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Abstract

This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines.
Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any
geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method,
and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The
two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The
properties of Isogeometric Analysis combined with harmonic stator–rotor coupling are presented. The results and performance of
the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine
as an example.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric Analysis (IGA) was first introduced in [1,2] and can be understood as a Finite Element Method
(FEM) using a discrete function space that generalizes the classical polynomial one. IGA has already been applied
in different fields such as, e.g., mechanical engineering [3] and fluid dynamics [4]. A more elaborated overview of
relevant application fields can be found in [5]. In this paper, we propose the application of the concepts of IGA to
electric machine simulation. According to IGA, the basis functions commonly used in Computer Aided Design (CAD)
for geometry construction, i.e. B-Splines and Non-Uniform Rational B-splines (NURBS), are used as the basis for
the solution spaces in combination with the classical FEM framework. IGA uses a global mapping from a reference
domain to the computational domain and does not introduce a triangulation thereof. As a consequence, it is possible
to represent CAD geometries exactly, even on the coarsest level of mesh refinement.
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The possibility to parametrize circular arcs (and other conic sections) without introducing geometrical errors
is of particular interest for electric machine simulation since it guarantees an exact representation of the air gap,
independently of the mesh resolution. Furthermore, thanks to the properties of Isogeometric basis functions, IGA
solutions have a higher global regularity with respect to their FEM counterparts. The inter-element smoothness of the
latter is typically restricted to C0. Moreover, IGA features a better accuracy with respect to the number of degrees
of freedom compared to FEM [2,6,7]. Both advantages are of great importance for an accurate simulation of electric
machines. For example, torques and forces are often calculated by the Maxwell’s stress tensor evaluated in the air gap,
in which case the obtained results are very sensitive to the representation and discretization of the air gap [8]. This
paper also tackles the problem of stator–rotor coupling which arises by our choice of IGA.

The application of IGA for electric machine simulation is illustrated using a 2D magnetostatic formulation
including the treatment of an angular displacement between stator and rotor. A further extension of the formulation to
non-linear models [9], to time-harmonic [10] and transient formulations [11] and to the 3D case is straightforward.

The structure of the paper is as follows. We first introduce the 2D model commonly used to describe electric
machines. We discuss how IGA is used to discretize the model. Section 3 first presents a naive domain decomposition
approach for stator–rotor coupling and then develops a Mortar coupling strategy based on harmonic functions that is
in focus of this work. A simplified example is used to analyze the convergence and stability properties of the harmonic
stator–rotor coupling. Finally, we apply the proposed method for simulating a permanent magnet synchronous
machine (PMSM). The results are compared to a lowest order FEM.

2. IGA electric machine model

Electromagnetic fields are described by Maxwell’s equations. For electric machines, valuable results can already
be obtained using a magnetostatic formulation, i.e., a subset of Maxwell’s equations where the eddy currents and
displacement currents are neglected [12,13]. The discretization of the resulting set of partial differential equations by
FEM requires the use of Nédélec elements where the degrees of freedom are allocated on the edges of the mesh [14].
Proper B-Spline approximation spaces as a counterpart to Nédélec elements in an IGA context were introduced by
Buffa et al. [15]. However, for electric machine simulation, it is often sufficient to model a 2D cross section of
the geometry. Under these assumptions, Maxwell’s equations reduce and combine into a Poisson equation on the
computational domain Ω = Ω rt

⋃
Ω st (Fig. 1)

− ∇ · (ν∇ Az) = Jsrc + Jpm  
Jz

, (1a)

where ν = ν(x, y) is the reluctivity (the inverse of the permeability), assumed to be linear and isotropic, and
Az = Az(x, y) is the z-component of the magnetic vector potential A⃗. The current densities exciting the coils of
the machine and the magnetization current densities related to the permanent magnet (PM) in the rotor are depicted
by Jsrc = Jsrc(x, y) and Jpm = Jpm(x, y), respectively. Eq. (1) is accompanied by Dirichlet boundary conditions at the
outer stator and inner rotor boundary Γd (see Fig. 1) and anti-periodic boundary conditions at the boundary parts Γl
and Γr (see Fig. 1), i.e.,

Az|Γd = 0, (1b)
Az|Γl = −Az|Γr . (1c)

Note that the air gap itself is split into two parts by Γag. The inner part of the air gap is included in Ω rt and the outer
part is included in Ω st.

