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H I G H L I G H T S

• Exhaustive study of ANNs used in wind energy systems, identifying the most employed techniques.

• ANNs classified into: forecasting and predictions; fault detection and diagnosis; optimal control; design optimization.

• A statistical analysis of the current state (and future trends) in this field is done.
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A B S T R A C T

Wind energy has become one of the most important forms of renewable energy. Wind energy conversion systems
are more sophisticated and new approaches are required based on advance analytics. This paper presents an
exhaustive review of artificial neural networks used in wind energy systems, identifying the methods most
employed for different applications and demonstrating that Artificial Neural Networks can be an alternative to
conventional methods in many cases. More than 85% of the 190 references employed in this paper have been
published in the last 5 years. The methods are classified and analysed into four groups according to the appli-
cation: forecasting and predictions; design optimization; fault detection and diagnosis; and optimal control. A
statistical analysis of the current state and future trends in this field is carried out. An analysis of each application
group about the strengths and weaknesses of each ANN structure is carried out. A quantitative analysis of the
main references is carried out showing new statistical results of the current state and future trends of the topic.
The paper describes the main challenges and technological gaps concerning the application of ANN to wind
turbines, according to the literature review. An overall table is provided to summarize the most important
references according to the application groups and case studies.

https://doi.org/10.1016/j.apenergy.2018.07.084
Received 6 April 2018; Received in revised form 22 June 2018; Accepted 14 July 2018

Abbreviations: ADALINE, adaptive linear element; ADP, adaptive dynamic programming; ANFIS, adaptive neuro-fuzzy inference systems; ANN, artificial neural
network; ART, adaptive resonance theory; AWNN, adaptive wavelet neural network; BNN, Bernstein Neural Network; BPNN, back-propagation neural network;
BRSA, hybrid model combining based on Pearson correlation coefficient; CC, correlation coefficient; CNN, convolutional neural network; CSO, crisscross optimi-
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1. Introduction and motivation

Nowadays, wind energy is one of the most important renewable
energy sources. In 2016, wind energy systems (WES) provided more
than 420 GW, and this is expected to rise to more than 1000 GW in the
2030s [1]. WES are undergoing a modernization process where the
number of requirements has increased to ensure efficient energy pro-
duction [2,3]. There has been an increase in WES and their complexity,
as well as the demand for new techniques and methods to improve
reliability [4], maintenance [5] and investments [6], leading to greater
competitiveness in the energy market.

The wind energy market, as one of the most exploitable and growing
markets, requires both technical and economic advances. Regarding the
technical aspects, efforts are oriented towards harnessing the wind to a
maximum level. There are many issues addressed in the literature, such
as the aerodynamic optimization of wind turbines (WT) [7], the opti-
mization of blade shapes [8], the study of power curve under different
circumstances [9], the optimization of WT position in a wind farm [10],
etc. With respect to the economic issues, the main objective is to
maximize profits obtained from the available resources. For this pur-
pose, the literature covers topics such as wind speed modelling [11],
strategies based on energy price forecasting [12], the study of the in-
teractions between wind energy and the power market [13], wind
turbine life cycle analysis [14], etc. This paper shows an exhaustive
review of the current techniques and methods concerning these issues
employing artificial neural networks (ANN)

WTs are equipped with a large number of devices to evaluate the
humidity, temperature, vibration, etc. [15]. Data acquisition systems
measure all the variables in order to determine the system condition
[16]. Data processing requires robust algorithms [17] that enable as
much information as possible to be gathered from the available data
[18]. Machine learning algorithms are widely employed due to their
ability to process a large amount of data, ANNs being one of the most
employed methods [19].

ANNs are complex structures based on biological neurons. These
structures provide a good solution to problems that cannot be analyti-
cally defined. An ANN consists of neurons which are simple processing
units, and weighted connections between those neurons. A typical
structure corresponds to the multilayer perceptron (MLP), shown in
Fig. 1 [20].

The ANN receives a dataset and starts a training process to adjust
the weights of the interconnections between neurons. The training will
be supervised if the output is known, otherwise it will be named un-
supervised training [21].

There are four basic variables that characterize an ANN: the to-
pology; the training method; the type of association between input and
output data, and; the presentation of the information. More than 50

types of ANN can be distinguished, for example: MLP; radial basis
function neural network (RBFNN); backpropagation networks (BPNN);
Wavelet neural network (Wavelet NN); self-organized-map NN (SOM
NN); Recurrent NN; time delay NN; Hopfield network; auto-associative
NN; convolutional NN; learning vector quantization networks; adaptive
resonance theory (ART) NN; neuro-fuzzy networks; dynamic NN.

ANNs are employed in fields due to their numerous advantages, e.g.
medicine, chemistry, robotics, geospatial analysis, etc. ANNs can be
used to generate functions to explain a certain phenomenon when the
data does not allow such functions to be created by hand [22]. The
main advantages are [23]:

- Adaptive learning: They can learn to perform tasks through a training
process.

- Self-organization: ANNs can create their own structure to represent
the information through a training process

- Fault tolerance: The ANN can still operate when its structure is da-
maged (tolerance to degradation), and distorted or incomplete when
the data are noisy (tolerance to data).

- On-line operation: They can be implemented in parallel and work
fast. Consequently, they are specially programmed to carry out on-
line processes.

- Easy implementation into the systems: There are specialized chips that
can facilitate the integration of ANNs into the systems.

The originality and contribution of this paper are summarized
as:The main motivation of this paper is to generate an uploaded com-
pilation of research works, models, methods and algorithms, where
researchers and professionals in the wind energy field can find the
current state (and ideas of the future trends) of the use of ANNs in WES.
This paper can also be useful for finding novel research lines that can
improve the operation of the existing methods. It shows the benefits of
each type of ANN for different purposes.

2. ANN applications in wind energy

This paper presents an exhaustive state-of-the-art ANN applied to
the wind energy field. The objective of this section is to classify the
ANN methods regarding the problem to be addressed. The NNs are
useful for solving a wide range of problems from seven categories [24]:

- Pattern classification: The ANNs can detect patterns in a dataset
through supervised learning.

- Clustering: The data similarities, or dissimilarities, are identified via
unsupervised learning. The network will assign similar data to the
same group (or cluster).

- Function approximation: ANNs can be applied to problems where a
theoretical model cannot be applied. They can approximate the
input data to a function with a certain degree of detail.

- Forecasting: A NN can be trained by time series to obtain a prediction
of the future behavior.

- Optimization: A solution that maximizes, or minimizes, a function
subject to different constraints can be found.

- Association: An associative network can be employed to reconstruct
corrupted data by developing an associative pattern.

- Control: It is possible to determine the inputs that will cause a de-
sired system behavior.

This research work considers the following classification, focusing
on the study of the most influential and studied problems. It is shown in
Table 1.

The four major categories (forecasting and prediction, fault detec-
tion and diagnosis (FDD), design and control optimization) are related
to the nature of the problem that will be addressed in this paper. The
secondary categories represent the specific part of WES that will be
considered for analysis. FDD will be studied in detail in this paper dueFig. 1. Structure of an Artificial Neural Network.
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to the large number of studies and methods that have been developed in
recent years.

3. Forecasting and predictions

The prediction of the wind energy production is a complex task, but
it is crucial to establish optimal planning by energy suppliers, wind
energy market actors, wind farm owners and operators, maintenance
teams, etc. For example, energy suppliers can avoid overproduction by
considering energy storage systems or by coordinating the estimated
wind energy production and the demand [25]; generators can adopt
strategies for making offers into electricity markets [26,27]; the
maintenance tasks can be scheduled according to predictions [28,29],
etc.

It has been demonstrated that ANNs are efficient when physical
processes are not understood or are very complex [30]. The main
parameters considered for predictions are wind speed and wind power.

3.1. Wind speed forecasting

Wind speed is an essential parameter for the WES operation. The
most important models for wind speed forecasting are [31]: the phy-
sical methods, such as the numerical weather prediction (NWP); the
statistical methods [32], where the most popular is the ARIMA model;
the intelligent models, where the most popular are based on ANNs; and
the hybrid forecasting models, that combine different types of algo-
rithms. Physical methods are better for predicting wind speed in the
long-term. Statistical methods and artificial intelligence models are
efficient for short-term wind speed prediction.

To quantify potential uncertainties associated with forecasts, Quan
et al. implemented a NN-based method for the construction of predic-
tion intervals [33]. These uncertainties associated with forecasts were
also quantified by Ak et al. using a MLP [34].

Table 2 shows a classification of the predictions according to the
time-horizon.

Most of the research studies and methods for wind speed forecasting
are focused on very-short-term or short-term forecasting.

Very short-term predictions are useful for turbine control applica-
tions in the range of seconds. Therefore, computational cost is an

essential factor to the models to be used in online applications.
Safavieh et al. employed wavelet-based networks and particle

swarm optimization, obtaining more accurate results compared with a
MLP, but it requires high computational costs [36].

Kani and Ardehali suggested a combination of a MLP and Markov
chains [37]. This method reduces the predicted errors and the un-
certainties with a moderate computational cost. Therefore, the model is
practical for use in online applications.

Gao et al. proposed an hybrid model based on chaos phase space
reconstruction and NWP-General regression NN [38]. This method re-
duces the impact of inaccurate meteorological information. The
abovementioned models concluded that the hybridization of ANNs
provides better results than single ANN methods for very short-term
wind speed predictions.

Regarding short-term forecasting, Li et al. employed three different
ANNs (linear element network, BPNN and RBFNN) for 1 h ahead pre-
dictions [39]. This study concludes that there is not a unique ANN that
provides the best results in all the cases.

The BPNN developed by Palomares et al. can also be employed for
1 h ahead predictions [40]. This method improved the results of the
persistence model, and demonstrated that data obtained from tradi-
tional agricultural measurements can be useful in predicting wind speed
with acceptable results.

Philippopoulos and Deligiorgi proposed a feed-forward ANN
method for a coastal region with a very complex topography [41]. They
demonstrated that this model is accurate due to the ability of the ANNs
to incorporate the unstable characteristics of the wind due to the to-
pography.

Salcedo-Sanz et al. developed a MLP-based method for predicting
wind speed at different points of a wind farm [42]. They proved that
this model in a real wind farm obtains small mean absolute error values.

Several research works on short-term wind speed forecasting con-
sider different models, e.g. two-layers ANN [43], RBFNN [44], IRBFNN
[45], ensemble of mixture density ANN [46], non-linear adaptive model
[47], deep ANN [48], adaptive boosting (adaboosting) ANN [49], etc.
All these studies demonstrate that most of the ANN based models are
more accurate than methods without artificial intelligence. The best
model for each case depends on the type of data and the criteria for the
estimation.

The ANNs are also employed to develop algorithms for medium
term wind speed forecasting. The increase in the time-horizon causes
less accurate forecasting. Wang et al. combined an Elman recurrent
ANN with machine learning techniques for a medium-term wind speed
prediction [50]. The authors concluded that the hybrid methods pro-
vide more accuracy for this prediction horizon than other models.

