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A B S T R A C T

As industrial systems expand and complex systems are developed, it is no longer effective to minimize hazards
and risks for industrial safety using the technological solutions limited to a single industry. Thus, to resolve
complicated problems, safety technology has been developed by promoting technology innovation and con-
vergence. In this respect, this study aims at monitoring major safety fields and technologies through patent
analysis to identify the trends in technology development that prevent the risks of various industrial systems.
Patent information is effectively used for analyzing technology descriptions, which include the purpose and
newness of technology. Using this patent information, we propose the major safety fields and related technology
keywords using the following two techniques: (1) latent Dirichlet allocation (LDA), which aims to extract the
latent topics and main keywords contained in documents, and (2) network analysis, which is useful for mon-
itoring change patterns and relations. Further, the convergence trajectories of safety technology are identified to
provide insights about the technology trends in safety fields. The results are expected to enable safety managers
and engineers to effectively find relevant technology trends for reducing hazardous factors.

1. Introduction

In recent years, as the size of industrial systems has expanded and
advanced technology has been introduced in complex industrial sys-
tems, hazardous factors that cause major accidents, such as unstable
conditions and behavior, have become complicated (Strauch, 2015). It
is no longer effective to minimize these complex industrial risks for
industrial safety using conventional approaches that focus on specific
problems in an individual industry (Wahlström, 1992). It becomes
important to focus on the common safety issues shared across multiple
industries (Swuste et al., 2010). In this respect, safety management has
been highlighted to reduce the degree of critical risks by achieving
“technology convergence” in various industries including machinery,
chemistry, manufacturing, and construction (Kokangul et al., 2017;
Patriarca et al., 2017). Recently, technological solutions for safety
management have been developed by addressing complex factors
(Wahlström and Rollenhagen, 2014). As the size of industrial sites is
larger and the systems have multifunctional and interactive processes,
the risk factors are entangled with the locations, facilities, hazard ma-
terials, workers, and environment (Leveson et al., 2009; Reason, 1990;
Reiman et al., 2015). For example, in the complex safety systems of
smart factory or building information systems, managers have

attempted to reduce the faults and accidents through information
technology such as Internet of Things (IoT) and cloud network which is
capable of sensing physical signals in real time and controlling the
movement of facilities in advance. The system innovation through
technology convergence is recognized as useful ways for industrial
safety (McCray et al., 2010).

During the past decade, the importance of technology innovation
and convergence has been highlighted in various industries to achieve
breakthroughs (Clauss, 2017; Dutta and Hora, 2017; Priem et al.,
2017). In fact, many industries lead to emerging industry segments and
offer opportunities through technology innovation and convergence
(Geum et al., 2016; Song et al., 2017). On one hand, a few industries
have focused on improving product development and removing loss due
to inefficiency. On the other hand, rather than productivity, safety
fields more focus on eliminating hazardous factors and preventing fatal
accidents through technology innovation and convergence. By in-
tegrating various technological standards, risk management has been
also improved simultaneously, such as the international standards of
occupational health (OHSAS 18001), environment (ISO 14001), and
quality (ISO 9001), in industrial systems (Lafuente and Abad, 2018; Li
and Guldenmund, 2018; Oliveira et al., 2017). Recently, to provide a
systematic framework for preventing death, work-related injury and ill
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health, the ISO 45001 takes into account occupational health and safety
management instead of OHSAS 18001. One of the purpose of these
standards is to prevent the unintended risks and eliminate hazards
based on technological and engineering solutions (ISO, 2018). Thus,
understanding technology innovation and convergence enables safety
engineers and managers to plan, develop, and maintain industrial safety
systems according to the various standards.

Despite this importance of technological improvement in safety
systems, most previous studies have been limited to the development of
individual technological solutions by engineers (Lee et al., 2014; Silva,
2017) or the validation of determinants for safety management by
managers (Cornelissen et al., 2017; Zaira and Hadikusumo, 2017).
Several studies have tried to identify trends of safety research based on
bibliometric analysis of academic papers (van Nunen et al., 2017).
However, the perspective of policy and management in technology
innovation for monitoring the trends in safety technology development
and convergence has been less considered in academia and practice of
safety fields. Research on understanding the important trends in safety
technology is essential for forecasting the requirements of safety tech-
nology and designing safer industrial systems (Brocal et al., 2017). By
identifying major safety fields and their convergence trajectories, policy
makers can plan holistic roadmaps for industrial and societal safety
(Zou et al., 2017). In addition, monitoring the technology trends in
safety fields enables safety engineers and managers to introduce ef-
fective and useful technologies for developing reliable and robust in-
dustrial systems or processes.

