
Accepted Manuscript

Title: Cloudy GSA for load scheduling in cloud computing

Authors: Divya Chaudhary, Bijendra Kumar

PII: S1568-4946(18)30434-4
DOI: https://doi.org/10.1016/j.asoc.2018.07.046
Reference: ASOC 5014

To appear in: Applied Soft Computing

Received date: 15-10-2016
Revised date: 21-7-2018
Accepted date: 22-7-2018

Please cite this article as: Chaudhary D, Kumar B, Cloudy GSA for
load scheduling in cloud computing, Applied Soft Computing Journal (2018),
https://doi.org/10.1016/j.asoc.2018.07.046

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.asoc.2018.07.046
https://doi.org/10.1016/j.asoc.2018.07.046

Cloudy GSA for Load Scheduling in Cloud
Computing

Divya Chaudhary*, Bijendra Kumar

Department of Computer Engineering
Netaji Subhas Institute of Technology, Dwarka, New Delhi, India

divyadabas@gmail.com, bizender@gmail.com

Highlights of the paper Cloudy-GSA
This work signifies:

 This paper gives a new Cloudy-GSA optimization method for solving the problem of
load balancing

 The Proposed approach reduces the transfer time considerably as shown in tabulated
and graphical analysis.

 The results are computed at various values and compared with the existing algorithm
results.

 This algorithm reduces the total cost incurred by the system.

 The entire approach is elaborated with the help of the algorithm and the flowchart in a
detailed manner.

 Thus, final result is reduction of the makespan along with cost i.e., the algorithm
provides a positive result.

Abstract –Scheduling of load and data plays an important role in the efficient utilization of the resources
from one cloudlet to another cloudlet in the cloud computing environment. Cloud computing is an
incremental paradigm to brighten the world with its great vision of providing the power of distributed
computing through virtual approach. Resource allocation plays an important role in the optimal handling
of the load scheduling problem using static and meta-heuristic approaches. The Gravitational Search
Algorithm (GSA) is a nature-inspired meta-heuristic optimization technique which is used for solving the
load scheduling problem in the cloud computing environment and is based on Newton’s gravitational law
dealing with gravity. This paper proposes a near optimal load scheduling algorithm named Cloudy-GSA
to minimize the transfer time and the total cost incurred in scheduling the cloudlets to the VMs. These are
achieved by increased exploitation of VMs using the particles based on fitness values. The Cloudy-GSA
algorithm is implemented on the CloudSim and has been compared with the existing popular algorithms.

ACCEPTED M
ANUSCRIP

T

mailto:divyadabas@gmail.com
mailto:bizender@gmail.com

The results of the algorithm are converged and statistically analysed over a set of iterations. As evident
from the results, the proposed Cloudy-GSA algorithm minimizes the transfer time and the total cost for
scheduling the load than the existing algorithms.

Keywords - Cloud Computing, Load Scheduling, Gravitational Search Algorithm, Swarm Intelligence,
PSO

1. Introduction

The cloud computing is one of the increasing domains in the area of distributed and grid computing using
the concept of virtualization. The computing refers to the processing of the tasks on the virtual machines in the
system for the efficient functioning of the tasks. The computational power of networks is increasing day by day
to make the world follow and know about the massive hidden potential present inside it. The cloud acts as a
repository of the resources enabling the users with large capabilities and computing facilities like storage,
processing, extraction and retrieval of the information dealing with a large number of heterogeneous tasks to
produce better resource access to the users. The cloud is based on the pay-as-you-go or pay-as-you-use model
for accessing the resources. Buyya et al. [1] state that the cloud provides resource and task scalability, on time
resource execution, dynamic provisioning, fault tolerance and interoperability of the resources. It provides
dynamic allocation of the cloudlets/ tasks to the virtual machines. The functionality of dynamic allocation is
achieved by load scheduling of the cloudlets in a near optimal manner in the cloud. This is performed to achieve
greater throughput, lesser execution and waiting time, less transfer time, and less cost of computation [2].

The load scheduling is defined as the process of providing, allocating and balancing of the load (tasks/ cloudlets
to the virtual machines) in the cloud system efficiently. The main purpose is to reduce the transfer time and the
total cost incurred for scheduling the load in the system [3]. The scheduling of the load is performed using
various scheduling algorithms. The scheduling algorithms are specified on the basis of nature as static and
dynamic algorithms. These are also classified as heuristic and non-heuristic algorithms. The meta-heuristic
algorithms play an important role in scheduling the load by using a search mechanism. Vecchiola et al. [4]
elaborate the problem solving approach having multiple objectives in the cloud. This method provides solution
using an optimization strategy. The load scheduling based on the swarm intelligence methods provides a larger
significance in the environment as they involve the real world behaviour of the swarms. A group of objects,
particles, ants etc. following the mechanism for locating the food is followed to find the best solution in particle
swarm optimization and ant colony optimization mechanisms. The physical laws of gravity are used for finding
the near optimal solution among the group of objects. The scheduling of load in the cloud is an important
problem that needs to be resolved using the more efficient algorithms than the existing algorithms like
Segmented Min-Min, Tabu Search, Simulated Annealing, Genetic Algorithm, FCFS, PSO etc. [5]. In this
paper, Newton’s law of gravity is used for performing the scheduling of load. This is achieved by using the
force and acceleration based on gravitational laws for locating the next particle for execution. The force is
calculated based on the mass of the particle and the distance between the particles. Thus, we propose a Cloudy-
GSA for load scheduling in cloud computing. It reduces the transfer time and the total cost of computation as
compared to the existing algorithms using convergence and statistical analysis. Rest of the paper is organised as
follows.