The solution field is discretized by a linear combination of scalar basis functions w j (x, y), i.e.,

Az(x, y) ≈

NDoF∑
j=1

u jw j (x, y), (2)

where

u⊤
= [u1, . . . , uNDoF ],

is the vector of degrees of freedom. Applying the Galerkin approach results in the system of equations

Ku = j, (3)
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Fig. 1. Cross-sectional view of one pole of the machine. In red the interface between the rotor and the stator is depicted. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

with

ki j =

∫
Ω

(
ν
∂wi

∂x
∂w j

∂x
+ ν

∂wi

∂y
∂w j

∂y

)
dΩ , (4a)

and writing j = jsrc + jpm,

jsrc,i =

∫
Ω

Jzwi dΩ , (4b)

jpm,i =

∫
Ω

H⃗pm ·

[
∂wi

∂y
−

∂wi

∂x

]⊤

dΩ . (4c)

Here, H⃗pm is the permanent magnet’s source magnetic field strength.
There are different choices for basis functions. In this paper, two methods are considered. Firstly, there is the well

established FEM where, in the simplest case, linear hat functions are chosen [12]. The other approach is IGA for
which we choose NURBS. As the low-order FEM can be regarded as a special case, we only discuss IGA in the
following.

2.1. Isogeometric analysis

First, we define the 1D IGA basis functions. We choose a degree p and a vector

Ξ =
[
ξ1 . . . ξn+p+1

]
, (5)

with ξi ∈ Ω̂ = [0, 1], that subdivides the unit interval into elements. Here, n is the dimension of the B-Spline basis
which is given by the Cox–de Boor’s recursion formula (see [16]). Let {B p

i } be the set of B-Spline basis functions
(Fig. 2). We can construct the NURBS functions of degree p as

N p
i =

ωi B p
i∑

j ω j B p
j
, (6)
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Fig. 2. B-Spline basis functions of degree 1 and 2 on open, uniform knot vectors (Ξ = [0, 0, 1/3, 2/3, 1, 1] on top and Ξ = [0, 0, 0, 1/3, 2/3, 1, 1, 1]
at the bottom).

where ωi is a weighting factor associated to the i th basis function. A general NURBS three-dimensional curve is
obtained through the mapping

F =

n∑
i=1

Pi N p
i , (7)

with Pi a set of control points in R3 and F : Ω̂ → Ω ∈ R3. Surfaces are built using tensor products starting from the
reference square [0, 1]2 [16]. The knot subdivision in the reference domain Ω̂ is transformed by the NURBS mapping
into a physical mesh for the computational domain Ω .

Definitions (6) and (7) allow for an exact parametrization of conic sections such as circles and ellipses, which is of
direct interest for the construction of the electric machine geometry, in particular of the air gap.

IGA utilizes the same Galerkin framework as FEM, but approximates the solution of a Partial Differential Equation
(PDE) by a series expansion of NURBS (6). With respect to classical FEM spaces, the IGA spaces bring up
several advantages, e.g., the inter-element smoothness of the basis functions which allows for a higher regularity
of the solution across the elements. This property also leads to a significant reduction of the number of degrees of
freedom required to achieve a certain accuracy [2,6,7]. The IGA system matrices are typically smaller than their FEM
counterparts. This comes, however, at the expense of a decrease in sparsity.

