuit. The concept of a SOP was therefore generalized to
represent a binary function s of the variables x1, . . . , xn
as s = sm where

s1 = p1 (4)

si = gi−1(pi, si−1) for 1 < i ≤ m (5)

pi = pi,n (6)

pi,1 = x1 (7)

pi,j = fi,j−1(xj , pi,j−1) for 1 < j ≤ n (8)

For these equations, the conditions m ≥ 1 and n ≥ 2
must hold. The conditions fi,j ∈ F and gi ∈ G must
be satisfied where G = {g : {0, 1}2 → {0, 1}}, F =
G\{⊕,�} and the symbols ⊕ and � represent EXOR
and EQUIV respectively. The idea is to create a general-
ized sum of generalized products where each generalized
product is created using any two-input single-output
gates except for EXOR and EQUIV and the generalized
sum can be created using any two-input single-output
gates. Since the set of all two-input binary gates except
for EXOR and EQUIV is the NPN class of AND (the
set of all gates that can be obtained by negating and
permuting inputs and negating the output of an AND
gate), the formula defined by equations (4) and (5) will
be called an NPNSOP. Note that functions in product of
sums (POS) are included in the NPNSOP form. Since
the summing operations do not all have to be the same
function, the order in which the summing operations are
applied affects the function that the NPNSOP represents.
This is different from a SOP in which all of the summing
operations are the OR operation. Note that the NPNSOP
defines the order in which the summing operations are
applied explicitly. This will simplify mapping to the grid
of qubits later on and is the main reason why prefix
notation is used. The generalized products (these will be
called NPN products from now on) are represented by
equations (7) and (8). Note that the order in which the
product operations are applied is also defined explicitly
which is important since the operations in a NPN product
can be different functions. An example of a function
represented by s = sm as defined by equations (4)
through (8) will be shown later in this paper.

s

1
0

1
1

1
2

1
3

0
4

1
5

1
6

0
7

1
8

1
9

1
10

1
11

0
12

1
13

0
14

0
15x1

x3

x2

x4

Fig. 2. The Karnaugh map for the function s as defined in equation
(9)

IV. A SIMPLE EXAMPLE

This section will illustrate the mapping algorithm for
the function

s = ∨ (∧(x4, I1 (x3, z(x2, x1))), (9)

⊕ (∨(x4, I2 (x3,∧(x2, x1))),

I2 (x4,∧(x3, I1 (x2, x1)))))

written in pure NPNSOP form as defined by equa-
tions equations (4) through (8) where I1 (x, y) = x,
I2 (x, y) = y and z(x, y) = 0. Using infix notation, this
function can be written as

s = x4 ∧ x3 ∨ ((x4 ∨ x2 ∧ x1)⊕ x3 ∧ x2) (10)

In boolean algebra the function would be written as

s = x4x3 + ((x4 + x2x1)⊕ x3x2) (11)

The function s can be visualized using a Karnaugh map
as shown in figure 2. This function can be implemented
using the grid of qubits shown in figure 3. The symbols
that each node is labeled with indicate the binary oper-
ation that corresponds to the given node and the arrows
indicate that the values of nodes that the arrows come
from are arguments to the binary operation pointed to
by the arrows. Solid arrows indicate that the value is
not negated while dashed arrows indicate negation. For
example, the function realized by the node at coordinates
(8, 3) (the node in column 8 and row 3) is ∧(x4, x3).

V. THE MAPPING ALGORITHM

An algorithm for mapping functions represented using
the NPNSOP form defined by equations (4) through (8)
will now be shown. The idea is to realize each of the
NPN products pi and “add” them into the NPNSOP.
This is accomplished using the pseudocode shown in
algorithm 1. The qubits used in the algorithm are mapped
to a two dimensional grid as shown in figure 3 where