Thus, this study aims at monitoring the major fields of safety
technology and identifying the convergence trajectory for safety tech-
nology development. This is achieved primarily by applying patent
analysis. Patent documents are more useful for analyzing more con-
siderable bibliometric information including abstracts, assignees, in-
ventors, classes, and citations than other documents sources such as
academic papers (Leydesdorff et al., 2014; Park and Yoon, 2014). In
this respect, patent analysis is a widely useful method that makes it
possible to provide an overview of the newness and innovativeness of a
large number of technologies in industries. Among the variables con-
tained in the patent database, this study focuses on text analytics using
the abstract of patent documents to extract the primary keywords of
respective technologies. To this end, this study proposes latent
Dirichlet allocation (LDA)-based network analysis as a systematic ap-
proach to applying two techniques. First, the text mining algorithm is
used to extract the frequently commented keywords contained in patent
documents. Then, the LDA algorithm is applied to determine the latent
topics of each patent document by estimating the topic probability from
given keyword distributions of patent documents. As a result, the topics
determined through LDA indicate the major technology fields that are
comprised of relevant technology keywords. Moreover, recent perilous
areas and related safety technologies are understood by extracting the

major safety fields. Second, the keywords related to the safety tech-
nology in the respective safety fields extracted from LDA are used to
construct a convergence network of safety technologies. The primary
keywords of the safety technologies that promote convergence are ex-
tracted according to the degree of strength of the linkage among key-
words in the convergence network. Further, the types and processes of
convergence trajectories are monitored to provide the evidence of
technology planning in safety fields. The results provide a clear picture
of the technology progress in the safety fields and help researchers and
practitioners consider new safety technologies and convergence issues.

2. History of safety technology and management

The safety issue in the modern industry first emerged from the in-
dustrial revolution of 1769. Efficient transportation and mass produc-
tion have been made possible by the increasing development of me-
chanical and electrical power. Simultaneously, the level of technology
and production has been rapidly improved. In contrast to this positive
impact, this industrialization has had a negative effect on occupational
safety and health in hazardous tasks (Swuste et al., 2010). In this re-
spect, to reduce this negative impact, the history of safety management
is divided into the following three ages: operations, human (worker),
and system (Dezfuli et al., 2011; Hale and Hovden, 1998; Li and
Guldenmund, 2018). The primary concerns of each age have been
changed according to the perspective of innovation (Hollnagel, 2014).
The history of industrial safety is summarized as shown in Fig. 1.

First, as the evolution of operations and technology includes all
industries such as mechanical, chemical, and electrical plants, nu-
merous accidents continue to occur because of the risks related to
plants, facilities, and materials (Hale et al., 1997; Swuste et al., 2018).
The hazardous side effects of operations have been recognized as the
unsafe conditions of a working environment through industrialization
in developed countries (Perrow, 1999; Swuste et al., 2010). Moreover,
the risk of danger in the use of machinery or equipment, such as a
milling machine and lathe, is rapidly rising. Because of these problems,
employers have focused on learning the safe use of machines and
maintaining a safe working environment (Reason, 1995). Thus, for the
next industrialization, the operational and technological methods for
industrial safety, such as shields, safe processes, and harmless materials,
have been continuously improved.

Even though the safety technologies in each industry protect em-
ployees from risks, accidents are no longer limited to only technology or
operation. In the second age, which started from the 1970s, the risks of
human errors, rather than the risks related to technology, are high-
lighted as unsafe behavior; e.g., the misuse of machines by workers and
the poor skills of workers (James and Dickinson, 1950; Kjellén, 1984;
Reason, 1990). Thus, the management of human factors and ergo-
nomics has been attempted in academia and practice (Miall et al., 1985;

Fig. 1. History of industrial safety (modified from Hale and Hovden, 1998).
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Nimbarte et al., 2010). Musculoskeletal and vital reaction issues have
been considered for improving, maintaining, and protecting the health
of workers (Valero et al., 2016).

However, as technology is continuously improved and the scope of
industries is extended because of enhancement in technology level and
increase in production scale, accidents occur because of complex
manufacturing processes and multiple risk factors (Perrow, 1999).
Thus, since the 1990s, a holistic approach to safety management sys-
tems has been introduced, focusing on the control of system safety
primarily through information technology (Stewart et al., 2009). All
safety requirements related to technology, operation, and humans are
administrated in social-technical system that aim to diagnose the risks
factors in physical environment and to forecast the emergency condi-
tions in industrial practice (Hollnagel, 2014; Leveson, 2011).

3. Research methodology

3.1. Research structure

This study consists of two analysis sections: identification of major
safety fields (Section 4.1) and convergence trajectory (Section 4.2) as
shown in Fig. 2. The first section includes analysis results of identifying
major safety fields using all patents granted from 2007 to 2015. Text-
mining algorithm is used to structure document-term matrix for the title
and the abstract contained in patent documents. In specific, the pre-
processing is conducted with stemming keywords and removing stop-
word using the “tm” package and the “textstem” package of R appli-
cation, respectively. Representative safety fields and their technology
keywords are then extracted using the “lda” and “topicmodels”
packages of R for LDA algorithm. There has been no consensus on how
to decide the parameters (Blei, 2012). Thus, we set that the number of
keywords that structure latent topics is 10 because it is difficult to
characterize the latent topics based on the small number of keywords.
Also, 10 of latent topics are selected to provide enough information on
safety fields. As a result, the result of this section presents the dominant
trends of safety technology with respect to the safety fields.