3. Stator–rotor coupling

Due to the topology and due to the presence of different materials, it is advantageous to construct the rotor and
stator model parts of the PMSM independently. Each part is treated by a multipatch approach, i.e., by splitting the
domain into several patches, each of them being the transformation of the unit square through a NURBS mapping. The
degrees of freedom at the interfaces between the patches are glued together through static condensation in order to
obtain global C0 continuity [17]. It is worth mentioning that it would be possible to represent the entire computational
domain as a single multipatch entity. Then, however, the total number of patches would increase significantly and the
introduction of a relative angular displacement between stator and rotor would require a complicated mesh adaptation
procedure or a complete reparametrization.

3.1. Domain decomposition

In this work, we propose to subdivide the full computational domain along a circular arc Γag = Ω rt
⋂

Ω st in the air
gap, separating the two subdomains Ωrt and Ωst (Fig. 1). The rotor and stator patches are not required to be conforming
on Γag. The domain-decomposition approach reads
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−∇ ·
(
ν∇ Az,q

)
= Jz in Ωq ,

Az,q |Γd = 0,

Az,q |Γl = −Az,q |Γr ,

Az,rt|Γag = Az,st|Γag ,

ν∇ Az,rt|Γag · n⃗st = ν∇ Az,st|Γag · n⃗st,

(8)

where q ∈ {rt, st} and n⃗st is a unit vector perpendicular to the air gap interface directed from stator to rotor. The last
two equations express the continuity of the magnetic vector potential and the continuity of the azimuthal component
Hθ = ν∇ Az,rt|Γag · n⃗st of the magnetic field strength. The two coupling approaches described below are distinct in the
way they treat these interface conditions and set up the stator–rotor coupling.

3.2. Iterative substructuring

An iterative substructuring method invoking a Dirichlet-to-Neumann map for the first domain (here the rotor)
followed by a Neumann-to-Dirichlet map for the second domain (here the stator) works as follows (see e.g. [18]). Let
λ0 be the initial solution for the magnetic vector potential at the air gap interface Γag and let k count the iteration
steps. The domain-decomposition scheme (8) is carried out iteratively. First, a Poisson problem is solved for the rotor
taking λk as Dirichlet boundary condition at Γag, i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∇ ·
(
ν∇ Ak+1

z,rt

)
= Jz in Ωrt,

Ak+1
z,rt |Γd = 0,

Ak+1
z,rt |Γl = −Ak+1

z,rt |Γr ,

Ak+1
z,rt |Γag = λk,

(9)

from which the Neumann data ν∇ Ak+1
z,rt |Γag · n⃗st is derived. Then, a Poisson problem is solved for the stator enforcing

this Neumann data at Γag, i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∇ ·

(
ν∇ Ak+1

z,st

)
= Jz in Ωst,

Ak+1
z,st |Γd = 0,

Ak+1
z,st |Γl = −Ak+1

z,st |Γr ,

ν∇ Ak+1
z,st |Γag · n⃗st = ν∇ Ak+1

z,rt |Γag · n⃗st,

(10)

from which updated Dirichlet data

λk+1
= αAk+1

z,st + (1 − α)γ k, (11)

with α ∈ [0, 1] a relaxation parameter, is obtained. A relaxation factor α < 1 is required to guarantee the convergence
of the iterative substructuring approach [18]. As a stopping criterion for the method, the L2 errors for the stator and
rotor models between two successive iterations should be below a user-defined tolerance, both in the rotor and the
stator, i.e.,

εrt =
Ak+1

z,rt − Ak
z,rt


L2(Ωrt)

/
Ak+1

z,rt


L2(Ωrt)

< tol, and

εst =
Ak+1

z,st − Ak
z,st


L2(Ωst)

/
Ak+1

z,st


L2(Ωst)

< tol.

The discretization of problems (9)–(10) is carried out in the IGA framework presented above. More details on this
particular coupling approach can be found in [19]. In the following, a more sophisticated method is proposed.

