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A B S T R A C T

In this work, we show the influence of sensor system measurement uncertainties to sensor system reliability and
ways to meet reliability targets. A general model to handle measurement uncertainties is defined and the ac-
cording influence to reliability is presented, which is defined as probability of meeting specification require-
ments. Initial step is to optimize sensor systems concerning lowest influences of sensor system parameter fluc-
tuations to the measurement uncertainty using statistical optimization methodologies. In case the influence of
unknown nuisance parameters cannot be sufficiently suppressed, such parameters may be additionally measured
in order to further reduce measurement uncertainties. The remaining uncertainties are again addressed using
statistical optimization methodologies. Finally, measurement uncertainty also affects the reliability of such a
system. For sensor systems in safety critical applications it may thus be required to include measures such as
redundancy. This is also included in the investigations. Further examples for explained optimization meth-
odologies of measurement uncertainty reduction are presented.

1. Introduction

Our modern world is fully digitized: starting from consumer goods
such as mobile phones, TVs and body scales, going to vehicles such as
cars, airplanes and trains to automated production lines based on
human-robot-interaction. All of these electronic devices need a way to
interface to the real, physical world: commonly, sensor systems present
a way to realize this interfacing. These sensor systems present the
means for electronic systems to comprehend their environment.
Depending on the application, it is more or less important that this
comprehension is truthful and dependable. As soon as a physical
quantity of interest and its representation (analog or digital) from
sensor systems differ too much in value, this is either useless – in case of
the smart watch which does not reliably sense our heart frequency – or
dangerous in case of the accelerometer which is in charge of the airbag
control. Sensor system reliability is thus a major concern, not only in
terms of customer satisfaction, but also for safety reasons. In this work,
we consequently present means to define and quantize reliability by
introducing a general mathematical model. Ways to improve the sensor
systems' reliability are presented: one way is to use optimization
methods of the existing systems using statistic optimization techni-
ques [1], another way is to additionally measure known, correlated
disturbing influences and compensate those [2, 3], and also a combi-
nation of both approaches is possible. Where the effort is justified by
the application, redundancy can be a way to improve the sensor system

reliability, especially for safety requirements. The latter is often the case
in standardized safety related automotive applications [4].

1.1. Sensor system definition

A general abstraction of a sensor system is illustrated in Fig. 1. Here
θ is the physical quantity of interest. Depending on the employed sensor
effect, this is further converted into the electrical domain by the sensor
front-end or subsequent circuitry. It is now an (analog or digital)
electrical quantity and represented by the Random Variable (RV) Y. A
RV basically is a function which, besides possible deterministic vari-
ables, also depends on random, i.e. unknown, inputs. In system theory,
such functions, which describe the way of how a system acts on a
quantity of interest, are often also called transfer-functions. Here, it is
assumed that Y depends on systematic influences (bias-voltage, cali-
bration-parameters, stress etc.) [2, 3] as well as random influences
(noise, Electro Magnetic Interference (EMI) etc.) introduced by the
sensor front-end and/or respective circuitry. To reconstruct the physical
quantity from the electrical representation Y, a mapping function as
part of the digital signal processing is necessary. This mapping function
is termed an estimator for the physical quantity of interest and its sensor
system output value is often denoted as ̂θ to indicate the relation to the
true physical quantity of interest (θ). This estimation even can be
performed inside the sensor system with electrical output values in-
terpreted in the same physical quantity as θ [1].
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1.2. Sensor system deviations

The way to express measurement uncertainty and methods to
mathematically deal with them are defined in the Guide to the expression
of uncertainty [5] and respective supplements. For existing sensor sys-
tems, the tolerable uncertainties and deviations are limited by specifi-
cations. When a new sensor system is implemented, these specifications
are the design criteria for sensor system optimization. As explained
before and compare Eq. (1) the sensor circuit output value Y (or output
vector Y) depends on systematic parameters, now termed ξ, and random
terms, which we now call τ. In terms of transfer-functions, we can split
it into the ideal transfer-function h(⋅) and the deviation transfer-func-
tion e(⋅). From measurements, Y an estimation of θ called ̂θ can be
found via u(⋅) by Eq. (2). The final deviation in Eq. (3) is the difference
between sensor output and ideal value.