The second section aims at illustrating convergence trajectory using
co-word (co-occurrence) network analysis based on results of the LDA.
From 2007 to 2015, safety fields and their technology keywords in each
year are driven from results of LDA algorithm, respectively. Next, the
co-word matrix is made up by integrating technology keywords as-
signed into same safety fields. As a result, we trace the convergence
trajectory in terms of the number of co-occurrence of technology key-
words that are assigned into same safety fields. Lastly, we can monitor
the change of convergence trajectory, adjusting the number of co-oc-
currence.

3.2. Methods

3.2.1. Textmining algorithm
Text mining is the algorithm of extracting meaningful information

from unstructured text data (Hashimi et al., 2015). The main task of
text mining is to extract patterns or relationships of keywords contained
in multiple text documents in terms of their frequency or weight. Many
statistical and computerized algorithms are associated for information
retrieval, pattern recognition, and natural language processing
(Cambria et al., 2013; Spasić et al., 2014). The basic process is to
transform keywords (or terms) contained in text documents into
document-keyword matrix as described Table 1. This keyword structure
is especially called as a keyword vector. Based on the document-key-
word matrix, various datamining methods have been applied such as
clustering, latent semantic analysis, and sentimental analysis (Mostafa,
2013; Suh et al., 2017).

In this study, the term frequency-inverse document frequency (TF-
IDF) index is used to represent importance of keywords in the corpus.
The TF-IDF index is one of the widely used measures for calculating the
important weight of terms (keywords) in all documents (Kuang and
Xiaoming, 2010; Zhang et al., 2011). First, for term frequency (TF), tfi,j
indicates the number of term (keyword) j in each document i. Second,
inverse document frequency (IDF) is obtained by dividing the total
number of documents N by dfj, which denotes the number of documents
containing the term j. In general, the IDF is obtained from the logarithm
function. Consequently, the weighted term frequency of TF-IDF (wi, j) is
calculated based on the TF multiplied by the IDF as the following
equation.

= × = × ⎛
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3.2.2. LDA (latent Dirichlet allocation) algorithm
The LDA algorithm is a generative probabilistic model for topic

modeling based on collections of discrete data such as frequency and
text corpora (Blei, 2012; Blei et al., 2003). The LDA is considered the

Fig. 2. Research structure.

Table 1
Document-keyword matrix extracted from text mining algorithm.

Keyword 1 Keyword 2 … Keyword n

Document #1 tf1,1 tf1,2 … tf1,n
Document #2 tf2,1 tf2,2 … tf2,n
… … … … …
Document #m tfm,1 tfm,2 … tfm,n
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useful method for basic tasks of the natural language processes such as
classification, novelty detection, summarization, and similarity and
relevance judgments (Blei et al., 2003). The main tenet of this algo-
rithm lies in the basic idea that documents are represented as random
mixtures over latent topics, where each topic is determined by a dis-
tribution over words (terms). Put simply, latent topics are derived from
topic probability conditioned on the document distributions and word
probability conditioned on the topic distribution. As shown in Fig. 3,
when we have text information contained in documents, distribution of
words in given documents can be known. Using these information, topic
probability is inferred based on Gibbs sampling algorithm for empirical
Bayes parameter estimation. Consequently, several topics based on
words contained in a set of documents are classified. Since providing
possible probabilities that documents are included in each of topics
based on the word distribution, in the context of text modeling, the LDA
is useful in the case that the topic probabilities indicate an explicit
representation of words contained in documents (Lee et al., 2015).

3.2.3. Co-word network
Through the LDA algorithm for patents in each year from 2007 to

2015, safety fields and their technology keywords of each year are
extracted and the co-occurrence matrix of technology keywords is
constructed as shown in Table 2. For example, when a keyword 1 and a
keyword 2 are classified into a same topic in both 2007 and 2008, the
number of co-occurrence between keyword 1 and keyword 2 (i.e. both
Co-occurrence12 and Co-occurrence21) becomes two. In this respect, it
should be noted that the maximum number of co-occurrence can be
nine because the LDA is applied during nine years from 2007 to 2015.
This co-occurrence matrix is then used to develop the keyword network
that represents the degree of convergence of safety fields.

4. Results

4.1. Data collection

The patent documents are collected from the USPTO database, by
searching keywords: safety, technology, accident, risk, hazard, and
danger. The query of search keywords is structured with AND gate of
safety and technology and OR gate of accident, risk, hazard, and danger.
The patents may be differently gathered through the different queries of
search. However, because safety technologies and fields have been
unclearly defined thus far, we searched for the patents using general
words to collect a large size of the patent sample as possible. The data is
collected from 2007 to 2015 because this is the first year that the
number of patents is larger than 500. As a result, 6360 documents of

granted patents are gathered as the analysis target. The increasing
pattern is shown in Fig. 4, and the number of patents are continuously
increasing except year of 2009. It implies that the safety technology
started to be concentrated in practice from 2010.

