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A B S T R A C T

In many service industries, customers have to wait for service. When customers have a choice, this waiting may
influence their service experience, sojourn time, and ultimately spending, reneging, and return behavior. Not
much is known however, about the system-wide impact of waiting on customer behavior and resulting revenue.
In this paper, we empirically investigate this by analyzing data obtained from 94,404 customers visiting a
popular Indian restaurant during a 12 month period. The results show that a longer waiting time relates to
reneging behavior, a longer time until a customer returns, and a shorter dining duration. To find out the impact
of the consequences of waiting time, we use the empirical findings and data collected in a simulation experiment.
This experiment shows that, without waiting, the total revenue generated by the restaurant would increase by
nearly 15% compared to the current situation. Stimulating customers to reserve could enable restaurants to reap
part of this benefit. Furthermore, the results of simulation experiments suggest that, within the boundaries of the
current capacity, revenue could be increased by a maximum of 7.5% if more flexible rules were used to allocate
customers to tables. Alternatively, by increasing the existing seating capacity by 20%, revenue could be boosted
by 7.7% without the need to attract additional customers. Our findings extend the knowledge on the con-
sequences of customer waiting, and enable service providers to better understand the financial and operational
impact of waiting-related decisions in service settings.

1. Introduction

In the U.S. approximately 37 billion hours are spent on waiting in
physical lines annually (Stone, 2012), which adds up to a wait between
two and three years in the lifespan of an average American (Cox, 2005).
This waiting takes place at a variety of service settings, such as res-
taurants, banks, amusement parks, retail stores, and healthcare facil-
ities. Waiting for treatment in a healthcare facility might be unavoid-
able because of the lack of alternative options. In other service settings,
however, customers are apparently consciously choosing to spend
substantial amounts of time in line before they are served. Even though
companies do not directly experience the costs of the discomfort in-
curred by their customers because of waiting, it is not clear to what
extent these costs could have a direct and delayed impact on profit-
ability through customer decisions and actions. In this paper, we em-
pirically investigate several of the implicit consequences of letting
customers wait, and we estimate the impact of these consequences in
various scenarios using simulation.

The importance of waiting in service practice is to a large extent

reflected in the attention academia has devoted to the topic from dif-
ferent perspectives. From an operations perspective, waiting is com-
monly modeled as a cost function in which the wait results from a
mismatch between demand and capacity that could be fixed by
tweaking operational parameters (Osuna, 1985). Actual and perceived
waiting can then be influenced by capacity, layout, and service and
processing policy decisions (Luo et al., 2004; Nie, 2000). A large
number of studies focus on the behavioral consequences of waiting by
showing that long queues can impact aspects such as service evalua-
tions and customer satisfaction (Davis and Maggard, 1990; Houston
et al., 1998; Taylor, 1994), the perceived value of products and services
(Debo et al., 2012; Koo and Fishbach, 2010; Kremer and Debo, 2015),
and customer loyalty (Bielen and Demoulin, 2007; Dube et al., 1994).
At the same time, empirical research and data collection in this domain
is challenging. Whereas virtual queueing settings such as call centers
are characterized by hi-tech environments in which data is abundantly
available (Koole and Mandelbaum, 2002), studies involving physical
queues primarily make use of survey data and self-reports (Munichor
and Rafaeli, 2007; Rafaeli et al., 2002). These (repeat) purchase
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intentions do not necessarily lead to actual behavior and corresponding
capacity usage (Chandon et al., 2005). In the current study we cir-
cumvent this limitation by using data on actual customer behavior.

Furthermore, the majority of studies on waiting time and its con-
sequences make several assumptions that might not hold across prac-
tical settings. For example, the arrival rate of customers is commonly
treated as an exogenous, fixed parameter (e.g. Hwang et al., 2010; Roy
et al., 2016). Whereas this might be reasonably accurate if the model
describes only a short period of time, this assumption does not hold in
the long-term. In reality, a customer who faces an excessive waiting
time during a visit to a service provider may renege or never return
after leaving unsatisfied after being served. Very few studies in-
corporate relations between the waiting time and arrival rate at a later
point in time (Ittig, 1994; Umesh et al., 1989), which can substantially
influence revenue and profit (Ittig, 2002).

Additionally, only few studies acknowledge that the experienced
waiting time or the tolerance for waiting might impact customers' service
requirement and duration (Wu et al., 2018). Also the service staff has some
discretion in determining completion time (Hopp et al., 2007). They might
increase their effort and decrease the service duration in response to a
slightly higher workload, but they also might become demotivated and
unproductive in response to excessive workloads (Tan and Netessine,
2014). This implies that observed customer behavior is simultaneously
influencing and influenced by waiting time. Consequently, a service op-
eration should not focus on minimizing the waiting time, but on max-
imizing revenue through minimizing the costs associated with waiting
(Gavirneni and Kulkarni, 2016). To truly understand the operational im-
plications of these dynamics, we combine an empirical model to in-
vestigate the isolated consequences of waiting with a simulation model
incorporating the combined effects of waiting time on reneging, customer
returns, and revenue. This combination between empirical analyses and
simulation enables us to experimentally investigate waiting time in the
context of specific restaurant policies, and provides results that are better
generalizable and meaningful to practice.

More specifically, in this study we aim to address the following
research questions:

RQ1. What are the isolated effects of waiting time on customer
behavior (in terms of reneging, dining duration, and returning)?

RQ2. What are the dynamic consequences of the combined em-
pirically identified effects of waiting time?

RQ3. How do specific proposed operational strategies, such as in-
creasing capacity, flexible seat allocation, and encouraging reservations
impact waiting time and its consequences?

To achieve this, we employ operational field data obtained from
94,404 groups of customers of a restaurant operation. To answer RQ1
we use isolated empirical models to identify the effect of waiting time
on customer behavior. To address RQ2, we embed the empirical models
in a simulation framework to capture the complex interactions and
dynamics of the investigated constructs. This simulation model enables
us to demonstrate the (longer-term) impact of waiting time on customer
returns and revenue by incorporating the endogenous effect of waiting
time on reneging, dining duration, and future arrivals. Subsequently, to
address RQ3, we leverage the integrated simulation model to evaluate
the effect on revenue of various operational policies that restaurants
could deploy. As a consequence, this study should not only help to
improve understanding of the waiting process, but could also lead to
new insights regarding company policies in order to maximize revenue.

The study is therefore divided in two parts. We first develop hy-
potheses, explain the method, and test the hypotheses in Sections 2, 3,
and 4, respectively. We show the impact of waiting time on return
behavior, reneging, and dining duration. We then investigate the im-
pact of several hypothetical operational scenarios on waiting time, re-
turn behavior, reneging, and revenue through simulation. This simu-
lation model and the results of the simulation are explained in Section
5. Section 6 draws conclusions and discusses implications for Opera-
tions Management theory and practice.

2. Hypothesis development

2.1. Waiting time

Waiting is in many cases one of the first interactions between ser-
vice providers and customers. Because of this, adequately managing the
waiting time is a vital issue (Davis and Heineke, 1998). Waiting time
can be considered in a subjective way as the waiting time perceived by
the customer, or in an objective way as the actual waiting time. Even
though the actual waiting time might differ from the waiting time
perceived by the customer, actual waiting time is still the most im-
portant predictor of perceived waiting time (Dabholkar, 1990;
Thompson et al., 1996). This study therefore focuses on the impact of
actual waiting time on three outcomes: customer loyalty, reneging, and
dining duration.

2.2. Customer loyalty

For companies operating in competitive markets, obtaining a base of
loyal customers is essential for survival (Srivastava et al., 1998). Cus-
tomer loyalty, which can be defined in terms of repurchase behavior
(Estelami, 2000), repurchase intention (De Ruyter and Bloemer, 1999),
or long-term commitment to repurchase (Ellinger et al., 1999), can
increase profits through reducing the costs associated with acquiring
new customers, through generating a base of customers that is less
price-sensitive, and through lower operational costs due to the famil-
iarity of customers with the procedures and systems of the company
(Hallowell, 1996).

Customer loyalty is especially important in industries with low
switching costs for consumers, as consumers can freely decide to move
their business to competitors (Shapiro and Varian, 2013). In service
contexts such as restaurants, a dissatisfied customer will face virtually
no barriers to dine somewhere else next time. One of the most im-
portant drivers of customer loyalty is service quality (Devaraj et al.,
2001; Stank et al., 1999). The literature on service quality highlights
two critical components: relational elements and operational elements.
Relational elements refer to activities focused on understanding the
needs and expectations of customers. The importance of relational
elements of service quality in determining customer loyalty have been
demonstrated frequently, mainly in the marketing literature (e.g. Bell
et al., 2005; Crosby et al., 1990; Payne and Frow, 2005). Operational
elements, referring to all activities service providers perform to achieve
consistent high level of productivity, quality, and efficiency (Stank
et al., 1999), are essential determinants of service quality as well
(Harvey, 1998). Waiting time is such an important operational element
of service quality. An increased queue length can attract customers on
the short term by signaling quality (Debo et al., 2012; Kremer and
Debo, 2015; Veeraraghavan and Debo, 2009), but this effect is only
expected to apply in case of quality uncertainty and in case alternative
options are available. In deciding whether or not to come back to a
restaurant, customers take the actual experienced quality into con-
sideration. A longer wait during a past visit is therefore not expected to
make customers more likely to come back soon in the future. Conse-
quently, we expect that waiting time will have a negative impact on
customer loyalty, as defined by the time until a customer returns:

H1. A longer waiting time will be associated with longer time until a
customer returns

2.3. Reneging

In addition to the longer-term effect of waiting on customer loyalty,
waiting time can also have more direct implications. When customers
enter a queue, they might observe or be informed about information on
the expected length of delay. Subsequently, customers can make a de-
cision between entering the queue or leaving before even joining the
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queue (balking). Even if customers choose to join the queue it is still
possible that they will not wait until being served. During the wait,
customers might renege on their decision and leave the queue.

Since balking takes place before even entering the queue, it is dif-
ficult for companies to observe the exact share of customers engaging in
balking. Reneging can be observed more easily in physical as well as
digital queues, and therefore serves as an important performance
measure for most revenue-generating service systems (Garnett et al.,
2002). A substantial fraction of reneging customers will not return to
the service provider. Consequently, it is necessary to explicitly in-
corporate customer abandonment in models that aim to provide im-
plications for operational decision making (Dai and He, 2011). Math-
ematical queueing models can be used to estimate the impact of balking
and reneging in service, but doing so requires an accurate under-
standing of human queueing behavior in specific service contexts that
can only be obtained through empirical analyses (Batt and Terwiesch,
2015).