Section 2 provides a review on the load scheduling in cloud computing. In Section 3, the mathematical
formulation and description of the gravitational search algorithm is specified. The proposed optimization
approach Cloudy-GSA in cloud environment is given in Section 4. Section 5 illustrates the experimental setup
used for implementing the Cloudy-GSA algorithm with the convergence and statistical analysis in a tabulated
and graphical manner. Finally, section 6 provides the conclusion and future scope of advancement.

2. Load Scheduling in Cloud Computing

The cloud computing has been derived out from the parallel, distributed and grid computing. It supports a
large number of applications in the system like processing of the tasks or applications to the corresponding
resources. A cloud in general is an elastic and distributed system where storage space and resources are
distributed throughout the network. The resources like the information, hardware and software can be accessed

ACCEPTED M
ANUSCRIP

T

in a shared manner from a distributed location in cloud [2]. It works on the pay-as-you-use model where the
amount of the resource utilization is calculated on the server side and payment is made on the basis of the
utilization by the end users. Khiyaita et al. [6] stated that architecture of a cloud supports two models namely:
deployment model and service model as illustrated in figure 1. The deployment model illustrated the
provisioning location of the resources along with the organizational structure. The clouds are distinguished on
the above parameters as Private, Public, Community and Hybrid Cloud. The service model described the type of
services available to the end user viz. Software as a Service (as applications accessible through standard
interfaces), Platform as a Service (operation and development platforms) and Infrastructure as a Service
(infrastructure based resources such as data storage, networking capacity and processing power).

Figure1. The architecture specifying the service and deployment models in Cloud Computing [2].

It provides the users with enormous benefits like location independence, reduced costs and marketing time,
wide network access, resilient computing, huge computational power, virtualization, elastic and highly scalable
workout capabilities as given by Chaudhary et al. [7]. The tasks consumed a large amount of resources thereby
dealing with computational complexity, costs, transfer time and response times. The system helps in the
dynamic allocation of resources to the different heterogeneous tasks at diversified locations.

The load scheduling is needed to schedule the load from the overloaded virtual machines to under-utilized
machines. Yu et al. [8] provided the workflow based scheduling methods over the nodes in the grid. These are
based on the workflow of the task from one node to another node. A swarm based scheduling based on particle
swarm heuristic is provided by Zhang et al. [9] in the grid computing. These tasks follow the nature of a flock of
birds to move from one node to another. The particle swam strategy provides better utilization of the resources.
The meta-heuristic specify a higher-level heuristic for finding, generating, or selecting a heuristic algorithm with
inaccurate and incomplete data to provide a better solution to a problem. Tsai et al. [10] elaborated the various
meta-scheduling algorithms in the cloud. The analysis of the load scheduling algorithms in similar manner is
given by Chaudhary et al. [11] and Braun et al. [13]. The swarm based methods provide much efficient
scheduling than other algorithms in the cloud. The swarm specifies a group of objects or particles in the search
space. Pacini et al. [12] presented a detailed analysis of the swarm based methods of ants, bees or birds for
finding the next best position on the basis of methods followed by them to locate the food. These provide
maximum exploitation of the resources. The meta-heuristics are also elaborated using various applications in
structural optimization by Yildiz et al. [14]. The robustness and scalability of finding the next particle in
optimization methods is specified based on meta-heuristic swarm based strategies [15, 16]. Garg et al. [17]
provided the network based capabilities for scheduling in the cloud.

Kennedy et al. [18] proposed a particle swarm optimization mechanism in a mathematical context. This is
based on the behavior of the flock of birds to locate the food source. This optimization strategy led to higher
exploitation of the resources with reduced computational cost. Tasgetiren et al. [19] and Yoshida et al. [20] used
this optimization mechanism in flow shop scheduling for managing the tasks efficiently and for managing
stability for reactive power and controlling the voltage. These strategies efficiently schedule the load but with
high cost of computation. These constraints are applied on the particle swarm optimization by Zavala et al. [21]
to decrease the cost of computation but leading to a more complex system. The PSO scheduling strategy is
applied on the grids based on improved fitness values and parameter as given in [22, 23]. The fuzzy sets are
used for evaluating the functions involved in scheduling. Izakian et al. [24] and Kang et al. [25] specified the

ACCEPTED M
ANUSCRIP

T

discrete PSO algorithm for resource allocation in heterogeneous environments. These are based on using
different set of tasks but the complexity of algorithm is high and exploitation of nodes is low. Pandey et al. [26]
proposed particle swarm optimization for workflow scheduling in cloud computing. The cloudlets are scheduled
on the virtual machines based on the position generated by the particles. The cost of computation is reduced but
exploitation of the resources is not optimal. To increase the exploitation of resources at reduced cost Kumar et
al. [27] proposed the improved PSO approach in cloud computing environment.

