
Operations Research Letters 46 (2018) 514–517

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

On stability of collaborative supplier selection
Marco Slikker a, Behzad Hezarkhani b,*
a School of Industrial Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b Brunel Business School, Brunel University London, Kingston Lane, London, UB8 3PH, UK

a r t i c l e i n f o

Article history:
Received 12 June 2018
Received in revised form 3 August 2018
Accepted 7 August 2018
Available online 16 August 2018

Keywords:
Game theory
Supply chain management
Procurement
Gain sharing

a b s t r a c t

This note discusses the possibility of fair gain sharing in cooperative situations where players optimally
partition themselves across a number of alternative channels. An example is group purchasing among a
set of buyers facing with a range of suppliers. We introduce channel selection games as a new class of
cooperative games and give a representation of their cores. With two channels (suppliers), the game has
a non-empty core if the gain functions across every individual channel is supermodular.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In some collaborative situations, the participants (players) or-
ganize themselves across a set of alternative channels tomaximize
their gain. The alternative channelsmay represent different suppli-
ers, logistics service providers, or adopted technologies. As a spe-
cial instance, consider buyers in a group purchasing organization
who collaboratively select their suppliers for different products
that they procure. An example of such a situation was recently
studied in [8] where buyers optimize their purchases across two
alternative channels: an intermediary and an original equipment
manufacturer.

The supplier selection problem has been the subject of exten-
sive study in the literature (see for example [5,16,9] and references
therein). The advantages of collaboration in this context can be
intuitive—combining bargaining powers or deliveries results in
savings. Yet, the mere existence of economies of scale does not
necessarily grant the formation and sustenance of a collaborative
organization. From a cooperative game theory point of view, the
possibility of sharing the obtained savings among the players in
a ‘‘fair’’ manner is a crucially important requirement. A widely
adopted notion of fairness in the literature requires that each
subgroup of players receives at least as much as they could accrue
on their own. Accordingly, an allocation of gains among the players
is called stable if it satisfies the latter condition. The core of a coop-
erative game [12] contains all stable allocations which divide total
savings among the players. It is worth mentioning that although
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the literature often associates the definition of the core to Gillies
[6], it was Shapley [12] who first defined the core in its current
form [17].

In this note, we introduce channel selection gameswhere coali-
tions of players optimally partition themselves across a set of given
channels. The underlying optimization problems in these games
are the same as the winner-determination problem in combina-
torial auctions (see for example [10]) where a set of products
are distributed among a set of bidders with different valuation
functions tomaximize the sum of all bidders’ valuations. However,
to the best of our knowledge, previous literature does not study
cooperative games with the same structure as ours. Unlike par-
tition games (e.g. [3]), players in channel selection games choose
among a fixed number of distinct options with non-homogeneous
costs, and dissimilar to assignment games (e.g. [15]), heremultiple
players can be assigned to a single channel.

We give a representation of the cores of channel selection
games in terms of intersections of extended contra-polymatroids
associated with gain functions across all channels (e.g. savings
obtained by joint purchasing from each supplier), and provide two
main observations regarding the existence of allocations in the core
of channel selection games. First, if the number of channels is two
and the gain function across every channel is supermodular, then
the core of the associated game is always non-empty.Weprove this
result using the generalization of Edmond’s matroid intersection
theorem [4]. This closes an open problem in [8] regarding the non-
emptiness of the core of games associated with collaborative re-
plenishment situations in the presence of intermediaries. Second, if
the number of channels ismore than two, then the core of a channel
selection gamemay be empty, even under supermodularity condi-
tions.
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2. Preliminaries

Let N be a non-empty finite set, and let v : 2N
→ R be a set

function defined on N . The set function v is:

• monotonic if for every S, T ⊆ N , S ⊂ T we have v(S) ≤ v(T ),
• additive if for every S ⊆ N , we have v(S) =

∑
i∈Sv({i}),

• superadditive if for every S, T ⊆ N , S ∩ T = ∅, we have
v(S) + v(T ) ≤ v(S ∪ T ), and

• supermodular if for every S, T ⊆ N we have v(S) + v(T ) ≤

v(S ∪ T ) + v(S ∩ T ).