Nowadays service providers often provide offline waiting options to
supplement or replace physical queues. Examples of offline waiting
applications include restaurants that use a buzzer, phone, or text cus-
tomers to inform them of their waiting status, and call-centers that
provide a call-back option to customers (Kostami and Ward, 2009).
Offline waiting enables customers to freely engage in other activities,
which can make the waiting more pleasant. At the same time, the in-
troduction of offline waiting has increased the relevance of reneging
because of multiple reasons. First of all, reneging occurs more fre-
quently because customers might simply forget that they are waiting to
be served. Secondly, in physical queues, reneging is directly visible to
other customers and the personnel of the service provider. In offline
queues, reneging is often only discovered once a customer does not
show up when being notified. This implies that customers waiting in an
offline queue only possess an overestimate of their queue position,
which makes it more likely that they will renege (Jennings and Pender,
2016). For the current study, which focuses on an offline queueing
context, we therefore expect that waiting time will positively relate to
reneging.

H2. A longer waiting time will increase the likelihood that a customer
reneges

2.4. Dining duration

Since waiting time usually results from a temporal mismatch be-
tween demand and capacity, the time customers spend in a service
process plays an essential role in influencing how long people have to
wait before being able to enter the process. After all, customer sojourn
time, or dining time in this case, directly impacts capacity. Even though
quality cannot be treated independently from service time in most
contexts (Anand et al., 2011), the restaurant industry has been trying to
reduce the dining durations of customers in order to increase seat
turnover (Kimes et al., 2002; Thompson, 2009). However, while the
role of dining duration as a tool to impact revenue has been established
(Kimes et al., 1999; Kimes and Thompson, 2004), much less is known
about what predicts dining duration. The rare examples of studies in

this domain include Kimes et al. (2002), who established that Eur-
opeans preferred significantly longer dinners than North Americans and
Asians, and Kimes and Robson (2004), who demonstrated the impact of
table characteristics on dining duration. Because of the clear implica-
tions of dining duration on capacity management and resource alloca-
tion, advancing the understanding of this topic from an Operations
Management perspective is essential.

In this study, we therefore aim to contribute to this literature by
studying the role of waiting time in predicting dining duration. From an
operational perspective, we expect that two opposite effects could play
a role: on the one hand, a long waiting time suggests that a system is
running at full capacity. This could lead to slower service once a cus-
tomer has actually entered the system, resulting in a longer dining
duration. On the other hand, in their quest to reduce waiting time,
servers and kitchen staff could exert increased efforts and realize a
shorter dining duration (e.g. Kc and Terwiesch, 2009; Shunko et al.,
2017; Tan and Netessine, 2014; Wang and Zhou, 2017). From the
perspective of the customer, two other opposing effects could play a
role: on the one hand, customers who have waited for a long time might
want to dine longer to make the wait worthwhile. On the other hand,
customers only have a limited amount of time available. After a sub-
stantial amount of time has been spent waiting, customers have a
limited amount of time left for dining. We expect that in the modern
society, where time is limited and highly valued (Leclerc and Schmitt,
1999), the impact of waiting time on dining duration is mainly driven
by the amount of time a consumer has available for dining. Even if
service could be slower or if a longer stay would be desirable after a
long wait, we expect that customers will adapt their choices of food and
dining speed because of their constrained time (Jabs and Devine, 2006).
Customers do not only consider the money spent on dining, but also
incorporate the perceived value of their time as part of the perceived
price (Becker, 1965; Zeithaml, 1988). This results in the expectation
stated in hypothesis 3:

H3. A longer waiting time will shorten the dining duration of a
customer

Fig. 1 shows a conceptual model including the predicted empirical
relations between waiting time and the outcome variables, as well as
the proposed effects of waiting time on customer returns that will be
demonstrated using simulations. Furthermore, the conceptual model
also shows a positive relationship between dining duration and cus-
tomer waiting time, as an increase in dining duration impacts resource
utilization (tables) and hence increases waiting time of subsequent
customers.

3. Methodology

3.1. General approach

The aim of this study is two-fold. First, we use empirical models to
test our hypotheses, and to identify the isolated effects of waiting time
on several outcome variables. Second, we incorporate the empirically-
established findings in a simulation analysis to estimate the system-
wide dynamic impact of the empirically-identified effects and analyze

Fig. 1. Conceptual model showing relations between variables.
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various scenarios. Using a simulation in addition to the empirical
analyses is necessary to simultaneously account for the stochastic
nature of multiple determinants of waiting time, and to estimate the
impact of the dynamic interactions resulting from the feedback loops
displayed in Fig. 1. With some additional model assumptions, analytical
modelling approaches such as customized queuing network or system
dynamics based models could achieve a similar goal (see Roy et al.,
2016). However, analytical models are quite sensitive to the distribu-
tional assumptions on the customer inter-arrival times and dining
times, and can result in additional approximation-related error in the
output measures. These errors can affect the direction of the numerical
insights generated from the model. In our case, it is important to ac-
curately describe the real restaurant, and a simulation is better able to
handle the empirical data and dynamic interactions with limited model
assumptions, and relatively easy to validate.

As a result, the use of a simulation in combination with empirical
data in this context enables us to bridge the gap between academic rigor
and practical relevance by providing more comprehensive estimates of
the impact of specific operational decisions (Shafer and Smunt, 2004).

3.2. Data collection

The data used in this study were collected between February 1,
2016 and January 31, 2017 from a popular dine-in restaurant in
Bangalore, India, that uses a sophisticated digital restaurant reservation
and table-management platform. The restaurant is located in an area
with a high restaurant density. It offers a wide variety of food and
drinks, with prices in the upper segment of the local market. The res-
taurant opens at noon every day and closes around midnight, de-
pending on when the last diners finish their meals. The diners are ty-
pically working professionals. We selected the restaurant for this study
because of the high share of walk-in customers (above 90%), who could
experience waiting. The customers arrive at the restaurant either with a
prior reservation or as a walk-in customer. The restaurant has 84 tables
with in total 335 seats, and allocates maximum 10% of total capacity to
reserving customers. Reserving customers reserve a table using either
the website, a mobile application, via phone, or, occasionally, on site.
The customer's cell phone number serves as his or her customer ID. The
restaurant managers can see all incoming reservations at a glance (see
Fig. 2a), and then confirm them using the tablet. A confirmation email
and an SMS are automatically sent to the customer.

All customers are checked-in upon arrival using a tablet at the front
desk by providing their contact ID. Walk-in customers also provide
information about their group size. Based on historical customer data,
the system recognizes the customer's visit count to this restaurant. Upon
registration, they also receive an SMS with their current queue position
(see Fig. 2b) and a website link to check their queue status. They can
then either leave the restaurant or wait in or nearby the restaurant for
their turn. The automated queue management software updates the
diner whenever the queue position changes and sends an SMS when the
queue position becomes number one. The tablets are located on all
floors where supervisors open up tables. Information is directly sent to
the front desk when a table opens up, and the customer is informed via
cloud telephony. If the customer group does not show up in 5min, the
table allocation is cancelled. Once the customer group arrives at the
front desk, they are guided to their table.

Customers not showing up or canceling after making a reservation
are not included in the data. The data obtained from these groups in-
clude information on the customer ID, type of transaction (reservation
or walk-in), visit number, group size, status (seated or not), time of
making a reservation and reserved time (for reserving customers), ar-
rival time, queue position at the time of arrival, seating time, and table
number. These data were used to construct our dependent and in-
dependent variables. It should be noted that only one person of the
group registers in the digital platform of the restaurant. Therefore, in-
dividual customers, who are part of a group, serve as the unit of

analysis in this study. In our discussion, we use the terms customer and
customer groups interchangeably. Table 1 provides an overview of the
relevant collected data and corresponding collection modes.

3.3. Operationalization of dependent and independent variables

3.3.1. Return status
For every visit of a customer, as identified by the customer ID, we

registered two things: whether he or she returns to the restaurant
within the timeframe of the dataset and the number of days until the
next visit or the end of the dataset (if no revisit is recorded in the da-
taset). Tracking the number of remaining days until the end of the data
collection period is required to appropriately handle the censored
nature of the dataset in a survival analysis (Hosmer and Lemeshow,
1999). For the investigated restaurant, the average return time of re-
turning customers appeared to be around 73 days. Because only one
person per group of customers is required to register, it is possible that
during subsequent visits another person of the group registers. This
would lead us to erroneously conclude that the particular visit was no
returning visit. However, there is no reason to expect that the change in
registering customer is related to waiting time or any of the other
control variables. The empirically identified effects on the return be-
havior identified in this study should therefore still hold, but the
identified return rate might be a systematic underestimation of the true
return rate.

3.3.2. Reneging
Every walk-in customer group entering the queue but not showing

up when it is their turn is considered as a case of reneging. This occurs
in total 14,585 times, corresponding to 15.7% of all walk-in customer
groups. For the large majority of the customer groups it is unknown
when they left the queue, but 3372 customer groups actively indicated
in the system that they were abandoning the queue.

3.3.3. Dining duration
As checkout time of customers was not directly measured, the

dining duration was estimated using table occupation. In case a queue
was present, we estimated dining time as the difference between seating
time and the seating time of the next customer group at that particular
table. We subtracted 10min to account for the time needed to vacate
and clean the table. To investigate hypothesis 3, we excluded customers
with a dining duration shorter than 30min (time from being seated
until leaving) to ensure that the sample does not include customer
groups who decide to leave before ordering. The remaining number of
observations of which we have a measure of the dining duration is
35,163. This measure was compared with an estimate of dining dura-
tion based on the time at which a subset of 2586 customers provided
feedback scores during the payment procedure. A comparison between
these two measures revealed only very small differences (< 5%), which
suggests that our estimate of dining duration is reasonably accurate.

3.3.4. Waiting time
The waiting time of customers was measured as the difference be-

tween arrival time at the restaurant and seating time. It should be noted
that in this particular case, customers are not required to stay in a
physical queue. Because they are notified when they are first in the
queue and once a table becomes available through their phone, custo-
mers can engage in other activities while waiting, as long as they stay in
the vicinity of the restaurant. Many customers take this opportunity to
go e.g. shopping in close-by stores.