3.3. Harmonic stator–rotor coupling

Let the polar coordinate system (r, θ) be connected to the stator and the polar coordinate system (r, θ ′) be connected
to the rotor. We denote by α the angular displacement between the two domains, i.e. θ ′

= θ − α. The interface
conditions at Γag read{

Az,st|Γag (θ ) = Az,rt|Γag (θ − α),
Hθ,st(θ ) = Hθ,rt(θ − α),

(12)

where Hθ,st = ν∇ Az,st|Γag · n⃗st and Hθ,rt = ν∇ Az,rt|Γag · n⃗st.
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The idea of harmonic stator–rotor coupling [20] is to express Hθ,st(θ ) and Hθ,rt(θ ′) in terms of a particular choice
of basis functions. This approach can be interpreted in the context of Mortaring methods, with a particular choice of
the space of Lagrange multipliers. A superposition of harmonic functions yields

Hθ,st(θ ) =

∑
ℓ∈L

λst,ℓe−ıℓθ , (13)

Hθ,rt(θ ′) =

∑
ℓ∈L

λrt,ℓe−ıℓθ ′

, (14)

where λst,ℓ and λrt,ℓ are the Fourier coefficients acting as degrees of freedom at the interface and L is a given set of
NΓ harmonics. The set L only contains harmonic orders ℓ for which the corresponding harmonic functions e−ıℓθ and
e−ıℓθ ′

fulfill the same anti-periodic boundary conditions as applied to Γl and Γr, e.g., e−ıℓθ
= e−ıℓ(θ+τpole), where τpole

is the angular extent of one pole (Fig. 1). The choice of harmonic trial functions enables us to construct a conforming
discretization for Hθ,st and Hθ,rt at Γag and facilitates the application of the tangential continuity of the magnetic field
strength in a strong way, leading to

λst,ℓ = rℓℓ(α)λrt,ℓ, (15)

where the phase shifts rℓℓ(α) = eıℓα are gathered in the rotation matrix R(α) such that (15) is in short λst = R(α)λrt.
The discretization of the Poisson equation in Ωst and Ωrt along the IGA framework leads to

Kstust + gst = jst, (16)

Krturt + grt = jrt, (17)

where the additional terms gst and grt follow from integration by parts and are given by

gst,i = −

∫
Γag

Hθ,st(θ )wi (θ ) dθ, (18)

grt,i =

∫
Γag

Hθ,rt(θ ′)wi (θ ′) dθ ′. (19)

The introduction of the discretization of Hθ,st and Hθ,rt by harmonic functions leads to

gst = GstR(α)λrt, (20)

grt = Grtλrt, (21)

where Gst and Grt ∈ RNΓ×NDoF are coupling matrices containing the integrals

gst,iℓ = −

∫
Γag

e−ıℓθwi (θ ) dθ, (22)

grt,iℓ =

∫
Γag

e−ıℓθ ′

wi (θ ′) dθ ′, (23)

combining IGA basis functions and harmonic functions (in the spirit of mortaring).
The continuity of the magnetic vector potential at the air gap interface is imposed in a weak way, i.e., using the

complex conjugate of the harmonic functions as test functions. This results in

− R(α)GH
st ust + GH

rt urt = 0, (24)

where this expression turns out to include the hermitian transposes of the already calculated matrices.
Combining (16), (17) and (24) leads to the saddle-point problem[

K GH (α)
G(α) 0

] [
U
λrt

]
=

[
J
0

]
, (25)

with the blocks

K =

[
Kst 0
0 Krt

]
, G(α) =

[
−R(α)GH

st GH
rt

]
, U =

[
urt
ust

]
, J =

[
jrt
jst

]
.
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The strategy proposed in this paper can be interpreted in the context of mortar methods [21], where the space of
Lagrange multipliers is chosen as the space spanned by harmonic functions. We refer the interested reader to [22], for
the application of mortaring to non-conforming FEM discretization of electrical machines, and to [23] for an overview
of Isogeometric mortar methods.

