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Highlights of the paper Cloudy-GSA 
This work signifies: 

 This paper gives a new Cloudy-GSA optimization method for solving the problem of 
load balancing 

 The Proposed approach reduces the transfer time considerably as shown in tabulated 
and graphical analysis. 

 The results are computed at various values and compared with the existing algorithm 
results. 

 This algorithm reduces the total cost incurred by the system.  

 The entire approach is elaborated with the help of the algorithm and the flowchart in a 
detailed manner. 

 Thus, final result is reduction of the makespan along with cost i.e., the algorithm 
provides a positive result. 

 

 

 

Abstract –Scheduling of load and data plays an important role in the efficient utilization of the resources 
from one cloudlet to another cloudlet in the cloud computing environment. Cloud computing is an 
incremental paradigm to brighten the world with its great vision of providing the power of distributed 
computing through virtual approach. Resource allocation plays an important role in the optimal handling 
of the load scheduling problem using static and meta-heuristic approaches. The Gravitational Search 
Algorithm (GSA) is a nature-inspired meta-heuristic optimization technique which is used for solving the 
load scheduling problem in the cloud computing environment and is based on Newton’s gravitational law 
dealing with gravity. This paper proposes a near optimal load scheduling algorithm named Cloudy-GSA 
to minimize the transfer time and the total cost incurred in scheduling the cloudlets to the VMs. These are 
achieved by increased exploitation of VMs using the particles based on fitness values. The Cloudy-GSA 
algorithm is implemented on the CloudSim and has been compared with the existing popular algorithms. 
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The results of the algorithm are converged and statistically analysed over a set of iterations. As evident 
from the results, the proposed Cloudy-GSA algorithm minimizes the transfer time and the total cost for 
scheduling the load than the existing algorithms. 

Keywords - Cloud Computing, Load Scheduling, Gravitational Search Algorithm, Swarm Intelligence, 
PSO 

1. Introduction 

The cloud computing is one of the increasing domains in the area of distributed and grid computing using 
the concept of virtualization. The computing refers to the processing of the tasks on the virtual machines in the 
system for the efficient functioning of the tasks. The computational power of networks is increasing day by day 
to make the world follow and know about the massive hidden potential present inside it. The cloud acts as a 
repository of the resources enabling the users with large capabilities and computing facilities like storage, 
processing, extraction and retrieval of the information dealing with a large number of heterogeneous tasks to 
produce better resource access to the users.   The cloud is based on the pay-as-you-go or pay-as-you-use model 
for accessing the resources. Buyya et al. [1] state that the cloud provides resource and task scalability, on time 
resource execution, dynamic provisioning, fault tolerance and interoperability of the resources. It provides 
dynamic allocation of the cloudlets/ tasks to the virtual machines. The functionality of dynamic allocation is 
achieved by load scheduling of the cloudlets in a near optimal manner in the cloud. This is performed to achieve 
greater throughput, lesser execution and waiting time, less transfer time, and less cost of computation [2].   

The load scheduling is defined as the process of providing, allocating and balancing of the load (tasks/ cloudlets 
to the virtual machines) in the cloud system efficiently. The main purpose is to reduce the transfer time and the 
total cost incurred for scheduling the load in the system [3]. The scheduling of the load is performed using 
various scheduling algorithms. The scheduling algorithms are specified on the basis of nature as static and 
dynamic algorithms. These are also classified as heuristic and non-heuristic algorithms. The meta-heuristic 
algorithms play an important role in scheduling the load by using a search mechanism. Vecchiola et al. [4] 
elaborate the problem solving approach having multiple objectives in the cloud. This method provides solution 
using an optimization strategy.  The load scheduling based on the swarm intelligence methods provides a larger 
significance in the environment as they involve the real world behaviour of the swarms. A group of objects, 
particles, ants etc. following the mechanism for locating the food is followed to find the best solution in particle 
swarm optimization and ant colony optimization mechanisms. The physical laws of gravity are used for finding 
the near optimal solution among the group of objects. The scheduling of load in the cloud is an important 
problem that needs to be resolved using the more efficient algorithms than the existing algorithms like 
Segmented Min-Min, Tabu Search, Simulated Annealing, Genetic Algorithm, FCFS, PSO  etc. [5]. In this 
paper, Newton’s law of gravity is used for performing the scheduling of load. This is achieved by using the 
force and acceleration based on gravitational laws for locating the next particle for execution. The force is 
calculated based on the mass of the particle and the distance between the particles. Thus, we propose a Cloudy-
GSA for load scheduling in cloud computing. It reduces the transfer time and the total cost of computation as 
compared to the existing algorithms using convergence and statistical analysis. Rest of the paper is organised as 
follows. 