For most of the reneging customers (75%), we do not precisely
know when they left the queue. As a consequence, we do not know the
precise waiting time experienced by these customers before they
decided to renege. To address this issue, we employ the initial queue
position of these customers as a proxy for waiting time. For the custo-
mers with a known waiting time, a strong linear correlation between
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initial queue position and waiting time exists, r(75,725)= 0.70,
p < .01. Furthermore, the queue position can also be easily im-
plemented in the subsequent simulations. A comparison between the
distribution of the (known) waiting time of reneging customers and
seated customers reveals substantial differences between the two
groups of customers. The average waiting time for reneging customers
is 67.6 min (SD=40.1), while the average waiting time for seated
customers is 20.4 min (SD=30.5). Also in terms of position when en-
tering the queue, reneging customers have an average entering position
of 45.6 (SD=28.6), whereas seated customers have an average en-
tering position of 15.3 (SD=20.2).

3.4. Operationalization of control variables

We employed several control variables to capture additional var-
iance between visitors: the visit number, group size, evening, and
weekend.

3.4.1. Visit number
The unique customer ID of every visitor is used to track the total

number of visits to the restaurant. This does not only include visits in
our sample, but also all prior visits made since the restaurant started
using the digital reservation platform, January 1, 2015. Even though
customers in the sample could have visited the restaurant before this
date without our knowledge, the impact of these visits that took place
more than fourteen months before the start of data collection is ex-
pected to be limited. Controlling for visit number is essential, as

customers who have visited the restaurant before can already be con-
sidered as loyal customers, whereas newcomers are having a first im-
pression of the restaurant. This will have a substantial impact on the
influence of the experience during the specific visit on the time until a
customer returns.

3.4.2. Group size
Although we collected data from only one customer in every group

of visitors, we control for group size, which is measured once customers
register at the front desk in the restaurant.

3.4.3. Evening
Customers coming during the afternoon might differ from the cus-

tomers during the evening. Furthermore, customers during the evening
have a lower maximum dining duration, as the restaurant closes around
midnight. To facilitate a fair comparison between customers coming
during the afternoon and customers coming during the evening, we
included a dummy variable with a value of ‘0’ if a customer was seated
in the restaurant before 5.30 p.m., and ‘1’ if a customer was seated at or
after 5.30 p.m.

3.4.4. Weekend
Similarly, to control for the potential differences in customers and

customer habits between weekends and weekdays, we employ a dummy
variable with a value of ‘0’ if a customer visits during the week, and a
value of ‘1’ if a customer visits during the weekend.

As robustness check we compared the fit (in terms of Akaike's in-
formation criterion) between all estimated empirical models with the
untransformed count variables ‘visit number’ and ‘group size’, and the
models with the log-transformations of these variables. The variable
‘group size’ provided the best fit without transformation, whereas for
‘visit number’ the log-transformation explains significantly more var-
iance in the outcome variables. Consequently, we control for ‘group
size’ in its original form, and include the log transformation of the ‘visit
number’ in the empirical models.

Fig. 2. Image of (a) the reservation app in the restaurant, (b) customer information on queue position. Phone numbers and privacy-sensitive data have been obscured.

Table 1
Data collection.

Data Collection mode

Customer ID Customer enters in digital platform of restaurant
Visit number Tracked by digital platform of restaurant
Type of transaction Tracked by digital platform of restaurant
Group size Customer enters in digital platform of restaurant
Arrival time and date Entered by staff in digital platform of restaurant
Seating time Entered by staff in digital platform of restaurant
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4. Empirical model testing

4.1. Descriptive statistics

Since only walk-in customers are potentially subject to waiting time,
data of the reserving customer groups cannot be used to empirically test
the impact of waiting time. The descriptive statistics of the walk-in
customers (Table 2) show that most customers visit the restaurant for
the first time, the most common group size is two persons, and that the
average time between subsequent visits of returning customers is ap-
proximately 89 days. The difference between the mean and the median
of waiting time suggests a positively skewed distribution, which is (to a
smaller extent) also the case for dining duration.

Table 3 displays the Pearson correlations between the variables
included in the various empirical models used to test our hypotheses: a
parametric survival model to predict the time between visits, a logistic
regression analysis to predict reneging, and a negative binomial re-
gression analysis to predict dining duration. The control variables
‘Group size’, ‘Evening’, and ‘Weekend’ show a reasonably strong and
positive correlation with waiting time. This can be expected, since it is
more difficult to find a seat for larger groups and it might be busier

during weekends and evenings, all resulting in longer waiting times. In
order to test our hypotheses, it is necessary to disentangle the effects of
the control variables from the effects of the focal predictor, waiting
time. An inspection of the Variance Inflation Factors (VIFs) of the
variables of all estimated models reveals VIFs between 1.14 and 9.84,
thus not exceeding the commonly employed threshold of 10 (Hair et al.,
2010). Furthermore, similar to the procedure followed by Batt and
Terwiesch (2015), we compare the standard errors in our full regres-
sion-type models with the standard errors in simplified models without
interaction terms. The standard errors were small and relatively stable,
suggesting that multicollinearity is not a concern.

4.2. Impact of waiting time on time until revisiting

To test Hypothesis 1, stating that a longer waiting time is associated
with a longer time until a customer returns, we use a fully-parametric
survival model. This model enables us to incorporate both the return
status (returning or not) and days between subsequent visits of custo-
mers, and to handle the censored nature of the data (as customers to-
wards the end of the data collection period had less time to return). We
choose a fully-parametric survival model because we are interested in
obtaining a hazard function that describes the structural relationships
between event times and independent covariates, which can be used in
the simulation analyses to model the effects of waiting time on cus-
tomer return behavior (Bender et al., 2005; Melnyk et al., 1995).

To estimate the impact of waiting time on the time until a customer
returns, we focus only on seated walk-in customers, since they experi-
ence the full length of the wait before dining. We fit the model using
nine months of data (56,369 observations), in order to enable a vali-
dation of the simulation model with remaining data of seated walk-in
customer groups (20,711 observations).

As initial step, we compare a simple parametric proportional hazard
model (without predictors) fitted using an exponential inter return time
distribution with a base model fitted using a Weibull distribution with
the ‘Survival’ package (Therneau and Lumley, 2017) in R 3.1.3 (R Core
Team, 2017). This revealed that a Weibull distribution fits our data
significantly better (χ2

(1) = 2100, p < .001). Subsequently, we in-
cluded ‘Waiting time’, the control variables, and all possible two-and
three-way interactions in the analysis. A systematic backward elim-
ination procedure (Zhang, 2016) yielded a final model that fits

Table 2
Descriptive statistics of walk-in customers.

N % N %

Visit Number Group Size
1 62,771 66.49% 1 614 0.65%
2 15,300 16.21% 2 41,351 43.80%
3 6,688 7.08% 3 19,761 20.93%
4 3,510 3.72% 4 14,830 15.71%
5 2,074 2.20% 5 6,691 7.09%
6 1,281 1.36% 6 4,480 4.75%
7 or 7+ 2,780 2.9% 7 or 7+ 6,677 7.1%

Weekday 54,625 57.86% Afternoon 33,726 35.73%
Weekend 39,779 42.14% Evening 60,678 64.27%

Reneging Visit
No 81,528 86.36% Single visit 70,579 74.76%
Yes 12,876 13.64% Return 23,825 25.24%

Afternoon Evening Overall

Range Mean (SD) Median Range Mean (SD) Median Range Mean (SD) Median

Waiting time seated customers (min) 0–242 6.11 (12.93) 0 0–310 29.31 (34.81) 17 0–310 20.38 (30.04) 5
Position in queue 1–50 4.79 (6.52) 2 1–127 22.92 (23.56) 17 1–310 18.96 (23.12) 6
Dining duration (min) 30–649 161.09 (106.86) 139 30–345 86.04 (62.26) 83 30–649 144.39 (86.87) 105
Days between visits 0–364 87.61 (85.01) 59 0–364 90.58 (88.54) 59 0–364 89.47 (87.26) 59

Table 3
Pearson correlations of untransformed variables.

Waiting
time (min)

1 2 3 4 5 6 7

1 Dining duration
(min)

-.34

2 Customer returning? -.02 -.01
3 Customer reneging? -.07 N/A .04
4 Days between visits

(or end data
collection)

.01 .02 -.41 .01

5 Visit number -.01 .00 .17 -.02 -.14
6 Group size .11 .10 -.06 -.01 .05 -.02
7 Evening (vs

afternoon)
.35 -.40 -.01 .19 -.01 -.01 .09

8 Weekend (vs
weekday)

.14 .00 .00 .09 .03 -.02 .01 -.20

Note: because bivariate normality cannot be assumed for most variable pairs,
no significance values are provided.
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significantly better than a null model (χ2
(9) = 8961.18, p < .001), with

significant main effects of ‘Waiting time’, the log transformation of the
number of visits, ‘Group size’, and a significant two-way interaction
between ‘Visit number’ and group size. Using the ‘SurvRegCensCov’
package (Hubeaux and Rufibach, 2014) we also estimate the hazard
ratio parametrization, which is easier to interpret. The hazard function
can be expressed as

= ′ −t x λ β x th( | ) exp( )v v 1 (1)

where t refers to the time, x to the vector of predictors, ′β to the
transposed vector of regression coefficients, λ to the scale parameter
and, v to the shape parameter. This resulting hazard ratio (displayed in
the “Hazard ratio” column of Model 1 in Table 4) of 0.9994 for ‘Waiting
time’ implies that a customer group which experienced the average wait
of 20min during their last visit is approximately 1.1% less likely to
return at a given day than a group which did not experience any wait
( =0.9994 0.98920 ). The significant shape parameter (v) is smaller than 1,
which indicates that the rate of customers returning decreases over
time. The significant scale parameter (λ) indicates the extent to which
the distribution is stretched out and is a function of the predictors
(Bender et al., 2005).