4.2. Identification of major safety fields

Above all, the topics of patents extracted by the textmining and LDA
algorithm are summarized as described in Table 3. The textmining al-
gorithm is used to extract keywords of patent and these keywords re-
present the technology description contained in the abstract of patents.
Then, the LDA algorithm is applied to derive topics of patent documents
that are comprised of technology keywords extracted from the text-
mining. Lastly, the major safety fields are defined in terms of the like-
lihood of related technology keywords which are assigned into each of
topics. In fact, most of the safety fields have been considered interest
topics in practice. Although unnecessary keywords are eliminated au-
tomatically by stemming with the technology dictionary, the title of
topics is determined with the help of experts. However, during this
process, it is difficult to classify some of technology keywords into the
specific field because general keywords that describe safety technolo-
gies are included. For example, the topic 8 consists of common words
for worker safety such as member, body, or arm. In this case, we made a
title of the topic, manually investigating patents classified in this topic
with experts. Since this is the almost first study for defining safety
technology, we targeted numerous and various keywords as possible,
and then, with the help of experts, the safety fields are lastly specified.

The safety management means ‘a systematic control of worker
performance, machine performance, and physical environment’
(Heinrich et al., 1980). Consequently, according to this definition of
safety management, these safety fields are divided into threefold: op-
erations safety, worker safety, and system safety.

First, the operations safety is defined as the safety technology for
facility and process management in plant or construction sites. From
Topic 1 to Topic 6, most of technology keywords are involved in the
activities for machine, facility, and process management. To be specific,
the operations safety through R&D of machinery, chemistry, and
manufacturing engineering include equipment (field 1), electricity
(field 2), vehicle (field 3), pipe/plumbing (field 4), material surface
(field 5), and pressure/joint (field 6).

Second, several technology keywords are extracted to define the
worker safety based on prevention of workers' activities and behaviors.
The worker safety through management of working practice and or-
ganization consists of barrier (field 7) and work/musculoskeletal (field
8). The barriers have been considered defence of workers in physical
environment (Reason, 1995). Thus, compared operations safety, the
barrier for worker safety more focuses on how to safely operate ma-
chines and avoid dangers from the machines in workplace (Valero et al.,
2016), with respect to several technology keywords: prevent, block,
handle, stop, and actuate. Also, work/musculoskeletal has distinctive
features such as body, seat, support, secure, belt, and arm to protect the
workers' health.

Third, the system safety is defined by the technology keywords re-
lated to sensor, data, network, and information technologies. The

Fig. 3. Concept of LDA (Kim et al., 2018).

Table 2
Co-word matrix of technology keywords.

Keyword 1 Keyword 2 … Keyword n

Keyword 1 Co-occurrence11 Co-occurrence12 … Co-occurrence1n
Keyword 2 Co-occurrence21 Co-occurrence22 … Co-occurrence2n
… … … … …
Keyword m Co-occurrencem1 Co-occurrencem2 … Co-occurrencemn
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patents of sensor (field 9) and information (field 10) systems have in-
creased with respect to system safety. Such systems play a role in
gathering data and monitoring task information for maintaining safe
and sound industrial systems. The automated plant and the manage-
ment information system (MIS) are powerful to supervise the overall
situation of work sites such as the manufacturing factory and the con-
struction site. In fact, many studies on application of information
technology to made systems safer have been conducted in practice such
as detecting workers and information sharing (Fang et al., 2018;
Grabowski et al., 2018; Nath et al., 2017). For example, according to
IEC 61508, the building information management is focused on auto-
mating and controlling the particular objects in safety systems (Li and
Guldenmund, 2018; Novak et al., 2007).

To figure out the static status of the technological trend, Table 4
indicates that the safety field that has recently granted most patents is
information systems (122), followed by work/musculoskeletal (108),

pipe/plumbing, and material surface (104). With respect to safety filed
10, data information systems for designing safety systems are recently
interested in academia and practice. In fact, various industries have
substantially accelerated the application of smart and connected pro-
cesses such advanced information systems as internet of things, cloud,
and real-time processing. For increasing productivity and safety, the
information infrastructure is essentially improved as well.

A change of the average number and the average proportion of
patents in each safety field over time as displayed in Figs. 5 and 6,
respectively, is then useful for understanding a trend of safety fields.
The safety field that continuously published many patents from 2007 to
2015 is revealed as electricity (90.67), followed by pipe/plumbing
(81.44), equipment/facilities (79.89), and material surface (78.33).
Naturally, the average proportion has a similar pattern with the average
number as well; the safety field of electricity has comprised a large
proportion at 12.92%, and followed by equipment/facilities (11.67%),

Fig. 4. Change of the number of patents related to safety technology.

Table 3
Safety fields and their technology keywords.