3.4. Inf–sup condition

Problem (25) is a saddle-point problem and may give rise to instabilities when the number of harmonics in
consideration NΓ is too big with respect to NDoF [24]. The nature of these problems has been studied thoroughly
in for example [25]. In order to guarantee stability the system should satisfy the inf–sup condition (see e.g. [26]).
Here, the set L only contains a few harmonic orders such that we are confident that the inf–sup condition is fulfilled
in practice.

The stability of the saddle-point formulation (25) can be investigated numerically. To that purpose, we calculate
the inf–sup constant β using the method proposed in [27]. Given the stiffness matrix K and the coupling matrix G, β

can be estimated by solving the eigenvalue problem

GH K−1Gx = η2Mx, (26)

with

mℓk =

∫
Γag

e− jkθe jℓθ dΓ . (27)

Given the sequence of eigenvalues ηi found by solving (26), the inf–sup constant can be obtained as

β = min
i

σi . (28)

The stability of the saddle-point problem is guaranteed if β is bounded away from zero.

3.5. Verification

To verify the proposed harmonic stator–rotor coupling in combination with IGA, we construct two simplified
examples for which a closed form solution exists.

First, we consider the unit square and a manufactured solution of the Poisson equation (see Fig. 3). In this
configuration only two subdomains Ωl and Ωr are considered and the connecting interface Γag is a straight line. The
coupling presented in Section 3.3 is tested for increasing discretization level and number of coupling harmonics NΓ .
In Fig. 5, the dependency of β on the discretization level can be observed: when the space spanned by the Lagrange
multiplier is too rich with respect to the discrete spaces on the domains, the inf–sup constant approaches zero and the
saddle-point matrix becomes singular.

A more reliable approach would be a Mortar method exploiting the B-Spline discretization on the domains to
generate a stable Lagrange multiplier space. In [23], Brivadis et al. analyze the different choices of discretization
degrees for the domains and for the coupling interfaces for the Isogeometric B-Spline spaces. It is shown that an
easy way to obtain a stable pairing is to use degree p basis functions in the domain and p − 2 on the interface. We
choose, without loss of generality, Ωl as the master side, and follow [23] to construct the Lagrange multipliers. In the
unit square example, this leads to a second order discretization for the two subdomains and constant basis functions
arising from the knot vector of the master side on Γag for the interface. With respect to the harmonic stator–rotor
coupling, the Mortar method does not allow any freedom in the choice of the richness of the Lagrangian basis since
the number of degrees of freedom is fixed by the master side. In Fig. 5 it can be seen that the method remains stable
for all mesh refinement levels.

Albeit this more classical Mortar approach ensures stability, it would introduce undesired complications in the
handling of the non-conforming patch coupling. Moreover it would be impossible to introduce the machine rotation
in an elegant and straightforward way. Given that, in practice, the number of harmonics used will be small and should
not have a significant impact on the stability of the saddle-point problem.

As a second test case, a quarter of a ring with an inner radius of 1 m and an outer radius of 2 m is considered
(see Fig. 4). It is split into two annular domains to mimic the machine. Each domain is constructed as a multipatch
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Fig. 3. Unit square geometry for verifying the stability of the harmonic stator–rotor coupling. The thick lines identify the two domains. The color
map shows the fabricated solution u∗. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Simplified geometry for verifying the harmonic stator–rotor coupling. The thick lines identify the two domains mimicking the rotor and the
stator, while the thin lines show the non-conforming multipatch subdivisions. The color map shows the fabricated solution u∗. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

geometry in such a way that the patch faces do not match at the connecting interface Γag. To keep the analogy with the
machine case, we will denote by Ωrt and Ωst the inner and outer domains respectively and Ω = Ω rt

⋃
Ω st. We solve

Poisson’s equation with homogeneous Dirichlet boundary conditions{
−∇ · (∇u) = f in Ω ,

u = 0 on ∂Ω ,
(29)

where

f = 2x
(
22x2 y2

+ 21y4
− 45y2

+ x4
− 5x2

+ 4
)
.