To establish that the identified effects are robust and not a statistical
artifact caused by the dependence between repeating visitors, we also
estimated a parametric shared frailty model. In this model we account
for the fact that several observations are clustered within an individual
customer with a specific tolerance for waiting. Using the “Parfm”
package (Munda et al., 2012) in R (R Core Team, 2017), we predict the
number of days until a customer returns using the same predictors as in
the original parametric survival model: waiting time, group size, the log
of the visit number, and the interaction between group size and the log
of the visit number. Again we use a Weibull distribution for the baseline
hazard function. The results of the parametric shared frailty model

show that accounting for the dependence in the data does not lead to
changes in significance relative to the original survival model: all in-
cluded variables are significant predictors of the time until returning at
a .01 significance level. This result provides us with confidence that the
outcomes of the empirical survival analysis do not change substantially
when taking the dependence structure in account. As another robust-
ness check, we also repeat our original survival analysis on a subsample
that only contains every customer group once to ensure the in-
dependence assumption is met. The estimates and significance levels
resulting from this analysis are nearly identical to the results of Model
1. Because the contribution of a shared frailty model is in this case
limited relative to the increase in complexity, we use the estimates of
the regular parametric survival model (displayed in Table 4) as input in
the simulation.

Additionally, because evidence exists that people perceive time and
waiting time logarithmically instead of linearly (Antonides et al., 2002;
Zauberman et al., 2009), we followed the procedure outlined by Lind
and Mehlum (2010) and also estimated models with quadratic- and log-
transformations of waiting time as predictors. Neither the model in-
cluding the quadratic transformation (χ2

(1) = 1.61, p > .99) nor the
model including the log-transformed variable (χ2

(1) = 2.01, p > .99)
provided a significantly better fit, suggesting that assuming a linear
relationship is appropriate. Furthermore, as some studies (e.g. Kremer
and Debo, 2015) suggest that a bit of waiting can result in a positive
effect on purchase intention, we estimated two additional models: a
model with a dummy variable indicating if a customer group en-
countered any wait or not, and a model including a dummy variable
indicating that a customer group waited for less than 5min. A sig-
nificant coefficient for either of these dummy variables would indicate
that the effect of waiting time on return behavior for customer groups
who faced no or only a very short waiting differs from the effect of
waiting time for the other customers. In these alternative models, no

Table 4
Empirical models.

Model 1 Model 2 Model 3

Parametric survival Binary logistic Negative binomial regression
model Regression

Subjects Seated walk-in customers All walk-in customers All walk-in customers
Dependent variable Time until returning Reneging Dining duration

(days) (no= 0, yes= 1) (minutes)

Estimate Std. error Hazard ratio Estimate Std. error Estimate Std. error

Waiting time (minutes) .0007** .0003 .9994 -.0022** .0003
Position in queue .3424** .0162
Evening (vs. afternoon) 2.5841** .1154 -.5823** .0081
Group size (count) .0916** .0106 .9278 -.1390** .0073 .0451** .0016
Weekend (vs weekday) 1.7912** .1234 -.2580** .0078
Visit number (Log) −1.2455** .0338 2.7716 -.2705** .0217
Evening×Weekend −1.1107** .1311 .3403** .0119
Visit number (Log)×Group size -.0401** .0101 1.0333
Waiting time×Evening -.0020** .0003
Waiting time×Group size
Waiting time×Visit number (Log)
Queue position× Evening -.3010** .0163
Queue position×Weekend -.2520** .0165
Queue position× Evening×Weekend .2333** .0165
Waiting time×Visit number (Log)×Group size
Constant 6.9399** 0.0418 −4.6028** .1140 5.182 .0077

Observations 56,364 66,427 35,163
McFadden's pseudo R2 0.187
Tjur's coefficient of determination 0.172
Scale parameter (λ) in Model 1/dispersion parameter (θ) in Model 3 .0034** 1 4.0722**
Shape parameter (v) .818**
Akaike Inf. Crit. 221,331 49,071 381,264

Note: ∗p < .05, ∗∗p < .01.
Note 2: Even though the models reported in this table only include significant control variables, it should be noted that the significance of the hypothesized predictors
does not change when using the full set of controls in all models.
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significant effect of no waiting or little waiting was identified. This
suggests that there is no need to model the relationship between
waiting and return behavior differently for customer groups who faced
no or only little waiting.

Model 1 in Table 4 displays the results of the final parametric sur-
vival model used to predict the time until a customer returns. A positive
estimate indicates that a higher value of a particular predictor is related
to a larger number of days between subsequent visits. The positive es-
timate of waiting time is therefore in line with Hypothesis 1. However,
to properly interpret the findings, it is necessary to take the potential
interaction effects into account. Fig. 3 displays the results including the
interaction effects. The plot clearly illustrates that the current visit
number is an important determinant of future visit behavior, and that
the time between visits is substantially higher for larger groups visiting
for the first time. For example, a person visiting in a 2-person group
visiting for the first time and not experiencing waiting time is expected
to return after on average exp(7.15)= 1274 days, a person in a four-
person group after exp(7.30)= 1480 days, and a person in an 8-person
group after exp(7.65)= 2100 days (see Fig. 3). The visualization of the
two-way interaction between visit number and group size shows that
the impact of group size on time between visits is smaller when the visit
number is higher.

Since reserving customers do not face any waiting time and because
we do not know how long reneging customers waited before aban-
doning the queue, we cannot use the same model to predict their return
behavior. For the comprehensiveness of the simulation analysis, we
therefore also need to create separate models to estimate the return
behavior of these two types of customers. These models, which are
shown in Table 8 in Appendix 1, show that ‘Visit number’ and ‘Evening’
are significant predictors of return behavior of reserving customers
(Model 4). The variables ‘Visit number’ and ‘Group size’, as well as the
interaction between these two variables significantly predicts the return
behavior of reneging customers (Model 5). These results show that
‘Visit number’ is the most important predictor of return behavior for all
customer types. Whether a visit took place in the weekend does not
make a difference in terms of return behavior of reneging or reserving
customers. The main difference between the various models predicting
return behavior is that the variable ‘Group size’ does not play a sig-
nificant role for reserving customers, and that the variable ‘Evening’
does not emerge as significant predictor for reneging customers.

4.3. Impact of queue position on reneging

To test Hypothesis 2, which predicts an increasing reneging

Fig. 3. Graphical representation of the relationship between predictors and the number of days until next visit (Log scale) predicted by Model 1. Ribbons represent
95% confidence intervals.
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probability with an increase in the initial queue position, we need to
create a model that predicts whether a customer reneges or not. Several
binary choice models are capable of achieving this (Greene, 2012). We
tested a logit, probit, and complementary log-log model, all of which
delivered similar results in terms of the most important predictors. To
facilitate the interpretation and use of the coefficients in the simulation,
we present the results of the logistic regression analyses. In the logistic
regression model, the variables ‘Group size’, ‘Visit number’, ‘Evening’,
and ‘Weekend serve as control variables. Furthermore, we investigate
the predictive power of all potential two- and three-way interactions
between the control variables and main predictor 'Position in Queue’ to
find out whether reneging behavior is dependent on the day of the week
and time of the day.

As a first step, we partitioned our full dataset of all walk-in arrivals
(90,291 observations) in a ‘training’ dataset containing nine months of
data (66,427 observations), and a ‘test’ dataset with the remaining
three months of data (23,864 observations). Subsequently, we esti-
mated several logistic regression models based on all our available
predictors using the training data, to predict the probability that cus-
tomers renege. A backward elimination procedure yielded the final
model, as displayed in Table 4 (Model 2). To find out whether our
model fits the test data well, we performed several tests. A comparison
of our model with a null model suggests a good overall model fit,
χ2
(9) = 11294.68, p < .001. McFadden's pseudo R2 of 0.187

(McFadden, 1973) and Tjur's coefficient of determination of 0.172
(Tjur, 2009) also suggests a reasonable fit. It should be noted that the
relatively small explanatory power of the model (many other factors
could affect reneging, e.g. sudden other obligations) does not hamper
its contribution, as in the simulations we are interested in the system-
wide effects of our predictors rather than distinguishing reneging cus-
tomers from non-reneging customers with high accuracy. As a next step,
we used our model estimates fitted on the training data to predict the
reneging probability in the test dataset. The Kolmogorov-Smirnov plot
displayed in Fig. 4 shows the predictive power of our model relative to a
model without any predictors. The surface under the model curve is
0.799, which shows that our model predicts whether a customer will
renege 29.9 percentage points better than the random model. This
suggests that our model has a substantial predictive power.

Before interpreting the coefficients, we again ensure that the model
results hold when we use a mixed-effects model to account for the
dependence structure in the data. Using the “lme4” package (Bates
et al., 2014) in R (R Core Team, 2017), we estimate a mixed-effects
logistic regression. The resulting coefficients and significance levels are
nearly identical to the results obtained without accounting for the de-
pendence structure. We therefore will not use customer-dependent
equations to predict the reneging probability in the simulation model.

Model 2 in Table 4 displays the results of the final logistic regression

model used to predict the reneging probability of customers. The focal
predictor ‘Position in queue’ positively relates to reneging probability,
whereas larger groups and more regular visitors renege relatively less
frequently. The binary control variables ‘Evening’ and ‘Weekend’ also
appear to have a significant impact on the reneging probability. Fur-
thermore a two-way interaction between ‘Evening’ and ‘Weekend’
proved significant, as well as a three-way interaction between ‘Position
in queue’, ‘Evening’, and ‘Weekend’. Note that coefficients in model 1
are not standardized. Because of the presence of significant interaction
effects, we cannot interpret the coefficients of ‘Position in queue’ in
isolation. Instead, the impact of waiting on reneging probability is
further investigated in (see Fig. 5). This figure graphically displays the
combined effect of the queue position and both interacting control
variables. The first thing that can be clearly observed in this plot is that
a long queue in the afternoon relates to substantially more reneging
than in the evening. During a weekday afternoon, customers are almost
surely reneging if they enter the queue with twenty-five other groups
waiting in front of them. During a weekday evening, the majority of
customers waits to be seated even if there are fifty groups ahead of them
in the queue. Furthermore, a position further up in the queue is more
likely to relate to reneging on weekdays than in the weekend. During an
evening in the weekend an increase in queue position of 1 relates to an
increased reneging probability of approximately 0.4%, whereas the
same increase in queue position relates to an increase in reneging
probability of approximately 0.7% on weekdays (see Fig. 5).