Safety fields (topics) Technology keywords

Operations safety 1. Equipment/facilities Needle, assembly, house, mount, extend, spring, force, dispose, outer, inner
2. Electricity Control, signal, unit, switch, power, circuit, light, electrical, state, supply
3. Vehicle Vehicle, drive, present, operation, load, conjurer, relate, area, comprise, motor
4. Pipe/plumbing Position, lock, open, valve, mechanism, move, close, release, latch, flow
5. Material surface Side, surface, form, cover, plate, contact, structure, low, material, wall
6. Pressure/joint Less, connect, couple, configure, pressure, plurality, compromise, battery, module, gas

Worker safety 7. Barrier Safety, prevent, part, door, block, handle, slide, trigger, stop, actuate
8. Work/musculoskeletal Member, portion, body, seat, support, secure, belt, frame, arm, direction

System safety 9. Sensor systems System, sensor, communication, component, operate, detect, condition, embodiment, monitor, andor
10. Information systems Datum, safe, receive, user, process, information, determine, time, predetermine, value

Table 4
Patent statistics in safety fields.

Safety fields Number of patent in last year (2015) Average number of patents CAGR (number) Average proportion of patents CAGR (proportion)

1. Equipment/facilities 90 79.89 4.56% 11.67% −2.77%
2. Electricity 99 90.67 6.24% 12.92% −1.21%
3. Vehicle 94 68.33 7.43% 9.63% −0.11%
4. Pipe/plumbing 104 81.44 6.26% 11.64% −1.19%
5. Material surface 104 78.33 6.47% 11.24% −1.00%
6. Pressure/joint 84 56.22 13.27% 7.70% 5.33%
7. Barrier 47 38.67 3.04% 5.53% −4.19%
8. Work/musculoskeletal 108 71.44 11.88% 10.10% 4.04%
9. Sensor systems 87 67.22 6.14% 9.38% −1.30%
10. Information systems 122 74.44 10.47% 10.19% 2.73%
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pipe/plumbing (11.64%), and material surface (11.24%). This result
presents that operations safety has continuously focused during a
decade, and most of interest in safety has arisen from the attempts to
solve problems and prevent hazards with advanced technology.

Furthermore, the increasing rate of the number of patents and their
proportions in each safety field is an effective indicator to measure a
trend of safety technology. Among others, the measure of compound
annual growth rate (CAGR) is useful for monitoring a trend of safety
technology. The CAGR is calculated for identifying the generic ex-
ponential growth rate when the exponential growth interval is one year.
For example, if CAGR is equivalent to 5% for three years, the value of
final year, T3, is get through the value of first year, T1, multiplied by
(1+CAGR)3 (i.e. T3=T1 ∗ (1+CAGR)3). The result shows that in-
crease rate of several safety fields is remarkable. The steep growth in
the number of patent is represented in pressure/joint (13.27%) for
operations safety, work/musculoskeletal (11.88%) for worker safety,
and information systems (10.47%) for system safety. Also, only these
three safety fields show a positive CAGR of the proportion: pressure/
joint at 5.33%, work/musculoskeletal at 4.04%, and information sys-
tems at 2.73%. The others record a negative CAGR of the proportion

and especially the safety field of the barrier for worker safety presents a
remarkable decline rate (−4.19%).

4.3. Construction of convergence network of safety technology

The second approach is to identify the convergence trajectory using
the keyword co-occurrence (co-word) network. Through the LDA al-
gorithm for patents in each year from 2007 to 2015, safety fields and
their technology keywords of each year are extracted and the co-word
matrix of technology keywords is constructed. It should be noted that
the maximum number of keyword co-occurrence can be nine because
the LDA is applied during nine years from 2007 to 2015. This co-word
matrix is then used to develop the keyword network that represents the
degree of convergence of safety fields. When the frequency of co-oc-
currence is higher, it is indicated that the matching keywords are highly
correlated in convergence clusters. Thus, we can trace the trajectory of
technology change in a decade because the co-occurrence indicates the
degree of linkage during technology convergence (for more detail, the
overall keyword network is also shown in Appendix A).

After construction of technology keyword network, the initial basic
clusters of converging safety fields are grouped with respect to the
number of co-occurrence. As a result, the number of co-occurrence of
basic cluster is initially determined with six since the largest number of
co-occurrence has six. In other words, the keywords involved in the
initial basic cluster co-occurred in six years during nine years. Thus,
these basic clusters are indicated as the strongly connected safety fields
because there are the largest number of co-occurred technology key-
words. Table 5 summarizes basic clusters of safety technology and their
representative keywords that could define the types of safety tech-
nology clusters among 107 keywords.

The technology keywords organize six clusters and the basic con-
vergence clusters which include several safety fields are structured as
depicted in Fig. 7. The network is visualized using UCINET software and
structured through the distance-based clustering based on co-word
vectors. In general, the keywords that have similar keywords are closely
positioned.