A supermodular set function is also superadditive and a non-
negative superadditive set function is also monotonic.

A cooperative game is a pair (N, v) with player set N and char-
acteristic function v, which is a set function defined on N such that
v(∅) = 0. A pivotal question in cooperative game theory concerns
finding appropriateways to allocate the gains of the grand coalition
among the players. Given the game (N, v) an allocation x ∈ RN is
called efficient if

∑
i∈Nxi = v(N), and stable if for every S ⊆ N we

have
∑

i∈Sxi ≥ v(S). Denote the set of stable allocations for (N, v)
with Q (N, v), that is

Q (N, v) =

{
x ∈ RN

⏐⏐⏐⏐⏐∀S ⊆ N :

∑
i∈S

xi ≥ v(S)

}
.

In polyhedral combinatorics, the set Q (N, v) is referred to as the
extended contra-polymatroid associated with set function v. The
core of a cooperative game is the set of all efficient and stable
allocations for that game. The core of (N, v) is defined via:

C(N, v) =

{
x ∈ Q (N, v)

⏐⏐⏐⏐⏐∑
i∈N

xi = v(N)

}
.

With an allocation in the core the value of the grand coalition
can be distributed among the players such that each coalition of
players receives at least as much as its endogenous value. The core
of a cooperative game can be empty. A cooperative game with a
supermodular characteristic function is called convex. The core of
a convex game is always non-empty [14].

3. Channel selection games

Suppose a non-empty finite set of channels M exists to select
from. For a channel j ∈ M , let wj : 2N

→ R+ be channel
j’s gain function which gives the non-negative and finite gain
obtained by every coalition of players that select channel j such
that wj(∅) = 0. With the interpretation of channels as suppliers,
a gain function specifies per coalition the cost savings from joint
purchasing if all players in the coalition buy via this channel. A
channel selection situation is (N,M, (wj)j∈M )with its elements being
defined previously.

For every S ⊆ N , let (Tj)j∈M be a partition of S over the channels.
That is, for every j, k ∈ M we have Tj ∩ Tk = ∅ and

⋃
j∈MTj = S. Let

S the set of all such partitions. The characteristic function of the
channel selection game (N, v) assigns to each coalition S ⊆ N the
value:

v(S) = max
(Tj)j∈M∈S

∑
j∈M

wj(Tj).

Let (T S
j )j∈M be an optimal partition of S over the channels.

If all wj are supermodular functions, it is known that the op-
timization problem above for |M| = 2 is solvable in polynomial
time [7], but for |M| ≥ 3 the optimization problem becomes NP-
hard [2]. Nevertheless, if all gain functions are supermodular then
there would be economies of scale in cooperation and the char-
acteristic function of the associated cooperative channel selection
game would at least be superadditive.

Given the definition of gain functions and games, a channel
selection game can be regarded as a combination of cooperative
games associated with its individual channels. Let (N, wj) be chan-
nel j’s individual cooperative game. The first result of this note
gives a representation of the core of a channel selection game
with respect to the stable allocations of the individual cooperative
games associated with all its channels. Define

Ĉ(N, v) =

⎧⎨⎩x ∈ RN
⏐⏐⏐∑

i∈N

xi = v(N), x ∈

⋂
j∈M

Q (N, wj)

⎫⎬⎭ .

The set Ĉ(N, v) contains all efficient allocations for (N, v) which are
stable for all channels’ individual games.

Theorem 1. Given a channel selection situation (N,M, (wj)j∈M ) we
have C(N, v) = Ĉ(N, v).