Some authors have developed hybrid models: Zhang et al. employed
ANNs in two different hybrid models that combine empirical model
decomposition and support vector machine [51], obtaining better re-
sults than those provided by the traditional decomposition forecasting
aggregation models.

Meng et al. showed a wind speed forecasting by a hybrid model that
comprises wavelet decomposition and ANN [52]. This method im-
proved the forecasting performance compared to empirical mode de-
composition methods. An adaptive wavelet ANN is employed by Dou-
coure et al. for a multi-resolution analysis for predicting wind speed
time series [53]. This model allows the complexity (order) of the pre-
diction system to be optimized. Ak et al. trained a MLP trained with a
multi-objective genetic algorithm [54], obtaining a reliable estimation
of the prediction intervals.

Li and Shi made a comparison between adaptive linear element,
BPNN and RBFNN [55]. They realized that factors such as the inputs of
the model and the learning rates affect the accuracy of the estimation.
Liu et al. proposed a novel multi-stage hybrid approach for high ac-
curacy predictions based on the secondary decomposition algorithm
and Elman NNs [31].

The literature for long-term wind speed predictions is not very

Table 1
Classification structure of the applications of ANN in wind turbines.

Artificial neural networks
and wind energy

Forecasting and
predictions

Wind speed
Wind power
Other parameters

Design optimization Wind turbine
Wind farm

Fault detection and
diagnosis

Gearbox and bearings
Generator, power
electronics and electric
Rotor, blades and
hydraulic
False-alarm rate reduction

Optimal control Maximum power tracking
Pitch angle
Speed
Reactive power
Converter

Table 2
Wind speed prediction vs time horizon [35].

Time horizon Range

Very-short term Seconds–30min
Short-term 30min–6 h
Medium-term 6 h–1 day
Long-term 1 day–1 week ahead
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extensive due to low accuracy. For example, Malik [56] proposed a
BPNN trained with data from 22 cities. This paper optimizes the
number of hidden neurons in order to reach a maximum accuracy.

Finamore et al. presented a method for the medium-long term
prediction based on a MLP and the spatiotemporal evolution of weather
[57]. The model gave interesting results, being able to reduce the ef-
fects of weather anomalies.

Moustris et al. proposed a 24-h ahead wind speed prediction with an
ANN model that is analyzed together with the wind and air pressure
historical data [58]. The results of this model provide an adequate
forecast that can be useful in supporting maintenance tasks. A long-
term prediction model was also developed by Azad et al., using a feed-
forward BPNN for predicting the trend of the incoming year [59]. The
proposed method provided the best results for monthly mean wind
speed, 30 days ahead and 1 year ahead, compared with other ANN
models (Time Delay, Nonlinear Autoregressive, Feed-Forward and
Layer-Recurrent). Additional long-term wind speed forecasting models
can be found in [60] and [61].

3.2. Wind power forecasting

Many forecasting studies for wind power in the short, medium and
long term have been found in the literature.

Regarding the short-term forecasting, Zameer et al. [62] proposed
an ANN-Genetic programming based model. It employs a combination
of Feed-forward BPNN, RBFNN and Broyden Fletcher Goldfarb Shanno
NN. The model was applied to several wind farms providing estimations
results with a high level of accuracy.

Ma et al. proposed a hybrid method that involves a generalized
dynamic fuzzy NN [63]. The accuracy of the method presents results
that are 5.33% more accurate than results obtained with BPNN.

Dong et al. suggested a hybrid model combining an integrated
processing strategy and a linear neuro-fuzzy function to forecast wind
power [64]. Other hybrid models are based on neuro-fuzzy [65], GA-BP
NN[66], wavelet ANN [67] or Adaptive Wavelet ANN [68]. Short-term
wind power prediction methods are based on BPNN [69], Elman ANN
[70], convolutional and recurrent ANNs [71], Boltzmann machine [72],
artificial bee colony ANN [73], ANN combined with PSO [74] or with
PSO-FCM [33], or recurrent ANN [75].

ANN methods are mainly employed for short-term wind power
predictions because the accuracy decreases when the time horizon is
long [76]. Wang et al. designed a network structure for long term
predictions, based on the combination of matrix time series with
Bernstein polynomial, with an accurate estimation up to 24 h [77].

Bhaskar et al. employed a two-stage model, composed of a wavelet
ANN and a feed-forward NN, to predict wind power up to 30 h with
acceptable accuracy [78]. The proposed model is compared with per-
sistence, and new reference benchmark models individually confirm the
effectiveness of the model.

Wan et al. generated prediction intervals of wind power through an
hybrid ANN approach [79]. The results demonstrated that the proposed
approach can be used in practical applications.

An estimation of the annual energy output of a WT was developed
by Jafarian and Ranjbar, performing a RBFNN and generalized re-
gression network model by three inputs: average of wind speed, stan-
dard deviation of wind speed and the air density [80].

Li et al. compared GNN, SGNN, RBFNN, and Extreme Learning
Machine regarding the computational cost, time horizon and accuracy
[81]. They concluded that the best method is different according to the
time-horizon.

Models for both wind speed and wind power forecasting have also
been developed. Olaofe employed a BPNN to predict wind speed and
power up to 5 days ahead [30]. One drawback of this model is that the
ANN requires many input samples to provide good confidence outputs.
Barbourins and Theocharis employ locally recurrent multilayer net-
works for long-term wind speed and power forecasting [82]. Multilayer

networks are also employed by Jung and Kwon to predict annual energy
production of WT [83]. The work presented by Petković et al. consists
of an adaptive neuro-fuzzy inference system to predict the wind power
form, wind speed and speed direction [84].

3.3. Other parameters forecasting

Additional important parameters can be predicted through ANN
models. Ouyang et al. [85] proposes a comparison between four data-
mining algorithms applied to control the yaw position of a WT. The
algorithms are based on support vector machine (SVM), MLP, random
forest algorithm (RFA) and gradient boosted regression trees (GRBT).
The prediction of the wind direction is represented by its sine and co-
sine components. The results are compared with the real dataset. The
mean absolute error (MAE), the root mean squared error (RMSE) and
the correlation coefficient (CC) are shown in Table 3. The MLP model is
considered the best model for predicting the cosine direction of wind. It
has been shown that these methods present better results than tradi-
tional approaches.

Sargolzaei and Kianifar proposed a RBFNN for predicting the torque
and the power factor in a Savonious WT [86]. The predicted values by
the model are compared with the measured parameters. This study
demonstrated that the ANN techniques can be applied as an effective
method for predicting and assessing the performance of WTs.

Shamshirband et al. predicted the noise annoyance caused by WTs
[87]. This is an emerging problem due to the large increase in the
number of WTs. A model to simulate the WT noise levels is proposed
using an adaptive neuro-fuzzy inference system (ANFIS). The model can
predict the noise level with higher accuracy and lower computational
costs than conventional ANNs.

Statistical criteria are commonly employed to evaluate the predic-
tion accuracy of the different models. The MAE and the mean absolute
percentage error (MAPE) are commonly used, defined by:
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where T is the number of data used for comparison; yt is the real value
and fi j, the estimated values.

The accuracy of forecasting will vary according to the time horizon.
Madhiarasan and Deepa compared the minimum square error (MSE) of
an ensemble ANN for different time scale predictions [88]. Fig. 2 shows
that the accuracy of the estimation has a strong dependence on the time
horizon.

A comparison between the main models is presented in Table 4. The
MAE and MAPE (if they are provided) of the mentioned models are
indicated. This table also shows the type of ANN based model and the
forecasting time horizon. The blank cells correspond to unknown va-
lues.

In conclusion, ANNs are widely employed for forecasting wind
speed and wind power. All the models and methods presented are more
efficient when the time-horizon is short. This is the reason why most of

Table 3
Comparison of errors of different algorithms.

Sine predict error Cosine predict error

MAE RMSE CC MAE RMSE CC

SVM 0.1079 0.1632 0.9719 0.1268 0.1815 0.9650
MLP 0.0935 0.1603 0.9703 0.0803 0.1468 0.9766
RFA 0.0820 0.1468 0.9771 0.0869 0.1525 0.9749
GRBT 0.0993 0.1652 0.9704 0.1026 0.1672 0.9701
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the ANN models are employed for short-term predictions. ANN is em-
ployed for forecasting, e.g. RBFNN, neuro-fuzzy function, feed-forward,
BPNN, conjugated gradient, recurrent ANN or Elman NNs. However,
most of the approaches use hybrid methods, being more accurate, but
they need a lot of input samples when the forecast horizon is long to
provide a good result. The MAE and the MAPE present a dependence on
the forecasting time horizon as indicated in Table 4. However, it is very
difficult to determine whether the ANN based method provides the best
results, since forecasting is usually constrained by the nature of the
data, the time horizon and the computational cost.

4. Design optimization

The aerodynamic design of WTs is essential for achieving good ef-
ficiency and, consequently, for obtaining more efficient WES. ANNs are
also applied with design purposes due to their ability to consider a high
number of aerodynamic variables, e.g. lift coefficient, drag coefficient,
Reynolds number, angle of attack, viscosity, etc. [89]. There are many
studies where airfoils, wing sections and the wing tips are optimized

through ANN. However, this paper is only focused on those studies that
are specifically aimed at WT design. This section distinguishes between
two different aspects, the design of WTs and the design of wind farms.

4.1. Wind turbine design

Regarding the design of WT, the main fields where the ANNs play an
essential role is in the design of the airfoils and the selection of the tip
speed ratio.

Chen and Agarwal proposed the optimization of flatback airfoils for
WTs using a genetic algorithm with an ANN [90]. The computational
efficiency of the genetic algorithm is improved significantly due to the
ANN. It has been demonstrated that the method can find the global
optimal flatback airfoils.

The design of the airfoil sections for the blades of a horizontal axis
WT was carried out by Mortazavi et al. [91]. The ANN are trained using
computational fluids dynamics to obtain a Pareto optimal set of solu-
tions. The airfoil design was also considered by Ribiero et al., where the
use of ANN results reduced the computational time around 50% [92].

A MLP was employed by Díaz et al. [93] to perform a correction of
the lift coefficient for the design of the angles of attack of WT airfoils.
This model allows accuracy solutions to be found without using com-
plicated and costly non-linear models.

The design of tip speed ratio affects the power generated and,
consequently, the efficiency of the energy conversion process. Ata and
Kocyigit [94] proposed an ANFIS approach in order to predict the tip
speed ratio and the power factor of a WT. The model demonstrated that
ANFIS improves the performance of conventional methods with a
maximum mean percent error of± 4.32%.

Yurdusev et al. indicated that selecting the tip speed ratio is the first
step in a WT blade design [95]. The study investigates the optimal
speed ratio of the WT profiles most used in practice. A three-layer feed
forward network was considered. The results show that the ANN model
is very fast and accurate. The algorithm can be easily adapted to other
WT profiles due to the generalization and adaptability capabilities of
ANNs.