= +Y h θ ξ e θ ξ τ( , ) ( , , ) (1)

̂ =θ u Y ξ τ( , , ) (2)

̂= −θ θΔ (3)

Some of the most common sources of measurement uncertainties and
deviations are:

• Noise (thermal, quantization)

• Production (spread)

• Influencing parameters (temperature, stress)

• Calibration (calibration deviation/quantization)

• Lifetime drifts (aging)

• External sources of deviation (Strayfields, EMI)

• Sensor system faults

1.3. Definition of reliability and unreliability

The reliability of a sensor system acc. [6] is defined as the ability of a
product to perform a required function at or below a stated failure rate for a
given period of time. We further define the required function as correctly
providing measurement results within the specification limits at spe-
cified conditions (e.g.: temperature, supply-voltage, lifetime). In en-
gineering, a more often used term is unreliability which is the prob-
ability of a sensor system providing measurement value outside the
specification (failures). Several standards are available dealing with
reliability or unreliability (eg.: Ref. [7]) or at least to verify them in
automotive [8], industrial [9] and general dependability stan-
dards [10]. In this work, we consider measurement uncertainty as
Gaussian distributed deviations of the sensor output value ̂θ from the
ideal output value θ according Eq. (3). Since we assume Gaussian dis-
tributions of measurement deviations with average deviation μ and
variance σ2 according to the general definition of the respective prob-
ability density function (pdf) shown in Eq. (4) there is always a prob-
ability larger than zero to violate specification limits, mathematically
because of the infinite spread Gaussian distribution. In this work we
assume hardware-faults as Gaussian distribution with larger and un-
known variance. As the variance of deviations caused by faults is un-
known, we consider the worst case. In practical setting, a maximum

number of specification limit violations are allowed and measured as
probability in % or parts per million (ppm). An example with sensor
deviations in % of measurement full-scale-range (%FSR) acc. [11]
comprising statistical and systematic deviations is shown in Fig. 2.
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Unreliability in this sense is the integral of all probability densities
outside the minimum and maximum specification limits± Δspec.
Mathematically it can be written as shown in Eq. (5). This unreliability
or probability of specification violation is dependent on mean-value
and variance of this modeled Gaussian distribution. These probabilities
can be determined relative to the specification limit according Fig. 3.
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2. Sensor system optimization methods

We want to optimize the sensor output concerning reliability to
provide sensor output values within specification limits. In general, this
optimization criterion can be defined by ψ(⋅), which depends on the
input variable θ and the design parameters ξ. Since θ is given, only the

Fig. 1. General block diagram of a sensor system with transfer of a physical
quantity θ into electrical signals Y with estimation to an interpretable output
value M to get an interpreted estimation of the real value ̂θ .

Fig. 2. Gaussian distribution of all present measurement uncertainties shown
together with specification limits in logarithmic scale.

Fig. 3. This graph shows the safe/unsafe operating area (SOA) of a sensor
system providing data within specification limits and assuming Gaussian dis-
tribution of deviations with parameters mean and standard-deviation. These
parameters are scaled in % relative to the specification limit and thus are valid
for all possible limits.
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design parameters ξ can be used for optimization, optimal parameters
can be found by Eq. (6).

=
∈

ξ ψ θ ξ* arg min ( , )
ξ Ξ (6)

=ξ ξ ξ ξ ξ{ , , , }G P Y E (7)

=τ τ τ τ τ{ , , , }.G P Y E (8)

Systematic design parameters ξ contain contributions of different
sources shown in Eq. (7), where G represents geometric parameters, P
material parameters, Y sensor circuit parameters and E estimator con-
figuration parameters. Nuisance parameters τ contain contributions of
the same sources shown in Eq. (8).

=E τ{ } 0 (9)

=cov τ E ττ{ } { }.T (10)

The nuisance-parameters are zero mean shown in Eq. (9) and contain a
certain covariance according Eq. (10).

We can apply now following different methods to find these opti-
mized sensor system parameters:

2.1. Sensor system optimization using statistical methods

When disturbing influences are not known beforehand and the ef-
fort to determine possible correlations is difficult or even infeasible (e.g.
fabrication process is not well-studied), one way to reduce the influence
of these deviations is by design optimization. System parameters can be
shifted to optimum values as shown in Fig. 4 according to Eq. (6),
where the spread of influencing parameters have lowest influence to the
optimization criterion, which is the case for optimal-point B in this
figure. Several methods from optimal design of experiments and their
optimality criteria can be used to minimize the effect of influencing
parameters.

Various statistical optimization methodologies are described in re-
lated literature, such as Refs.[1, 12, 13] and [14]. Basically, we can
distinguish on one hand between optimizations where the Fisher-In-
formation (or the inverse of it) is used, and on the other hand Bayesian
principles.

2.1.1. Fisher information based optimization
The design parameter vector ξ comprises all information describing

the configuration, such as the sensor location, measurement reference,
and transfer-characteristics. The aim is to find the configuration ξ* that
minimizes the probability of output value change by additional mea-
surement values. The amount of information about the variable of in-
terest which is contained in the observed variable is called the Fisher
information I. The inverse of the Fisher information I−1 is also called

dispersion D defined by Eq. (11)

= −D I 1 (11)

and represents a lower bound for the variance of any unbiased esti-
mator for the parameter in question, see Eq. (12).