Section 2 provides a review on the load scheduling in cloud computing. In Section 3, the mathematical 
formulation and description of the gravitational search algorithm is specified. The proposed optimization 
approach Cloudy-GSA in cloud environment is given in Section 4. Section 5 illustrates the experimental setup 
used for implementing the Cloudy-GSA algorithm with the convergence and statistical analysis in a tabulated 
and graphical manner. Finally, section 6 provides the conclusion and future scope of advancement. 

2. Load Scheduling in Cloud Computing 

The cloud computing has been derived out from the parallel, distributed and grid computing. It supports a 
large number of applications in the system like processing of the tasks or applications to the corresponding 
resources. A cloud in general is an elastic and distributed system where storage space and resources are 
distributed throughout the network. The resources like the information, hardware and software can be accessed 
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in a shared manner from a distributed location in cloud [2]. It works on the pay-as-you-use model where the 
amount of the resource utilization is calculated on the server side and payment is made on the basis of the 
utilization by the end users. Khiyaita et al. [6] stated that architecture of a cloud supports two models namely: 
deployment model and service model as illustrated in figure 1.  The deployment model illustrated the 
provisioning location of the resources along with the organizational structure. The clouds are distinguished on 
the above parameters as Private, Public, Community and Hybrid Cloud. The service model described the type of 
services available to the end user viz. Software as a Service (as applications accessible through standard 
interfaces), Platform as a Service (operation and development platforms) and Infrastructure as a Service 
(infrastructure based resources such as data storage, networking capacity and processing power). 

 
Figure1. The architecture specifying the service and deployment models in Cloud Computing [2]. 

It provides the users with enormous benefits like location independence, reduced costs and marketing time, 
wide network access, resilient computing, huge computational power, virtualization, elastic and highly scalable 
workout capabilities as given by Chaudhary et al. [7]. The tasks consumed a large amount of resources thereby 
dealing with computational complexity, costs, transfer time and response times. The system helps in the 
dynamic allocation of resources to the different heterogeneous tasks at diversified locations. 

The load scheduling is needed to schedule the load from the overloaded virtual machines to under-utilized 
machines. Yu et al. [8] provided the workflow based scheduling methods over the nodes in the grid. These are 
based on the workflow of the task from one node to another node. A swarm based scheduling based on particle 
swarm heuristic is provided by Zhang et al. [9] in the grid computing. These tasks follow the nature of a flock of 
birds to move from one node to another. The particle swam strategy provides better utilization of the resources. 
The meta-heuristic specify a higher-level heuristic for finding, generating, or selecting a heuristic algorithm with 
inaccurate and incomplete data to provide a better solution to a problem. Tsai et al. [10] elaborated the various 
meta-scheduling algorithms in the cloud. The analysis of the load scheduling algorithms in similar manner is 
given by Chaudhary et al. [11] and Braun et al. [13]. The swarm based methods provide much efficient 
scheduling than other algorithms in the cloud. The swarm specifies a group of objects or particles in the search 
space. Pacini et al. [12] presented a detailed analysis of the swarm based methods of ants, bees or birds for 
finding the next best position on the basis of methods followed by them to locate the food. These provide 
maximum exploitation of the resources. The meta-heuristics are also elaborated using various applications in 
structural optimization by Yildiz et al. [14]. The robustness and scalability of finding the next particle in 
optimization methods is specified based on meta-heuristic swarm based strategies [15, 16]. Garg et al. [17] 
provided the network based capabilities for scheduling in the cloud. 

Kennedy et al. [18] proposed a particle swarm optimization mechanism in a mathematical context. This is 
based on the behavior of the flock of birds to locate the food source. This optimization strategy led to higher 
exploitation of the resources with reduced computational cost. Tasgetiren et al. [19] and Yoshida et al. [20] used 
this optimization mechanism in flow shop scheduling for managing the tasks efficiently and for managing 
stability for reactive power and controlling the voltage. These strategies efficiently schedule the load but with 
high cost of computation. These constraints are applied on the particle swarm optimization by Zavala et al. [21] 
to decrease the cost of computation but leading to a more complex system. The PSO scheduling strategy is 
applied on the grids based on improved fitness values and parameter as given in [22, 23]. The fuzzy sets are 
used for evaluating the functions involved in scheduling. Izakian et al. [24] and Kang et al. [25] specified the 
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discrete PSO algorithm for resource allocation in heterogeneous environments. These are based on using 
different set of tasks but the complexity of algorithm is high and exploitation of nodes is low. Pandey et al. [26] 
proposed particle swarm optimization for workflow scheduling in cloud computing. The cloudlets are scheduled 
on the virtual machines based on the position generated by the particles. The cost of computation is reduced but 
exploitation of the resources is not optimal. To increase the exploitation of resources at reduced cost Kumar et 
al. [27] proposed the improved PSO approach in cloud computing environment. 