272272

x1

x2

x3

x4

I1

∧

I2

I

I

2
1

2
1

x1

x2

x3

x4

I

I

∧

I2

∨

∧

∧ ∨

2
1

x1

x2

x3

x4

I

I

0

I1

∧

∨
s

2
1

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9

Fig. 3. The grid of qubits for the function s from equation 9

the qubit with coordinates (x, y) is denoted by ax,y.
The notation x1, . . . , xn → ak,n+2, . . . , ak,3 used on
line 5 indicates that each of the qubits ak,n+2, . . . , ak,3
is initialized to one of the values x1, . . . , xn respec-
tively. Several other conventions are used to describe
the operation of the algorithm. The notation ax1,y1 →I

ax2,y2 indicates that a Hamiltonian should be created
that has the lowest energy when the qubits ax1,y1 and
ax2,y2 have the same value. This Hamiltonian can be
created as described by Biamonte [2]. Let h be a
binary function of two variables. Then the notation
ax1,y1 , ax2,y2 →h ax3,y3 indicates that a Hamiltonian
should be created where the lowest energy state occurs
when ax3,y3 = h(ax1,y1 , ax2,y2). Sometimes, the function
h is written as a binary formula using the variables x
and y. In this case, x corresponds to the first argument
of h and y corresponds to the second argument of
h. These Hamiltonians can be implemented using the
method described by Biamonte [2]. Note that algorithm
1 uses more columns than necessary in some case such
as column 3 in figure 3. This is done because it makes
the algorithm much simpler and only affects the number
of qubits it uses by a constant factor. Furthermore, in a
practical application it would be simple to remove wasted
columns by running an additional compaction algorithm
to optimize the output of algorithm 1. Algorithm 1 also
uses more operations than necessary to implement NPN
products in some cases. This is also done for simplicity
and would be easily rectified in an implementation of
the algorithm. Algorithm 1 works by synthesizing each
NPN product and then combining it into the NPNSOP.
This is done by the loop on lines 3 to 29 which iterates
over all m NPN products. During each iteration, the NPN
product pi is mapped on the grid of qubits. Line 4 sets k
to the index of the column where the values of the input

variables for the NPN product pi. Line 5 stores the values
of the inputs variables in the column with index k. The
code on line 6 stores the value fi,1(x2, x1) in the qubit
ak+1,n+1. The rest of the NPN product pi is then mapped
to the grid of qubits by the loop on lines 7 to 9. At this
point in the algorithm, pi is stored in the qubit ak+1,3.
The rest of the code deals with “adding” pi into the
NPNSOP. Line 10 tests if i = 1. If this is the case than
pi is the first NPN product in the NPNSOP so it does not
need to be “added” into the NPNSOP of previous NPN
products so the value of pi is simply copied into the qubit
ak+2,1. This is done because during all iterations after the
first iteration the value si−1 as defined in equations (4)
and (5) is assumed to be stored in the qubit ak−1,1. Lines
13 to 28 deal with the case where i 6= 1. In this case,
si−1 is stored in the qubit ak−1,1. Line 14 copies pi into
the qubit ak,2. Line 15 copies si−1 into the qubit ak,1.
Because the operations EXOR and EQUIV cannot be
implemented using a single operation [2], it is necessary
to implement them using the identities x⊕ y = xy+ xy
and x � y = xy + xy. The case where gi−1 = ⊕ or
gi−1 = � therefore must be handled separately. Line 16
accomplishes this by checking if gi−1 is neither EXOR
nor EQUIV. If this is the case then gi−1 is mapped to
the grid of qubits directly on line 17. Line 18 copies the
result from the qubit ak+1,1 to the qubit ak+2,1 so that
the partial NPNSOP will be in the location expected by
the next iteration of the outer loop. Line 19 handles the
other case where gi−1 = ⊕ or gi−1 = �. In this case,
line 20 stores pisi−1 in the qubit ak+1,2 and line 21 stores
pisi−1 in the qubit ak+1,1. Line 23 checks if gi−1 = ⊕.
If this is the case then the EXOR operation is performed
by storing the OR of the qubits ak+1,1 and ak+1,2 in the
qubit ak+2,1 on line 23. Otherwise, gi−1 = �. This case
is handled by line 25 which stores the NOR of the qubits
ak+1,1 and ak+1,2 in the qubit ak+2,1.