̂ ≥var θ
I θ ξ

( ) 1
( , )

.
(12)

The Fisher information I in this sensor system is given by Eq. (13):

= − ⎧
⎨⎩

∂
∂

⎫
⎬⎭

I θ ξ E
ln p x θ ξ

θ
( , )

( ( ; , ))2

2 (13)

The optimal design configuration ξ* can be found by Eq. (14) where H
represents the possible design space.

=
∈

ξ D θ ξ* arg min ( , )
ξ H (14)

In case of linear models where the transfer-function can be treated in-
dependent of input parameters, a Minimum Variance Unbiased Esti-
mation (MVUE) of transfer-characteristics defined by Eq. (15) can be
applied.

= ⋅ +Y h ξ θ w( ) . (15)

There, w represents Additive White Gaussian Noise (AWGN) and all
random influences are gathered in this noise-term. The Fisher in-
formation then can be gathered by Eq. (16) to get estimated physical
quantities by Eq. (17) and further optimized sensor system parameters
by Eq. (18).

=
⋅

I
h ξ h ξ

σ
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̂ = ⋅ ⋅ ⋅−θ h ξ h ξ h ξ Y[ ( ) ( )] ( )T T1 (17)

= = ⋅
∈ ∈

−ξ D ξ h ξ h ξ* arg min | ( )| arg min |[ ( ) ( )] |.
ξ H ξ H

T 1
(18)

There, ξ* represent the optimal parameters for ξ according D-optimality
criterion.

In the general, Gaussian case according Eq. (19)

= +Y h θ ξ w( , ) (19)

the uncertainty of measurements can be modeled using jointly Gaussian
distribution with certain variances expressed in the covariance-matrix
C, the Fisher information can be obtained from Eqs. (20) and (21) ac-
cording [1].
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Several criteria using the inverse of the Fisher information called dis-
persion D shown in Eq. (11) to optimize the influence of design para-
meters are available: The most common target is the D-criterion which
uses the determinant of the dispersion matrix, see Eq. (22).

=
∈

θ ξ D θ ξΨ ( , ) max | ( , )|.D
θ Θ (22)

Other optimization criteria based on the dispersion matrix use the trace
(A-criterion) or the eigenvalues (E-criterion) of D. These criteria how-
ever assume unbiased and optimal estimators.

2.1.2. Bayesian optimization methodologies
Often, we do not know about design-parameter uncertainties, but

we roughly know properties of their distributions such as the mean and
variance (i.e. tolerances given by the manufacturer). Having such in-
formation at hand, together with the knowledge of distributions of the
parameter to be estimated, this allows to construct a Bayesian mean

Fig. 4. Optimization of sensor systems with uncertainties also consider the
statistical spread of influencing parameters ξ to the optimization criteria ψ.
Optimum point B in this figure leads to lower spread than Optimum A, however
the peak optimum point is less accurate, but it does not consider the real world
unavoidable spread of influencing parameters.
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square error estimator. Estimators based on the Bayesian approach
allow the consideration of prior knowledge. Many estimators may exist,
which are optimal with respect to a certain point of the design, but the
Bayesian methodology will yield an estimator which results in the best
on average for the entire domain [1]. Such an estimator is found by
minimizing the mean square error (MSE) or Bayesian Mean Square
Error (BMSE). Optimization applying the Bayesian mean square error
are done according Eqs. (23), (24) and (25).

̂ ̂= −BMSE θ E θ θ([ ] ) {( ) }i i i
2 (23)

̂ ̂∫ ∫= −BMSE θ θ θ p y θ dθ dy([ ] ) ( ) ( , )i i i i i
2

(24)

̂ ∫= =θ θp θ y dθ E θ y( | ) { | }. (25)

In classical approaches, all deterministic parameters are taken into
account. Particularly, this means a necessity to consider the nuisance
parameters as well since they are considered deterministic. Here, and
this motivates the Bayesian approach, it is possible to exclude the
nuisance parameters by integration over their pdfs [1]. While analytic
computations of integrals may be cumbersome, we exploit properties of
the employed Design Of Experiments (DOE) to implement this. To ap-
proximate the true deterministic dependence (h(⋅) in Eq. (1)), the so-
called forward problem is solved by generating a system model from
simulation/measurement data. In case of linear estimation, the ex-
pectation of the posterior distribution can be obtained using the
Bayesian Linear Minimum Mean Square Estimation (BLMMSE). In
general of Minimum Mean Square Error (MMSE), we define Eq. (26).

̂ =θ E θ y{ | }. (26)

In case of linear estimations, we can assume a linear relationship in Eq.
(27)

= +E θ y Wy B{ | } (27)

with linear terms defined in Eq. (28)

= −W C CθY YY
1 (28)

and bias defined in Eq. (29)

= −B θ Wy (29)

where CθY and CY Y are covariance matrices of the estimate and the
measurement, and of the individual measurements respectively, ac-
counting also for the measurement noise. θ is used to denote the ex-
pected value of the parameters to be estimated with respect to their
prior distributions. Correspondingly, y means the expected value of the
measurement.