Proof. We proceed in two steps:
[Step 1]: C(N, v) ⊆ Ĉ(N, v): Let x ∈ C(N, v) and suppose that

for j ∈ M , x ̸∈ Q (N, wj). This means that there is S ⊆ N such that∑
i∈Sxi < wj(S). Given the definition of v it follows immediately

that for every j ∈ M and every S ⊆ N we have v(S) ≥ wj(S). Thus,
it must be that

∑
i∈Sxi < v(S) which contradicts the assumption.

Therefore, if x ∈ C(N, v) then x ∈
⋂

j∈MQ (N, wj). Since
∑

i∈Nxi =

v(N) it follows that C(N, v) ⊆ Ĉ(N, v).
[Step 2]: Ĉ(N, v) ⊆ C(N, v): Let x ∈ Ĉ(N, v). By definition

we have
∑

i∈Nxi = v(N). Let S ⊆ N be an arbitrary coalition
and (T S

j )j∈M an optimal partitioning of S across channels. For every
j ∈ M , as x ∈ Q (N, wj) we have

∑
i∈T Sj

xi ≥ wj(T S
j ). Hence, we

have
∑

i∈Sxi ≥
∑

j∈Mwj(T S
j ) = v(S) which implies that x ∈ C(N, v).

Therefore Ĉ(N, v) ⊆ C(N, v).
Combining these two steps concludes that C(N, v) =

Ĉ(N, v). □

As the above theorem indicates, the core of a channel selection
game is exactly the set of efficient allocations which are situated at
the intersection of extended contra-polymatroids associated with
its channels’ gain functions. In the remainder of this note, we
examine nonemptiness of the core of a channel selection game.

4. Case of two channels

For the case with two channels, the characteristic function of
the game with player set N and channel gain functions w1 and w2
can be written as

v(S) = max
T⊆S

{w1(T ) + w2(S \ T )}.

Theorem 2 in [8] proves that in two-channel situations if one of
the gain functions is supermodular and the other is additive, then
the characteristic function of the associated game is supermodular
so the game is convex and thus its core is non-empty. The first
result of this note extends the latter by presenting a more general
sufficient condition for nonemptiness of the cores of channel se-
lection games with two channels.

Theorem 2. Given a two-channel situation with supermodular gain
functions, the core of the associated channel selection game is non-
empty.

Proof. Let (N, {1, 2}, (w1, w2)) be a channel selection game and
assume that w1 and w2 are supermodular. By Theorem 1, to prove
the nonemptiness of the core it suffices to show that Ĉ(N, v) ̸= ∅.

First we introduce some definitions. A system Ax ≤ b in n
dimensions is called totally dual integral if A and b are rational
and for each c ∈ Zn, the dual of the program max{c⊺x|Ax ≤ b},
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Table 1
Situation in Example 1.

S ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

w1 0 3 0 0 0 3 3 3 0 0 0 3 3 3 0 3
w2 0 2 0 0 0 4 4 3 4 3 3 6 5 5 4 7
v 0 3 0 0 0 4 4 3 4 3 3 7 6 6 4 7

i.e., min{y⊺b|y ≥ 0, y⊺A = c⊺}, has an integer optimum solution y
if it is finite ([11], p. 76). A system Ax ≤ b is called box-totally dual
integral if the system d ≤ x ≤ e, Ax ≤ b is totally dual integral
for each choice of vectors d, e ∈ Rn ([11], p. 83). A box-totally dual
integral system is also totally dual integral.

The following is due to Schrijver [11] (Corollary 46.1d): if w1
andw2 are supermodular set functions, then for the intersection of
their associated extended contra-polymatroids, i.e.