VI. CORRECTNESS PROOF FOR THE MAPPING

ALGORITHM

This section will prove that algorithm 1 properly
maps binary functions in NPNSOP form as defined by
equations (4) through (8) to the grid of qubits. It will be
assumed that the Hamiltonians given by Biamonte [2]
work correctly.

Theorem 1. Given a binary function s of the form
defined by equations (4) through (8), algorithm 1 maps
the output of the function s to the qubit a3m,1.

Proof: After line 1, s is a binary function in
NPNSOP form as defined by equations (4) through (8).
Line 2 sets the variables m, n, fi,j and gi according to
the values they are assigned when s is defined according

273273

Algorithm 1 Pseudocode for the mapping algorithm
1: Let s be a binary function in NPNSOP form as

defined in equations (4) through (8)
2: Let m, n, fi,j , gi be as defined in equations (4)

through (8) with respect to s
3: for all i := 1, . . . ,m do
4: k := 3(i− 1) + 1
5: x1, . . . , xn → ak,n+2, . . . , ak,3
6: ak,n+1, ak,n+2 →fi,1 ak+1,n+1

7: for all j := 2, . . . , n− 1 do
8: ak,n−j+2, ak+1,n−j+3 →fi,j ak+1,n−j+2

9: end for
10: if i = 1 then
11: a2,3 →I a3,2
12: a3,2 →I a3,1
13: else
14: ak+1,3 →I ak,2
15: ak−1,1 →I ak,1
16: if gi−1 6= ⊕ and gi−1 6= � then
17: ak,2, ak,1 →gi−1 ak+1,1

18: ak+1,1 →I ak+2,1

19: else
20: ak,2, ak,1 →x∧y ak+1,2

21: ak,2, ak,1 →x∧y ak+1,1

22: if gi−1 = ⊕ then
23: ak+1,2, ak+1,1 →∨ ak+2,1

24: else
25: ak+1,2, ak+1,1 →∨ ak+2,1

26: end if
27: end if
28: end if
29: end for

to equations (4) through (8). Let si be as defined by
equations (4) and (5). To simplify to proof, the concept
of an unused qubit will be introduced. A qubit is said
to be unused if the corresponding node on the grid of
qubits has no inputs, has no outputs and has not been
initialized to any particular value. Before using induction
on the loop on line 3, it is necessary to prove that if the
qubits in columns k and k + 1 are unused after line 4
is executed, then after executing lines 5 through 9 the
qubit ak+1,3 stores pi and the qubits ak,j′ and ak+1,j′

are unused where j′ ≤ 2. Line 5 initializes the qubits
ak,n+2, . . . , ak,3 to the variables x1, . . . , xn and line 6
sets the qubit ak+1,n+1 equal to fi,1(x2, x1). Suppose
that n = 2. Then the loop on line 7 will not run
since the condition 2 ≤ n − 1 is false. Furthermore,
pi,n = fi,1(x2, x1) and pi = pi,n in this case so the
qubit ak+1,3 stores pi. Suppose that n > 2. In this

case it is necessary to prove by induction that after each
iteration of the loop on line 7, the qubit a2,n−j+2 stores
pi,j and each qubit ak+1,j′ where j′ < n − j + 2 is
unused. Consider the basis case where j = 2. Line 8 will
perform the operation ak,n, ak+1,n+1 →fi,2 ak+1,n. Since
the qubit ak,n stores x3 and the qubit ak+1,n+1 stores
pi,1 = fi,1(x2, x1), this will result in the qubit ak+1,n

storing pi,2 = fi,2(x3, pi,1). Furthermore, in column k+1
the only qubits used are ak+1,n+1 and ak+1,n so the basis
case holds. Now suppose that after the iteration where
j = ĵ in the loop on line 7 the qubit ak+1,n−ĵ+2 stores
pi,ĵ and that each qubit ak+1,j′ where j′ < n− ĵ + 2 is
unused. Then at the start of the iteration where j = ĵ+1,
the qubit ak+1,n−ĵ+2 still stores pi,ĵ . Line 8 will perform
the operation ak,n−ĵ+1, ak+1,n−ĵ+2 →