Other aspects of the WT design are considered by Supeni et al.,
creating a model for predicting the number of wires needed to recover
the deflection of a smart WT blade [96]. The ANN is trained using
multiple BPNN and NARX methods. This work concludes that, although
NNs usually provide a certain degree of inaccuracy, the computational
cost is low. Rubio proposed a hybrid method for modelling the dynamic
behavior of a WT [97]. This method is based on the combination of the
analytical and a BPNN models. It is an improvement on the analytical
model because it provides a reduced root mean square error.

Romanski et al. presented a multi-layer feed-forward ANN based
model for demonstrating the capability of ANNs to correlate the op-
eration parameters of a counter-rotation WT. They correlated the gen-
erated power with the average velocity of the air stream, wedge angles
of the rotor blades and the distance between rotors. They confirmed
that the solution was valuable in the design and construction decision-
making processes [98].

Jae-Chul et al. proposed a BPNN to reduce the time for performing
analysis, minimizing the prediction errors [99]. The objective of this
study is to solve a multi-objective optimization process by giving the
adequate shape and the best geometry to the system.

4.2. Wind farm design

The design of a wind farm is a very complex process since it is ne-
cessary to consider a great number of variables. This section studies the
application of ANN based models for optimizing some of these vari-
ables.

Ekonomou et al. developed an ANN model in order to calculate the
optimal number of WTs in a wind farm, considering several factors such
as the terrain morphology, the wind speed and main direction, the type

0.0E+00
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Very short-
term

Short-term Medium-term Long-term

MSE vs time horizon

MSE for training MSE for testing

Fig. 2. Evolution of MSE versus time horizon.

Table 4
Wind speed prediction vs time horizon.

Reference Type MAPE MAE Time horizon

Wind speed forecasting
Safavieh MLP 3.57 Seconds
Kani ANN–MC 3.14 7.5 s
Liu WPD-FEEMD-Elman 8.68 1.05 30min
Li BPNN 1.13 1 h
C.Palomare BPNN 0.18 1 h
GongLi RBF 18.90 1.11 1 h
GongLi BPNN 19.4 1.15 1 h
GongLi ADALINE 19.4 1.15 1 h
Hu SHL DNN 1.79 2 h
Noorollahi ANFIS 27.83 0.89 3 h
Noorollahi BPNN 28.22 0.89 3 h
Noorollahi RBF 30.68 0.95 3 h
Meng WPD–CSO-NN 54.08 0.36 5 h
Boubacar MRA-AWNN 12.4 5 h
Wang PMERNN 20.03 1.44 6 h
Azad BPNN 0.80 24 h
Salcedo MLP 1.45 48 h
Chang IRBFNN-EF 3.86 72 h
Zhongxian MDN 1.66 72 h
Malik FF 22.8 0.48 12 Months

Wind power forecasting
Zameer GPeANN 0.0643 1 h
Wang GA-BP with EEMD 6.82 1 h
Aghajani RBF+HNN+WT+ ICA 1.84 1 h
Wu CNN+LSTM 5.62 1 h
Peng MRBM 0.123 1 h
Liu PNN 11.20 7.874 1 h
Dong DSNP-oLLNF 0.639 2 h
Wang PDSTA+BNN 3.21 24 h
Kanna MRA- AWNN 0.867 30 h
Liu BRSA 7.63 2.19 48 h
Barbounis OF-MLN 1.5 72 h
Chitsaz ICSA 9.7 1week
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of WT, costs, etc. [100].
Shamshirband et al. established an ANFIS model as an alternative to

analytical approaches for studying the WT wakes and their interactions
[101]. This effect is important in the design of wind farms, and for
maximizing the energy output and the lifetime of the WTs. The ap-
proach presents the following advantages: no required knowledge of
the internal system parameters; multi-variable problem solution, and;
fast calculation.

Petkovic et al. [102] developed a process for selecting the most
influential parameters of a wind farm project investment. This model
employs an ANFIS method to calculate the net present value, which is
the most important criteria for investment estimating. The model con-
siders multiple variables, e.g. price of electricity, interest rate, costs,
number of turbines, etc… This paper conclude that Fuzzy variables can
facilitate the prediction of those variables. This author also employed
ANFIS based method to identify the most influential factors on the wake
effect of WTs [103].

The design optimization is a crucial stage for ensuring the efficiency
of the WTs and the wind farms. ANNs are commonly employed in this
stage to determine the value of parameters that must be fixed before the
implementation of the systems. Some of these parameters are the air-
foils, the tip speed ratio, characteristics of blades, the behavior of a WT,
the geometry of components, number of WTs, interaction between WTs,
etc. In this field, ANNs are very useful because they can interrelate a
multitude of variables to simulate scenarios close to reality. For design
purposes, the computational time is not a determinant factor because
the main objective is to obtain accurate results. The most employed
ANNs based methods for design purposes are ANFIS and BPNN. The
backpropagation training has the advantages of accuracy and versati-
lity, although it is usually time-consuming and complex. ANFIS presents
a very high learning ability, i.e. for a similar network complexity,
ANFIS presents a smaller convergence error than a simple MLP [104].
In addition, ANFIS requires fewer parameters to be adjusted than
conventional ANNs.

5. Fault detection and diagnosis

There are many methods for detecting failures in WTs based on
condition monitoring (CM) techniques, called FDD when it is also
diagnosed. Several reviews that focused on these techniques can be
found in the literature, e.g. FDD through CMS [105], FDD for main-
tenance management [106] or pattern recognition for FDD [107]. This
section shows an exhaustive study of the FDD based on ANN. The main
advantage of ANNs is their capability to represent complex nonlinear
relationships through pattern recognition [108]. Most of the methods
employ ANNs to identify patterns of SCADA signals that could indicate
the occurrence of a fault [109].

There are models to evaluate the whole system and detect anomalies
[110]. However, most of the algorithms and models are created to
evaluate specific components. The following categories have been set
according to the main WT components: gearbox and bearings; gen-
erator, power electronics and electric controls; rotor blades and hy-
draulic controls; and false-alarm rate reduction.

5.1. Gearbox and bearing

Gearboxes generate a high failure rate in WTs [5]. The bearing
failures are usually caused by cracks. The bearing and gearboxes are
critical components because their failures cause long downtimes. In this
section, the ANNs are used as a tool to detect, prevent and/or predict
some failures of gearboxes and bearings.

Schlechtingen and Santos made a comparison between the regres-
sion model, autoregressive ANN and full signal reconstruction ANN, to
identify two types of bearing damage [111]. The feed-forward network
type was chosen in all models. This work concludes that the methods
can identify the damage before the bearing fails. Table 5 shows a

comparison of the results indicating the anticipation of each method to
the alarm limit violation (ALV).

The regression model is simpler than ANN, but the ANN models
provide better results since they can predict the ALV.

Kusiak and Verma employ high-frequency SCADA data from 24 WTs
to analyze bearing faults [112]. The dataset is employed to feed five
ANN algorithms to detect bearing faults from over-temperature events.
Table 6 shows the network configurations.

The best ANN configuration was the NN2 in that it could predict
faults with an accuracy of more than 97%. This model predicted the
faults 1.5 h before their occurrence.

Zhang and Wang describe a ANN technique for early FDD [113].
The technique is applied to the main shaft rear bearing using a standard
BPNN. This work concludes that the ANN can be applied to other WTs
with the main advantage that it can deal with a large amount of SCADA
data without omitting information.

Bangalore and Tjernberg indicated that ANNs are a good method for
CM applications based on SCADA [114]. An ANN is trained with his-
torical SCADA data of bearings. This model was able to detect the de-
terioration in a bearing a week before the CM system generated an
alarm. Bangalore et al. also proposed a condition monitoring approach,
where the data are filtered and inputted into ANN models that represent
the normal operation of the WT [115]. The method is applied to case
studies with failures in gearboxes.

Li et al. proposes a new approach for crack detection in a gearbox
(see Fig. 3) based on discrete wavelet transform and an ART ANN
[116]. The ANN recognizes the changing trend from the normal state to
detect the cracks.

Strączkiewicz and Barszcz explained that the CM systems are

Table 5
Comparison between the models [111].

First ALV (days) Second ALV/trend (days)

Regression 25 18
Full sig. reconst. NN 30 25
Autoregressive NN 50 25

Table 6
Configurations of the ANN models [112].

Net. Nam Network
structure

Training
algorithm

Hidden
activation

Output
activation

NN1 MLP 18-16-1 BFGS 380 Tanh Identity
NN2 MLP 18-17-1 BFGS 622 Logistic Identity
NN3 MLP 18-5-1 BFGS 214 Logistic Exponential
NN4 MLP 18-15-1 BFGS 370 Logistic Logistic
NN5 MLP 18-16-1 BFGS 377 Logistic Exponential

Fig. 3. Scheme of the crack fault in the experiment gearbox [116].
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usually designed to provide diagnostics based on wideband features,
e.g. RMS or Peak to Peak [117]. The problem is that the parameters
strongly fluctuate and miscorrelate to operation parameters. A BPNN
model is created and applied to detect a ring gear fault in a planetary
gearbox. The method detected an early stage of damage several months
before the gearbox was replaced. ANNs have been very useful for
handling highly varying operation parameters because of their ability
to model nonlinear dependences.

Ali et al. showed an application for automatic bearing degradation
assessment without human intervention [118]. A feature extraction is
done from the vibration signals of the bearing. A multilayer ANN is fed
with these feature parameters. The results demonstrate that the method
is suitable for online bearing diagnosis with a reduced computational
cost. It is also used as a method based on Weibull distribution and ANNs
for predicting the remaining useful life of the bearings. It has been
shown that this method is effective for decision-making in predictive
maintenance activities [119].

Biswal et al. focused on the fault size estimation of gear root crack
using vibration signals. For this purpose, some features are extracted
from the signals [120]. The features are used to input a feed forward
back propagating ANN. This study demonstrated that this procedure is
very efficient in predicting the size of these types of faults.

Guo et al. proposed a recurrent ANN health indicator in order to
predict the remaining useful life of bearings [121]. Recurrent ANNs are
useful because they introduce a notion of time to the ANN model. The
health indicator is constructed after a feature extraction process. The
results showed that the proposed method performed better than the
commonly used SOM-based health indicator.

Additional models for gearbox and bearing fault diagnosis are cre-
ated through wavelet transform and ANN [122]; convolutional ANN
models [123,124]; local mean decomposition and ANN [125]; RNFC
filter and ANN [126]; BP ANN [127] and improved BP ANN [128]; ANN
trained by particle swarm optimization algorithm [129].