In cases where we cannot or do not want to use an unbiased esti-
mator, we can operate on the Mean Square Error (MSE) criterion. In
Ref. [13], the MSE-matrix R(ξ) was defined as

̂ ̂= − −R θ ξ E θ θ θ θ( , ) {( )( ) }T (30)

where the estimator is chosen as

̂ ̂ ̂= + +θ θ θ θ ξ θ θ ξ( , ) ( , )b n (31)

with ̂θb as bias error and ̂θn the random error term. This results in the
MSE-matrix

̂ ̂ ̂= +R θ ξ θ θ ξ θ θ ξ cov θ θ ξ( , ) ( , ) ( , ) [ ( , )].b b
T

n (32)

Then, the same optimization criteria as for the dispersion can be used.
In this case, the DR criterion is given by Eq. (33)

=
∈

Ψ R θ ξmax | ( , )|.D
θ Θ

R (33)

2.2. Sensor system optimization considering dependent parameters

In case of all statistical optimizations are not sufficient to provide
sensor systems fulfilling the reliability requirement further improve-
ments to the sensor system have to be found. One well known way is to
analyze correlations of the measurement error Δ with influencing
parameters. There following parameters are influencing correctly esti-
mating measurement output values, which are handled differently:

• Temperature, stress, air pressure etc.

• External interference (strayfield, EMC)

• Lifetime drifts

2.2.1. Sensor system optimization by dependent parameter compensation
The make use of correlations to influencing parameters is the most

often used principle to reduce the sensor output uncertainty. In this case
the dependent physical parameters (like temperature, mechanical
stress, and air pressure) are measured in parallel to the sensing quan-
tity. When using block diagram of Fig. 1 then the measurement quantity
θ becomes a vector containing the desired measurement quantity and
the dependent parameter θd (see Fig. 5). The dependent parameter
compensation is performed in the succeeding estimator using mainly
polynomial compensation algorithms including dependent offset com-
pensation using the influencing parameter information matrix Hd

shown in Eq. (34). There the noise-terms are not considered because we
assume them zero mean and not part of the compensation.

̂ = ⋅ ⋅ + ⋅θ Y Y Y H Y ξ H Y ξ( , ) ( ) ( ) .d d d E d d EG O (34)

Here, the dependent parameters for the gain compensation of the es-
timator are represented in ξEG and the offset related compensation
parameters of the estimator are denoted in ξEO. An example of second
order compensation for each measurement sample i is shown in Eq.
(35).

̂ = ⋅
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ Y Y Y

ξ

ξ

ξ
Y Y

ξ

ξ

ξ
[1 ] [1 ] .i i d d

E

E

E

d d

E

E

E

2 2
i i

G

G

G

i i

O

O

O

0

1

2

0

1
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One of the challenging aspects of dependent parameter compensation is
the calibration after sensor system production. The calibration equip-
ment uncertainty directly influences the uncertainty of the final sensor
system to optimize. Basically, the same estimation principles of finding
the minimum variance estimation as for the measurement values are
used to get compensation parameters ξEG and ξEO. To apply this, we
define the matrix Hd based on measurement values according Eqs. (36)
and (37), which is done during productive calibration of this sensor
system.

Fig. 5. Block diagram of a sensor system with additional measurement of de-
pendent influencing parameter θd and according compensation in the suc-
ceeding estimator.
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The bias (offset) as well as gain values can be found by first merging
Eqs. (36) and (37) into Eq. (38). Then, Eq. (39) can be applied to get
estimator offset (ξEO) and gain (ξEG) parameters.
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2.2.2. Lifetime drifts
Lifetime drifts are most critical deviations because they are hardly

compensable. Every electrical/electronic circuit suffers from lifetime
drifts of electrical parameters. These drifts cause lifetime-dependent
deviations from the target output value, sometimes even with sys-
tematic deviation contributions and not reliably predictable. In this
paper we only consider lifetime-drifts as additional uncertainty which
has to be considered for the rest of the system parameters to optimize,
especially for calibration and qualification. There, we need to consider
systematical and statistical lifetime-drifts, an example can be seen in
Fig. 6.

Today sensors for reliable systems like industry, automotive and
aerospace are qualified by certain accelerated aging stress tests defined
in Refs.[8, 9]. Additionally, several worst-case operating conditions are
defined for this accelerated lifetime test. Some examples are:

• HTOL (High Temperature Operating Lifetime)

• HTS (High Temperature Storage)

• TC (Temperature Cycling)

A practical way to handle lifetime-drifts is to reduce their effects
generated mainly by the transfer-function of the sensor-elements ac-
cording Eq. (1). Here, previous explained statistical optimization
methods are most useful, especially when a systematic lifetime drift can
be predicted [15] or modeled as shown in Ref. [16]. In case it would be
possible to measure lifetime-degradation, one can even define a system
with influencing parameter measurement and compensation of this
lifetime-effect proposed by Ref. [17].