The first convergence cluster is defined as the barriers for locking,
integrating safety fields of pipe/plumbing and barrier that include
technology keywords such as block, force, latch, movement, lock, position,
release, and engage. The second convergence cluster is process safety
that includes safety fields of pipe/plumbing and pressure/joint. This
convergence cluster is represented with such technology keywords: gas,
valve, flow, pressure, open, trigger, close, and fluid. This cluster includes
the safety technology for pipe management using pressure and joint
technology. Third, general engineering and managerial safety of work
environment is extracted as one of technology convergence among the
safety fields of equipment, material surface, pressure/joint, and work/
musculoskeletal. The main keywords structuring Cluster 3 are related to
machinery and human such as needle, assembly, mount, frame, surface,
seat, and material. This cluster mainly presents general safety tech-
nology for management of overall safety. Fourth, the convergence
Cluster 4 for electrical management safety is structured based on safety
fields of electricity and pressure/joint. This convergence cluster

Fig. 5. Change of the number of patents with respect to safety fields.

Fig. 6. Change of the proportion of patents with respect to safety fields.

Table 5
Basic convergence clusters of safety technology.

Basic convergence cluster Converging fields Main co-occurring technology keywords

1. Barriers for locking Pipe/plumbing & Barrier Block, force, latch, movement, lock, position, release, engage
2. Process safety Pipe/plumbing & Pressure/joint Gas, valve, flow, pressure, open, trigger, close, fluid
3. Working safety Equipment, Material surface, Pressure/joint, Work/

musculoskeletal
Needle, assembly, extend, mount, frame, surface, form, portion, secure,
attach, seat, dispose, material

4. Electrical management safety Electricity & Pressure/joint Switch, electrical, circuit, power, connect, supply, load, voltage, connection,
control

5. Safety monitoring systems Sensor & Information Signal, sensor, detect, process, datum, system, communication, determine
6. Vehicle systems (but no convergence) Vehicle Drive, vehicle, condition, state, brake, motor, location
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includes safety technology related to switch, circuit, power, supply, vol-
tage, and connection. Fifth, safety monitoring system related to in-
formation systems is classified as a basic Cluster 5. For the system
safety, safety fields of sensor and information systems strongly interact
with other technologies including keywords of signal, sensor, detect,
process, datum, communication, and determine. These keywords propose
the technology convergence for decision making in safety management
using sensor-based information systems. The sensor collects the data
such as human health and working environment, and the information
processing is then conducted to derive the valuable information and
knowledge for decision making of safety managers. Lastly, Cluster 6
that indicates vehicle systems is shown in keyword network. Cluster 6
plays a critical role in presenting strong connection among other key-
words in convergence network of lower degree of linkage in next ana-
lysis procedure although having a single safety field of vehicle in this
initial network, not a convergence.

Based on basic clusters, trajectory of technology convergence can be
traced in terms of linkage strength. As shown before, basic convergence
clusters have no connection between clusters of technology con-
vergence. When the number of co-occurrence decreases by 1 (from six
to five), several clusters start to interact with related clusters.

As shown in Fig. 8, the convergence network, which is made with
the number of co-occurrence of above five, shows two trajectories:
convergence between Cluster 1 and Cluster 3 and between Cluster 5 and
Cluster 6. The other clusters have still no distinctive linkages. This first
convergence network is defined as the particular barriers for locking
machinery in manufacturing in terms of technology keywords of engage,
extend, needle, and assembly in Cluster 1 and Cluster 3. The second
convergence network focuses on the sensor and information safety
systems for vehicle by liking between sensor of technology keywords in
Cluster 5 and drive-vehicle-condition of technology keywords in Cluster
6. The vehicle is first connected with another cluster in this stage.
Among sensor network technologies, the technology of sensor and in-
formation has been strongly converged for vehicle safety.

With the number of co-occurrence of above four, the convergence
trajectory is presented as shown in Fig. 9. Many convergence linkages
among technology keywords have started from the number of co-oc-
currence of above four. The technology keywords in each cluster have
been mostly interconnected and several clusters begin to be connected.

Three major types of convergence network are presented: linkage be-
tween Cluster 3 and Cluster 4, between Cluster 3 and Cluster 5, and
between Cluster 4 and Cluster 5.

The Cluster 3 and 4 are connected through the keywords of house
and contact contained in Cluster 3 and Cluster 4, respectively. This re-
sult implies that a part of technologies related to electric shock caused
by a short circuit of contact in the house are developed; further,
buildings such as plant, and any buildings can be concerned as a house.
The electricity safety is improved and converged focusing on the house
for the life of human beings and workers.

Furthermore, it is interestingly found that the convergence focusing
on Cluster 5 for system safety suggests distinctive significance for in-
formation systems in electricity and in vehicle. First, the hub keywords
which link Cluster 4 with Cluster 5 are identified as control, signal, and
sensor in terms of the number of linkage. These keywords take the
control factors for electric wiring systems using sensor systems into
account. The direct link of keywords between control and signal presents
the automated management systems in electric power of safety fields
such as plant and construction sites: power-circuit-control-signal-sensor-
process-detect-datum. Thus, it is noted that this convergence trajectory
focuses on control problems for safety fields. Second, the hub keywords
which connect between Cluster 5 and Cluster 6 are extracted as sensor,
vehicle, drive, and condition in terms of the number of linkage. These
keywords are referred as to the safety technology for vehicle is in
particular being highlighted for managing drive conditions based on
sensor technology. In general, the traffic accident is considered one of
the most important safety fields and thus, this convergence network
indicates that safety technology related to the road safety for driving
vehicle has been developed. To be specific, during the decade, the di-
rect linkage among detect-time-determine-sensor-drive-vehicle-condition is
progressing incrementally. Compared with other products, the vehicle
industry has been improved as an independent safety field by pro-
moting convergence in technology and system safety fields.