3. Gravitational Search Algorithm

A gravitational search algorithm is a meta-heuristic bio-inspired search algorithm to find the nearest
possible optimal path and to locate next specific solution as proposed by Rashedi et al. [28]. The meta-
heuristic defines an advanced mechanism to locate, create and select a heuristic algorithm for a better solution
using imprecise partial data. Heuristics are techniques which find near optimal solution at appropriate cost of
computation without finalizing a proper optimal condition as shown by Karagöz et al. [29]. These heuristic
algorithms play an important role in formulating the concepts as they replicate the physical and biological
processes. All the bio-inspired swarm based algorithms depend on various real world objects like the ants, birds,
bees etc. to locate their food. The gravitational search algorithm (GSA) based on the law of gravity, plays an
important role in finding the best optimal path among the objects. The gravity has an affinity to accelerate
masses towards each other. According to Newton’s Law of gravitation, every object in the universe attracts
every other object by a gravitational force. The gravity exists between any two objects in the entire universe.
The objects are defined in the search space by various characteristics in the universe like masses (active or
passive), inertia, force and their inter-distances. Each object calculates the force acting between the particles
based on the acceleration. The two laws are reproduced here.

a) Newton’s Law of Gravitation: Every particle attracts every other particle and the gravitational force between
two particles is the product of their masses and inversely proportional to square of the distance between the two
particles.

The gravitational force, F between two particles is directly proportional to the product of their masses, M1 and
M2 and inversely proportional to the square of the distance R between them.

𝐹 = 𝐺
𝑀1𝑀2

𝑅2 (1)

b) Newton’s Law of Motion: The force is directly proportional to inertial mass and acceleration. The velocity of
the next particle depends on the initial particle velocity and change in velocity of the particles.

The acceleration, 𝑎 of the particle depends on the force and the acting masses.

𝑎 =
𝐹

𝑀
 (2)

Thus, the heavier and closer particles exert more gravitational force than the lighter and distant particles. The
higher the distance between the two particles, the lesser is the gravitational force between them.

The force acting on each particle shares that information with the corresponding objects present in the
search space as given by Yildiz et al. [30]. The objects execute independently but they show a cumulative effect
on the objects thus showing the results of the swarm intelligence by near optimal good solutions. This heuristic
search algorithm explores the search area to identify the near optimal solution of the given problem. Rashedi et
al. [31] showed that the two concepts searching and utilization are used for finding the best solution. In
searching, entire search space is used to find the next best near optimal solution with optimal search space
characteristic utilization to provide the final best solution. The objects worked on two principles [32] as shown
in equations (1) and (2).

The fitness value of each object is calculated on the basis of mass of an object and the position and inertial mass
of the corresponding object. The convergence in the results is achieved by clustering the particles such that
ameliorated results are achieved. The GSA in [33] does not support load scheduling and convergence analysis
on objects. The proposed work has addressed these issues.

4. Cloudy Gravitational Search Algorithm (Cloudy-GSA)

ACCEPTED M
ANUSCRIP

T

The proposed method Cloudy-GSA is based on the gravitational search algorithm in the cloud
computing environment used to optimize the load. The objective of Cloudy-GSA is to achieve efficient load
scheduling in cloud computing using higher exploitation of the virtual machines by the cloudlets. The aim is to
reduce the total transfer time and the total cost of computation in the system. This is achieved using the fitness
value of the particles in the cloud. The Cloudy-GSA overcomes all these shortcomings of higher transfer time
and more number of computations by the other scheduling algorithms. Consider a system having N number of
virtual machines, NVM to be used to schedule NC cloudlets. Total number of possible allocation of cloudlets to
virtual machines is (NVM) NC. To find the best position of the cloudlets on the virtual machines, we use Cloudy-
GSA for scheduling. Let NP is the number of particles in the swarm in the d dimensional search space. The
particles help in finding the best position of virtual machines for the cloudlets. These cloudlets are then executed
on the virtual machines. Figure 2 illustrates 20 particles in the search space. Node 1 (light yellow colour) acts as
the initial node or the particle. The force acting on all the nodes (dark yellow colour) in respect to node 1 is
computed. The resultant force between any two nodes is taken to move from one particle to another. The
calculation of the resultant force acting on the node 1 depends on the neighbouring active nodes (green colour)
viz. 2, 19 and 20. The next particle is chosen based on the force.

Figure2. Resultant force calculated on the particle 1 in respect of active particles 2, 19 and 20 in the search
space.

The NP particles are defined in the d dimensional search space having a large set of possible solutions. The
dimension values are derived by the virtual machines VMs. This algorithm uses the best() and worst() position
(defined later) of the particles. The fitness value for each particle is calculated on the basis of the fitness
function.

𝑁𝑃𝑖 = (𝑛𝑝𝑖
1, 𝑛𝑝𝑖

2, … … , 𝑛𝑝𝑖
𝑛, … … … , 𝑛𝑝𝑖

𝑑) ∀ 𝑖 = 1 𝑡𝑜 25 and 𝑛 = 1 𝑡𝑜 10 (3)

The fitness function depends on the execution cost and transfer cost parameters of the cloudlets and virtual
machines. The execution and transfer cost of jth cloudlet is specified as 𝐶𝑜𝑠𝑡_𝐸𝑥𝑒𝑐(𝑀)𝑗 and
𝐶𝑜𝑠𝑡_𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑀)𝑗 respectively. The total cost 𝐶𝑜𝑠𝑡_𝑇𝑜𝑡𝑎𝑙(𝑀)𝑗 which is the sum of the execution and
transfer cost is computed for every cloudlet and then the minimization of the total maximum cost
𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑚𝑝_𝐶𝑜𝑠𝑡 (𝑀) is performed. The fitness function 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖

𝑡 of the particle i at an instant t of
time is calculated as:

𝐶𝑜𝑠𝑡_𝐸𝑥𝑒𝑐(𝑀)𝑗 = ∑ 𝑤𝑘𝑗 𝑘 ∀𝑀(𝑘) = 𝑗 (4)

𝐶𝑜𝑠𝑡_𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑀)𝑗 = ∑ ∑ 𝑑𝑀(𝑘1),𝑀 (𝑘2)𝑘2∈𝑇𝑘1∈𝑇 ∗ 𝑒𝑘1,𝑘2 ∀ 𝑀(𝑘1) = 𝑗𝑎𝑛𝑑 𝑀(𝑘2) ≠ 𝑗 (5)

𝐶𝑜𝑠𝑡_𝑇𝑜𝑡𝑎𝑙(𝑀)𝑗 = 𝐶𝑜𝑠𝑡_𝐸𝑥𝑒𝑐(𝑀)𝑗 + 𝐶𝑜𝑠𝑡_𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑀)𝑗 (6)

𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑚𝑝_𝐶𝑜𝑠𝑡 (𝑀) = max(𝐶𝑜𝑠𝑡_𝑇𝑜𝑡𝑎𝑙(𝑀)𝑗) ∀𝑗∈ 𝑃 (7)

ACCEPTED M
ANUSCRIP

T

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑚𝑝_𝐶𝑜𝑠𝑡 (𝑀) ∀ 𝑀) (8)

So, the fitness value of each particle 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖
𝑡 is generated. The masses active

𝑀𝑎𝑠𝑠_𝑎𝑐𝑡𝑖𝑣𝑒𝑖 , passive 𝑀𝑎𝑠𝑠_𝑝𝑎𝑠𝑠𝑖𝑣𝑒𝑖 and inertia 𝑀𝑎𝑠𝑠_𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑖 are calculated based on the fitness value.
The best() stores the best fitness value i.e., minimum value among the particles. The worst() stores the
maximum fitness value among the set of the particles in the search space. The 𝑏𝑒𝑠𝑡(𝑡) 𝑎𝑛𝑑 𝑤𝑜𝑟𝑠𝑡(𝑡) values of
the particles for minimization of total cost and mass 𝑀𝑖(𝑡) are calculated as:

𝑀𝑎𝑠𝑠_𝑎𝑐𝑡𝑖𝑣𝑒𝑖 = 𝑀𝑎𝑠𝑠_𝑝𝑎𝑠𝑠𝑖𝑣𝑒𝑖 = 𝑀𝑎𝑠𝑠_𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑖 = 𝑀𝑖 , 𝑖 = 1,2,3, … … . , 𝑁 (9)

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)
 (10)

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

 (11)

𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛

𝑗∈{1,….,𝑁}
𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑗(𝑡) (12)

 𝑤𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑎𝑥

𝑗∈{1,….,𝑁}
𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑗(𝑡) (13)

The force of the particle in cloud is based on a gravitational constant, G(t) at a specific time instant.
The G(t) determines the particle’s potential and increases the efficiency of movement. The gravitational constant
helps in the exponential rise in the search space area. It helps in the larger exploitation or usage of the resources.
It depends on G0 (initial value) and time instance t. It also depends on 𝛼 (a random value) and maximum
number of iterations Max_Iter specified.

𝐺(𝑡) = 𝐺0𝑒−𝛼𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
𝑡

 (14)

The total force acting on the particle helps in finding the next near optimal particle position. It depends
on the Euclidean distance 𝑅𝑖𝑗 (𝑡) between the two particles NPi and NPj in d dimensional search space. The
static function 𝑟𝑎𝑛𝑑𝑗 lies in the interval [0, 1). So, the total force 𝐹𝑖𝑗

𝑑(𝑡) acting on particle i with respect to
particle j at particular instance of time t on the particles:

 𝑅𝑖𝑗 (𝑡) = ||𝑁𝑃𝑖(𝑡), 𝑁𝑃𝑗(𝑡)||
2
 (15)

𝑅 (𝑁𝑃𝑖, 𝑁𝑃𝑗) = √(𝑁𝑃1 − 𝑁𝑃1)2 + … … + (𝑁𝑃𝑗 − 𝑁𝑃𝑖)2 + … … + (𝑁𝑃𝑁 − 𝑁𝑃𝑁)2 (16)

𝑅 (𝑁𝑃𝑖 , 𝑁𝑃𝑗) = √∑ (𝑁𝑃𝑗 − 𝑁𝑃𝑖)
2𝑁

𝑖=1, 𝑗=1 (17)

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑎𝑠𝑠_𝑝𝑎𝑠𝑠𝑖𝑣𝑒𝑖 (𝑡)× 𝑀𝑎𝑠𝑠_𝑎𝑐𝑡𝑖𝑣𝑒𝑗(𝑡)

 𝑅𝑖𝑗(𝑡)+ 𝜀
(𝑛𝑝𝑗

𝑑 (𝑡) − 𝑛𝑝𝑖
𝑑(𝑡)) (18)

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑𝑁
𝑗=1,𝑗≠𝑖 (𝑡) (19)

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑎𝑠𝑠_𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑖(𝑡)
 (20)

The acceleration 𝑎𝑖
𝑑(𝑡) of particle i at a specific time t in the d dimensional space depends on force and inertial

mass. Figure 3 illustrates the flowchart for the proposed Cloudy-GSA for load scheduling.