This source term is chosen such that a closed form solution can be calculated [17].
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Fig. 5. Numerically evaluated inf–sup constant for the unit square test. In blue and red the value of β for the coupling with harmonic basis
functions for different level of mesh refinement. In brown, the value for a classical Mortar method using a stable B-Spline basis on the interface.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Convergence of the computed solution to the exact solution for different choices of the discretization degree and for increasing mesh
refinement. NΓ = 7 harmonics are used for the coupling (ℓ = −3, . . . , 3). The dashed lines show the expected order of convergence.

The harmonic stator–rotor coupling is tested for different choices of discretization degrees and number of coupling
harmonics NΓ . In Fig. 6 the L2 error with respect to the exact solution is depicted for degree p = 1, 2, 3 and NΓ = 7,
with L = {−3, −2, . . . 3}. We recall that the L2 error is defined as

εL2 :=
u − u∗


L2 =

√∫
Ω

(u − u∗)2 dΩ . (30)

As seen in Fig. 6, the coupling does not hinder the expected order of convergence, i.e. O(h p+1).
The proposed coupling imposes weak continuity of u across Γag. As a further verification, we compute the jump

of the computed solution across Γag and evaluate its L2 norm, i.e.,

εΓag :=
urt|Γag − ust|Γag


L2 . (31)

The results, depicted in Fig. 7, show the convergence of the method.
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Fig. 7. Convergence of the jump of the computed solution across the interface Γag in L2 norm for different choices of the discretization degree
and for increasing mesh refinement. NΓ = 7 harmonics are used for the coupling (ℓ = −3, . . . , 3). The dashed lines show the expected order of
convergence.

Fig. 8. Convergence of the Neumann data on Γag computed from the Lagrange multipliers to the exact solution in L2 norm for different choices
of the discretization degree and increasing mesh refinement. NΓ = 7 harmonics are used for the coupling (ℓ = −3, . . . , 3) The dashed lines show
the order of convergence O(h2p).

Finally, we consider the convergence of the Lagrange multipliers themselves. In particular, in Fig. 8, we show the
convergence of the Neumann data to the exact solution, which can be evaluated as

ελ,rt :=

∇u∗
· n⃗rt −

∑
ℓ∈L

λrt,ℓe−iℓθ


L2

. (32)

The figure shows the good behavior of the Lagrange multipliers which converge with order O(h2p).
The inf–sup constant for an isogeometric discretization of degree 2 and increasing number of harmonics NΓ is

presented in Fig. 9. It is apparent that when the spatial discretization is not fine enough (or, roughly said, the number
of degrees of freedom is too low compared to the number of coupling harmonics), the saddle-point problem becomes
unstable. For the considered applications, only a small number of harmonics with low orders is relevant. Expert
knowledge can be used to choose the set L appropriately.
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Fig. 9. Numerically evaluated inf–sup constant β for a discretization of order 2 and different choices of the harmonics. When the spatial
discretization is not fine enough, and when the number of harmonics increases, β goes to zero.

4. Application: permanent magnet synchronous machine

IGA with harmonic stator–rotor coupling is illustrated for a 6-pole PMSM. Its design is described in [28]. The
longitudinal length of the machine is 10 cm. The machine is constructed of laminated steel, which is modeled as iron
with a vanishing conductivity. The PMSM is equipped with a 3-phase, 6-pole distributed double-layer winding with
12 turns per half slot. The rotor contains 6 buried NdFeB-magnets. The description of the geometric parameters and
the material properties can be found in Appendix.