fi,ĵ+1 ak+1,n−ĵ+1.
Since the qubit ak+1,n−ĵ+1 stores xĵ+2, the result of
this operation is storing pi,ĵ+1 = fi,ĵ+1(xĵ+2, pi,ĵ) in
the qubit ak+1,n−ĵ+1. Since each qubit ak+1,j′ where
j′ < n − ĵ + 2 was unused before this operation was
performed, each qubit ak+1,j′ where j′ < n − ĵ + 1 is
unused afterward. This proves the inductive case so by
the principle of mathematical induction, after the final
iteration of the loop on line 7 the qubit ak+1,3 stores
pi = pi,n and the qubits ak+1,2 and ak+1,1 are unused.
It will now be proved by induction on i that after each
iteration of the loop on line 3 the following hold:
• The qubit ak+2,1 stores si
• Each qubit ai′,j′ is unused for i′ > k + 2

For the basis case, i = 1 so after line 4 is executed
k = 1. Since all of the qubits are unused at this point, in
particular the qubits in columns k and k+ 1 are unused.
Therefore, by the reasoning shown above, after executing
lines 5 through 9 the qubit a2,3 stores pi and the qubits
a1,j′ and a2,j′ are unused where j′ ≤ 2. In particular,
the qubits a2,2 and a2,1 are unused. Since i = 1, the
if statement on line 10 causes lines 11 and 12 to be
executed. Running line 11 causes s1 to be copied from
the qubit a2,3 into the qubit a3,2 will store s1. After
executing line 12, s1 is copied into the qubit a3,1. Since
only qubits in the columns 1, 2 and 3 were used, this
proves the basis case. The inductive case will now be
considered. Assume that after the iteration of the loop
on line 3 where i = î that the qubit ak̂+2,1 stores sî each
qubit ai′,j′ is unused for i′ > k̂+2 where k̂ = 3(̂i−1)+1
is the value of k in the îth iteration. Now consider the
iteration of the loop where i = î+1. After executing line
4, k = 3(i − 1) + 1. As shown before, executing lines
5 through 9 causes the qubit ak+1,3 to store pî+1 and
the qubits ak,j′ and ak+1,j′ to be unused where j′ ≤ 2.
Since i = î + 1 and î ≥ 1, i > 1. Therefore, executing
the if statement on line 10 will cause lines 13 through

274274

28 to be executed. Line 14 copies pî+1 into the qubit
ak,2. Observe that k̂ + 2 = k − 1. Therefore, line 15
copies sî into the qubit ak,1. Suppose that gî 6= ⊕gî =
�. Then the if statement on line 16 will cause lines
17 through 18 to be executed. Executing line 17 will
store sî+1 = gî(pî+1, sî) in the qubit ak+1,1 and line 18
will copy aî+1 into the qubit ak+2,1. Now assume that
the condition gî 6= ⊕gî = � is false. In this case lines
19 through 27 will be executed. Line 20 stores p+̂1sî
in the qubit ak+1,2. Line 21 stores p+̂1sî in the qubit
ak+1,1. Because gî 6= ⊕gî = � is false, gî = ⊕ or
gî = �. Suppose that gî = ⊕. Then the if statement
on line 22 will cause line 23 to run which will result
in p+̂1 ⊕ sî = p+̂1sî + p+̂1sî being stored the qubit
ak+2,1. Since gî = ⊕ and s+̂1 = p+̂1 ⊕ sîp+̂1, sî+1
is stored in the qubit ak+2,1. Now assume that gî =
�. In this case, the if statement on line 22 will cause
line 25 to run. This will result in storing p+̂1 � sî =
p+̂1sî + p+̂1sî in the qubit ak+2,1. Because sî+1 = p+̂1�
sî in this case, sî+1 is stored in the qubit ak+2,1. Thus,
after the iteration of the loop on line 3 where i = î+ 1,
sî+1 is stored in the qubit ak+2,1. Because only qubits
in the columns k, k + 1 and k + 2 were used in the
iteration where i = î + 1, each qubit ai′,j′ is unused
for i′ > k + 2 after this iteration is finished. Thus, the
inductive case holds as well. Therefore, by the principle
of mathematical induction, the following conditions hold
after every iteration of the loop on line 3:
• The qubit ak+2,1 stores si
• Each qubit ai′,j′ is unused for i′ > k + 2