ACCEPTED M
ANUSCRIP

T

Figure 3. Flowchart depicting Cloudy-GSA Optimization approach for load scheduling in cloud

The next particle to be executed depends on the velocity of the particle. The velocity of the next
iteration of the particle 𝑣𝑒𝑙𝑖

𝑑(𝑡 + 1) is calculated based on random uniform function 𝑟𝑎𝑛𝑑𝑖 having value [0, 1]
and velocity of particle and acceleration (eq. 21). The next position of the particle 𝑛𝑝_𝑝𝑜𝑠𝑖

𝑑(𝑡 + 1) is selected
by old particle position at time t with velocity of the next particle.

𝑣𝑒𝑙𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑒𝑙𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (21)

𝑛𝑝_𝑝𝑜𝑠𝑖
𝑑(𝑡 + 1) = 𝑛𝑝_𝑝𝑜𝑠𝑖

𝑑(𝑡) + 𝑣𝑒𝑙𝑖
𝑑(𝑡 + 1) (22)

The process continues till the condition of maximum iterations is met. The best position of the particles
is returned to the cloudlets for scheduling the load. The cloudlets are then allocated to respective VMs based on
the positions to run on the data centres.

So, the entire Cloudy-GSA scheduling continues till all the cloudlets are executed on the respective
virtual machines in the cloud to obtain minimum transfer time and minimum total cost of computation. The best
near optimal results generated by Cloudy-GSA approach are better than the other scheduling algorithms like
Segmented Min-Min, Genetic Simulated Annealing, Simulated Annealing (SA), Genetic Algorithm (GA), Tabu

ACCEPTED M
ANUSCRIP

T

Search, Min-Min, FCFS and PSO algorithm in cloud computing. The Cloudy-GSA overcomes the shortcomings
of the existing algorithms like larger computation time by reducing the transfer time and the total cost of
computation incurred by the cloud. The larger exploitation of the resources is performed by the cloudlets. The
comparative analysis of the existing relevant algorithms and the proposed Cloudy-GSA algorithm is discussed
in the next section.

5. Results and Analysis

The proposed Cloudy-GSA algorithm and the existing algorithms viz. Segmented Min-Min, Genetic
Simulated Annealing, Simulated Annealing (SA), Genetic Algorithm (GA), Tabu Search, Min-Min, FCFS and
PSO algorithm for load scheduling in the cloud are simulated in the CloudSim (Refer to Appendix) [13]. It
offers the users with a built-in environment for implementation of algorithms similar to the real world scenario.
The Network CloudSim Simulator is built on top of the CloudSim and is given by Garg and Buyya [17]. The
results are compared on the basis of two metrics namely Transfer Time and Total Cost depicted in graphical
manner. The simulation parameters are specified in Table 1 based on JSwarm package.

Table 1: Simulation Parameters

Parameter Description Values

(x, y) co-ordinates 0 – 7

Number of particles 25

Number of VMs 8
Number of Cloudlets 10

Max_Iter 10-100 and 100– 1000

G0 1

ram 2048

Bandwidth 10000

Storage 10000

Cloudlets 10

Datacentre Count 2

VM in each Datacentre 4

The Cloudy-GSA is used for scheduling the load in cloud. It takes 25 particles in the search space for
finding the best position of 10 cloudlets on 8 virtual machines. The dynamic allocation of cloudlets on VMs
takes place. The parameters are defined in the simulator statically. The cloudlets and VMs include the features
and characteristics provided by the system like MIPS, bandwidth, transfer cost, execution cost are used for the
calculation of the total time for computation. The proposed Cloudy-GSA utilizes the entire functionality of the
system having complexity of Ο (n2). The entire results are judged on a random large iteration set of values from
10 to 100 and 100 to 1000. The comparison in the table is for different runs. For each run of the iteration, the
transfer time and total cost is taken several times. The average of the different runs for iteration is computed and
the resultant value (average) is taken as final result for transfer time and for total cost of computation. The
iterations are determined as after specific iterations the algorithm converges. Thus, the results produced would
be similar to the existing for larger set of iterations. This has been performed for all the existing and proposed
Cloudy-GSA algorithms. The convergence and statistical analysis of the algorithms is discussed further.

Figure 4 and 5 show the existing heuristic algorithms with the proposed Cloudy-GSA approach over an
iteration set of values for transfer time incurred in load scheduling. ACCEPTED M

ANUSCRIP
T

Figure 4. Transfer Time of existing and proposed Cloudy-GSA algorithm for scheduling over 10 to 100 iterations

Figure 5. Transfer Time of existing and proposed Cloudy-GSA algorithm for scheduling over 100 to 1000 iterations

Figure 6 and 7 illustrate the total cost of computation for the proposed Cloudy-GSA optimization
approach with the existing load scheduling algorithm over a set of iterations.

ACCEPTED M
ANUSCRIP

T

Figure 6. Total Cost of existing and proposed Cloudy-GSA algorithm for scheduling over 10 to 100 iterations

Figure 7. Total Cost of existing and proposed Cloudy-GSA algorithm for scheduling over 100 to 1000 iterations

Thus, the results state that the proposed Cloudy-GSA (gravitational search algorithm) for load scheduling in
cloud reduces the transfer time and the total cost of computation than the existing algorithms. The results of
proposed approach vary from iteration to iteration due to their heuristic nature and random function. In some
iteration proposed Cloudy-GSA does not produce better results due to the randomized nature of the algorithm.
However, the consistency of the algorithm is achieved by the convergence and the statistical analysis of the
results set.