FEMM [29] is used to construct the geometry and generate the mesh using Triangle [30]. The in-house code
Niobe uses the mesh generated by FEMM in order to solve (1) on Ω . The IGA framework is handled by the GeoPDEs
package [17]. In post-processing, the spectrum of the electromotive force (EMF), i.e., the voltage induced in the
open-circuit stator windings due to rotating the rotor at nominal speed, is calculated from the solution of (1). This is
done under no-load conditions by applying the method proposed in [31] using the parameters in Table A.1. One of the
quality features of a PMSM is the total harmonic distortion (THD) defined by

THD =

√∑
∞

p=2 |E p|
2

|E1|
, (33)

where p represents the order and E p the Fourier coefficients of the EMF.

4.1. Comparison between IGA and FEM

The rotor and stator domain are built using 12 and 78 patches respectively (see Fig. 1). On each subdomain, an
IGA discretization is applied and the two coupling methods introduced in Section 3 are used.

For the iterative substructuring approach, the implementation is straightforward and care must only be taken in the
portion of Γag that requires anti-symmetric boundary conditions (see problem (1)). For harmonic stator–rotor coupling,
as for the test case presented in Section 3.5, the anti-periodic boundary conditions have an impact on the composition
of the set L of harmonic orders. To ensure the correct behavior at the boundaries, the harmonic orders cannot be chosen
arbitrarily, i.e., they need to fulfill the anti-periodic boundary condition. The chosen set is Lap = ±3, ±9, ±15, . . .,
i.e., because of the 6-pole symmetry, only multiples of 3 need to be considered and because of the mirror symmetry
within a single pole, all multiples of 6 vanish. Furthermore, since we are looking for a real valued solution we always
consider double sided spectrum, i.e. if ℓ is chosen, then −ℓ is also added to the set of coupling modes.

Table 1 reports the total computational effort of matrix assembly and solving for the two straightforward
implementations. In the case of the iterative substructuring approach, the two matrices to be solved are obviously
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Fig. 10. Magnetic vector potential Az in a PMSM pole computed using IGA (p = 2), and harmonic stator–rotor coupling (Lap = ±3, ±9, ±15).
The singular parametrization in the windings does not affect the smoothness of the solution.

Table 1
Comparison of the computational efficiency between IGA with iterative substructuring and IGA with harmonic stator–rotor coupling and Lap =

±3, ±9, ±15 as the set of harmonics. The times mentioned refer to the sum of assembly and solving time.

Ref. level p DN (tol = 10−3) Harmonic

NDoF,rt NDoF,st Nit Time (s) NDoF Time (s)

1 1 32 193 9 67.021 241 3.335
2 1 137 746 9 123.462 908 6.610
4 1 563 2 932 9 248.232 3 538 13.675
8 1 2 279 11 624 9 528.551 13 982 30.437

16 1 9 167 46 288 9 1200.739 55 606 73.414

1 2 100 650 9 75.401 771 3.356
2 2 256 1 515 10 161.381 1 801 6.813
4 2 784 4 325 10 330.292 5 157 15.004
8 2 2 704 14 265 10 710.511 15 053 33.953

16 2 10 000 51 425 9 1490.251 61 581 85.595

smaller than in the fully coupled system (25), but the iterative procedure leads to a slow overall procedure. In particular,
the main bottleneck for the iterative substructuring approach is the evaluation of the Dirichlet and Neumann data on the
common boundary Γag since, in the IGA context, the evaluation of the solution at given points in the physical domain
is very expensive. This is due to the fact that this requires computing the inverse of the NURBS mapping in order to
obtain the corresponding points in the reference domain. Given the non-linearity of the mapping, a Newton–Raphson
scheme is typically used to perform this step, which considerably slows down the algorithm.

A second advantage of the proposed harmonic stator–rotor coupling is the straightforward handling of the relative
rotation: for each relative angular displacement α only the rotation matrix has to be re-computed, which can happen at
negligible cost. With iterative substructuring, instead, the right hand sides for both problems need to be re-assembled
for each α.