Q (N, w1) ∩ Q (N, w2) =

{
x ∈ RN

⏐⏐⏐∀S ⊆ N :

∑
i∈S

xi ≥ w1(S) and

×

∑
i∈S

xi ≥ w2(S)

}
the underlying system is box-totally dual integral. Note that by
changing the sign of the objective function in the original defini-
tion, box-totally dual integral property can be expressed in terms
of aminimization primal and amaximization dual. Thismeans that
given the optimization program:

min
x∈RN

{∑
i∈N

xi
⏐⏐⏐x ∈ Q (N, w1) ∩ Q (N, w2)

}
,

the associated dual has integer optimal solutions (note that since
w1 andw2 are finite, the program above has a finite optimal value).
The dual to the above program is

max
y1,y2∈R2N \∅

+

⎧⎨⎩ ∑
S⊆N,S ̸=∅

yS1w1(S) + yS2w2(S)
⏐⏐⏐∀i ∈ N :

∑
S⊆N,S∋i

× yS1 + yS2 = 1

⎫⎬⎭ .

The fact that an integer optimal solution y exists for the above
program implies that (a) for every S ⊆ N, S ̸= ∅, we have
yS1, y

S
2 ∈ {0, 1}; (b) for every S ⊆ N, S ̸= ∅, it holds that yS1y

S
2 = 0;

and (c) for every i ∈ N there exists exactly one S ⊆ N, S ̸= ∅, S ∋ i,
such that either yS1 = 1 or yS2 = 1. The latter means that for every
non-empty subsets S, S ′

⊂ N , S ̸= S ′, such that ySk = yS
′

k = 1,
k ∈ {1, 2}, it must be that S ∩ S ′

= ∅.
Next,we show that there exists an optimal solution y to the dual

wherein for every k ∈ {1, 2} there is at most one S ⊆ N, S ̸= ∅,
such that ySk ̸= 0. To see this, assume the contrary and consider
non-empty pair of subsets S, S ′

⊂ N , S ∩ S ′
= ∅, such that with the

optimal solution (y1, y2), we have w.l.o.g. yS1 = yS
′

1 = 1. Consider
the alternative solution (ẏ1, y2) which is identical to (y1, y2) except
that ẏS1 = ẏS

′

1 = 0 and ẏS∪S′

1 = 1. Since w1 is supermodular,
we have

∑
S⊆N ẏ

S
1w1(S) + yS2w2(S) ≥

∑
S⊆Ny

S
1w1(S) + yS2w2(S).

Therefore there always exists an optimal dual solution such that
for some T ⊆ N we have yT1 = 1 and yS1 = 0 for all S ⊆ N ,
S ̸= T , and yN\T

2 = 1 and yS2 = 0 for all S ⊆ N , S ̸= N \ T .
Hence, the optimal value of the dual program is the solution to
maxT⊆Nw1(T )+w2(N\T ) = v(N). Using the strongduality theorem
we get

min
x∈RN

{∑
i∈N

xi
⏐⏐⏐x ∈ Q (N, w1) ∩ Q (N, w2)

}
= v(N).

The above implies that there exists x ∈ RN such that x ∈ Q (N, w1)∩
Q (N, w2) and

∑
i∈Nxi = v(N). Hence Ĉ(N, v) ̸= ∅. □

The proof of Theorem 2 draws upon the generalization of
Edmond’s matroid intersection theorem [4] to establish the
nonemptiness of the cores of channel selection games with two
channels whose gain functions are supermodular.

We provide two further remarks with regard to the relation-
ships between the properties of channels’ gain functions and their
associated channel selection games. Our first observation indicates
that non-emptiness of the cores of cooperative games associated
with individual channels does not guarantee the same for the
corresponding channel selection game because the intersection of
stable allocations for the individual channel games may be empty.
Before providing a counterexample we present a condition for
emptiness of the core.

Lemma1. Let (N, v) be a game. The core of (N, v) is emptywhenever∑
i∈Nv(N \ {i}) > (|N| − 1)v(N).

Proof. Let x be an allocation in the core. Given i ∈ N , the stability
condition for coalition N \ {i} requires that

∑
j∈N\{i}xi ≥ v(N \ {i}).