2.3. Sensor system optimization considering test- and qualification-
equipment

In case of best possible deterministic and statistic optimized sensor
system, there always remain uncertainties initiated by the calibration

and verification-equipment (see Fig. 7). When comparing a sensor
output value with a reference sensor value this is a subtraction of both
values as shown in Eq. (40).

̂ ̂= −θ ξ θ θ ξ θ θΔ ( , ) ( , ) ( ).T R (40)

Since we are not able to compare the desired sensor system with the
real value and we use an other sensor system as reference instead
generates additional sources of uncertainty. To analyze the remaining
uncertainty we only need to take ΔT as additive compensation value to

̂θ to get the corrected value ̂θcorr which results in uncertainties defined
by the reference value shown in Eq. (41).

̂ ̂ ̂ ̂ ̂ ̂= − = − − =θ θ θ θ θ θΔ ( ) .corr T R R (41)

This shows us the influence of reference-sensor uncertainties during
production-test and productive calibration as well as verification of
qualification test results for sensor system optimizations. It is physically
not possible to get a better performing system than the reference system
performance used for calibration, test of production and qualification.
To get a full picture of extracting the probability of passing a qualifi-
cation test is shown in Fig. 8. In this picture, one can also easily re-
cognize, that the reference measurement uncertainty has a significant
influence to the probability of specification limit violations without
detection. High uncertainties will increase the probability of sensor
system specification violations. High uncertainties also lead to an in-
creased probability of wrong detected specification violations. The
calculation of probability Pv1,Pv2,Pd1 and Pd2 can be performed using
a coordinate rotation, results are shown in Eq. (42) with example of Pa
in Eq. (43).

∫ ∫= −P p ξ μ σ p ξ ξ μ σ dξ dξ1( , , ) 2( , , )
min

max

min

max
1 1 1 1 2 2 2 1 2

x

x

x

x

2

2

1

1

(42)

∫ ∫= −
− ∞

Pv p ξ μ σ p ξ ξ μ σ dξ dξ1 1( , , ) 2( , , ) .
dsml

dsml

dsaf 1 1 1 1 2 2 2 1 2 (43)

The remaining probability of not detecting a specification violation is
summarized in parameter Pndet of Eq. (44).

= +P Pv Pv1 2.ndet (44)

2.4. Sensor system optimization considering signal comparing safety
mechanisms

In safety critical applications, it is necessary to know the reliability
and possible faults in sensor systems. On way to judge sensor data is
shown in Ref. [18]. In two channel redundant sensor setups, two in-
dependent sensor signal paths are used for measurement of the desired
signal by averaging and additionally use the two channels for signal
comparison (see Fig. 9). This case was analyzed in a separated pub-
lication [19]. Fig. 10 shows the joint probability density function in-
cluding combined averaged safety limit (dsaf) and diagnostic limit
(dsml). Here, one can also recognize the areas Pv1 and Pv2 where the
difference comparison will not detect this safety-limit violation and
leads to a reduction of diagnostic coverage. One can also see regions
Pd1 and Pd2 where a false-alarm is generated but no violation of safety-

Fig. 6. Lifetime-drifts of measurement uncertainties can increase symmetrically
(case A) or additional systematic lifetime-drifts can occur (case B) resulting in
an unsymmetric measurement uncertainty after the target lifetime.

Fig. 7. This block diagram shows a configuration during sensor system cali-
bration or verification. The difference of the system under test and the reference
sensor system is a measure of uncertainty for the sensor system under test.
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limit is present.
The calculation of sensor system probability providing data in re-

gions Pv1, Pv2, Pd1 and Pd2 can be calculated using a coordinate-ro-
tation as shown in Eq. (45) with an example shown in Eq. (46).

∫ ∫= − ⋅ +P p ξ ξ μ σ p ξ ξ μ σ dξ dξ2 1( , , ) 2( , , )
min

max

min

max
1 2 1 1 1 2 2 2 1 2

x

x

x

x

2

2

1

1

(45)

∫ ∫= − ⋅ +
−

∞
Pv p ξ ξ μ σ p ξ ξ μ σ dξ dξ1 2 1( , , ) 2( , , ) .dsml

dsml

dsaf2

2
1 2 1 1 1 2 2 2 1 2

(46)

3. Implementations and results

3.1. Sensor system optimization implementation using statistical methods

3.1.1. Optimization of magnetic field based angular sensors
A further example of sensor optimization applying statistical opti-

mization methodologies is shown in Ref. [20]. Here, magnetic field

based angular-sensor optimization was performed using the Fisher In-
formation. Magnetic field based angular sensing is done using Hall
elements or magnetoresistive elements (see Fig. 11). In general sinu-
soidal components of the magnetic field caused by the rotation of a
diametral magnetized magnet is measured according Eq. (47) and the
mechanical angle is calculated using trigonometric functions via gen-
eration of sine and cosine components out of individual measured field
values shown in Eq. (48).