3. Gravitational Search Algorithm 

A gravitational search algorithm is a meta-heuristic bio-inspired search algorithm to find the nearest 
possible optimal path and to locate next specific solution as proposed by Rashedi et al. [28]. The meta-
heuristic defines an advanced mechanism to locate, create and select a heuristic algorithm for a better solution 
using imprecise partial data. Heuristics are techniques which find near optimal solution at appropriate cost of 
computation without finalizing a proper optimal condition as shown by Karagöz et al. [29]. These heuristic 
algorithms play an important role in formulating the concepts as they replicate the physical and biological 
processes. All the bio-inspired swarm based algorithms depend on various real world objects like the ants, birds, 
bees etc. to locate their food. The gravitational search algorithm (GSA) based on the law of gravity, plays an 
important role in finding the best optimal path among the objects. The gravity has an affinity to accelerate 
masses towards each other. According to Newton’s Law of gravitation, every object in the universe attracts 
every other object by a gravitational force. The gravity exists between any two objects in the entire universe. 
The objects are defined in the search space by various characteristics in the universe like masses (active or 
passive), inertia, force and their inter-distances. Each object calculates the force acting between the particles 
based on the acceleration. The two laws are reproduced here. 

a) Newton’s Law of Gravitation: Every particle attracts every other particle and the gravitational force between 
two particles is the product of their masses and inversely proportional to square of the distance between the two 
particles. 

The gravitational force, F between two particles is directly proportional to the product of their masses, M1 and 
M2 and inversely proportional to the square of the distance R between them. 

𝐹 =  𝐺
𝑀1𝑀2

𝑅2                                                                                (1) 

b) Newton’s Law of Motion: The force is directly proportional to inertial mass and acceleration. The velocity of 
the next particle depends on the initial particle velocity and change in velocity of the particles.  

The acceleration, 𝑎 of the particle depends on the force and the acting masses. 

𝑎 =  
𝐹

𝑀
                                                                                  (2) 

Thus, the heavier and closer particles exert more gravitational force than the lighter and distant particles. The 
higher the distance between the two particles, the lesser is the gravitational force between them. 

The force acting on each particle shares that information with the corresponding objects present in the 
search space as given by Yildiz et al. [30]. The objects execute independently but they show a cumulative effect 
on the objects thus showing the results of the swarm intelligence by near optimal good solutions. This heuristic 
search algorithm explores the search area to identify the near optimal solution of the given problem. Rashedi et 
al. [31] showed that the two concepts searching and utilization are used for finding the best solution. In 
searching, entire search space is used to find the next best near optimal solution with optimal search space 
characteristic utilization to provide the final best solution. The objects worked on two principles [32] as shown 
in equations (1) and (2). 

The fitness value of each object is calculated on the basis of mass of an object and the position and inertial mass 
of the corresponding object. The convergence in the results is achieved by clustering the particles such that 
ameliorated results are achieved.  The GSA in [33] does not support load scheduling and convergence analysis 
on objects. The proposed work has addressed these issues. 

4. Cloudy Gravitational Search Algorithm (Cloudy-GSA) 
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The proposed method Cloudy-GSA is based on the gravitational search algorithm in the cloud 
computing environment used to optimize the load. The objective of Cloudy-GSA is to achieve efficient load 
scheduling in cloud computing using higher exploitation of the virtual machines by the cloudlets. The aim is to 
reduce the total transfer time and the total cost of computation in the system. This is achieved using the fitness 
value of the particles in the cloud. The Cloudy-GSA overcomes all these shortcomings of higher transfer time 
and more number of computations by the other scheduling algorithms. Consider a system having N number of 
virtual machines, NVM to be used to schedule NC cloudlets. Total number of possible allocation of cloudlets to 
virtual machines is (NVM) NC.  To find the best position of the cloudlets on the virtual machines, we use Cloudy-
GSA for scheduling. Let NP is the number of particles in the swarm in the d dimensional search space. The 
particles help in finding the best position of virtual machines for the cloudlets. These cloudlets are then executed 
on the virtual machines. Figure 2 illustrates 20 particles in the search space. Node 1 (light yellow colour) acts as 
the initial node or the particle. The force acting on all the nodes (dark yellow colour) in respect to node 1 is 
computed. The resultant force between any two nodes is taken to move from one particle to another. The 
calculation of the resultant force acting on the node 1 depends on the neighbouring active nodes (green colour) 
viz. 2, 19 and 20. The next particle is chosen based on the force. 