5.1. Convergence Analysis

The convergence analysis is performed for the heuristic simulation as finding the near optimal solution is tough.
The converging behavior of the algorithm is analyzed mathematically for the set of iterations. We measured the
mean of normalized displacement from the initial positions at different iterations on the result set of transfer
time and total cost. The Mean of Normalized Displacement for transfer time and total cost at tth iteration is

ACCEPTED M
ANUSCRIP

T

computed by 𝑐𝑡𝑖
𝑡 , the normalized cloudlet transfer time or total cost at tth iteration. Here, 𝑐𝑡𝑖

0 refers at 0th
iteration and n is number of data vectors from 1 to 19 as:

=
∑ ||𝑐𝑡𝑖

𝑡−𝑐𝑡𝑖
0||𝑛

𝑖=1 2

𝑛
 (23)

The results are depicted in figures 8 and 9. It is observed that the Cloudy-GSA approach converges
within the thirteen iterations along with other heuristic algorithms in the cloud. We have analyzed the results of
the other algorithms based on the transfer time and total cost of computation from figures 4 to 7.

Figure 8. Mean of Normalized Displacement convergence analysis based on Transfer Time for the result set

Secondly, we have also calculated the mean of pairwise distances at different iterations on the result set of the
transfer time and the total cost from tables. It is based on the 𝑐𝑡𝑖

𝑡and 𝑐𝑡𝑗
𝑡 on the normalized transfer time or total

cost data at ith and jth iterations respectively where n is number of data vectors ranging from 1 to 19. The Mean
of Normalized Pairwise Distance at tth iteration is:

=
∑ ∑ [𝑖 ≠𝑗]𝑛

𝑗=1 ||𝑐𝑡𝑖
𝑡−𝑐𝑡𝑗

𝑡||𝑛
𝑖=1 2

𝑛2−𝑛
 (24)

The results of normalized pairwise distance are illustrated in figures 10 and 11 for transfer time and total cost
respectively. It is observed that the proposed Cloudy-GSA and the existing algorithms converge within the nine
iterations. The algorithms minimize the mean of the pairwise distance between the iterations to converge the
results and based on these the behaviour is predictable for large iteration set of values in case of large number of
cloudlets and virtual machines. ACCEPTED M

ANUSCRIP
T

Figure 9. Mean of Normalized Displacement convergence analysis based on Total Cost for the result set

Figure 10. Mean of Normalized Pairwise Distance convergence analysis based on Transfer Time

5.2. Statistical Analysis

The statistical analysis of the proposed Cloudy-GSA approach and the existing scheduling algorithms provide
us with the proof of efficiency of the proposed algorithm over others. The metrics of mean, standard deviation,
minimum value and maximum value are specified and computed for the algorithms based on the result set of
transfer time and the total cost of computation. The metrics of the transfer time are provided in the table 2 for
the transfer cost of the cloudlets over the virtual machines. Table 3 specifies the total cost incurred by the
cloudlets for executing on the virtual machines.

ACCEPTED M
ANUSCRIP

T

Figure 11. Mean of Normalized Pairwise Distance convergence analysis based on Total Cost

Table 2: Statistical Analysis of Transfer Time

Segmented
Min- Min

Tabu Search Genetic SA SA GA FCFS Min-Min PSO Cloudy-GSA

Mean 59524.76 62768.22 61098.7632 63255.019 57502.225 59000 58000 54170.38 50995.59

Standard
Deviation

7.48E-12 0 5617.15397 7068.0319 2926.831 0 0 2505.163 3624.817

Maximum 59524.76 62768.22 70559.41 72822.8 62075.51 59000 58000 57759.06 58166.84

Minimum 59524.76 62768.22 50432.35 52661.52 51562.33 59000 58000 48525.77 43632.41

Figures 12 and 13 illustrate the mean, standard deviation, minimum and maximum for all the load scheduling
algorithms in the cloud computing for transfer time and total cost respectively. The mean and standard deviation
depict the superiority of the proposed Cloudy-GSA for load scheduling in cloud computing over the existing
scheduling algorithms like Segmented Min-Min, Tabu Search, Genetic Simulated Annealing, Simulated
Annealing, Genetic algorithm, Min-Min, FCFS, and Particle Swarm Optimization. The proposed algorithm
outperforms in terms of the maximum exploitation of the resources on the virtual machines by the cloudlets.

ACCEPTED M
ANUSCRIP

T

(a) Mean (b) Standard Deviation

(c) Maximum (d) Minimum

Figure 12. Statistical Analysis of transfer time of proposed Cloudy-GSA and existing algorithms.

Table 3: Statistical Analysis of the Total Cost

Segmented

Min- Min

Tabu

Search
Genetic SA SA GA FCFS Min-Min PSO Cloudy-GSA

Mean 158807 160665.4 157687.8 160423.0 154617.62 159662.3 156066.6 150759.4 148137.5

Standard

Deviation
0 2.99E-11 5887.616 7494.170 4192.3283 2.99E-11 2.99E-11 2290.429 2764.070

Maximum 158807 160665.4 170164.1 176870.7 163806.78 159662.3 156066.6 154132.5 154176.8

Minimum 158807 160665.4 146216.5 149520.3 147935.8 159662.3 156066.6 146814.2 142157.8

ACCEPTED M
ANUSCRIP

T

(a) Mean (b) Standard Deviation

(c) Maximum (d) Minimum

Figure 13. Statistical Analysis of total cost of proposed Cloudy-GSA and existing algorithms

The Cloudy-GSA optimization method based on principle of gravitational search algorithm provides greater
load scheduling than the previous ones and reduces the cost of computation. The stochastic algorithms perform
standard deviation. The proposed Cloudy-GSA provides more movement than PSO within the particles. The
algorithm converges after a specific set of iterations. This approach can be used for faster processing of the user
requests of data or information by the server in the cloud in the real world scenario. It involves faster allocation,
storage and retrieval of the data.