In the end, at the number of co-occurrence of above three, the
keywords are completely connected as the whole convergence network
as shown in Fig. 10. Two paths of convergence trajectory are mon-
itored: Cluster 1 and Cluster 2, and Cluster 1 and Cluster 3. These two
paths are simply summarized as technology convergence for operations
safety in general safety fields.

Fig. 7. Initially basic convergence clusters of safety technology.
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5. Discussion

5.1. Types of safety technology convergence

According to the change of connection among technology keywords
in clusters, significant trajectories are detected to explain the types of
safety technology convergence. We summarize distinctive convergence
network as described in Table 6.

With regard to the degree of strength, different perspectives can be
discussed. First, the strong convergence as shown in Fig. 8 presents the
dominant trends of all safety technologies. The results of patent analysis
represent two convergence trajectories are progressed for machinery

safety and vehicle safety. In practice, the machinery safety is essential
for workers' life, and thus, many barriers are developed and perilous
tasks tend to be automated for preventing accidents in plant. Also, a
vehicle is most important transportation in modern industry, but it is
one of the most perilous factors that cause accidents as well. Con-
ventionally, the vehicle safety is considered in traffic and driver safety.
Thus, many technologies have been infused into the vehicle, including
the sensor-based information technologies for checking conditions of
parts such as engine, tire, and dashboard and them of drivers such as
stress, health, and mental of drivers.

However, the context of strong convergence network is somewhat
broad to understand which safety technologies have been made in more

Fig. 8. Convergence network: the number of co-occurrence of above five.

Fig. 9. Convergence network: the number of co-occurrence of above four.
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detail. The weak convergence network as shown in Fig. 10 is useful for
identifying specific technologies for safety. For example, the vehicle
safety presented in weak convergence network shows explicit tech-
nology functions according the combination of a few keywords. The
main technology of vehicle safety is revealed as the support functions
during driving vehicles. For example, the patents included in this
cluster are mostly related to advanced driver assistant systems (ADAS).
In addition, some patents related to electronic control units (ECU) are
identified and this pattern shows the connection among Cluster 4, 5,
and 6. Thus, the weak convergence network is meaningful for ex-
tracting particular safety technologies.

5.2. Convergence trajectories of safety technologies

According to the strength of linkage as shown in Fig. 11, con-
vergence networks are structured through distinctive development
paths; based on the main Cluster 3, 4, and 5, the convergence trajec-
tories are divided into threefold. The left side of Fig. 11 shows strong
convergence fields based on Cluster 1–3 and Cluster 5–6, while the right
side of Fig. 11 represents weak convergence fields based on multiple
clusters related to Table 6. Through the change of paths from weak
linkage to strong linkage, several types of the convergence trajectory
can be defined.

The first trajectory is dominantly changed through the convergence
across Cluster 1, 2 and 3. This trajectory has been improved for the
general machinery safety in the production process of plants. The pipe/
plumbing contained in Cluster 1 and 2 is revealed as a main safety field,
but it is identified that a wide range of safety fields for general ma-
chinery safety, not limited to pipe/plumbing, are included by

monitoring technology keywords in Cluster 3 such as needle, assembly,
attach, structure, cover, surface, and mount. Also, several human fac-
tors such as body, seat, and belt are shown in this trajectory.

The second trajectory is focusing on Cluster 5 connected with
Cluster 3 and 4. As the automated machinery and electricity systems
were developed for productivity and health management, the sensor
and information systems (Cluster 5) have been introduced in plants of
manifold industries. In fact, recently, the smart factory for the efficient
production based on application of Internet of Things (IoT) has been
highlighted in academy and practice as well. Thus, the support system
based on information technology has been continuously converged and
improved for maintaining safety of various industries.

The third trajectory presents the development path of vehicle safety
which interact between Cluster 5 and 6. The target of safety is focused

Fig. 10. Convergence network: the number of co-occurrence of above three.

Table 6
Types of safety technology convergence.

Type Purpose Safety technology convergence Related clusters

Strong convergence network Identifying dominant trends Barriers for locking machinery in plants 1, 3
Sensor and information safety systems for vehicle 5, 6

Weak convergence network Identifying particular technologies Prevention from electric shock in the buildings 3, 4
Control factors for electric wireless systems using sensor systems 4, 5
Sensor-based vehicle control systems for managing drive conditions 5, 6

Fig. 11. Types of convergence trajectory.
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on the product level in operations safety. Many sensor and information
technologies have been applied into improving vehicle itself and
driving conditions. During a century, technology innovation in vehicle
shows a remarkable achievement along with technology convergence
among machine, chemistry, production, fabrication, design, and in-
formation. In future, the unmanned vehicle is being developed with
numerous electronic and information technologies, and thus, the con-
vergence network in vehicle safety will be concretely structured by
improving support technology which prevents accidents in advance and
maintains safe driving.