 
Figure2. Resultant force calculated on the particle 1 in respect of active particles 2, 19 and 20 in the search 
space. 

The NP particles are defined in the d dimensional search space having a large set of possible solutions. The 
dimension values are derived by the virtual machines VMs. This algorithm uses the best() and worst() position 
(defined later) of the particles. The fitness value for each particle is calculated on the basis of the fitness 
function. 

𝑁𝑃𝑖 = (𝑛𝑝𝑖
1, 𝑛𝑝𝑖

2, … … , 𝑛𝑝𝑖
𝑛, … … … , 𝑛𝑝𝑖

𝑑)           ∀  𝑖 = 1 𝑡𝑜 25 and 𝑛 = 1 𝑡𝑜 10                      (3) 

The fitness function depends on the execution cost and transfer cost parameters of the cloudlets and virtual 
machines. The execution and transfer cost of jth cloudlet is specified as 𝐶𝑜𝑠𝑡_𝐸𝑥𝑒𝑐(𝑀)𝑗 and 
𝐶𝑜𝑠𝑡_𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑀)𝑗 respectively. The total cost 𝐶𝑜𝑠𝑡_𝑇𝑜𝑡𝑎𝑙(𝑀)𝑗 which is the sum of the execution and 
transfer cost is computed for every cloudlet and then the minimization of the total maximum cost 
𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑚𝑝_𝐶𝑜𝑠𝑡 (𝑀) is performed. The fitness function 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖

𝑡  of the particle i at an instant t of 
time is calculated as: 

𝐶𝑜𝑠𝑡_𝐸𝑥𝑒𝑐(𝑀)𝑗 =  ∑ 𝑤𝑘𝑗                 𝑘 ∀𝑀(𝑘) = 𝑗                                                      (4)  

𝐶𝑜𝑠𝑡_𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑀)𝑗 =  ∑ ∑ 𝑑𝑀(𝑘1),𝑀 (𝑘2)𝑘2∈𝑇𝑘1∈𝑇 ∗ 𝑒𝑘1,𝑘2       ∀ 𝑀(𝑘1) = 𝑗𝑎𝑛𝑑 𝑀(𝑘2) ≠ 𝑗              (5) 

𝐶𝑜𝑠𝑡_𝑇𝑜𝑡𝑎𝑙(𝑀)𝑗 =  𝐶𝑜𝑠𝑡_𝐸𝑥𝑒𝑐(𝑀)𝑗 +  𝐶𝑜𝑠𝑡_𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑀)𝑗                                                   (6) 

𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑚𝑝_𝐶𝑜𝑠𝑡 (𝑀) = max(𝐶𝑜𝑠𝑡_𝑇𝑜𝑡𝑎𝑙(𝑀)𝑗)      ∀𝑗∈ 𝑃                                                     (7) 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑚𝑝_𝐶𝑜𝑠𝑡 (𝑀)     ∀ 𝑀)                                                               (8) 

So, the fitness value of each particle 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖
𝑡 is generated. The masses active 

𝑀𝑎𝑠𝑠_𝑎𝑐𝑡𝑖𝑣𝑒𝑖 , passive 𝑀𝑎𝑠𝑠_𝑝𝑎𝑠𝑠𝑖𝑣𝑒𝑖  and inertia  𝑀𝑎𝑠𝑠_𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑖   are calculated based on the fitness value. 
The best() stores the best fitness value i.e., minimum value among the particles. The worst() stores the 
maximum fitness value among the set of the particles in the search space. The 𝑏𝑒𝑠𝑡(𝑡) 𝑎𝑛𝑑 𝑤𝑜𝑟𝑠𝑡(𝑡) values of 
the particles for minimization of total cost and mass 𝑀𝑖(𝑡) are calculated as: 

𝑀𝑎𝑠𝑠_𝑎𝑐𝑡𝑖𝑣𝑒𝑖 =  𝑀𝑎𝑠𝑠_𝑝𝑎𝑠𝑠𝑖𝑣𝑒𝑖 =  𝑀𝑎𝑠𝑠_𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑖 =  𝑀𝑖 ,              𝑖 = 1,2,3, … … . , 𝑁                (9) 