5.2. Generator, power electronics and electric controls

A doubly fed induction generator (DFIG) is the most used generator
in large variable speed WTs [130]. This configuration requires two
converters to generate electricity, see Fig. 4. The strong nonlinearities
of the converter circuits mean that ANN models are a useful tool for
analyzing them. The ANN can be trained to learn the mapping relation
between the fault information and type [131].

You and Zhang proposed a SOM ANN to develop a fault diagnosis
system for converters of WTs. Some experiments are presented to al-
locate the fault position within the windfarm and to ensure the fault
type [132]. A study of SOM networks applied to converters was also
carried out by Zhang and Zhang [133]. They demonstrated that an
intelligent fault diagnosis system must be able to distinguish types of
converter, fault diagnosis and locations. They consider that the SOM
network presents a low computational time.

Ko et al. presented a fault detection method for switch devices of
three-parallel power converters [134]. This method employs the

measure of three-phase currents to achieve pattern recognition through
an ANN. Several experiments are carried out to prove the reliability of
the method.

The dynamic recurrent ANN models proposed by Teleby et al. can
detect faults in the generator’s angular velocity sensor by using dy-
namic NN [135] and recurrent NN [136]. These fault diagnosis systems
employ two ANN models to simulate normal system behavior. The
networks were placed in parallel with the system. The results showed
that the proposed models operated fast, precisely and accurately, ob-
taining a very low rate of false or missed alarms.

Islanding is an undesired phenomenon that occurs when a part of
the electrical system contains both loads and distributed generation,
being electrically isolated from the rest of the system. Islanding needs to
be prevented due to safety reasons, and to keep a high-quality power
supply to customers. Ghadimi employs a hybrid intelligent ANFIS net-
work to detect this phenomenon [137]. Islanding is also detected in Ref.
[138] by feeding a two-layer feed-forward network with the symme-
trical components of the second harmonic of voltage and current sig-
nals. This method can detect islanding operation very fast for a certain
interval of load values.

5.3. Rotors, blades and hydraulic controls

Blades are the WT components with the highest failure rate and
downtime [3]. The main fault is associated with structural failure, e.g.
crack, fatigue, wear, corrosion, deflection, etc. [5]. The rotor hub can
suffer clearance loosening at the blade root, unbalance, etc. [5].

Ibrahim et al. employed data from a CM system together with an
ANN model for fault feature and diagnosis [139]. This work aims to
make the diagnosis of rotor unbalance through current signals. The
method proposes different networks for ranges of rotational speed. The
study demonstrates that the rotor unbalance and transient and perma-
nent faults can be detected with high accuracy. Malik and Mishra use
probabilistic NNs for imbalance fault identification [140]. The study
shows four probabilistic ANN models using different input variables. A
simulation is carried out under six different conditions: aerodynamic
asymmetry; rotor furl imbalance; tail furl imbalance; blade imbalance;
nacelle-yaw. The simulated results show that the probabilistic NNs
provide results with more accurate, less training/testing time than
other ANN methods and better diagnosis than conventional methods.

Fu et al. studied the blade tip deflection measurement. Fig. 5 shows
a scheme of the blade tip deflection [141]. This deformation can cause
the collision of the WT blades with the tower during the operation. A
three-layer feed-forward ANN is created and inputted with 3-dimen-
sional gyroscope data. The results show that the gyroscope sensors,
together with the ANN analysis, is an accurate approach for monitoring
the tip deflection in real time. Vera-Tudela and Kühn created models
with two-layer feed-forward ANN for blades fatigue loads estimation
[142]. A total of 48 ANNs are evaluated to predict two fatigue loads
indicators in six wind farms. The results show high accuracy under
specific conditions. For example, the estimations are better in an
edgewise direction than in a flap wise direction, but decrease under
wake conditions.

Gantasala et al. proposed a model for detecting ice accretion on the
blades [143]. The technique employs wireless sensors to measure blade
vibrations during operation. The natural frequencies are achieved with
a few ice masses on the blade. These frequencies are used to train the
ANN model. Certain experiments are carried out using random sce-
narios. This work concludes that the model can estimate ice masses. It
works better when the ice mass increases.

Chen et al. developed a method to detect automatically significant
blade pitch faults [144]. It employs an a priori knowledge-based ANFIS
with the ability to interpret unseen conditions. The method can be
employed with high accuracy and precision for obtaining a prognostic
warning before the pitch alarm is raised.

Kusiak and Verma use an approach for diagnosis blade pitch faults,

Transmission 
parts

Wind turbine

Converter 1 Converter 2

Doubly-fed 
generator Frequency 

Power

Fig. 4. Circuit of a DFIG wind turbine [131].
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blade angle asymmetry and implausibility [145]. This study employs
the following machine learning approaches: bagging; ANN; pruning
rule-based classification tree; K-nearest neighbor, and; genetic pro-
gramming algorithms. The best solution was found by the genetic
programming algorithms, the ANN-based method being the second
most accurate method.

Dervilis et al. proposes two models for structural health monitoring
of WT blades [146]. Sensors are installed to collect acoustic signals that
will be interpreted by MLP and RBFNN. According to the results, the
MLP has the advantage of limiting the number of sensors that are re-
quired to cover the entire blade. The model can detect a change before
the crack becomes visible. Dervilis et al. [147] employed Auto-asso-
ciative ANN and RBFNN models for failure detection of blades. They
employ experimental measurements obtained through vibration ana-
lysis of the 9m CX-100 blade type under fatigue loads.

5.4. False-alarm rate reduction

Nowadays, the complexity of the modern WTs and their control
systems cause an increasing number of false alarms. They are one of the
major concerns of the WT operators, because they can generate im-
portant costs and downtimes, e.g. from a simple review of the supposed
damaged system to an emergency shutdown of the WT. Maintenance
tasks are affected by this problem.

Ref. [114] shows a method to reduce the false alarm rate. It eval-
uates the average of the Mahanalobis distance over a period of three
days. This procedure reduces the possibility of erroneous signals from
the SCADA, or shortcomings of the ANN model, see also Ref. [148].

Schlechtingen and Santos aimed to reduce the fluctuations in the
prediction error [149]. It means that the system triggers fewer false
alarms. An ANFIS model is proposed to evaluate the dataset from the
SCADA. The model can perform an accurate pattern recognition ana-
lysis.

Adouni et al. proposed a fault detection and identification proce-
dure to support decisions when a severe grid fault occurs [150]. The
model includes six ANNs that describe the three phases of the grid
(amplitude and phase). Fig. 6 shows the configuration of the model.
This method is immune to unknown inputs and noise and, therefore, it
is very sensitive to false alarms.

The advantages of ANN are employed to detect faults and perform

diagnostics of WTs are shown as follows. Most of the ANN based
methods are created to detect failures in gearbox and bearings. The
fault detection does not require a fast computation process and there-
fore, the main factor is the accuracy of the method. Consequently,
BPNNs are commonly employed in this field because they usually
provide accurate results although the computational cost is high.
Recurrent ANNs are also employed because they allow recent failures to
be incorporated to the structure through feedback processes. In this
case, the feedback leads to an increase in the adaptation of the ANN to
the different symptoms of failure. ANNs in unsupervised learning are
also employed, such as SOM and ART networks, because they can detect
anomalies without using historical failure data. This is an important
advantage since, on many occasions, the historical data does not show
the status of the WT for all the possible failures.

6. Optimal control

It has been demonstrated that ANNs are very robust in control tasks.
For this reason, they are widely employed in a multitude of systems. For
instance, ANN controllers have been designed for flight control, robot
manipulators, maritime dynamic positioning system, induction motors,
product storage, etc. In this section, several studies are discussed in
which the benefits of ANN are employed to control diverse parameters
of WTs.

6.1. Maximum power point tracking

Maximum Power Point Tracking (MPPT) is an essential requirement
for maximizing the energy extraction from natural wind energy and,
consequently, for increasing the efficiency and rentability of the WES.

Ganjefar et al. propose a quantum ANN as a controller to improve
the efficiency of the MPPT methods [151]. These networks are
equipped in adaptive control structures of tip-speed ratio and optimum
torque MPPT methods. The technique was efficient in both methods,
better than conventional ANN and PID (proportional integral deriva-
tive) controllers. A similar study was carried out by Karakaya and
Karakaş, who made a comparison between ANN, lookup-table (LUT)
and curve-fitting (CF) controllers [152]. The ANN controller was based
on a two-hidden layer configuration. The results of this study are shown
in Table 7.

ANN controllers produce better results than the other ones, e.g.
274.05 better than CF and 244.27% better than LUT (see Table 5).

Medjber et al. proposed a new control strategy based on ANN and
fuzzy logic controllers to regulate the power transfer between the WT
and the grid [153]. The objective was to ensure the MPPT for a DFIG.
This study compares active and reactive power, currents and voltages,
using both a single layer hidden ANN and a fuzzy logic controller. The
response time obtained by the first controller was considerably reduced.

Fig. 5. Blade tip deflection scheme [141]

Fig. 6. Configuration of the six ANN-based model [150]
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Hong et al. introduced a feed-forward general regression ANN
controller to drive the turbine speed extracting the maximum power
[154]. The approach combines the ANN with ant colony optimization.
The controller allows the system stability to be maintained and the
desired performance to be reached even under uncertainties.

Petković proposes a method based on ANFIS to estimate the power
coefficient [155]. This parameter can be used to find the optimal op-
erating points and design a controller to optimize the power generated.
The study concludes that ANFIS is efficient at estimating Weibull
parameters for WES.

Mehta et al. modelled an ANN based predictive controller to max-
imize the power capture of a mid-sized hydrostatic WT [156]. The fluid
power transmission is technology with a high research interest. It em-
ploys a pressurized fluid flow to transmit the torque of the rotor blades.
The ANN controller is more effective than a conventional PI controller.

Brekken et al. focused on the control and coordination of energy
storage systems [157]. These systems are essential for mitigating the
output uncertainty of a large wind farm. This work demonstrated that
ANN control strategies prove effective for this purpose.

Other methods for MPPT control have been developed employing
BPNN [158], RBFNN [159,160], neuro-fuzzy [161], hybrid particle
swarm optimization-ANN [162], growing neural gas network [163] or
Elman NN [164].

6.2. Pitch angle control

The pitch control is performed to reduce the mechanical stresses and
the variations of the generator torque. The conventional control
strategy is the proportional and integral (PI) controller. Some advanced
control strategies include fuzzy based controllers, multivariable control
strategies or ANN based strategies.

The control systems allow the WTs to operate in different scenarios
because they can adapt the operation mode to specific conditions.
Bagheri and Sun propose an adaptive RBFNN to design controllers for
variable-speed and variable-pitch WTs [165]. It means that the power
using a nonlinear control can be maximized.

Other studies aim to maximize the power generation by controlling
the pitch angle [166]. It has been demonstrated that these control tools
are efficient, providing good robustness and low computational costs.
Perng et al. suggested a RBFNN in order to build a proportional-in-
tegral-derivate controller for the pitch system [167].