6. Conclusion And Future Work

This paper elaborated the major problem of load scheduling in the cloud computing environment
between cloudlets and VMs. The meta-heuristic based swarm intelligence technique for load scheduling in the
cloud is discussed. The concepts of load scheduling algorithms with proposed Cloudy-GSA on load scheduling
has been explained. The proposed Cloudy-GSA approach reduces the transfer time and total cost of the system
along with maximum utilization of VMs. This has been achieved using the fitness values of particles and force
acting on the particles in search space. At a bigger context, proposed approach provides higher cost optimization
than the existing Segmented Min-Min, Tabu Search, Genetic Algorithm, Simulated Annealing, Genetic
Simulated Annealing, FCFS, Min-Min and Particle Swarm Optimization scheduling algorithms. The results of

ACCEPTED M
ANUSCRIP

T

the proposed approach have been compared with the existing discussed scheduling algorithms which are
heuristic and non-heuristic in nature in a detailed manner on a large set of iterations. Thus, the proposed Cloudy-
GSA optimization method generates far better results in terms of transfer time and total cost of execution time
based on the convergence statistical analysis. The future work aims to minimize the total cost by using improved
fitness function considering other parameters for better minimized results in the cloud computing environment,
based on swarm intelligence to further reduce the total cost.

References

[1] Buyya R., Pandey S., Vecchiola C.: Cloudbus toolkit for market-oriented cloud computing. In CloudCom
’09: Proceedings of the 1st International Conference on Cloud Computing, vol. 5931, pp.: 24–44, LNCS
Springer (2009).

[2] http://en.wikipedia.org/wiki/Cloud_computing, 19:43, 23 February 2017
[3] http://en.wikipedia.org/wiki/Load_balancing_(computing), 19:58, 23 February 2017
[4] Vecchiola C., Kirley M., Buyya R.: Multi-objective problem solving with offspring on enterprise clouds.

10th International Conference on High-Performance Computing in Asia-Pacific Region, pp. 132–139, IEEE
(2009).

[5] Chaudhary D., Kumar B.: Analytical study of load scheduling algorithms in cloud computing. IEEE
International Conference on Parallel, Distributed and Grid Computing, pp.: 7 – 12, IEEE (2014).

[6] Khiyaita A., Bakkali E., Zbakh M., Kettani D.E.: Load Balancing Cloud Computing: State of Art. 2012
National Days of Network Security and Systems (JNS2), pp.: 106-109 IEEE (2012).

[7] Chaudhary D., Chhillar R.S.: A New Load Balancing Technique for Virtual Machine Cloud Computing
Environment. International Journal of Computer Applications, vol.69, issue 23, pp.: 37-40 (2013).

[8] Yu J., Buyya R., Ramamohanarao K.: Workflow Scheduling Algorithms for Grid Computing.
Metaheuristics for Scheduling in Distributed Computing Environments, vol. 146, pp.: 173–214. Springer
Heidelberg (2008).

[9] Zhang L., Chen Y., Sun R., Jing S., Yang B.: A task scheduling algorithm based on pso for grid computing.
International Journal of Computational Intelligence Research, vol. 4, no. 1, pp.: 37-43, IJCIR (2008).

[10] Tsai C.W., Joel J., Rodrigues P. C.: Metaheuristic Scheduling for Cloud: A Survey. IEEE Systems Journal,
vol. 8, no. 1, March, pp.: 279-291, IEEE (2014).

[11] Chaudhary D., Kumar B.: An analysis of the load scheduling algorithms in the cloud computing
environment: A survey. IEEE 9th International Conference on Industrial and Information Systems, pp.: 1 –
 6, IEEE (2014).

[12] Pacini E., Mateos C., Garino C. G.: Distributed job scheduling based on Swarm Intelligence: A survey.
Computers and Electrical Engineering, vol. 40, pp.: 252–269, Elsevier Ltd (2013).

[13] Braun T.D., Siegel H.J., Beck N.: A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems1. Journal of Parallel and
Distributed Computing, vol. 61, pp.: 810-837, Elsevier (2001).

[14] Yildiz B.S., Lekesiz H., Yildiz Ali R.: Structural Optimization Using Meta-Heuristic Algorithms In
Automotive Industry. The 17th International Conference on Machine Design and Production, July 12 - July
15 (2016).

[15] Kiani M., Yildiz Ali R.: A Comparative Study of Non-traditional Methods for Vehicle Crashworthiness and
NVH Optimization. Archives of Computational Methods in Engineering, vol. 23, issue 4, pp.: 723-734,
Springer (2016).

[16] Yildiz Ali R.: Comparison of evolutionary based optimization algorithms for structural design optimization.
Engineering Applications of Artificial Intelligence, vol. 26, issue 1, pp.: 327-333, Elsevier (2013).

[17] Garg S. K., and Buyya R.: Network CloudSim: Modelling Parallel Applications in Cloud Simulations. 4th
IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Melbourne, Australia,
(2011).