𝑚𝑖(𝑡) =  
𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)
                                                              (10) 

𝑀𝑖(𝑡) =  
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

                                                                         (11) 

𝑏𝑒𝑠𝑡(𝑡) =  𝑚𝑖𝑛

𝑗∈{1,….,𝑁}
𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑗(𝑡)                                                     (12) 

 𝑤𝑜𝑟𝑠𝑡(𝑡) =  𝑚𝑎𝑥

𝑗∈{1,….,𝑁}
𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑗(𝑡)                                                   (13) 

The force of the particle in cloud is based on a gravitational constant, G(t) at a specific time instant. 
The G(t) determines the particle’s potential and increases the efficiency of movement. The gravitational constant 
helps in the exponential rise in the search space area. It helps in the larger exploitation or usage of the resources. 
It depends on G0 (initial value) and time instance t.  It also depends on  𝛼 (a random value) and maximum 
number of iterations Max_Iter specified. 

𝐺(𝑡) =  𝐺0𝑒−𝛼𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
𝑡

                                                                             (14) 

The total force acting on the particle helps in finding the next near optimal particle position. It depends 
on the Euclidean distance 𝑅𝑖𝑗  (𝑡) between the two particles NPi and NPj in d dimensional search space. The 
static function 𝑟𝑎𝑛𝑑𝑗  lies in the interval [0, 1). So, the total force 𝐹𝑖𝑗

𝑑(𝑡) acting on particle i with respect to 
particle j at particular instance of time t on the particles: 

 𝑅𝑖𝑗  (𝑡) = ||𝑁𝑃𝑖(𝑡), 𝑁𝑃𝑗(𝑡)||
2
                                                           (15) 

𝑅 (𝑁𝑃𝑖, 𝑁𝑃𝑗) =  √(𝑁𝑃1 − 𝑁𝑃1)2 +  … … +  (𝑁𝑃𝑗 − 𝑁𝑃𝑖)2 + … … +  (𝑁𝑃𝑁 −  𝑁𝑃𝑁)2               (16) 

𝑅 (𝑁𝑃𝑖 , 𝑁𝑃𝑗) =  √∑ (𝑁𝑃𝑗 − 𝑁𝑃𝑖)
2𝑁

𝑖=1,   𝑗=1                                                (17) 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑎𝑠𝑠_𝑝𝑎𝑠𝑠𝑖𝑣𝑒𝑖 (𝑡)× 𝑀𝑎𝑠𝑠_𝑎𝑐𝑡𝑖𝑣𝑒𝑗(𝑡)

 𝑅𝑖𝑗(𝑡)+ 𝜀
(𝑛𝑝𝑗

𝑑  (𝑡) − 𝑛𝑝𝑖
𝑑(𝑡))                           (18)                                              

𝐹𝑖
𝑑(𝑡) =  ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗 

𝑑𝑁
𝑗=1,𝑗≠𝑖 (𝑡)                                                              (19) 

𝑎𝑖
𝑑(𝑡) =  

𝐹𝑖
𝑑(𝑡)

𝑀𝑎𝑠𝑠_𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑖(𝑡)
                                                                   (20) 

The acceleration 𝑎𝑖
𝑑(𝑡) of particle i at a specific time t in the d dimensional space depends on force and inertial 

mass. Figure 3 illustrates the flowchart for the proposed Cloudy-GSA for load scheduling.  
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Figure 3. Flowchart depicting Cloudy-GSA Optimization approach for load scheduling in cloud 

The next particle to be executed depends on the velocity of the particle. The velocity of the next 
iteration of the particle 𝑣𝑒𝑙𝑖

𝑑(𝑡 + 1) is calculated based on random uniform function 𝑟𝑎𝑛𝑑𝑖  having value [0, 1] 
and velocity of particle and acceleration (eq. 21). The next position of the particle 𝑛𝑝_𝑝𝑜𝑠𝑖

𝑑(𝑡 + 1) is selected 
by old particle position at time t with velocity of the next particle.  

𝑣𝑒𝑙𝑖
𝑑(𝑡 + 1) =  𝑟𝑎𝑛𝑑𝑖  × 𝑣𝑒𝑙𝑖

𝑑(𝑡) +  𝑎𝑖
𝑑(𝑡)                                                   (21) 

𝑛𝑝_𝑝𝑜𝑠𝑖
𝑑(𝑡 + 1) =  𝑛𝑝_𝑝𝑜𝑠𝑖

𝑑(𝑡) +  𝑣𝑒𝑙𝑖
𝑑(𝑡 + 1)                                            (22) 

The process continues till the condition of maximum iterations is met. The best position of the particles 
is returned to the cloudlets for scheduling the load. The cloudlets are then allocated to respective VMs based on 
the positions to run on the data centres.  