5.3. Implications of future safety management

Furthermore, we suggest the direction of technology convergence in
safety fields. The convergence trajectory #1 (CT #1) includes tech-
nology in safety of facilities in the plant, focusing on operations and
worker safety. This trajectory has been developed for technology in
practical sites such as chemistry, manufacturing, and construction sites.
Next, the convergence trajectory #2 (CT #2) is defined as information
system for supporting industrial sites and workers by designing safety
management systems. This trajectory has been improved through
overall innovation in operations, worker, and system safety. Lastly,
convergence trajectory #3 (CT #3) includes safety technology for ve-
hicle products. This trajectory has emerged through operations and
system safety because workers are not involved in product safety. It is
indicated that each of convergence trajectories is related to the target of
safety for site, support, and product, respectively. Among others, the
information technology (CT #2) as complementary for the system
safety has been dominantly developed to mediate the safety manage-
ment for industrial sites (CT #1) and vehicle (CT #3).

Thus, in future, sensor-based information technology along with CT
#2 can be considered a very opportune issue in constructing safer
systems for workers and be strongly applied into various industry sites.
Recently, many studies have already been tried to develop the smart
factory and construction using new information technology such as
Internet of Things (IoT), Cyber-Physical System (CPS), and digital twin
architecture (Albino et al., 2015; Fang et al., 2018; Nath et al., 2017).
The IoT has been introduced in preventing accidents by automating
processes of factory layout and CPS has designed with IoT systems and
digital twin applications (Sung, 2018). For example, the Siemens, which
is one the global corporates of manufacturing technology, has con-
centrated on intelligent manufacturing systems for high quality and safe
manufacturing processes using IoT and CPS (Li, 2017). Constructing
intelligent systems, many manufacturing and process companies have
struggle to increase productivity with reducing perilous risks.

Consequently, along with the dynamic change of safety issues
during history of industrial safety, safety technology convergence has a
positive impact on the human health and society. During the history of
industrial safety, this study notes that technology and social con-
vergence plays a critical role in safe and secure working environment
and society. Many fields of technology have been related to each other
for preventing risks of industry practice. Ultimately, identifying con-
vergence trends of safety fields and technologies should be required in
the recent age. Through integration among many safety fields and
technologies, effective strategy of safety technology management can

be formulated by safety engineers and managers. Thus, we also attempt
first to identify which technology fields are mostly related to safety
technology and to investigate the potential technology that is applied to
future industrial fields.

6. Conclusion

This study presents change and evolution of technology develop-
ment for investigating various industrial safety issues. The safety
technology has continuously been improved for protecting perilous and
hazardous factors, covering all aspects of the safety fields, but pre-
viously, the studies of identifying major safety fields and technologies
have rarely been conducted. Thus, the contribution of this study lies on
monitoring major safety fields and improvement trajectories for pro-
viding the safety managers and engineers with practical insights. This is
almost first approach to identifying the types of safety technology fields
and the change of safety technology development. By visualizing con-
vergence clusters and trajectories, we also monitor which technologies
are mostly developed for safety. According to path of convergence
trajectories, it is indicated that safety technologies are developed for
safety in industrial sites, information systems, and vehicles. Each of
safety technologies is directly or indirectly related to operations,
worker, and system safety as well. The highlight of this study is that
information technology is a dominant trend and plays a critical role in
mediating between safety managers in the control tower and workers in
the industrial site. Also, needs of product innovation in safety such as
vehicles are addressed.

Despite these contributions, several research issues have arisen for
constructing better safety systems. First, although this study shows the
dominant safety technologies based on the keywords, the detailed
technology specifications for safety innovation are not commented. For
providing more implications for managers and researchers of safety
technology, we should take a look at individual patent descriptions. By
defining the scope of industry and industrial safety more precisely in
future study, the specific outcomes of technology description can be
derived as well. Second, the patent networks can be used to solve
problems of industrial systems, matching with risk and hazard factors.
By using risk keywords extracted from accident reports, new insights
are obtained to find and forecast new technology that solve risky pro-
blems in practice. Providing detailed technology specifications and
applicable technology for dealing with risky problems, we propose
practical guidelines based on patent analysis. Further, when we can
gather the text-based accident data, the new technologies are usefully
predicted by matching risk keywords contained in accident report
documents published by Occupational Safety and Health
Administration (OSHA) or International Labor Organization (ILO) and
technology keywords contained in patent documents, based on data
analytics such as novelty detection methods or machine learning al-
gorithms.
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Appendix A. Detailed convergence network

* Node size represents the number of keyword occurrence
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