We then consider IGA with harmonic stator–rotor coupling and compare it to a finite element model with a
conforming discretization in the air gap. The computation of the inf–sup constant shows that the coupling is stable
even for the coarsest level of mesh refinement (β = 1.1268 · 104). The magnetic vector potential obtained with the
IGA simulation is shown in Fig. 10. In Fig. 11 it is possible to observe the convergence of a classical discretization
obtained using first order FEM on triangles [12] to the finest IGA result with second degree B-Spline basis
functions.
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Fig. 11. Convergence of a first order FEM simulation for increasing level of mesh refinement to a fine IGA solution with harmonic stator–rotor
coupling (Lap = ±3, ±9, ±15) and second degree basis functions.

Fig. 12. Spectrum with the first 32 modes of the EMF of the PMSM.

Table 2
Numerical results for the EMF and the THD.

E1 THD NDoF Time (s)

FEM 29.8 V 5.72 · 10−2% 225 667 103.45
IGA-HC 30.4 V 5.87 · 10−2% 5 157 15.00
IGA-DN 30.6 V 6.06 · 10−2% 5 109 330.29

In Fig. 12, parts of the spectra for the EMF calculated by FEM and by IGA are computed. The results for the EMF
and the THD are listed in Table 2. The results for the EMF, which corresponds to the first mode in the spectrum, have
a maximal relative difference below 3%. The relative difference for THD is higher, namely 6%, which might imply
that the iterative substructuring introduces higher harmonics. The difference in the higher harmonics originates from
the fact that IGA is by construction conserving the symmetry of the machine, meaning that the same mapping (beside
a rotation applied for constructing each slot) is used. This implies that the IGA mesh conforms to the symmetry of the
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Fig. A.1. Geometry of the PMSM.

machine. This cannot be guaranteed by our finite element mesher. This symmetry conservation is even stronger when
the harmonic coupling is used.

5. Conclusion

In this work IGA has been applied to model a PMSM. Since it is possible to parametrize circular arcs exactly,
geometric approximations, from which the classical FEMs suffer, are avoided. A multipatch approach is used to model
the rotor and the stator separately. The coupling between the two parts has been carried out by iterative substructuring
or by using harmonic basis functions. To test the latter so-called harmonic stator–rotor coupling, a test case has
been constructed for which the convergence of the spatial discretization has been shown. The harmonic stator–rotor
coupling leads to a saddle-point problem for which our setting attains stability. As illustrated by the example, IGA with
harmonic stator–rotor coupling is a new and promising alternative to standard finite element procedures for electric
machine simulation.
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Appendix. Machine parameters

The parameters of the machine are listed in Table A.1 and in Table A.2. The geometrical parameters are depicted
in Fig. A.1.
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Table A.1
Parameters describing the geometry of the machine.

Rotor

Inner radius rotor Rrt,i 16 mm
Outer radius rotor Rrt,o 44 mm
Magnet width d1 19 mm
Magnet height d2 7 mm
Depth of the magnet in rotor d3 7 mm

δ1 8.5◦

δ2 42◦

Stator

Inner radius stator Rst,i 45 mm
Outer radius stator Rst,o 67.5 mm
Number of turns Nw 12

δ3 7◦

δ4 5.7◦

δ5 4◦

l1 0.6 mm
l2 5.4 mm
l3 5 mm
l4 8.2 mm

Skew angle ϕ 0.52◦

Air gap

Radius of Γag Rag 44.7 mm

Table A.2
Parameters describing the material properties.

Material properties

Conductivity of iron σFe 0 S/m
Conductivity of copper σCu 4.3 · 107 S/m
Conductivity of PM σPM 6667 S/m
Relative permeability of iron µr,Fe 500
Relative permeability of copper µr,Cu 1
Relative permeability of PM µr,PM 1.5
Remanent magnetic field of PM Br 0.94 T
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