Consequently, since i = m and k = (3m− 1) + 1 in the
last iteration of the loop on line 3, the qubit a3m,1 stores
s = sn after the loop finishes executing.

VII. COMPLEXITY OF THE ALGORITHM

In this section, the complexity of algorithm 1 will
be analyzed. This will be calculated in terms of the
number of qubits required and the running time required
by algorithm 1. Lines 1 and 2 do not use any qubits.
Consequently, the total maximum number of required
qubits can be calculated by determining the number of
qubits used in each iteration of the loop. Each iteration
of the loop on line 3 uses at least n qubits because of line
5. Also, since during each iteration only qubits ai′,j′ with
indexes satisfying k ≤ i′ ≤ k + 2 and 1 ≤ j′ ≤ n + 2
can be used, each iteration requires at most 3(n + 2)
qubits. Because the loop on line 3 is executed m times,
between mn and 3m(n + 2) qubits are used by each
iteration. Therefore, the number of qubits required is
bounded above and below by positive multiples of mn
so the number of qubits required is Θ(mn). The running

time complexity of algorithm 1 will now be determined.
Observe that all of the steps in the loop on lines 3 to
29 run in constant time except for the loop on lines 7
to 9 which requires n − 2 operations. This implies that
each iteration of the loop requires Θ(n) operations so
the entire loop uses Θ(mn) operations.

VIII. ADVANTAGES OF THE ALGORITHM

Algorithm 1 has some important advantages over the
mapping method proposed by Biamonte [2]. Algorithm 1
is totally algorithmic and does not require trees of gates
to be mapped onto the two dimensional grid of qubits
which is required if the Biamonte’s mapping method
[2] is used. This resolves a significant problem with the
Biamonte method [2] because it eliminates the necessity
of using long chains of qubits to repeat values of qubits.
Algorithm 1 does not have this problem because it only
performs operations on adjacent qubits. Algorithm 1 is
also reasonably efficient as it requires Θ(mn) qubits.

IX. CONCLUSION

This paper presented a mapping algorithm for adi-
abatic quantum computation which is more practical
than previous methods because it does not waste large
amounts of qubits repeating intermediate values. The
algorithm is capable of synthesizing a very general class
of boolean formulas and is also fairly efficient since it
uses only Θ(mn) qubits. This makes this algorithm a
good method for synthesizing oracles for the adiabatic
quantum version of Grover’s algorithm [6].

REFERENCES

[1] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd,
and O. Regev. Adiabatic quantum computation is equivalent
to standard quantum computation. arXiv:quant-ph/0405098v2,
2005.

[2] J. D. Biamonte. Non-perturbative k-body to two-body commut-
ing conversion hamiltonians and embedding problem instances
into ising spins. Physical Review A, 77:23–31, 2008.

[3] L. K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Annual ACM Symposium on Theory
of Computing, pages 212–219, 1996.

[4] R. Harris, F. Brito, A. J. Berkely, J. Johansson, M. W. Johnson,
T. Lanting, P. Bunyk, E. Ladizinsky, B. Bumble, A. Fung,
A. Kaul, A. Kleinsasser, and S. Han. Synchronization of multiple
coupled rf-squid flux qubits. arXiv:0903.1884v1 [cond-mat.mes-
hall], 2009.

[5] M. A. Nielson and I. L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[6] W. van Dam, M. Mosca, and U. Vazirani. How powerful
is adiabatic quantum computation? arXiv:quant-ph/0206003v1,
2002.

275275