In interpreting these findings it is however important to take into
account that the average queue length at lunchtime (5 groups) is
much shorter than at dinnertime (23 groups), and that in the
weekend on average more groups are waiting (22 groups) than on a
weekday (12 groups). Consequently, the plots consistently display
that the reneging probability increases rapidly if waiting time is
substantially higher than the average at a particular moment. To
make sure that the use of queue length as proxy of waiting time has
similar implications during Afternoon/Evening and Week/Weekend,
we checked the correlation between these two constructs in all four
subcategories. These correlations were all between 0.65 and 0.75,
suggesting that the relationship between queue length and waiting
time is stable. The general positive relationship between reneging
and queue position supports Hypothesis 2.

4.4. Impact of waiting time on dining duration

We tested Hypothesis 3 by using the ‘MASS’ package (Venables and
Ripley, 2002) to perform a negative binomial regression analysis, which
was necessary to account for the bounded distribution of the outcome
variable ‘Dining duration’ (Hilbe, 2011). A negative binomial model
with an estimated dispersion parameter fits significantly better than a
Poisson model with fixed dispersion parameter (χ2

(1) = 1138707,
p < .001). ‘Visit number’ did not significantly impact ‘Dining duration’
and was removed from the model. In building the final model, all
possible two- and three-way interaction terms were tested, and two
interaction terms emerged as significant predictors of dining duration:
the interaction between waiting time and evening, and the interaction
between weekend and evening. The resulting model fits significantly
better than the null model (χ2

(6) = 9439.26, p < .001). Again, we also
estimate a mixed-effects model to identify whether the dependence
structure in the data impacts our estimates. The resulting model, esti-
mated using the “glmmADMB” package (Skaug et al., 2015), yields
highly similar estimates and significance levels. We therefore will not
use customer-dependent equations to predict dining duration in the
simulation model.

The results displayed in Table 4 (Model 3) show that larger groups
of customers tend to dine longer than smaller groups. To interpret the
effects of ‘evening’ (vs. afternoon) and ‘weekend’ (vs. weekday) it is
necessary to study the significant interaction terms between ‘waiting
time’, ‘evening’, and ‘weekend’. Fig. 6 facilitates the interpretation ofFig. 4. K-S Plot based on the test data.
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these interaction terms. It shows that meals in the afternoon last longer
than meals in the evening. This is partly due to the fact that diners
visiting the restaurant during the afternoon have the opportunity to
stay longer than diners visiting at night, since the restaurant closes
around midnight. We can also observe that in the afternoon there exists
a substantial difference in dining times between weekday and weekend
visits, whereas this difference is much smaller in the evening. A more
important observation is that the effect of waiting time on dining
duration is much stronger in the evening than in the afternoon. Speci-
fically, in the evening customers reduce their dining time by approxi-
mately 4min for every 10min of waiting. Ten minutes of waiting in the
afternoon results in a reduction of the dining duration of approximately
2min.

However, even though this model clearly illustrates the relationship
between waiting time and dining duration, it might still be subject to
two endogeneity issues: omitted variable bias and selection bias. As we
pointed out in the hypothesis development section, dining duration is
not only influenced by the preference of the customers. The service
speed of the staff can be a predictor of dining duration, and is also
potentially influenced by customer waiting time. Since we do not
capture service speed, this could be a major omitted variable in our
model. To assess whether this is problematic, we investigated with a
model that includes the same control variables as Model 3 whether the
dining duration of reserving customers (who are never subject to
waiting) could be explained by the waiting time of a walk-in group with
an identical group size that was seated at a similar point in time
(< 15min difference). Note that the kitchen and waiting staff treat
reserving and walk-in customers in the same way. If the speed of service
would be an underlying cause of the identified relationship between
waiting time and dining duration, we would expect a strong and sig-
nificant relationship between the waiting time of the ‘nearest walk-in
group’ and the dining duration of a reserving group. However, the
negative binomial logistic regression we carried out showed that the
waiting time of the ‘nearest walk-in group’ was no significant predictor
(p= .86) of the dining duration of reserving groups, suggesting that
omitting service speed in our model does not introduce bias.

Furthermore, since our operationalization of dining duration only
applies to the groups of customers who finished their dinner while a
queue was present, selection bias could potentially limit the general-
izability of the findings related to dining duration. For example, it could
still be the case that waiting time of a particular customer is not in-
fluencing the decision to dine shorter, but that the service provided in
the restaurant is simply faster in case a queue is present. Additional
robustness tests are therefore required to find out whether the identi-
fied relationship between waiting time and dining duration can be
generalized to all customers. To investigate this relationship, we used
the alternative measure of dining duration based on the time at which a
subset of customers provided feedback at the end of their dinner. Since
some customers provided feedback while a queue was present and
others while no queue was present, this measure facilitates a compar-
ison between the dining durations of both groups. A comparison of the
distributions (using a K-S test and plots) revealed no significant dif-
ference (p= .421) between the distributions of dining durations of both
groups, suggesting that the findings should not be subject to selection
bias. The consistent evidence that waiting time relates to a shorter
dining duration is in line with Hypothesis 3.

5. Discrete-event simulation model

To evaluate the dynamic consequences of the combined empirically
identified effects of waiting time and to explore the effect of hypothe-
tical changes in the restaurant policy, we use a discrete-event simula-
tion model. In this model we include the empirically identified con-
sequences of waiting time on reneging, returning, and dining duration
simultaneously. As such, the simulation includes some feedback loops: a
longer waiting time relates to a shorter dining duration and a higher
reneging probability, which shortens the expected waiting time of
subsequent customers in line. Similarly, a longer waiting time increases
the time until a customer returns, which shortens the expected waiting
time of future customers through a reduction of endogenously gener-
ated returning customers. Combining both exogenous and endogenous
arrivals to estimate the impact on revenue cannot be realized by

Fig. 5. Graphical representation of the relationship between predictors and the probability of reneging predicted by Model 2. Ribbons represent 95% confidence
intervals.

Fig. 6. Graphical representation of the relationship between predictors and the dining duration predicted by Model 3. Transparent ribbons represent 95% confidence
intervals.
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statistical models such as ARIMA because of the small share of custo-
mers that return, and because of the variation in time-lag between re-
turns. A discrete-event simulation enables us to evaluate the potential
impact of waiting time on revenue across different scenarios. We used
AutoMod™ version 14.0 to develop two model variants. The first variant
is a basic model, based on all real arrivals (first timers and returning
customers). This basic model was used to validate the waiting time
distribution generated by the simulation model, which demonstrates to
what extent we are able to replicate the operational policies employed
in the real restaurant. The second variant is the full model, which is only
based on first time real arrivals and where returning customers were
generated by the simulation. This full model was validated using the
distribution of returning customers and then used for scenario analysis.
Detailed information about the results of the validation and on how
specific the restaurant characteristics (number of tables, table assign-
ment, hours of operation, etc.) were employed in the simulation can be
found in Appendix 2. The simulation model includes several processes
that each customer group encounters at a restaurant: a customer arrival
and return process, a customer waiting or reneging process, and a
customer dining process. These processes are briefly described in the
following paragraphs.

5.1. Customer arrival and return process

The customer groups arrive at the restaurant facility in this process.
The basic simulation model uses all empirically observed customer
arrivals in the period February 2016–October 2016. See the detailed
flow chart in Fig. 7 in Appendix 2. The full simulation model only uses
the empirical first-time customer arrivals, and returning customers are
endogenously generated by the simulation model. The return time is
determined based on empirical Model 1 (in the case of a walk-in cus-
tomer), Model 4 (for reserving customers), or Model 5 (for reneging
customers). Following Bender et al. (2005), these survival models are
converted into an expected return time using the following equation
(see also the detailed flow chart in Fig. 8).

⎜ ⎟= ⎛
⎝

−
×

⎞
⎠

T
U

x
log( )

λ exp(β )'

1
v

(2)

where U is a random variable drawn from a uniform distribution be-
tween 0 and 1, and where the independent variables x , their coeffi-
cients β, the shape parameter λ, and the scale parameter v are obtained
from the empirical models displayed in Table 4 and 8.

5.1.1. Customer waiting or reneging process
The customer waiting or reneging process starts as soon as the

customer group arrives and a table category is allocated to the group.
The waiting time experienced by the customer begins at this moment.
Furthermore, the queue position upon entering the queue is plugged
into empirical Model 2 to determine the reneging probability of an
arriving customer group. This reneging probability is compared to a
random number drawn from a uniform distribution between 0 and 1. If
the reneging probability is higher than the random number, the cus-
tomer reneges. If the probability is lower, the customer waits until
being seated.

5.1.2. Customer dining process
Once a table becomes available from the assigned table category,

the customer is assigned to the table and the waiting time ends. The
customer then dines at the restaurant. If the customer group is based on
an empirically observed arriving group and the dining duration is
known, we use the known dining duration in the simulation. If the
dining times are not known or if the customer group is an endogenously
generated arrival, we use empirical Model 3 (Table 4) to estimate their
dining time. The customer waiting time obtained from the simulation
model is used as a parameter to estimate the dining time. After the

dining duration is over, the customer departs and the table is vacated
for use of the next customer group.

The results of the basic model validation (Appendix 2) demonstrates
that our model accurately simulates the operational policies used in the
restaurant, and the out-of-sample validation of the full model (Appendix
2) shows that our model is able to able to predict aggregate customer
behavior well. Furthermore, the full model validation shows that in-
corporating the dynamic (feedback loop) effects result in estimates that
are substantially more accurate than the estimates generated by a
model not incorporating these dynamic effects. In the next step, we use
the simulation model to assess the impact of several operational sce-
narios on customer waiting time, which affects the chances of reneging,
dining duration, time until revisiting, and hence, restaurant revenues.

5.2. Dynamic effects of waiting time

As mentioned in the description of the simulation model, a longer
waiting time leads to several consequences that might reduce waiting
time in the short-as well as longer-term. Similarly, a specific exogenous
reduction of waiting time is expected to result in a smaller effective
waiting time reduction. To explore if an equilibrium situation exists in
which the endogenous effect exactly counters the endogenous change in
waiting time, we have investigated the effect on average waiting time of
exogenously reducing the queue length. To identify the potentially
opposite dynamics that take place (exogenous arrivals vs. endogenous
effects) we run our simulation model with the queue based on actual
arrivals and corresponding waiting time, while using specific discount
factors for the waiting time parameters employed to estimate reneging
probability, dining duration, and return behavior in the simulation.
This approach allows us to compare the waiting time we would expect
based on the exogenous reduction of arrivals with the waiting time we
estimate using the endogenous effects. The results of this approach
indeed show that relatively small exogenous reductions of the waiting
time are partially offset by endogenous effects (people eat longer, re-
nege less often, come back sooner). A balanced situation occurs be-
tween a 15% and 20% exogenous reduction, where the effective re-
duction is approximately equal to the exogenous reduction. The results
also show that even larger exogenous reductions are in fact reinforced
by the endogenous effects. However, it should be noted that especially
the results for these larger reductions should be interpreted with care.
In this exercise, we pretend that we can extrapolate the empirically
identified effects. This assumption is reasonable for small reductions,
but results are substantially more unreliable for larger reductions.