= ⋅ − +S θ A θ φ w( ) sin( ) (47)

̂ ̂⎜ ⎟ ⎜ ⎟= ⎛

⎝
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θ a θ
θ
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g S θ φ
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cos( )
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( ( , ))
( ( , ))

i
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where functions f(⋅) represents the calculation of the sine-component
and g(⋅) the cosine-component out of individual sensor values Si, θ the
relative angular position, A the amplitude and φ a phase shift linked to
the sensor location/orientation (compare with Ref. [21]). The term w
summarizes random deviations and noise.

Fig. 8. Joint probability density function of tested sensor system acc. Fig. 7 with measurement output errors shown on x1 and reference sensor channel errors shown
on x2. Red lines show the specification-limit and the blue lines show the detection limit. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 9. Redundant sensor system block diagram with two
signal paths where both sensor outputs contribute to the
measurement output as well as to the safety-mechanism by
comparison.
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Fig. 10. Joint Probability Density function of a redundant
sensor system acc. Fig. 9 with measurement output errors
shown on x1 and redundant sensor channel errors shown
on x2. Red lines show the safety limit and the blue lines
show the diagnostic mechanism limit. (For interpretation
of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 11. Integrated Hall angle sensing principle. Several lateral Hall sensors are placed around a circle to measure the angle dependent magnetic filed in z-direction of
a diametral magnetized rotating magnet.

Fig. 12. (a) Two sensors: the optimal solution is found for a phase difference of 90°; (b)Three sensors: phase differences of 60° and 120° are optimal; (c) Four sensors:
two pairs of 90° phase shift are found to be optimal, however the phase between the pairs is arbitrary.
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In real implementations the measurement vector S(θ) also depends
on geometric properties η so that we can express Eq. (47) into Eq. (49).

= ⋅ − +S θ η A θ φ η w( , ) sin( ( )) . (49)

The model described by Eq. (49) can be rewritten by splitting angle
contributions into orthogonal in-phase and quadrature components
according Eq. (50).

= ⋅ + ⋅ +S θ η I θ η φ η Q θ η φ η w( , ) ( , ) cos( ( )) ( , ) sin( ( ))A A (50)

= ⎡
⎣⎢

⎤
⎦⎥

+ = +θS θ η H η
I
Q w H η w( , ) ( ) ( ) .A

A (51)

Different scenarios have been studied. Fig. 12 shows solutions for
the uncorrelated case. For two sensor elements, a phase shift of 90° is
obtained; for three sensors, a phase shift of 60°, as expected. However,
for four sensors, a phase shift of 90° between all magnetic field sensors
is not a unique optimum solution; any solution where two sensors in
pairs are separated by 90° is also optimal. If we look at the objective
function, it turns out that there is not a unique solution even in the case
of three sensors. However, if we introduce a random common offset to
the sensor elements, the objective function changes significantly. The
solution with a phase shift of 120° remains, the objective function has
two peaks, but the solutions are equivalent. When we increase the
number of sensors, it turns out that we obtain a uniform distribution of
the sensors when the I/Q approach is used (Table 1).

Table 1
Results of different sensor-configurations in different deviation-models.

Configuration Model 90° uniform

Two sensor elements Uncorrelated Yes
Common offset Yes
Correlated No

More sensor elements Uncorrelated Yes, not unique
Common offset Yes
Correlated Yes

Fig. 13. Schematic of the pressure sensing system. The nominal action of the
force is at the center of the diaphragm, in normal direction of the diaphragm
plane, with several concentric capacitive sensing electrodes on PCB side.

Fig. 14. This graph shows the Mean Square Error (MSE) of radial deviations
from the center where a force is applied. The MSE is reduced with increased
number of electrodes.

Fig. 15. The pressure signal is transferred into a differential voltage and con-
verted into the digital domain by a switched capacitorΣΔ -ADC. Also the tem-
perature is measured and used for analog temperature offset and gain correc-
tion. In a) the temperature compensation is done analog [32] and in b) in the
digital domain [31].