Jafarnejadsani et al. [168] developed a RBFNN based strategy in
order to control the pitch angle of the blades, and to modify the speed of
the rotor. This paper demonstrated that the ANN control is very robust
to uncertainty.

Ahmet and Özer [169] proposed an ANN based pitch angle con-
troller, where MLP and RBFNN are employed. This model enables the
power output to be successfully regulated and overloading during high
wind speeds to be avoided.

Mjabber et al. [170] investigated an RBFNN based controller for
pitch angle of variable speed WT. The controller indicated better results
than the PI controller, demonstrating more stable energy extraction
from wind power.

Han et al. [171] developed an individual pitch controller based on a
LIDAR+RBFNN model for optimizing the pitch angle and the elec-
tromagnetic torque. Some simulations demonstrated that this controller

can improve wind energy efficiency and reduce fatigue loads. Another
individual pitch controller was developed by Liu et al. [172]. They used
a RBFNN with online training to mitigate the loads of blades, hub and
yaw bearings.

6.3. Speed and torque control

The control of the speed and torque of the WT rotor is one of the
most common aspects for ensuring the proper behavior of the WTs at
variable and unstable wind speeds. This control allows maximum
power to be extracted without risking the integrity of the WT.

Hong created a sliding mode speed controller by a feed forward
ANN torque compensation, providing robustness to the wind driven
induction generator system [173].

Assareh et al. [174] presented a hybrid method for controlling the
torque in WTs. A RBFNN, trained with a gravitational search algorithm,
is employed to tune gains of a proportional and integral controller. A
good performance of the method is demonstrated by a simulation in a
5MW WT.

Jaramillo-Lopez et al. [175] showed a ANN based identifier de-
signed in order to approximate the mechanical torque of the WTS. A
RBFNN is employed for this purpose. The proposed scheme provides
high robustness according to the simulations carried out.

Petković et al. proposed a system where an ANFIS regulator adjusts
the speed of a variable-speed generator [176]. The method can extract
more power when the turbine is operating at variable-speed mode. The
work concludes that the ANFIS scheme is easily adaptable with opti-
mization techniques with low computational costs.

Wang et al. [177] focused on the torque control for offshore WT on
Spar floating platform. They developed an advanced RBFNN for oper-
ating at speeds lower than rated wind speeds. The proposed controller
results are robust against complex wind and wave disturbances and
very adaptive to unstable system parameters.

Mjabber et al. [178] presented a RBFNN based controller for ap-
proximating the nonlinear dynamics of the WT that ensures the optimal
tip-speed ratio at different wind speeds. This controller improved the
efficiency by 2% in comparison with NDSFCK (Nonlinear Dynamic
State Feed-Back Control with Kalman estimation) controller.

6.4. Reactive power control

Tang et al. used a ANN based controller for the reactive power
control of DFIG [179], where a reactive power controller based on
adaptive dynamic programming (ADP) is developed. The ADP control
comprises both an action and a critic network. Two three-layer NNs
have been used to implement both parts. The results show that the sag
and overshot of the active power can be reduced, and the stability and
damping characteristics can be improved. These authors also developed
a goal representation heuristic dynamic programming to investigate the
reactive power control of a wind farm. In this model, an ANN is em-
ployed to adjust the parameters [180] .

Wei Qiao et al. [181] proposed a novel interface neurocontroller
designed with a RBFNN. This model is employed for steady-state and
transient reactive power compensation. It is demonstrated that the
controller improves the postfault power oscillation damping of the
system.

Barani and Abdi [182] employed a NARX NN that can be used for
controlling the stator reactive power level. This paper compares a
conventional PI controller with the ANN based controller. The proposed
method provided better results than the conventional one.

6.5. Converter control

The modern WTs with DFIG configurations are equipped with back
to back power converters for controlling the speed and torque of gen-
erator. A failure of the power converter will affect the WT operation

Table 7
Comparison between MPPT controllers [152].

Controllers Percentage error according to
10 test data

Percentage error according to 20
test data

ANN 0.35 0.17
LUT 2.81 1.4
CF 8.34 6.2
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and cause disturbance to the grid. This section discusses some ANN
based models that control the operation of the converters.

Wai et al. designed a model including an adaptive control scheme
and a fuzzy ANN for controlling a single-stage boost inverter [183]. The
proposed fuzzy ANN control system was verified by experimental re-
sults. The controller provided significant improvements compared to
the conventional double-loop PI control.

Li et al. [184] investigated how to mitigate some limitations of the
control mechanisms of conventional grid-connected rectifier/inverters.
They implemented a BPNN that showed strong ability in tracing
changing reference commands and satisfying control requirements.

Fu et al. [185] trained recurrent ANNs for optimal control of grid-
connected converter obtaining a reduction of the computing time.

Kanellos et al. [186] proposed a novel neuro-control scheme for the
generator side converter. This scheme contains two multilayer ANNs.
The back-propagation method is employed for training both ANNs. The
proposed scheme is applied to a simulated process presenting opera-
tional characteristics, as indicated by the reported simulations.

This section shows the application of ANN based methods for con-
trollers. These methods are aimed at controlling different parameters
that are intended to extract the maximum energy from the wind. These
controllers are sometimes employed for ensuring the safety and the
integrity of the WTs when they are under extreme environmental
conditions. In this case, the controllers require low computational costs
because immediate responses to sudden changes in the system’s con-
dition are needed. For this purpose, ANFIS and RBFNN are the most
employed methods. ANFIS controllers are demonstrated to be the best
controllers compared with the conventional PID controllers. RBFNN
based controllers are demonstrated to have very strong tolerance of
input noise and online learning ability. In addition, RBFNN controllers
are very efficient in the transient stability performance of power sys-
tems. These abilities are very attractive for controllers.

7. Discussion of NNs applied in wind energy systems and some
trends

A general analysis of ANN in wind energy conversion systems has
been carried out considering the exhaustive state of the art presented in
this paper. This paper classifies the ANN in WT into four categories:
forecasting; fault diagnosis; design, and control. The selection of the
most adequate ANN depends on factors that can be classified as:

- Endogenous factors of the problem: These factors are related to the
nature of the problem, i.e. those characteristics that are imposed by
the problem.

- Exogenous factors of the problem: those parameters that are selected
for the person who addresses the problem. For example, the time-
horizon of predictions, the robustness of the method, the accuracy of
the analysis or the computational cost.

- Limitations: there are several characteristics that limit the accuracy
of ANNs. The main drawbacks are the amount of inputs required,
overtraining of the networks, the extrapolation errors and the dif-
ficulties of optimizing the network [187].

Considering the mentioned factors, an analysis of the literature
identifies some challenges and technological gaps related to ANN ap-
plication with respect to the tools and methodologies for WTs. They can
be summarized as follows:

- The ANNs have been demonstrated to be effective for forecasting
and predicting wind speed and wind power. The results shown in
Section 3 determine that ANNs usually generate results with more
accuracy than other conventional methods, e.g. physical or statis-
tical methods. However, the accuracy of the ANN based methods
decreases significantly for long term predictions. In addition, the
number of historical data required by ANN for long term prediction

is high. A challenge in this field is to develop flexible ANN based
methods adapted to the input data and the desired time horizon.

- In Section 4, it is demonstrated that ANNs are employed for design
optimization of WT components because they can simulate realistic
scenarios through the interrelation of a large number of variables.
The use of ANN in design optimization is limited to the aerodynamic
parts of the WTs, e.g. airfoil sections of the blades. However, the
capacity of these tools allows to other components to be optimized
in the design stage. The optimization of thermal, hydraulic, electric
or mechanical components is a current challenge where ANNs can
be essential.

- ANNs can manage and analyse different dataset, being useful for the
simulation of the behaviour of wind farms. Section 4. B shows that
most of the simulation models based on ANNs enable several en-
gineering aspects of the wind farm to be optimized, e.g. the location
of the wind farm, the interaction between the different WTs. Future
ANN based simulation models should be able to combine en-
gineering, economic, environmental, and social aspects.

- Section 5 shows that ANNs are robust in that they can analyse data
collected from monitoring systems, allowing faults detections and
diagnostics. There is a multitude of analysis methods to detect faults
in gearboxes, generators, rotors, blades, hydraulics. Most of these
methods employ different ANN structures, depending on the re-
quirements. However, the diagnostics can be wrong and then false
alarms occur. The detection of false alarms is an important tech-
nological challenge, where ANN based methods could be applied to
tackle it.

- Section 6 demonstrates that ANNs are employed in control tasks due
to their robustness. The ANN based controllers are usually adaptive
to uncertainties and instabilities of systems. They have been de-
monstrated to be more efficient than PID or NDSFCK controllers.
The study of optimization of ANN controllers are good at achieving
faster responses to sudden changes of the WT condition without
compromising accuracy and robustness.

Table 8 organizes the references considered in this paper according
to the most employed ANN types and the specific application in WTs. It
is important to note that the categories are not mutually exclusive, i.e. a
model can belong to the ANN type according to its configuration,
training algorithm, etc.

According to Table 8:

- The ANN based methods in WES are mainly employed for fore-
casting, fault detection, control and design applications. Regarding
the references of this paper, Fig. 7 shows the frequency of use of the
ANN based method in each application.

- The forecasting and prediction applications employ a great variety
of ANN types. However, the fault detection and the control are
mainly performed by BPNN, ANFIS and RBFNN.

- In general, the BPNN is the most employed ANN type. However, it is
mainly employed in applications that do not require a rapid re-
sponse, such as fault detection, design optimization and not very
short-term forecasting. This is because it provides very accurate
results, but it also involves high complexity and high computational
cost.

- RBFNN is the second most employed configuration. This config-
uration has a very good generalization ability, tolerance to input
noise and fast online learning. These properties are very appropriate
for addressing problems that require rapid response such as speed
and torque control, pitch angle control and short time forecasting
problems.

- The ANFIS is the third most employed ANN based method. This
configuration is the most versatile and it is used for almost all the
applications. It is detachable the use of ANFIS controllers be-
cause they are demonstrated to be more efficient than conventional
PID controllers.
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- Other configurations are used in more specific approaches. It is
important to note that the requirements and constraints of the
problem and the available data are crucial factors for determining
the more adequate ANN based method.

Besides the qualitative analysis of the literature, some quantitative
conclusions are extracted to describe the current state and the future
trends in this field. For this purpose, Figs. 8 and 9 show the evolution of
the most employed ANNs configurations over the last ten years. They
have been created using “Google-Scholar”. The results obtained do not
represent the exact number of models developed, but they can give an
approximate idea of the trends and the evolution of each ANN type in
WTs.