Combinedwith the efficiency condition, itmust be that xi ≤ v(N)−
v(N \ {i}) for all i ∈ N . Summing the later inequalities combined
with efficiency yields

∑
i∈Nv(N \{i}) ≤ (|N|−1)v(N) as a necessary

condition for the existence of allocations in the core. □

The condition in Lemma1 can also be derived as a special case of
Bondavera–Shapley theorem [1,13] on balanced games. Consider
the following example.

Example 1. Let N = {1, 2, 3, 4} and M = {1, 2}. Table 1
gives the values of channels’ gain functions w1 and w2 (which
also correspond to characteristic functions of cooperative games
(N, w1) and (N, w2) associatedwith individual channels), aswell as
the characteristic function v of their associated channel selection
game (N, v). Since (3, 0, 0, 0) and (2, 2, 2, 1) are core allocations in
games (N, w1) and (N, w2), respectively, both individual channel
games have non-empty cores. However, the core of (N, v) is empty.
In this example we have v({1, 2, 3}) + v({1, 2, 4}) + v({1, 3, 4}) +

v({2, 3, 4}) = 23 > 21 = 3v(N). By Lemma 1 the core of (N, v)
must be empty. △

Accordingly, we have the following remark.

Remark1. Consider the channel selection situation (N, {1, 2}, (w1,
w2)). If the games (N, w1) and (N, w2) have non-empty cores, (N, v)
does not necessarily have a non-empty core.

The second observation states that supermodularity of chan-
nels’ gain functions is not a sufficient condition for convexity of
the associated channel selection games. Consider the following
example.

Example 2. Let N = {1, 2, 3} and M = {1, 2}. Table 2 gives the
values of the channels’ gain functions w1 and w2 as well as the
characteristic function of their associated game in this example. It
is easily verifiable that the gain functions over both channels are
supermodular. In order for v to be supermodular we must have
v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). To test the supermodularity
of v, consider the coalitions S = {1, 2} and T = {1, 3}. Observe
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Table 2
Situation in Example 2.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

w1 0 0 0 1 0 0 1
w2 0 0 0 0 1 0 1
v 0 0 0 1 1 0 1

Table 3
Situation in Example 3.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

w1 0 0 0 0 0 1 1
w2 0 0 0 1 0 0 1
w3 0 0 0 0 1 0 1
v 0 0 0 1 1 1 1

that the condition for supermodularity is not preserved with the
latter choice of subcoalitions. Thus v is not supermodular and the
game is not convex. △

The following remark expresses this observation.

Remark2. Consider the channel selection situation (N, {1, 2}, (w1,

w2)). If w1 and w2 are supermodular, v is not necessarily super-
modular so (N, v) is not necessarily convex.

5. Case of three (or more) channels

We provide an example to show that with three channels the
cores of channel selection games can be empty, even if the gain
functions across all channels are supermodular.

Example 3. Let N = {1, 2, 3} and M = {1, 2, 3}. Table 3 gives
the values of channels’ gain functions as well as the characteristic
function of their associated game. In this example all gain functions
are supermodular. In this example we have v({1, 2}) + v({1, 3}) +

v({2, 3}) = 3 > 2 = 2v(N). By Lemma 1 the core of (N, v) must be
empty. △

In light of the above example, we have our last remark.

Remark 3. The core of a channel selection game with more than
three channels can be empty, even if all channels’ gain functions
are supermodular.

The above result reveals a fundamental obstacle regarding find-
ing fair allocations in channel selection gameswhenmore than two
channels exists. In the context of collaborative supplier selection in
group purchasing, this means that buyers who aim for organizing
their purchases optimally across three or more suppliers may find
it impossible to find allocations in the core for the grand coalition—
even under the supermodularity of savings obtained from cooper-
ative purchasing via individual suppliers.

A natural direction for future research is to find conditions,
perhaps stronger than supermodularity, that guarantee the non-
emptiness of cores of channel selection games with three or more
channels.
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