So, the entire Cloudy-GSA scheduling continues till all the cloudlets are executed on the respective 
virtual machines in the cloud to obtain minimum transfer time and minimum total cost of computation. The best 
near optimal results generated by Cloudy-GSA approach are better than the other scheduling algorithms like 
Segmented Min-Min, Genetic Simulated Annealing, Simulated Annealing (SA), Genetic Algorithm (GA), Tabu 

ACCEPTED M
ANUSCRIP

T



Search, Min-Min, FCFS and PSO algorithm in cloud computing. The Cloudy-GSA overcomes the shortcomings 
of the existing algorithms like larger computation time by reducing the transfer time and the total cost of 
computation incurred by the cloud.  The larger exploitation of the resources is performed by the cloudlets.  The 
comparative analysis of the existing relevant algorithms and the proposed Cloudy-GSA algorithm is discussed 
in the next section.  

5. Results and Analysis 

The proposed Cloudy-GSA algorithm and the existing algorithms viz. Segmented Min-Min, Genetic 
Simulated Annealing, Simulated Annealing (SA), Genetic Algorithm (GA), Tabu Search, Min-Min, FCFS and 
PSO algorithm for load scheduling in the cloud are simulated in the CloudSim (Refer to Appendix) [13]. It 
offers the users with a built-in environment for implementation of algorithms similar to the real world scenario. 
The Network CloudSim Simulator is built on top of the CloudSim and is given by Garg and Buyya [17]. The 
results are compared on the basis of two metrics namely Transfer Time and Total Cost depicted in graphical 
manner. The simulation parameters are specified in Table 1 based on JSwarm package.  

Table 1: Simulation Parameters 

Parameter Description Values 

(x, y) co-ordinates 0 – 7 

Number of particles 25 

Number of VMs 8 
Number of Cloudlets 10 

Max_Iter 10-100 and 100– 1000 

G0 1 

ram  2048 

Bandwidth 10000 

Storage 10000 

Cloudlets    10 

Datacentre Count    2 

VM in each Datacentre    4 

The Cloudy-GSA is used for scheduling the load in cloud. It takes 25 particles in the search space for 
finding the best position of 10 cloudlets on 8 virtual machines. The dynamic allocation of cloudlets on VMs 
takes place. The parameters are defined in the simulator statically. The cloudlets and VMs include the features 
and characteristics provided by the system like MIPS, bandwidth, transfer cost, execution cost are used for the 
calculation of the total time for computation. The proposed Cloudy-GSA utilizes the entire functionality of the 
system having complexity of Ο (n2). The entire results are judged on a random large iteration set of values from 
10 to 100 and 100 to 1000. The comparison in the table is for different runs. For each run of the iteration, the 
transfer time and total cost is taken several times. The average of the different runs for iteration is computed and 
the resultant value (average) is taken as final result for transfer time and for total cost of computation. The 
iterations are determined as after specific iterations the algorithm converges.  Thus, the results produced would 
be similar to the existing for larger set of iterations. This has been performed for all the existing and proposed 
Cloudy-GSA algorithms. The convergence and statistical analysis of the algorithms is discussed further.  

Figure 4 and 5 show the existing heuristic algorithms with the proposed Cloudy-GSA approach over an 
iteration set of values for transfer time incurred in load scheduling.  ACCEPTED M
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Figure 4. Transfer Time of existing and proposed Cloudy-GSA algorithm for scheduling over 10 to 100 iterations 

 

Figure 5. Transfer Time of existing and proposed Cloudy-GSA algorithm for scheduling over 100 to 1000 iterations 

Figure 6 and 7 illustrate the total cost of computation for the proposed Cloudy-GSA optimization 
approach with the existing load scheduling algorithm over a set of iterations. 

ACCEPTED M
ANUSCRIP

T



 

Figure 6. Total Cost of existing and proposed Cloudy-GSA algorithm for scheduling over 10 to 100 iterations 

 

Figure 7. Total Cost of existing and proposed Cloudy-GSA algorithm for scheduling over 100 to 1000 iterations 

Thus, the results state that the proposed Cloudy-GSA (gravitational search algorithm) for load scheduling in 
cloud reduces the transfer time and the total cost of computation than the existing algorithms. The results of 
proposed approach vary from iteration to iteration due to their heuristic nature and random function. In some 
iteration proposed Cloudy-GSA does not produce better results due to the randomized nature of the algorithm. 
However, the consistency of the algorithm is achieved by the convergence and the statistical analysis of the 
results set. 