Based on these results, we may conclude that while evaluating the
costs resulting from customer waiting time, it is necessary to employ a
system-wide perspective instead of a component-specific perspective.
For example, benefits resulting from a reduction of waiting time, should
be compared to associated costs of capacity, customer returns, and
goodwill.

5.3. Scenario analysis

We use the full simulation model to explore the relative impact of
different scenarios on the impact of waiting on the number of reneging
customers, returning customers, and revenue. For each scenario (‘base
case’ scenario, ‘reduction of waiting time’ scenarios, and ‘operational
strategies’), we run 15 replications and obtain 95% confidence intervals
for our estimates. Since the exact spending per person was not captured,
we use the known average spending per customer, depending on group
size: $15.65 per person for one or two-person groups, $18.78 per person
for three or four-person groups, $21.91 per person for five or six-person
groups, and $15.65 per person for groups of seven or more persons.

5.3.1. Base case
The actual number of customer group visits between February 2016

and January 2017 is 94,404. The input data for the base case scenario,
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in which we considered the empirically identified effect of waiting time
on return behavior, reneging behavior, and dining duration, included
70,579 unique customer groups. The simulation run for the base case
scenario resulted in an average of 93,451 total visits, including 23,036
return visits. The total revenue generated by the base case scenario is on
average $5,047,816, which is only 0.65% lower than the revenue
generated in the actual dataset. These results show that our model si-
mulates the actual situation accurately.

5.3.2. Reduction of waiting time
We demonstrate the impact of reducing waiting time on returning

customer visits in two scenarios. In particular, in the scenario ‘Half the
impact of waiting time’ we investigated what the expected restaurant
revenue would be if the waiting time could be reduced by 50%. The
results, displayed in Table 5, show that this would result in an average
wait of 4.69min and a total revenue of $5,289,538, approximately
4.8% higher than the base scenario. Note that the increased revenue is
the result of a combination of a reduction in reneging customers and an
increase in dining and returning customers. In Table 5, we also show
the potential impact of eliminating waiting from the restaurant alto-
gether. For this hypothetical reduction of the waiting time to zero, we
also logically assume that no reneging takes place. The resulting
average revenue is $5,780,657, or about 14.5% higher than the base
scenario. This increase shows that if the restaurant somehow would be
able to immediately accommodate all arriving customers, revenue
could be boosted substantially. It is important to realize that this result
even underestimates the potential of the true effect occurring in prac-
tice, as we do not capture customer balking in our model.

5.3.3. Operational strategies
In addition to providing estimates of the potential benefits, we also

tested the impact of three specific strategies that the restaurant could
employ. The first of those strategies focused on utilizing the backup
capacity that the restaurant could employ in case of excessively busy
times. More specifically, if the restaurant stretches its existing capacity
to the limit, it is able to open two additional tables of each category (14
tables with 76 seats in total), with the same staff. This corresponds to a
capacity increase of approximately 20%. The results (Table 6) show
that the average waiting time would be reduced from 8.52min to
6.26min, and that the total revenue increases to $5,437,041, a 7.7%
increase relative to the base scenario. It is important to realize that his

increase in revenue takes place with the original arrival pattern, and
without attracting any new customers to fill up the additional capacity.
Hence, we can conclude that for service providers that frequently op-
erate at full capacity, effectively managing customer waiting time
through buffer capacity utilization can generate additional revenue
without changing customer demand.

In the second operational scenario, we did not employ the backup
capacity but the seats and tables of the original capacity can be de-
ployed in a modular fashion. As such, we treated every seat as a discrete
resource, and therefore the restriction that every table can only host
one customer group at the same time does not apply anymore. This
meant that multiple smaller capacity units can be combined to form a
larger table, or split up to facilitate the seating of smaller groups. This
additional flexibility in customer assignment allowed us to reduce
average waiting time to 5.78min and to increase revenue to
$5,426,603, about 7.5% higher than the base scenario (Table 6). This
scenario demonstrates the maximum revenue limit that can be obtained
by using modular capacity unit, subject to spatial constraints. Hence,
for service providers that frequently operate at full capacity, effectively
managing customer waiting time through flexible capacity allocation
using modular capacity units provides another way to generate addi-
tional revenue without changing customer demand.

In the third operational scenario, we investigate the potential benefits
of stimulating customers to reserve a table. We acknowledge that not all
walk-in customers are able to make a reservation, but if the restaurant
could incentivize a share of walk-in customers to do so (through discounts
or the perspective of avoiding waiting time) capacity can be better mat-
ched with demand. In the base case (displayed in Table 5) approximately
10% of customers reserves in advance. We compare this cases with cases
in which no customers reserve, 30% of customers reserve, and 50% of
customers reserve. The results show the revenue gradually increases if a
larger share of customers reserves. This makes sense, because a higher
share of reserving customers implies that fewer customers will renege.
Interestingly, Table 7 also shows that the total number of visiting customer
groups decreases if a larger share of customers reserves. This can also be
explained by the fact that fewer customers renege, and that reneging
customers are more likely to come back sooner. If these customers dine
instead of leaving before being seated, they will generate not only more
direct revenue but also increase the average time until returning. As part of
this third operational scenario, we also investigate the potential gains that
can be realized if no customers renege. If the restaurant is somehow able to

Table 5
Simulated impact of the effect of waiting on revenue. The numbers between square brackets represent the minimum and maximum value obtained from 15
replication runs.

Feb 2016–Jan 2017 Base case Half the impact of waiting time No impact of waiting time

Total # of visiting groups [93,156–93,719] [93,083–93,819] [93,118–94,092]
Total # of returning groups [22,563–23,119] [22,487–23,226] [22,527–23,506]
Total # of reneging groups [12,364–12,629] [8357–8659] 0*
Total revenue generated [$5,033,312 - $5,062,320] [$5,271,271 - $5,307,804] [$5,749,495 - $5,811,818]
CI avg. waiting time (min) 8.523 ± 0.098 4.688 ± 0.048 0
Revenue relative to base – +4.7% +14.5%

*In case of no waiting time, we assume reneging does not take place.

Table 6
Simulated impact of operational policies on revenue. The numbers between square brackets represent the minimum and maximum value
obtained from 15 replication runs.

Feb 2016–Jan 2017 Extra capacity Chair pooling

Total # of visiting groups [93,153–93,986] [93,077–93,984]
Total # of returning groups [22,555–23,388] [22,482–23,387]
Total # of reneging groups [6118–6282] [6110–6403]
Total revenue generated [$5,413,145 - $5,460,937] [$5,409,652 - $5,443,556]
CI avg. waiting time (min) 6.256 ± .045 5.775 ± .027
Revenue relative to base +7.7% +7.5%
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avoid that customers renege (for example through reducing the perceived
waiting time by offering entertainment and distraction), the restaurant
revenue can be increased by 11.2%. Hence, for service providers that
frequently operate at full capacity, increasing the proportion of reserving
customers can reduce reneging behavior by preventing a mismatch be-
tween customer demand and capacity.

6. Conclusions and discussion

Research on longer-term consequences of waiting on performance in
service environments is scarce. This does not do justice to the relevance
of the topic for customers and businesses, which emphasizes the need
for more research in this direction. The current study makes a unique
contribution by combining empirical research on consequences of
waiting with a simulation model that shows the effects on customer
visits and revenue. Using only empirical models, we addressed RQ1 by
drawing relationships from historical data and showing how waiting
time affects return behavior, reneging behavior, and dining duration.
Likewise, by only using the simulation model, we could have observed
the effect of fixed parameter setting (with a distribution of dining times)
and a fixed arrival stream of customers on the customer waiting time.

However, our integrated approach enabled us to combine exo-
genous and endogenous arrivals, to handle effects that are non-linear
and non-stationary, and to incorporate (higher-order) time-varying in-
teractions. More specifically, to identify the dynamic consequences of
the combined empirically identified effects of waiting time, as included
in RQ2, we analyzed the effect of customer- and time-varying para-
meter setting on revenue outcomes of the restaurant. This integrated
simulation model considers the empirical relationships such as the
waiting time effects on dining duration and reneging probability
(through established relationships), along with other dynamic interac-
tions. The empirical relationships guided the parameter settings in the
simulation. While the isolated models (empirical and simulation) are
instrumental in capturing partial system effects, the integrated model
captures the system-wide effects in a more comprehensive manner. The
resulting comprehensive model also allowed us to explore the impact of
specific operational strategies on restaurant revenues, as posed in RQ3.
The results provide several important practical as well as theoretical
implications.

6.1. Implications for practice

In the empirical study we established that customers who are sub-
ject to longer waiting times are more likely to renege. If they do not
renege, customers who experienced a longer waiting time dine shorter,
and the time until they return to the restaurant increases. This finding
suggests that even though a restaurant manager could be satisfied by
seeing a queue of customers waiting for a seat at a particular night, the
long-term implications for the restaurant might be less positive. After
all, the customer has to decide whether the (expected) service provided
is worth the wait. On the short term, the customers in the queue will
result in a high occupation rate in the restaurant, and a queue might
even provide a positive signal towards new potential customers (Debo
et al., 2012; Kremer and Debo, 2015).

A separate question is if the identified impact of the isolated em-
pirical effects is relevant and adding value to the restaurant. To esti-
mate the overall impact on restaurant revenues, we demonstrated in
this study that it is necessary to use an integrated model that accounts
for the dynamic relationships between the variables we consider. For
example, the example of a 1.1% lower chance for a customer experi-
encing the average evening wait of 20 min does not simply materialize
into 1.1% fewer return visits in total. Instead, when fewer groups re-
turn, waiting time of other customer groups will be affected at a later
point in time, which then affects their reneging behavior and dining
duration. The specific combined impact of these variables, and the re-
lative importance of each variable, will be highly dependent on several
specific restaurant characteristics.