Fig. 16. MEMS pressure sensor ADC raw signals probability density at ambient
air pressure and room temperature.
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3.1.2. 3D-printed force /pressure sensors
Sensing of pressure and/or force is an important topic with versatile

application areas. Capacitive sensing enables high resolution sensing in
combination with high bandwidth and excellent linearity. Furthermore,
the capacitive technology offers production related advantages such as
low-cost designs with basic structures being readily manufactured with
printing processes. 3D-printing technologies improved in the last
decade and lead to production possibility of 3D-printed pressure sen-
sors. Despite the advantages for rapid prototyping, both printing pro-
cesses suffer from tolerances in excess of those from standard processes
such as deposition or Printed Circuit Board (PCB) fabrication. It is thus
mandatory to evaluate design criteria with respect to variations in to-
pology (size, accurate positioning) as well as boundary conditions
(uniform pressure vs. force on differing areas and locations) and ma-
terial properties (conductivity, linearity, deformation hysteresis). In
Ref. [22], Finite Element Model (FEM) simulations of the capacitive
device are structured following a Design Of Computer Experiments
(DOCE) targeted at determining an optimal calibration process for the
considered sensor structure. The novelty lies in the suggestion to em-
ploy DOCEs and statistical signal processing in a dedicated way, com-
bining beneficial properties of both, leading to an overall robust sensor
design. The whole system is comprised of a circular 3D-printed steel
diaphragm superposed to an inkjet-printed electrode structure. The
axially symmetric design is supposed to be advantageous with respect
to geometrical variations such as rotation. The steel diaphragm is de-
picted and an illustration of how the measurand (here: force) should
ideally act on the topology including electrode geometries is given in
Fig. 13. The bottom electrode is used as transmitter while the steel

housing incorporates the receiver and are assumed to form a structure
resembling a parallel plate capacitor describable by the simplified
model described by Eq. (52).

=C A
d

Δ ϵ ϵ
Δ

.r r0
(52)

ΔC is the change in capacitance in farads, Ar the active plate area in
square meters, e0 the dielectric constant of vacuum, er the relative di-
electric constant of the material between the plates and d the plate
spacing in meters. There self-capacitance measurement mode [23] was
used which offers better SNR than a differential system, and disregard
environmental influences due to the closed system setup (com-
pare [24]).

In Ref. [25] a segmented electrode structure was proposed and
optimization of design parameters (here geometric parameters) of the
electrodes were performed. The optimization results in reduced Mean
Square Error (MSE) compared to usage of one single electrode (see
Fig. 14).

In Ref. [26], a similar setup was used and there the influence of pre-
stress in the design of a capacitive force/pressure sensor was analyzed.
Finite Element Model (FEM) simulations of this force/pressure sensor
setup as shown in Fig. 13 were performed including prestress loading.

For the analysis of the topology and material variations of the target
capacitive sensor, so-called Response-Surface-Methods (RSM) (see e.g.
Refs.[27, 28]), specifically Central Composite Designs (CCDs) and Box-
Behnken (BB) Designs are employed. These designs allow to describe
the response over the simulated region as quadratic function of the
design variables. The CCD is chosen as so-called faced design (CCF).
This type of design restricts the levels for the design parameters in a
way that there are no points outside the region of interest. The BB
design is often employed due to the lower number of runs required. A
drawback of BB designs is less accuracy in the extremal points, since
these are avoided in the experiments. Subsequently, ANalysis Of VAr-
iance (ANOVA) was performed of the gathered simulation results and
the significance of design parameters influences and their interactions
is determined. The significance is evaluated through hypothesis testing,
yielding two well-known statistical measures: the F- and t-statistics.

The noise variables, i.e. varying material parameters are included as
nested design. They are sampled from a normal distribution with mean
μ and standard deviation σd as given. The standard deviation of noise
variables is taken as specified by the manufacturer [29].

3.2. Sensor system optimization implementation by dependent parameter
compensation

The optimization by dependent parameter compensation can be
separate by the number of dependent parameters to compensate.

Fig. 17. MEMS pressure sensor performance, error versus temperature. For this
pressure sensor, two different accuracy-ranges for two different pressure ranges
are defined.

Fig. 18. Magnetic field Hall sensor system concept block diagram with temperature and stress measurement including compensation in the digital signal processor
(DSP).
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3.2.1. Single influencing parameter compensation
Many available measurement systems additionally measure one

additional dependent parameter for compensation of this effect. The
most famous parameter is the temperature which influences nearly all
types of sensor elements. Luckily the temperature can be measured
relatively simple in integrated sensor systems. Some examples of tem-
perature compensation can be found in magnetic field Hall sensors [2],

magnetoresistive sensors [30] as well as Micro-Electro-Mechanical
System (MEMS) sensors [31-33]. An interesting implementation of ac-
curate temperature measurement is shown in Ref. [34], where a very
accurate temperature measurement can be achieved via an accurate
voltage reference only.

As a temperature compensation example these MEMS pressure
sensors system [31] and [32] were chosen. A specially developed ca-
pacitive ΣΔ-ADC converts the resulting bridge output-capacitances
amplified into a digital signal (see Fig. 15). Since the temperature has a
significant influence to the MEMS performance also the temperature is
measured and transferred into the digital domain by a ΣΔ-ADC for
further digital temperature compensation by one of these concepts. The
ADC raw signals of this capacitive MEMS based pressure sensor can be
seen in Fig. 16, which shows a significant spread and temperature de-
pendence. This internal temperature signal Tint extracted from the
temperature dependent bandgap voltage was used to compensate
temperature related deviations of this MEMS pressure sensor according
Eq. 53, where Poff represent the pressure offset-value which is tem-
perature compensated via the internal temperature signal Tint and a
certain offset temperature coefficient TCO. Also, the multiplicative
correction factor amplitude or also called gain PGain is temperature
compensated in the same way via a gain temperature coefficient TCG.