5.1. Convergence Analysis 

The convergence analysis is performed for the heuristic simulation as finding the near optimal solution is tough. 
The converging behavior of the algorithm is analyzed mathematically for the set of iterations. We measured the 
mean of normalized displacement from the initial positions at different iterations on the result set of transfer 
time and total cost. The Mean of Normalized Displacement for transfer time and total cost at tth iteration is 
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computed by 𝑐𝑡𝑖
𝑡 , the normalized cloudlet transfer time or total cost at tth iteration. Here, 𝑐𝑡𝑖

0  refers at 0th 
iteration and n is number of data vectors from 1 to 19 as: 

= 
∑ ||𝑐𝑡𝑖

𝑡−𝑐𝑡𝑖
0||𝑛

𝑖=1 2

𝑛
                                                                           (23) 

The results are depicted in figures 8 and 9. It is observed that the Cloudy-GSA approach converges 
within the thirteen iterations along with other heuristic algorithms in the cloud. We have analyzed the results of 
the other algorithms based on the transfer time and total cost of computation from figures 4 to 7. 

 

Figure 8. Mean of Normalized Displacement convergence analysis based on Transfer Time for the result set 

Secondly, we have also calculated the mean of pairwise distances at different iterations on the result set of the 
transfer time and the total cost from tables. It is based on the 𝑐𝑡𝑖

𝑡and 𝑐𝑡𝑗
𝑡 on the normalized transfer time or total 

cost data at ith and jth iterations respectively where n is number of data vectors ranging from 1 to 19. The Mean 
of Normalized Pairwise Distance at tth iteration is: 

= 
∑ ∑ [𝑖 ≠𝑗]𝑛

𝑗=1 ||𝑐𝑡𝑖
𝑡−𝑐𝑡𝑗

𝑡||𝑛
𝑖=1 2

𝑛2−𝑛
                                                                 (24) 

The results of normalized pairwise distance are illustrated in figures 10 and 11 for transfer time and total cost 
respectively. It is observed that the proposed Cloudy-GSA and the existing algorithms converge within the nine 
iterations. The algorithms minimize the mean of the pairwise distance between the iterations to converge the 
results and based on these the behaviour is predictable for large iteration set of values in case of large number of 
cloudlets and virtual machines. ACCEPTED M
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Figure 9. Mean of Normalized Displacement convergence analysis based on Total Cost for the result set  

 

Figure 10. Mean of Normalized Pairwise Distance convergence analysis based on Transfer Time 

5.2. Statistical Analysis 

The statistical analysis of the proposed Cloudy-GSA approach and the existing scheduling algorithms provide 
us with the proof of efficiency of the proposed algorithm over others. The metrics of mean, standard deviation, 
minimum value and maximum value are specified and computed for the algorithms based on the result set of 
transfer time and the total cost of computation.  The metrics of the transfer time are provided in the table 2 for 
the transfer cost of the cloudlets over the virtual machines. Table 3 specifies the total cost incurred by the 
cloudlets for executing on the virtual machines. 
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Figure 11. Mean of Normalized Pairwise Distance convergence analysis based on Total Cost 

Table 2: Statistical Analysis of Transfer Time 

 
Segmented  
Min- Min 

Tabu Search Genetic SA SA GA FCFS Min-Min PSO Cloudy-GSA 

Mean 59524.76 62768.22 61098.7632 63255.019 57502.225 59000 58000 54170.38 50995.59 

Standard 
Deviation 

7.48E-12 0 5617.15397 7068.0319 2926.831 0 0 2505.163 3624.817 

Maximum 59524.76 62768.22 70559.41 72822.8 62075.51 59000 58000 57759.06 58166.84 

Minimum 59524.76 62768.22 50432.35 52661.52 51562.33 59000 58000 48525.77 43632.41 

Figures 12 and 13 illustrate the mean, standard deviation, minimum and maximum for all the load scheduling 
algorithms in the cloud computing for transfer time and total cost respectively. The mean and standard deviation 
depict the superiority of the proposed Cloudy-GSA for load scheduling in cloud computing over the existing 
scheduling algorithms like Segmented Min-Min, Tabu Search, Genetic Simulated Annealing, Simulated 
Annealing, Genetic algorithm, Min-Min, FCFS, and Particle Swarm Optimization. The proposed algorithm 
outperforms in terms of the maximum exploitation of the resources on the virtual machines by the cloudlets. 
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(a) Mean (b) Standard Deviation 

  

(c) Maximum (d) Minimum 

Figure 12. Statistical Analysis of transfer time of proposed Cloudy-GSA and existing algorithms. 