For example, as the simulation demonstrates, in the focal restaurant
a complete elimination of waiting results in a nearly 15% increase in
revenue. The generalizable relevance of the effects partly depends on t
extent to which the restaurant depends on repeating customers, table
categories and the number of tables per category, the availability of
alternative dining options, the reservation policy, etc. A restaurant at a
touristic location might not expect any returns anyway and might in
fact benefit from the signaling value of a queue. However, at touristic
locations a queue can be risky as well, as customers facing a long wait
might balk or renege. For a restaurant in a local neighborhood, re-
turning customers may be vital for its survival, but reneging might be a
smaller problem because alternative options could be unavailable. For
both types of restaurants, effectively managing queues and waiting time
is essential, but the impact of specific policies can be totally different
between cases. Furthermore, it should be noted that in the investigated
restaurant waiting is relatively pleasant, because customers do not
physically have to stand in line. This means they can engage in other
activities while waiting. As a consequence, the identified negative effect
of waiting time on reneging and return behavior could very well be
larger in contexts where customers are expected to stand in a physical
line. Our results demonstrate that ignoring the effect of waiting time on
customer reneging, returns, and the subsequent impact on arrival rates
can lead to highly unrealistic results in estimating operational perfor-
mance.

Various approaches could be taken to reduce waiting time in order
to decrease reneging behavior and to create more returning customers.
In case the marginal costs of additional capacity weigh up against the
marginal revenue per customer, capacity can be increased to reduce
waiting time during peak periods. Alternatively, differential pricing can
be employed to ensure that the customers with the highest reservation
price are facing shorter waiting times.

Even though the magnitude of the effect of waiting time is expected
to vary across specific contexts, the effect size identified in the current
study is likely to be an understatement because we do not capture
balking and potential spillover effects resulting from customers in-
forming other potential customers about the long waiting times.
Regarding the generalizability of the findings, we expect that the results
also apply in other service contexts without admission costs where
customers can engage in other activities while waiting, are informed
about their queue position, and have sufficient freedom to switch (in
terms of proximity and availability) and choose between service

Table 7
Simulated impact of the walk-in/reservation mix or absence of reneging on revenue. The numbers between square brackets represent the minimum and maximum
value obtained from 15 replication runs.

Feb 2016–Jan 2017 0% reservations 30% reservations 50% reservations No reneging

Total # of visiting groups [93,016–93,785] [91,862–92,520] [91,028–91,852] [89,138–89,989]
Total # of returning groups [22,412–23,184] [21,267–21,923] [20,429–21,264] [18,543–19,396]
Total # of reneging groups [12,715–12,971] [8811–9092] [6203–6461] [0 - 0]
Total revenue generated [$4,993,732 - $5,050,511] [$5,159,910 - $5,209,892] [$5,293,241 - $5,330,514] [$5,579,044 - $5,646,740]
CI avg. waiting time (min) 8.316 ± 0.112 9.072 ± 0.083 9.371 ± 0.107 10.712 ± 0.104
Revenue relative to base −0.5% +2.7% +5.2% +11.2%
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providers. The effects on dining duration might be restaurant-specific.
However, even though the data for this study was collected in the
specific cultural context and among a higher segment of customers, we
have no reasons to believe that the effects of waiting time on reneging
and return behavior would not apply in different service settings subject
to these similar conditions. Examples could include hairdressers, amu-
sement park rides, and take-away/delivery restaurants. Follow-up re-
search will be necessary to confirm whether the magnitude of the
identified effects is comparable across these other service-settings,
cultures, and customer segments. Less applicable contexts are call
center and healthcare queues. Even though these settings also involve
waiting, reneging, and return behavior, the limited opportunities for
customers to flexibly switch to alternative service providers distinguish
these settings from the research context of the current study.

6.2. Implications for theory

Short-term effects of waiting have been studied before in the op-
erations management and marketing literature. Still, several important
research gaps remain. First, despite the fact that waiting time has been
frequently linked to customer satisfaction (Davis and Maggard, 1990;
Houston et al., 1998; Taylor, 1994) and repurchase intention (Bielen
and Demoulin, 2007; Dube et al., 1994), the current study is unique in
providing clear Operations Management implications by demonstrating
to what extent waiting time materializes in actual reneging, altered
service requirements, and return behavior through empirical analyses
and simulation. The combination of these two methods is of pivotal
value in the current study. The empirical models alone rigorously de-
scribe the isolated consequences of waiting time, but it is impossible to
come up with estimates of the system-wide impact of waiting in prac-
tice and to explore how specific operational strategies interact with the
waiting-related dynamics. A simulation model alone is suitable to
model the basic dynamics of the service process, but does not fully
generalize to practice without adequately incorporating the empirically
identified waiting-dependent customer behavior. As such, we con-
tribute to the existing literature on waiting and its consequences in
multiple ways.

For example, the empirical results demonstrate that part of the
heterogeneity in customers' service requirements can be explained by
the waiting time they experienced (Gavirneni and Kulkarni, 2016; Wu
et al., 2018). This means that waiting time influences the operational
policy optimal to serve the customers who did not renege. In the case of
the investigated restaurant we observed a negative correlation between
waiting time and dining duration. In line with Wu et al. (2018), we
demonstrate that such a correlation can substantially impact
throughput and the resulting revenue.

Beyond the immediate change in service requirement caused by
waiting, the simulation enabled us to demonstrate the longer-term
impact of waiting through future arrivals. Typical queueing models in
operations management do not consider the potential effect that an
increase in capacity might result in an increase in customer arrivals
(Ittig, 2002). Our results show that including current waiting time as a
predictor of future demand (Ittig, 2002, 1994) leads to more accurate
estimates of the arrival rate, which has clear implications for capacity
management in service settings with a substantial dependency on re-
peating customers.

Third, the unique dynamic combination of empirical models in a
comprehensive simulation of the restaurant enabled us to demonstrate
that the restaurant can realize substantial gains in revenue through
increasing the capacity, allowing more flexible allocation rules, or sti-
mulating customers to reserve. Having customers reserve essentially
enables the restaurant to differentiate between flexible customers,
practically indifferent between multiple service providers, and dedi-
cated customers, with a strong preference for the specific restaurant (He
and Chen, 2018). Maglaras et al. (2017) and Afeche (2013) suggested
that this differentiation can be exploited if different pricing structures

or even strategic delays are used to differentiate customer classes, even
more so if the less-delay sensitive customers are more price elastic. Our
results suggest that the benefits of such customer segmentation might
be even larger when the longer-term effects of waiting or reneging on
customer returns are considered as well.

At the same time, the potential gains in revenue would be even
bigger in service contexts characterized by a positive correlation be-
tween waiting time and service duration (Wu et al., 2018). As such, the
results of the simulation analyses reinforce Gavirneni and Kulkarni's
statement that it is essential to focus on minimizing waiting-related
costs rather than on minimizing waiting time (2016). One promising
avenue through which the waiting-related costs can be decreased ca-
pacity is capacity sharing. This is more common in manufacturing
settings than in hospitality services, but could be beneficial for res-
taurants under specific conditions. For the focal restaurant, which is
characterized by clear peaks of visitors in weekends and in evenings,
this would entail teaming up with a neighboring restaurant with similar
work content but facing different demand peaks (Yu et al., 2015).

6.3. Strengths, limitations and avenues for future research

The combination between the use of empirical analyses on unique
transaction data and simulations to investigate impact on operations
and revenue is a vital strength of this study. At the same time, several
limitations still exist. For example, the empirical models are subject to
the assumption that all observations are independent. Since we propose
that waiting time relates to return behavior, and return behavior relates
to waiting time, this assumption cannot be strictly maintained in our
model. However, since waiting time will only influence a fraction of
return behavior (in addition to visit number, group size, etc.), and re-
turning customers make up only a fraction of all arriving customers, the
impact of waiting time on future waiting time is only a fraction of a
fraction in our empirical models. Consequently, treating the customer
arrivals as independent observations is not threatening the validity of
the findings. Still, in order to estimate similar models in contexts
characterized by a substantially higher dependence on returning cus-
tomers (and a low exogenous arrival rate), it is certainly necessary to
actively take this threat into account.

Another limitation is that we were only able to use the customer ID
of one customer in every customer group. Even though we control for
group size to at least partly mitigate this limitation, a visitor might also
change phone number in the meantime. This would mean that our es-
timate of the customer return rate is probably an underestimation of the
true rate and in reality the impact of the identified effects might be even
larger.

Also, we cannot deduce from the data at which exact point in time
reneging customer groups exactly abandoned the queue, and assume in
the simulation model that the reneging decision is revealed after they
have experienced the wait. In reality they will abandon the queue
earlier, and influence the remaining customers by doing so.

Furthermore, the models we estimated and the corresponding si-
mulation only consider customers who actually entered the queue or
were directly assigned to a seat. This means that we are not able to
draw any conclusions about the behavior of customers who balked and
decided not to enter the queue. For example, we currently do not know
to what extent queue length influences balking behavior, and to what
extent balking influences return behavior.

Also, we did not control for possible restaurant promotions or
changes in the menu offerings during the data collection period, which
might mitigate the negative effect of waiting. Follow-up studies could
include the potential impact of vouchers to encourage customer returns,
or the potential effect of peak pricing policies. An interesting next step
would also be to investigate whether the negative effect of waiting time
on return probability is mediated by lower customer experience eva-
luations.
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Appendix 1. Return behavior of reserving and reneging customers

Table 8
Survival models predicting return behavior of reserving and reneging customers

Model 4 Model 5

Parametric survival Parametric survival
model model

Subjects Reserving customers Reneging walk-in customers
Dependent variable Time until returning Time until returning

(days) (days)

Estimate Std. error Estimate Std. error

Evening (vs. afternoon) 0.196* 0.0958
Group size 0.0961** 0.0198
Visit number (Log) −1.604** 0.0642 −1.3824** 0.0735
Visit number (Log)×Group size −0.0447* 0.0226

Constant 7.518** 0.1086 7.07868** 0.0726
Observations 3020 9776
Scale/dispersion parameter (v) 1.25 1.27
Shape parameter (λ) .002 .004
Akaike Inf. Crit. 11,321 38,767

Note: ∗p < .05, ∗∗p < .01, the values between brackets represent standard errors of the estimates.