Over the last ten years, the most employed models are the BPNN
and RBFNN based models; however, the ANFIS system presents the
highest growth rate in the last years. One of the reasons that the ANFIS
use is rising exponentially is because the volume of available data is
increasing. These systems have the self-adjusting ability, which allows
massive data to be processed, global errors to be minimized andTa
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computational costs to be reduced.
Fig. 9 shows that, over the last ten years, the number of recurrent

ANNs based models is increasing slowly, with some negative growth
rates, e.g. 2008 and 2015. The number of RBFNN based models is in-
creasing faster than recurrent models, but there are also some negative
rates, e.g. 2015. The number of BPNN and ANFIS systems has increased
without negative growth rates. The ANFIS models present an ex-
ponential growth over the last ten years.

8. Conclusions

The paper presents state-of-the-art artificial neural networks (ANN)
applied to wind energy systems. The complexity of these systems is
rising, and the methods and algorithms to ensure their efficiency are
becoming more robust due to the volume of data and diversity of
variables. The main ANN based models applied in wind energy systems
and their characteristics have been explained in this paper. An ex-
tensive compilation of methods, algorithms and models has been de-
veloped. These methods have been grouped into four major categories.
Some conclusions have been extracted concerning each category:

- Forecasting and predictions: Besides the list of the main references, a
comparison of the errors in different forecasting models has been
carried out. Neural networks are proved to be more efficient for
short-term wind speed prediction, and the hybrid ANN based
method provides better results for short term predictions than other
conventional techniques.

- Design optimization: ANN based models for design optimization have
been discussed. These models not only focus on wind turbines, but
also on wind farms characteristics. In this field, the most employed
methods are adaptive neuro-fuzzy inference systems and Back-pro-
pagation neural networks, since high accuracy is required and the
computational time is not a determinant factor.

- Fault detection and diagnosis: The main ANN based techniques to
detect faults and perform diagnostics of wind turbines have been
discussed in this paper. Most of the ANN based methods are created
to detect failures in gearbox and bearings. The fault detection does
not require a fast computation process and, therefore, the main
factor is the accuracy of the method. In this field, Back-propagation
neural networks are commonly employed in this field because they
usually provide accurate results. Recurrent ANNs are employed
because they allow recent failures to be incorporated into the
structure through feedback processes. ANNs in unsupervised
learning (self-organized-map and adaptive resonance theory) are
also employed because they can detect anomalies without using
historical failure data.

- Control optimization: The most important and recent ANN based
methods for controllers have been discussed in this paper. The
controllers require low computational costs because immediate re-
sponses to sudden changes of the system condition are needed. For
this purpose, neuro-fuzzy inference systems and radial basis func-
tion neural networks are the most employed methods.

This paper also provides an illustrative statistical analysis of the
literature. These results describe the evolution over the last 10 years,
the current state and the future trends of the ANN applications in wind
turbines. A set of challenges and technological gaps regarding these
applications has also been discussed.

Finally, an overall table to summarize and to classify the main
methods is provided.

The results of this paper can be used by researchers to discover the
opportunities of new research lines by detecting those fields where
improvements are required. Some of them are suggested in the set of
challenges. These results allow developers and wind turbine compo-
nents designers to select the most adequate structure for each case ac-
cording to the response of different ANN type to certain requirements.

ANN have been demonstrated to be useful for different applications and
they can be combined with other tools to maximize their contribution
through hybrid systems. In general, this paper can be used as reference
guide for those who want to learn about the use of advanced techniques
in the growing sector of wind energy.

Acknowledgement

The work reported herewith has been financially supported by the
Spanish Ministerio de Economía y Competitividad, under Research
Grants DPI2015-67264-P.

References

[1] G.W.E. Council, GWEC. Global wind report. Annual market update 2010; 2011.
[2] Muñoz CQG, Márquez FPG. Wind Energy Power Prospective. In: Renewable

Energies, Springer; 2018. p. 83–95.
[3] Márquez FPG, Pérez JMP, Marugán AP, Papaelias M. Identification of critical

components of wind turbines using FTA over the time. Renew Energy
2016;87:869–83.

[4] Pérez JMP, Márquez FPG, Tobias A, Papaelias M. Wind turbine reliability analysis.
Renew Sustain Energy Rev 2013;23:463–72.

[5] Pliego Marugán A, García Márquez FP, Pinar Pérez JM. Optimal maintenance
management of offshore wind farms. Energies 2016;9:46.

[6] Pliego Marugán A, García Márquez FP, Lev B. Optimal decision-making via binary
decision diagrams for investments under a risky environment. Int J Prod Res
2017;55:5271–86.

[7] Yin M, Yang Z, Xu Y, Liu J, Zhou L, Zou Y. Aerodynamic optimization for variable-
speed wind turbines based on wind energy capture efficiency. Appl Energy
2018;221:508–21.

[8] Chan C, Bai H, He D. Blade shape optimization of the Savonius wind turbine using
a genetic algorithm. Appl Energy 2018;213:148–57.

[9] Pagnini LC, Burlando M, Repetto MP. Experimental power curve of small-size wind
turbines in turbulent urban environment. Appl Energy 2015;154:112–21.

[10] Gao X, Yang H, Lu L. Optimization of wind turbine layout position in a wind farm
using a newly-developed two-dimensional wake model. Appl Energy
2016;174:192–200.

[11] D’Amico G, Petroni F, Prattico F. Economic performance indicators of wind energy
based on wind speed stochastic modeling. Appl Energy 2015;154:290–7.

[12] Khalid M, Aguilera RP, Savkin AV, Agelidis VG. On maximizing profit of wind-
battery supported power station based on wind power and energy price fore-
casting. Appl Energy 2018;211:764–73.

[13] Shahmohammadi A, Sioshansi R, Conejo AJ, Afsharnia S. Market equilibria and
interactions between strategic generation, wind, and storage. Appl Energy 2017.

[14] Bonou A, Laurent A, Olsen SI. Life cycle assessment of onshore and offshore wind
energy-from theory to application. Appl Energy 2016;180:327–37.

[15] Gomez Munoz C, De la Hermosa Gonzalez-Carrato R, Trapero Arenas J, Garcia
Marquez F. A novel approach to fault detection and diagnosis on wind turbines.
Glob Nest J 2014;16:1029–37.

[16] Márquez FPG, Tobias AM, Pérez JMP, Papaelias M. Condition monitoring of wind
turbines: techniques and methods. Renew Energy 2012;46:169–78.

[17] Jiménez AA, Muñoz CQG, Márquez FPG. Dirt and mud detection and diagnosis on
a wind turbine blade employing guided waves and supervised learning classifiers.
Reliab Eng Syst Saf 2018.

[18] Muñoz CQ, Jiménez AA, Márquez FP. Wavelet transforms and pattern recognition
on ultrasonic guides waves for frozen surface state diagnosis. Renew Energy
2018;116:42–54.

[19] Jiménez AA, Muñoz CQG, Márquez FPG. Machine learning for wind turbine blades
maintenance management. Energies 2018;11:13.

[20] Marugán AP, Márquez FPG, Papaelias M. Proceedings of the Tenth International
Conference on Management Science and Engineering Management. 2017. p.
319–28.

[21] Lee K, Booth D, Alam P. A comparison of supervised and unsupervised neural
networks in predicting bankruptcy of Korean firms. Expert Syst Appl
2005;29:1–16.

[22] Tadeusiewicz R, Chaki R, Chaki N. Exploring neural networks with. C: CRC Press;
2014.

[23] Matich DJ. Redes Neuronales: Conceptos básicos y aplicaciones. Cátedra de
Informática Aplicada a la Ingeniería de Procesos–Orientación I, 2001.

[24] Basheer I, Hajmeer M. Artificial neural networks: fundamentals, computing, de-
sign, and application. J Microbiol Methods 2000;43:3–31.

[25] Kim JH, Powell WB. Optimal energy commitments with storage and intermittent
supply. Oper Res 2011;59:1347–60.

[26] Zugno M, Conejo AJ. A robust optimization approach to energy and reserve dis-
patch in electricity markets. Eur J Oper Res 2015;247:659–71.

[27] Napoli C, Pappalardo G, Tina GM, Tramontana E. Cooperative strategy for optimal
management of smart grids by wavelet rnns and cloud computing. IEEE Trans
Neural Netw Learn Syst 2016;27:1672–85.

[28] Gomez C, Marquez FPG, Arcos A, Cheng L, Kogia M, Mohimi A, et al. A heuristic
method for detecting and locating faults employing electromagnetic acoustic
transducers. Eksploatacja i Niezawodnosc - Mainten Reliab 2017;19:493–500.

A.P. Marugán et al. Applied Energy 228 (2018) 1822–1836

1833

http://refhub.elsevier.com/S0306-2619(18)31104-8/h0015
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0015
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0015
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0020
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0020
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0025
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0025
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0030
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0030
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0030
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0035
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0035
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0035
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0040
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0040
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0045
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0045
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0050
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0050
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0050
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0055
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0055
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0060
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0060
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0060
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0065
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0065
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0070
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0070
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0075
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0075
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0075
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0080
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0080
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0085
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0085
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0085
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0090
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0090
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0090
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0095
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0095
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0100
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0100
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0100
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0105
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0105
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0105
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0110
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0110
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0120
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0120
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0125
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0125
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0130
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0130
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0135
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0135
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0135
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0140
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0140
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0140


[29] Muñoz CQG, Márquez FPG, Lev B, Arcos A. New pipe notch detection and location
method for short distances employing ultrasonic guided waves. Acta Acustica
United Acust 2017:772–81.

[30] Olaofe ZO. A 5-day wind speed & power forecasts using a layer recurrent neural
network (LRNN). Sustain Energy Technol Assess 2014;6:1–24.

[31] Liu H, Tian H-Q, Liang X-F, Li Y-F. Wind speed forecasting approach using sec-
ondary decomposition algorithm and Elman neural networks. Appl Energy
2015;157:183–94.

[32] García Márquez FP, García-Pardo IP. Principal component analysis applied to fil-
tered signals for maintenance management. Qual Reliab Eng Int 2010;26:523–7.

[33] Quan H, Srinivasan D, Khosravi A. Short-term load and wind power forecasting
using neural network-based prediction intervals. IEEE Trans Neural Netw Learn
Syst 2014;25:303–15.

[34] Ak R, Vitelli V, Zio E. An interval-valued neural network approach for uncertainty
quantification in short-term wind speed prediction. IEEE Trans Neural Netw Learn
Syst 2015;26:2787–800.

[35] Lawan S, Wawzawy C, Baharun A, Masri T. Different models of wind speed pre-
diction: a compre¬ hensive review. Int J Sci Eng Res 2014:1760–8.

[36] Safavieh E, Ardakani AJ, Laviani AK, Pourmousavi S, Hosseinian S, Abedi M, et al.
Proceedings of the International Conference on Power Systems. 2007.

[37] Kani SP, Ardehali M. Very short-term wind speed prediction: A new artificial
neural network–Markov chain model. Energy Convers Manage 2011;52:738–45.

[38] Gao S, Dong L, Liao X, Gao Y. Very-short-term prediction of wind speed based on
chaos phase space reconstruction and NWP. In: Control Conference (CCC), 2013
32nd Chinese, 2013. p. 8863–7.