= + + ⋅ ⋅ + ⋅P P P TCO T P TCG T( (1 )) (1 ).out ADC Off int Gain int (53)

Finally, this system achieves temperature dependent performance even
within lifetime shown in Fig. 17

3.2.2. Compensation of two dependent parameters
To further increase sensor precision, several sensor systems measure

two infuencing parameters and use them for compensation of their
deviating influences. This results in more sophisticated productive ca-
libration but can still be handled. Famous examples there are Hall based
magnetic field sensors. It was recognized that beside the temperature
dependence there also exits a varying mechanical stress in chip-
packages [35] which influences Hall sensitivities [36, 3]. Most of high
performance integrated Hall sensor system manufacturers use this
temperature and stress compensation inside their integrated systems
[37-39] and [40].

As an example for two parameter compensation [40] was chosen
where the magnetic field, temperature and stress signal are transferred
into the digital domain for further digital error-compensation in a di-
gital signal processor (DSP). The block diagram of one such Hall sensing
channel can be seen in Fig. 18. A principle algorithmic datapath of this
digital error compensation of temperature- and stress-effects of the Hall
sensor magnetic field signal for such a measurement channel is shown
in Fig. 19. Since temperature and stress effects of the Hall sensitivity
shall be compensated, the temperature and stress sensors are located
close to the Hall sensor elements. The mechanical chip stress changes
with chip-package production, but can be compensated once in pro-
ductive calibration. The chip stress also changes due to humidity-

Fig. 19. Magnetic field Hall sensor system algorithmic datapath. Here, one can see the algorithmic block diagram of this digital temperature and stress-compensation
of the Hall sensor magnetic field signal.

Fig. 20. This is the improvement of Hall-sensor sensitivity-drift by additional
digital stress gain-compensation. These tests were done by placing the samples
into a water-tap between readouts to increase the moisture-content and change
the package-stress.

Fig. 21. Probability of safety-criteria violation and false alarm generation
caused by measurement uncertainty. Here, a sweep of measurement uncertainty
was analyzed from 0.5 [%FSR] to 2.5 [%FSR].
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change in the chip-package mold-compound. This effect cannot be
eliminated by a one-time calibration procedure, instead the chip-stress
must be measured and has to be used for Hall output signal gain-
compensation. In Fig. 20 you can see the performance-improvement of
a system described in Ref. [40] by on-chip digital stress compensation
additionally to the implemented analog sensor-element stress-com-
pensation via the biasing.

3.3. Sensor system optimization implementation for safety critical
applications

An implementation of a two channel redundant magnetic field
sensor system with signal comparison for safety critical applications
was shown in Ref. [40].

The probability to violate the safety criteria or to generate a false
alarm caused by plain measurement uncertainty can be seen in Fig. 21,
where the measurement uncertainty was swept in the useful range and
data are calculated for two different combinations of a safety-limit
(dsaf) and a diagnostic limit (dsml). All data are expressed in % of full-
scale-range of the measurement system [%FSR]. The probability of
safety-violation detection is called Diagnostic Coverage (DC) and calcu-
lated acc. Eq. (54) whereas the probability of a detection of a False-
Alarm (FA) is calculated acc. Eq. (55). Here, it can be seen that with
decreasing diagnostic limit (dsml) the diagnostic coverage increases but
also the false-alarm-rate increases.

= − −DC Pv Pv1 1 2 (54)

= −FA Pd Pd1 2. (55)

4. Conclusion

In this work, we showed several possibilities to reduce measurement
uncertainties to fulfill reliability requirements. This can be done by
statistical methods applying optimal design of experiment methodolo-
gies. Statistical optimizations benefit from the fact that we do not need
to measure the influencing parameter but design the sensor system in a
way that external influencing parameters have lowest possible effects.
In case of further reducing the uncertainties correlations of influencing
parameters can be used. The compensation of influencing parameters
can be done by measure them and use its values for reduction of their
contribution to measurement uncertainties. It could also be shown how
calibration and test uncertainties influence the sensor system in the
same way as implemented sensor system uncertainties and need to be
taken into account in the same way when optimizing sensor systems.
Additionally optimizations of reliably working safety mechanisms of
safety critical sensor systems can be performed using the statistical
considerations of calculating probabilities for not detecting a fault as
well as raising false alarms. These reduced uncertainties increase the
reliability of these sensor systems to fulfill all the required specifica-
tions.
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