Appendix 2. Simulation protocols and validation

Protocols for the basic and full model simulations

The models simulate the customer arrival and dine-in process for the restaurant. In each model, each category of table is modeled as a multi-
server resource. Deciding the restaurant operating hours, number of tables to be opened in each category, the rule for assigning a customer group to a
table category, and the process to estimate the dining time for a customer group are described in the simulation protocols. Note that we do not model
waiter resources explicitly because we account for the delays in service and other resource congestion effects in the dining time estimates.

Time of operation: The simulation model for the restaurant assumes that the restaurant opens at 12 noon every day and accepts customer
arrivals until midnight. The time difference between the last customer arrival of the day and the first customer arrival from the next day ensures that
the operating hours of the restaurant is adhered. This time difference is reflected in the simulation by using the appropriate inter-arrival time
between the last customer arrival of the day and the first customer arrival of the next day. During this long inter-arrival time, all customer groups
from the previous day are cleared from the restaurant.

Number of tables in each category: We analyzed the number of tables that are made available in each table size category during one year. The
number of tables that are opened for customer seating does not only vary according to the day of the week, but also varies across afternoon and
evening hours on each day. To appropriately handle this, we collected descriptive statistics for the number of tables that are used on each day and
also per time interval of the day (afternoon versus evening) for each table category. In the simulation, we set the capacity of the tables based on the
75th percentile value of the number of tables used on a particular day of the week and part of the day. For example, while the number of available
tables with capacity four is 35, only 31 tables are opened during Sunday evening hours for 75% of the times. In contrast, only 25 tables are opened
for seating during Monday evening hours.

Table assignment: We analyzed the historical assignment of the category of table to a particular customer group and obtained the distribution of
table categories assigned to customer groups. For example, we found that tables of capacity two, three, four, five, and six were assigned to customer
groups of two persons during 66.37%, 12.35%, 19.13%, 0.20% and 0.12% of the occasions, respectively. We adopted these distributions to randomly
assign the category of table to customer groups. Note that the larger capacity table groups may be assigned to a customer group if lower capacity
tables are unavailable; however, it may also be assigned to the customer group if the customer group specifically requested a larger capacity table.
Since we are unable to distinguish the cause of assignment, we use a random assignment of tables based on the estimated probabilities.

Basic model description

In this model, the customer arrival times are based on real restaurant data. The real data indicates if the customer group is seated, and may
include multiple revisits of the same customer group. The fields present in the input data file are shown in Table 1.

Each table belonging to a table category is modeled in the simulation as a discrete server. Hence, each table category is modeled as a multi-server
system. Customer groups are first matched to a table category based on the assignment rule. The customer group then joins the queue that belongs to
its assigned table category. The tables are assigned to customer groups using a FCFS scheduling rule. Note that the size of the customer groups
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waiting in the same queue could be different. If the customer group finds an available table from its assigned category, the group is matched
immediately and no customer waiting for a table occurs. Else, the customer group waits in the queue for an available table. Customers may also
depart without being seated. When a customer group departs after having dined, we allow 5min to prepare the table for the next group. The waiting
time of a customer for an available table is recorded to obtain the distribution of waiting time. The simulation process for the basic model is shown in
Fig. 7.

Fig. 7. Basic simulation model, with steps followed for each customer group.
Note that the restaurant may adopt ad-hoc policies leading to extra flexibility that we do not capture in the simulation model, such as merging tables of lower
capacity to accommodate seating capacity for larger group sizes. Further, we do not account for any operational delay due to staff unavailability, or consider other
sources of variability in the system such as equipment breakdown. Due to the flexibility in seating arrangements in real-life and the actual number of tables in a
particular category opened for dine-in, we expect our model to introduce some errors in estimates of the customer waiting times observed at the restaurant for the
customer groups.

Full model description

The full simulation model is an enhanced version of the basic simulation model. In contrast to the basic model, where we had a single customer
arrival source (real restaurant data) and we considered only the customer arrivals for all customer visits present in the real restaurant data, the
customer arrivals used in the full model are combined from two sources: real restaurant data for first time arrivals (exogenous) and simulation-based
for returning customer arrivals (endogenous).

In the full simulation model, the empirical models are embedded for estimating the customer reneging probabilities and return times. The logistic
regression model developed in the empirical part of the manuscript (Model 2 in Table 4) is used to predict the reneging probability of a customer
group, and the survival models (Model 1 in Table 4 and Model 4 in Appendix 1) are used to simulate the customer revisit times. Note that the
simulated revisit customer arrival times may be interspersed between the real data arrival times for the first time customers. We assume that the
group size of a return customer group is identical to the group size of the same customer group during its previous visit. If the customer revisit time
falls during the restaurant non-operating hours, the revisit time is adjusted to 12 noon of the following day.

The steps followed for each customer group in the full model simulation are illustrated in the flowchart (see Fig. 8). The flow is similar to the
basic model except for the reneging probability and customer revisit time estimations. After a customer group arrives, a table category is assigned to
the customer. Subsequently, the customer waits for a table from that table category to be available. Once the table is available, the model estimates
the chance that the customer will renege as a result of the waiting time experienced at the restaurant (and the other predictors shown in Model 2 in
Table 4). If the customer reneges, then the time until revisiting is estimated (using Model 5) and the customer waits until coming back at the
estimated day. If the customer is seated, then the customer revisit time is estimated after the dining time and the customer waits until the estimated
revisiting day occurs.
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Fig. 8. Full model with steps followed for each customer group.

Basic model waiting time validation

We ran the basic simulation for a single run with a length of 274 days, using all real customer arrivals from February 1, 2016 up to and including
October 31, 2016. At the beginning of each day we added a random wait from the distribution of waits faced by customers visiting right after the
restaurant opens. This was done to account for the fact that the restaurant gradually prepares more tables. During the timeframe of the simulation,
73,159 customer groups (first timers and returning customers) visited the restaurant. The simulated waiting time distributions for customers visiting
in various group sizes are compared with the actual waiting time distribution observed at the restaurant. Table 9 and Fig. 9 show that actual and
simulated waiting times experienced are very similar.

Table 9
Descriptive statistics for the actual and simulated waiting times (in minutes)

Variable N Mean simulation Mean actual SD simulation SD actual

Waiting time single diners 322 7.49 6.91 18.27 17.62
Waiting time groups of two 22,179 15.79 14.13 27.40 22.61
Waiting time groups of three 10,841 19.02 19.02 28.45 27.45

(continued on next page)
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Table 9 (continued)

Variable N Mean simulation Mean actual SD simulation SD actual

Waiting time groups of four 8236 19.02 21.22 29.96 30.65
Waiting time groups of five 3738 20.46 22.56 32.95 31.97
Waiting time groups of six 2450 27.48 24.17 34.23 34.23
Waiting time groups of seven 1155 28.55 24.96 56.46 33.44

Fig. 9. Comparison of waiting time distributions between simulated and actual values for group sizes two, three, and four.

Full model validation of customer revisit distribution

In the full model, the customer arrivals were combined from two sources: real restaurant data for first time arrivals over the whole period of 12
months and simulation-based for returning customers. We first identified the visit time information for all customer groups that showed up for the
first time during the 12 month time period, resulting in a list of 70,579 unique customer groups. We used the customer arrival time (weekend vs.
weekday, evening vs. afternoon), customer group size, type of transaction (walk-in vs. reservation), and waiting time or queue position to estimate
the chance the customer reneges and the time of a revisit.

Using our full simulation model, we validated the distribution of the customer groups that revisit with the revisits realized in the last three
months. Table 10 shows the frequency distribution of the total number of customer groups returning to the restaurant and the number of reneging
customers in the last three months. We chose the last three months of the data for out-of-sample, because the empirical models were built using the
first 9 months data sample. For both statistics, we see from Table 6 that the multi-method approach (simulation combined with empirical models)
provides solid out-of-sample estimates of the frequency distribution of customer visits for different group sizes.

Table 10
Total number of customer groups returning and reneging in the last three months

Group size Return frequency Renege frequency

Simulation Actual Simulation Actual

1 55 77 14 10
2 4134 3899 1408 1416
3 1875 1765 695 661
4 1391 1382 524 490
5 530 553 216 205
6 343 382 131 138
7 133 122 48 46
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To establish that our model is also delivering substantially better out-of-sample predictions than a model that does not incorporate dynamic
effects, we employ an additional validation step. The dynamics in the simulation model are caused by the combination between the various empirical
effects we identified: the impact of waiting time on reneging, on dining duration, and on time until revisiting. Removing the dynamic effects
therefore means running a simulation in which the empirical equations are not based on waiting time. To do this, we remove waiting time as
predictor from our empirical deterministic models and estimate the coefficients of the remaining predictors. These equations are subsequently used
in the simulation model. Comparing the results (displayed in Tables 11 and 12) between the dynamic and non-dynamic simulation demonstrates that
the dynamic simulation fits the actual data substantially better, especially for the most commonly occurring group sizes (2–5 persons). Not including
waiting time as a predictor of reneging leads to a substantial overestimation of reneging and returning customers.

Table 11
Out of sample validation of the total number of customer groups reneging in the last three months, with and without dynamic effect of waiting time

Renege frequency

Group
size

Actual Simulation Deviation between simulation and
actual

Non-dynamic
simulation

Deviation between non-dynamic simulation and
actual

1 10 14 +40.0% 28 +180.0%
2 1416 1408 −0.6% 1847 +30.4%
3 661 695 +5.1% 902 +36.5%
4 490 524 +6.9% 615 +25.5%
5 205 216 +5.4% 274 +33.7%
6 138 131 −5.1% 152 +10.1%
7 46 48 +4.3% 70 +52.2%

Table 12
Out of sample validation of the total number of customer groups returning in the last three months, with and without dynamic effect of waiting time

Return frequency

Group
size

Actual Simulation Deviation between simulation and
actual

Non-dynamic
simulation

Deviation between non-dynamic simulation and
actual

1 77 55 −28.6% 66 −14.3%
2 3899 4134 +6.0% 4386 +12.5%
3 1765 1875 +6.2% 2015 +14.2%
4 1382 1391 +0.7% 1431 +3.5%
5 553 530 −4.2% 596 +7.8%
6 382 343 −10.2% 354 −7.3%
7 122 133 +9.0% 160 +31.1%
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