[39] Li G, Shi J, Zhou J. Bayesian adaptive combination of short-term wind speed
forecasts from neural network models. Renew Energy 2011;36:352–9.

[40] Palomares-Salas JC, Agüera-Pérez A, de la Rosa JJG, Moreno-Muñoz A. A novel
neural network method for wind speed forecasting using exogenous measurements
from agriculture stations. Measurement 2014;55:295–304.

[41] Philippopoulos K, Deligiorgi D. Application of artificial neural networks for the
spatial estimation of wind speed in a coastal region with complex topography.
Renew Energy 2012;38:75–82.

[42] Salcedo-Sanz S, Pérez-Bellido AM, Ortiz-García EG, Portilla-Figueras A, Prieto L,
Paredes D. Hybridizing the fifth generation mesoscale model with artificial neural
networks for short-term wind speed prediction. Renew Energy 2009;34:1451–7.

[43] Cadenas E, Rivera W. Short term wind speed forecasting in La Venta, Oaxaca,
México, using artificial neural networks. Renew Energy 2009;34:274–8.

[44] Noorollahi Y, Jokar MA, Kalhor A. Using artificial neural networks for temporal
and spatial wind speed forecasting in Iran. Energy Convers Manage
2016;115:17–25.

[45] Chang G, Lu H, Chang Y, Lee Y. An improved neural network-based approach for
short-term wind speed and power forecast. Renew Energy 2017;105:301–11.

[46] Men Z, Yee E, Lien F-S, Wen D, Chen Y. Short-term wind speed and power fore-
casting using an ensemble of mixture density neural networks. Renew Energy
2016;87:203–11.

[47] Kaur T, Kumar S, Segal R. Application of artificial neural network for short term
wind speed forecasting. In: 2016 Biennial international conference on power and
energy systems: towards sustainable energy (PESTSE), 2016. p. 1–5.

[48] Hu Q, Zhang R, Zhou Y. Transfer learning for short-term wind speed prediction
with deep neural networks. Renew Energy 2016;85:83–95.

[49] Shao H, Wei H, Deng X, Xing S. Short-term wind speed forecasting using wavelet
transformation and AdaBoosting neural networks in Yunnan wind farm. IET
Renew Power Gener 2016.

[50] Wang J, Qin S, Zhou Q, Jiang H. Medium-term wind speeds forecasting utilizing
hybrid models for three different sites in Xinjiang, China. Renew Energy
2015;76:91–101.

[51] Zhang C, Wei H, Zhao J, Liu T, Zhu T, Zhang K. Short-term wind speed forecasting
using empirical mode decomposition and feature selection. Renew Energy
2016;96:727–37.

[52] Meng A, Ge J, Yin H, Chen S. Wind speed forecasting based on wavelet packet
decomposition and artificial neural networks trained by crisscross optimization
algorithm. Energy Convers Manage 2016;114:75–88.

[53] Doucoure B, Agbossou K, Cardenas A. Time series prediction using artificial wa-
velet neural network and multi-resolution analysis: Application to wind speed
data. Renew Energy 2016;92:202–11.

[54] Ak R, Fink O, Zio E. Two machine learning approaches for short-term wind speed
time-series prediction. IEEE Trans. Neural Netw Learn Syst 2016;27:1734–47.

[55] Li G, Shi J. On comparing three artificial neural networks for wind speed fore-
casting. Appl Energy 2010;87:2313–20.

[56] Malik H. Application of artificial neural network for long term wind speed pre-
diction. In: Conference on advances in signal processing (CASP). 2016. p. 217–22.

[57] Finamore AR, Calderaro V, Galdi V, Piccolo A, Conio G. A wind speed forecasting
model based on artificial neural network and meteorological data. In: IEEE 16th
international conference on environment and electrical engineering (EEEIC),
2016. p. 1–5.

[58] Moustris K, Zafirakis D, Alamo D, Medina RN, Kaldellis J. 24-h Ahead wind speed
prediction for the optimum operation of hybrid power stations with the use of
artificial neural networks. In: Perspectives on atmospheric sciences, Springer,
2017. p. 409–14.

[59] Azad HB, Mekhilef S, Ganapathy VG. Long-term wind speed forecasting and gen-
eral pattern recognition using neural networks. IEEE Trans Sustain Energy
2014;5:546–53.

[60] Kerem A, Kizilkan Ö, Salman S. Modelling of Wind Speed Using Artificial Neural
Networks for University Campus of Burdur (Turkey). In: Energy, Transportation
and Global Warming, Springer, 2016. p. 209–22.

[61] Ansari M, Pal NS, Malik H. Wind speed and power prediction of prominent wind
power potential states in India using GRNN. In: IEEE international conference on
power electronics, intelligent control and energy systems (ICPEICES), 2016.
p. 1–6.

[62] Zameer A, Arshad J, Khan A, Raja MAZ. Intelligent and robust prediction of short
term wind power using genetic programming based ensemble of neural networks.
Energy Convers Manage 2017;134:361–72.

[63] Maa X, Jin Y, Dong Q. A generalized dynamic fuzzy neural network based on
singular spectrum analysis optimized by brain storm optimization for short-term
wind speed forecasting. Appl Soft Comput 2017.

[64] Dong Q, Sun Y, Li P. A novel forecasting model based on a hybrid processing
strategy and an optimized local linear fuzzy neural network to make wind power
forecasting: A case study of wind farms in China. Renew Energy 2017;102:241–57.

[65] Liu J, Wang X, Lu Y. A novel hybrid methodology for short-term wind power
forecasting based on adaptive neuro-fuzzy inference system. Renew Energy
2017;103:620–9.

[66] Wang S, Zhang N, Wu L, Wang Y. Wind speed forecasting based on the hybrid
ensemble empirical mode decomposition and GA-BP neural network method.
Renew Energy 2016;94:629–36.

[67] Chitsaz H, Amjady N, Zareipour H. Wind power forecast using wavelet neural
network trained by improved Clonal selection algorithm. Energy Convers Manage
2015;89:588–98.

[68] Jyothi MN, Rao PR. Very-short term wind power forecasting through Adaptive
Wavelet Neural Network. In: 2016 biennial international conference on power and
energy systems: towards sustainable energy (PESTSE), 2016. p. 1–6.

[69] Peng X, Deng D, Wen J, Xiong L, Feng S, Wang B. A very short term wind power
forecasting approach based on numerical weather prediction and error correction
method. In: 2016 China international conference on electricity distribution
(CICED), 2016. p. 1–4.

[70] Xu L, Mao J. Short-term wind power forecasting based on Elman neural network
with particle swarm optimization. In: 2016 Chinese control and decision con-
ference (CCDC), 2016. p. 2678–81.

[71] Wu W, Chen K, Qiao Y, Lu Z. Probabilistic short-term wind power forecasting
based on deep neural networks. In: 2016 international conference on probabilistic
methods applied to power systems (PMAPS), 2016. p. 1–8.

[72] Peng X, Xiong L, Wen J, Xu Y, Fan W, Feng S. et al. A very short term wind power
prediction approach based on Multilayer Restricted Boltzmann Machine. In: 2016
IEEE PES Asia-Pacific power and energy engineering conference (APPEEC), 2016.
p. 2409–13.

[73] Shen Y, Lu X, Yu X, Zhao Z, Wu D. Short-term wind power intervals prediction
based on generalized morphological filter and artificial bee colony neural network.
In: 2016 35th Chinese control conference (CCC), 2016. p. 8501–06.

[74] Shetty RP, Sathyabhama A, Rai AA. Optimized Radial Basis Function Neural
Network model for wind power prediction. In: 2016 second international con-
ference on cognitive computing and information processing (CCIP), 2016. p. 1–6.

[75] Liu Z, Gao W, Wan Y-H, Muljadi E. Wind power plant prediction by using neural
networks. In: 2012 IEEE energy conversion congress and exposition (ECCE), 2012.
p. 3154–60.

[76] Jain V, Singh A, Chauhan V, Pandey A. Analytical study of Wind power prediction
system by using Feed Forward Neural Network. In: 2016 international conference
on computation of power, energy information and commuincation (ICCPEIC),
2016. p. 303–6.

[77] Wang C, Zhang H, Fan W, Fan X. A new wind power prediction method based on
chaotic theory and Bernstein Neural Network. Energy 2016;117:259–71.

[78] Bhaskar K, Singh S. AWNN-assisted wind power forecasting using feed-forward
neural network. IEEE Trans Sustain Energy 2012;3:306–15.

[79] Wan C, Song Y, Xu Z, Yang G, Nielsen AH. Probabilistic wind power forecasting
with hybrid artificial neural networks. Electr Power Compon Syst
2016;44:1656–68.

[80] Jafarian M, Ranjbar A. Fuzzy modeling techniques and artificial neural networks
to estimate annual energy output of a wind turbine. Renew Energy
2010;35:2008–14.

[81] Li T, Li Y, Liao M, Wang W, Zeng C. A new wind power forecasting approach based
on conjugated gradient neural network. Mathematical Probl Eng 2016;2016.

[82] Barbounis T, Theocharis J. Locally recurrent neural networks for long-term wind
speed and power prediction. Neurocomputing 2006;69:466–96.

[83] Jung S, Kwon S-D. Weighted error functions in artificial neural networks for im-
proved wind energy potential estimation. Appl Energy 2013;111:778–90.

[84] Petković D, Shamshirband S, Anuar NB, Naji S, Kiah MLM, Gani A. Adaptive
neuro-fuzzy evaluation of wind farm power production as function of wind speed
and direction. Stochastic Environ Res Risk Assess 2015;29:793–802.

[85] Ouyang T, Kusiak A, He Y. Predictive model of yaw error in a wind turbine. Energy
2017;123:119–30.

[86] Sargolzaei J, Kianifar A. Modeling and simulation of wind turbine Savonius rotors
using artificial neural networks for estimation of the power ratio and torque. Simul
Model Pract Theory 2009;17:1290–8.

[87] Shamshirband S, Petković D, Hashim R, Motamedi S. Adaptive neuro-fuzzy
methodology for noise assessment of wind turbine. PloS one 2014;9:e103414.

[88] Madhiarasan M, Deepa S. Application of ensemble neural networks for different
time scale wind speed prediction. Neural Netw 2016;4.

[89] Casás VD, Pena FL, Duro RJ, Lamas A. Automatic Aerodynamic Design of a wind
turbine through evolutionary techniques. In: IEEE, 2005 intelligent data acquisi-
tion and advanced computing systems: technology and applications, IDAACS 2005.
p. 454–9.