[18] Kennedy J., Eberhart R.: Particle swarm optimization. IEEE International Conference on Neural Networks,
vol. 4, pp.: 1942–1948, IEEE (1995).

[19] Tasgetiren M. F., Liang Y.C., Sevkli M., Gencyilmaz G.: A particle swarm optimization algorithm for
makespan and total flow time minimization in the permutation flowshop sequencing problem. European
Journal of Operational Research, vol. 177(3), pp.:1930–1947, March (2007).

[20] Yoshida H., Kawata K., Fukuyama Y., Nakanishi Y.: A particle swarm optimization for reactive power and
voltage control considering voltage stability. International Conference on Intelligent System Application to
Power System, pp.: 117–121, IEEE (1999).

[21] Zavala A. E. M., Aguirre A. H., Diharce E. R. V., Rionda S. B.: Constrained optimisation with an improved
particle swarm optimisation algorithm. International Journal of Intelligent Computing and Cybernetics, vol.
1(3), pp.:425–453, Springer (2008).

ACCEPTED M
ANUSCRIP

T

[22] Mathiyalagan P., Dhepthie U., Sivanandam S.: Grid scheduling using enhanced PSO algorithm.
International Journal of Computer Science Engineering, vol. 02(02), pp.:140–145, IJCSE (2010).

[23] Liu H., Abraham A., Hassanien A.: Scheduling jobs on computational Grids using a fuzzy particle swarm
optimization algorithm. Future Generation Computer Systems, vol. 26(8), pp.:1336-1343, Elsevier (2010).

[24] Izakian H., Ladani B., Abraham A., Snasel V.: A discrete particle swarm optimization approach for Grid
job scheduling. International Journal of Innovative Computing Information Control, vol. 6(9), pp.:4219-
4233 (2010).

[25] Kang Q., He H.: A novel discrete particle swarm optimization algorithm for meta-task assignment in
heterogeneous computing systems. Microprocessor and Microsystems, vol. 35(1), pp.:10–17, Elsevier
(2011).

[26] Pandey S., Buyya R. et al., “A Particle Swarm Optimization based Heuristic for Scheduling Workflow
Applications in Cloud Computing Environments”, 24th IEEE International Conference on Advanced
Information Networking and Applications, pp.: 400-407, IEEE (2010).

[27] Kumar D., Raza Z.: A PSO Based VM Resource Scheduling Model for Cloud Computing. IEEE
International Conference on Computational Intelligence & Communication Technology (CICT), pp.: 213-
219, IEEE (2015).

[28] Rashedi E., Nezamabadi-pour H., Saryazdi S.: GSA: A Gravitational Search Algorithm. Information
Sciences, vol. 179, pp.: 2232–2248, Elsevier (2009).

[29] Karagöz S., Yıldız Ali R.: A comparison of recent metaheuristic algorithms for crashworthiness
optimisation of vehicle thin-walled tubes considering sheet metal forming effects. International Journal of
Vehicle Design, vol. 73 (1/2/3), pp.:179-188, InderScience (2017).

[30] Yıldız Ali R, Kurtuluş E., Demirci E., Yıldız B.S., Karagöz S.: Optimization of thin-wall structures using
hybrid gravitational search and Nelder-Mead algorithm. Materials Testing, vol. 58 (1), pp.:75-78, Carl
Hanser Verlag (2016).

[31] Rashedi E., Nezamabadi-pour H., Saryazdi S.: Filter modeling using gravitational search algorithm.
Engineering Applications of Artificial Intelligence, vol. 24, pp.: 117–122, Elsevier (2011).

[32] Yildiz B.S., Lekesiz H., Yildiz Ali R.: Structural design of vehicle components using gravitational search
and charged system search algorithms. Materials Testing, vol. 58 (1), pp.:79-81, Carl Hanser Verlag (2016).

[33] Wong K. C., Peng C., Li Y., Chan T. M.: Herd Clustering: A synergistic data clustering approach using
collective intelligence. Applied Soft Computing, vol. 23, pp.: 61-75, Elsevier (2014).

APPENDIX

The simulation parameters for the proposed Cloudy-GSA and the existing algorithms are as:

Parameter Description Values

Cloudy GSA

(x, y) co-ordinates 0 – 7

Number of particles 25

Number of VMs 8

Number of Cloudlets 10

Max_Iter 10-100 and 100– 1000

G0 1

ram 2048

Bandwidth 10000

Storage 10000

Cloudlets 10

Datacentre Count 2

VM in each Datacentre 4

Genetic Algorithm

Virtual Machines 8

Cloudlets 10

VM in each Datacentre 4

Particle Count 25

ACCEPTED M
ANUSCRIP

T

Dimensions in position of each particle Cloudlets

Probability of Crossover 0.04

α 20

Probability of Mutation 0.04

Genetic Simulated Annealing

Probability of Mutation 0.04

Probability of Mapping 0.5

Cooling rate 0.9 of current value

Temperature 100000.0

Min-Min Algorithm

No of VMs 8

No of tasks 10

Simulated Annealing

Probability of Mapping 0.5

Cooling rate 0.9 of current value

Temperature 100000.0

Tabu Search

Hops initialized 0

Limit Hops 1000

Segmented Min-Min Algorithm

Segments 3 (Minimum, Average and Maximum)

PSO

Number of particles 25

Number of VMs 8

Number of Cloudlets 10

α 0.4

ACCEPTED M
ANUSCRIP

T