Table 3: Statistical Analysis of the Total Cost 

 
Segmented 

Min- Min 

Tabu 

Search 
Genetic SA SA GA FCFS Min-Min PSO Cloudy-GSA 

Mean 158807 160665.4 157687.8 160423.0 154617.62 159662.3 156066.6 150759.4 148137.5 

Standard 

Deviation 
0 2.99E-11 5887.616 7494.170 4192.3283 2.99E-11 2.99E-11 2290.429 2764.070 

Maximum 158807 160665.4 170164.1 176870.7 163806.78 159662.3 156066.6 154132.5 154176.8 

Minimum 158807 160665.4 146216.5 149520.3 147935.8 159662.3 156066.6 146814.2 142157.8 
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(a) Mean (b) Standard Deviation 
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Figure 13. Statistical Analysis of total cost of proposed Cloudy-GSA and existing algorithms 

The Cloudy-GSA optimization method based on principle of gravitational search algorithm provides greater 
load scheduling than the previous ones and reduces the cost of computation. The stochastic algorithms perform 
standard deviation. The proposed Cloudy-GSA provides more movement than PSO within the particles. The 
algorithm converges after a specific set of iterations. This approach can be used for faster processing of the user 
requests of data or information by the server in the cloud in the real world scenario. It involves faster allocation, 
storage and retrieval of the data.  

6. Conclusion And Future Work 

This paper elaborated the major problem of load scheduling in the cloud computing environment 
between cloudlets and VMs. The meta-heuristic based swarm intelligence technique for load scheduling in the 
cloud is discussed. The concepts of load scheduling algorithms with proposed Cloudy-GSA on load scheduling 
has been explained. The proposed Cloudy-GSA approach reduces the transfer time and total cost of the system 
along with maximum utilization of VMs. This has been achieved using the fitness values of particles and force 
acting on the particles in search space. At a bigger context, proposed approach provides higher cost optimization 
than the existing Segmented Min-Min, Tabu Search, Genetic Algorithm, Simulated Annealing, Genetic 
Simulated Annealing, FCFS, Min-Min and Particle Swarm Optimization scheduling algorithms.  The results of 
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the proposed approach have been compared with the existing discussed scheduling algorithms which are 
heuristic and non-heuristic in nature in a detailed manner on a large set of iterations. Thus, the proposed Cloudy-
GSA optimization method generates far better results in terms of transfer time and total cost of execution time 
based on the convergence statistical analysis. The future work aims to minimize the total cost by using improved 
fitness function considering other parameters for better minimized results in the cloud computing environment, 
based on swarm intelligence to further reduce the total cost. 
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APPENDIX 

 
The simulation parameters for the proposed Cloudy-GSA and the existing algorithms are as: 
 

Parameter Description Values 

Cloudy GSA  

(x, y) co-ordinates 0 – 7 

Number of particles 25 

Number of VMs 8 

Number of Cloudlets 10 

Max_Iter 10-100 and 100– 1000 

G0 1 

ram  2048 

Bandwidth 10000 

Storage 10000 

Cloudlets 10 

Datacentre Count 2 

VM in each Datacentre 4 

Genetic Algorithm  

Virtual Machines 8 

Cloudlets 10 

VM in each Datacentre 4 

Particle Count 25 
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Dimensions in position of each particle Cloudlets 

Probability of Crossover  0.04 

α 20 

Probability of Mutation  0.04 

Genetic Simulated Annealing  

Probability of Mutation  0.04 

Probability of Mapping 0.5 

Cooling rate 0.9 of current value 

Temperature 100000.0 

Min-Min Algorithm  

No of VMs 8 

No of tasks 10 

Simulated Annealing  

Probability of Mapping 0.5 

Cooling rate 0.9 of current value 

Temperature 100000.0 

Tabu Search  

Hops initialized 0 

Limit Hops 1000 

Segmented Min-Min Algorithm  

Segments 3 (Minimum, Average and Maximum)  

PSO  

Number of particles 25 

Number of VMs 8 

Number of Cloudlets 10 

α 0.4 
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