[90] Chen X, Agarwal R. Optimization of flatback airfoils for wind turbine blades using
a genetic algorithm with an artificial neural network. In: 48th AIAA aerospace

A.P. Marugán et al. Applied Energy 228 (2018) 1822–1836

1834

http://refhub.elsevier.com/S0306-2619(18)31104-8/h0145
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0145
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0145
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0150
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0150
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0155
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0155
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0155
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0160
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0160
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0165
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0165
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0165
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0170
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0170
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0170
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0175
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0175
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0180
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0180
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0185
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0185
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0195
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0195
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0200
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0200
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0200
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0205
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0205
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0205
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0210
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0210
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0210
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0215
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0215
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0220
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0220
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0220
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0225
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0225
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0230
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0230
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0230
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0240
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0240
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0245
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0245
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0245
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0250
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0250
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0250
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0255
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0255
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0255
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0260
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0260
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0260
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0265
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0265
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0265
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0270
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0270
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0275
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0275
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0295
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0295
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0295
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0310
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0310
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0310
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0315
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0315
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0315
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0320
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0320
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0320
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0325
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0325
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0325
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0330
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0330
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0330
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0335
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0335
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0335
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0385
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0385
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0390
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0390
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0395
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0395
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0395
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0400
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0400
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0400
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0405
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0405
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0410
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0410
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0415
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0415
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0420
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0420
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0420
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0425
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0425
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0430
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0430
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0430
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0435
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0435
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0440
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0440


sciences meeting including the new horizons forum and aerospace exposition,
2010. p. 1423.

[91] Mortazavi SM, Soltani MR, Motieyan H. A Pareto optimal multi-objective opti-
mization for a horizontal axis wind turbine blade airfoil sections utilizing exergy
analysis and neural networks. J Wind Eng Ind Aerodyn 2015;136:62–72.

[92] Ribeiro AF, Awruch AM, Gomes HM. An airfoil optimization technique for wind
turbines. Appl Math Model 2012;36:4898–907.

[93] Casas VD, Pena FL, Duro RJ. Automatic design and optimization of wind turbine
blades. In: International conference on computational intelligence for modelling,
control and automation, 2006 and international conference on intelligent agents,
web technologies and internet commerce, 2006. p. 205–205.

[94] Ata R, Koçyigit Y. An adaptive neuro-fuzzy inference system approach for pre-
diction of tip speed ratio in wind turbines. Expert Syst Appl 2010;37:5454–60.

[95] Yurdusev M, Ata R, Çetin N. Assessment of optimum tip speed ratio in wind tur-
bines using artificial neural networks. Energy 2006;31:2153–61.

[96] Ee S, Ja E, Mm I, Kt L. Development of artificial neural network model in pre-
dicting performance of the smart wind turbine blade. J Mech Eng Sci (JMES)
2014;6:734–45.

[97] de Jesús Rubio J. Analytic neural network model of a wind turbine. Soft Comput
2015;19:3455–63.

[98] Romański L, Bieniek J, Komarnicki P, Dębowski M, Detyna J. Estimation of op-
erational parameters of the counter-rotating wind turbine with artificial neural
networks. Arch Civil Mech Eng 2017;17:1019–28.

[99] Lee J-C, Shin S-C, Kim S-Y. An optimal design of wind turbine and ship structure
based on neuro-response surface method. Int J Nav Archit Ocean Eng
2015;7:750–69.

[100] Ekonomou L, Lazarou S, Chatzarakis GE, Vita V. Estimation of wind turbines op-
timal number and produced power in a wind farm using an artificial neural net-
work model. Simul Model Pract Theory 2012;21:21–5.

[101] Shamshirband S, Petković D, Hashim R, Motamedi S, Anuar NB. An appraisal of
wind turbine wake models by adaptive neuro-fuzzy methodology. Int J Electr
Power Energy Syst 2014;63:618–24.

[102] Petković D, Shamshirband S, Kamsin A, Lee M, Anicic O, Nikolić V. Survey of the
most influential parameters on the wind farm net present value (NPV) by adaptive
neuro-fuzzy approach. Renew Sustain Energy Rev 2016;57:1270–8.

[103] Petković D, Ab Hamid SH, Ćojbašić Ž, Pavlović NT. Adapting project management
method and ANFIS strategy for variables selection and analyzing wind turbine
wake effect. Natural hazards 2014;74:463–75.

[104] Navarro RI, Akhi-Elarab FN. Study of a neural network-based system for stability
augmentation of an airplane. MSc thesis, Universitat Politecnica de Catalunya,
Spain; 2013. http://hdl.handle.net/2099.1/20296 [accessed 20 September 2013].

[105] Lu B, Li Y, Wu X, Yang Z. A review of recent advances in wind turbine condition
monitoring and fault diagnosis. In: IEEE, 2009 power electronics and machines in
wind applications, PEMWA, 2009. p. 1–7.

[106] Kusiak A, Li W. The prediction and diagnosis of wind turbine faults. Renewable
Energy 2011;36:16–23.

[107] Márquez FPG, Muñoz JMC. A pattern recognition and data analysis method for
maintenance management. Int J Syst Sci 2012;43:1014–28.

[108] Wilkinson M, Darnell B, van Delft T, Harman K. Comparison of methods for wind
turbine condition monitoring with SCADA data. IET Renew Power Gener
2014;8:390–7.

[109] Jiménez AA. Muñoz CQG, Márquez FPG. Machine Learning and Neural Network
for Maintenance Management. In: International conference on management sci-
ence and engineering management, 2017. p. 1377–88.

[110] Catmull S. Self-organising map based condition monitoring of wind turbines. In:
Proc 2011 European Wind Energy Association Annual Event (EWEA 2011),
Brussels, 2011.

[111] Schlechtingen M, Santos IF. Comparative analysis of neural network and regres-
sion based condition monitoring approaches for wind turbine fault detection.
Mech Syst. Signal Process 2011;25:1849–75.

[112] Kusiak A, Verma A. Analyzing bearing faults in wind turbines: A data-mining
approach. Renew Energy 2012;48:110–6.

[113] Zhang Z-Y, Wang K-S. Wind turbine fault detection based on SCADA data analysis
using ANN. Adv Manuf 2014;2:70–8.

[114] Bangalore P, Tjernberg LB. An artificial neural network approach for early fault
detection of gearbox bearings. IEEE Trans Smart Grid 2015;6:980–7.

[115] Bangalore P, Patriksson M, Letzgus S, Karlsson D. An artificial neural network
based condition monitoring method for wind turbines, with application to the
monitoring of the gearbox. Wind Energy 2017.

[116] Li Z, Ma Z, Liu Y, Teng W, Jiang R. Crack fault detection for a gearbox using
discrete wavelet transform and an adaptive resonance theory neural network.
Strojniški vestnik-J Mech Eng 2015;61:63–73.

[117] Strączkiewicz M, Barszcz T. Application of artificial neural network for damage
detection in planetary gearbox of wind turbine. Shock Vib 2015;2016.

[118] Ali JB, Fnaiech N, Saidi L, Chebel-Morello B, Fnaiech F. Application of empirical
mode decomposition and artificial neural network for automatic bearing fault
diagnosis based on vibration signals. Appl Acoust 2015;89:16–27.

[119] Ali JB, Chebel-Morello B, Saidi L, Malinowski S, Fnaiech F. Accurate bearing re-
maining useful life prediction based on Weibull distribution and artificial neural
network. Mech Syst Sig Process 2015;56:150–72.

[120] Biswal S, George JD, Sabareesh G. Fault size estimation using vibration signatures
in a wind turbine test-rig. Procedia Eng 2016;144:305–11.

[121] Guo L, Li N, Jia F, Lei Y, Lin J. A recurrent neural network based health indicator
for remaining useful life prediction of bearings. Neurocomputing 2017.

[122] Murray C, Asher M, Lieven N, Mulroy M, Ng C, Morrish P. Wind turbine drivetrain
health assessment using discrete wavelet transforms and an artificial neural

network. In: Renewable Power Generation Conference (RPG 2014), 3rd, 2014.
p. 1–5.

[123] Sun W, Yao B, Zeng N, Chen B, He Y, Cao X, et al. An intelligent gear fault di-
agnosis methodology using a complex wavelet enhanced convolutional neural
network. Materials 2017;10:790.

[124] Janssens O, Slavkovikj V, Vervisch B, Stockman K, Loccufier M, Verstockt S, et al.
Convolutional neural network based fault detection for rotating machinery. J
Sound Vib 2016;377:331–45.

[125] Cheng J-S, Shi M-L, Yang Y. Roller bearing fault diagnosis method based on LMD
and neural network. Zhendong yu Chongji (J Vibr Shock) 2010;29:141–4.

[126] Zarei J, Tajeddini MA, Karimi HR. Vibration analysis for bearing fault detection
and classification using an intelligent filter. Mechatronics 2014;24:151–7.

[127] An M-S, Kim G-W, Kang D-S. An efficient method of fault detection and classifi-
cation for wind. Power Generator 2015.

[128] Hou ZR. Rolling bearing fault diagnosis based on wavelet packet and improved BP
neural network for wind turbines. Appl Mech Mater 2013:117–20.

[129] Quan L, Yongqian L, Yongping Y. Fault diagnosis method of wind turbine gearbox
based on BP neural network trained by particle swarm optimization algorithm.
Acta Energiae Solaris Sinica 2012;1:021.

[130] García Márquez FP, Pliego Marugán A, Pinar Pérez JM, Hillmansen S, Papaelias M.
Optimal dynamic analysis of electrical/electronic components in wind turbines.
Energies 2017;10:1111.

[131] Wang Z, Guo Q. The diagnosis method for converter fault of the variable speed
wind turbine based on the neural networks. In: Second international conference on
innovative computing, information and control, 2007. ICICIC'07, 2007. p.
615–615.

[132] You X, Zhang W. Fault diagnosis of frequency converter in wind power system
based on SOM neural network. Procedia Eng 2012;29:3132–6.

[133] Zhang X, Zhang B. Fault diagnosis of wind turbine's converter based with SOM net.
In: 2015 5th international conference on electric utility deregulation and re-
structuring and power technologies (DRPT), 2015. p. 1915–8.

[134] Ko Y-J, Lee K-B, Lee D-C, Kim J-M. Fault diagnosis of three-parallel voltage-source
converter for a high-power wind turbine. IET Power Electron 2012;5:1058–67.

[135] Talebi N, Sadrnia MA, Darabi A. Robust fault detection of wind energy conversion
systems based on dynamic neural networks. Comput Intell Neurosci 2014;2014.

[136] Talebi N, Sadrnia MA, Darabi A. Fault detection of wind energy conversion sys-
tems using recurrent neural networks. Int J Sustain Energy 2015;34:52–70.

[137] Ghadimi N. An adaptive neuro-fuzzy inference system for islanding detection in
wind turbine as distributed generation. Complexity 2015;21:10–20.

[138] Abd-Elkader AG, Allam DF, Tageldin E. Islanding detection method for DFIG wind
turbines using artificial neural networks. Int J Electr Power Energy Syst
2014;62:335–43.

[139] Ibrahim RK, Tautz-Weinert J, Watson SJ. Neural networks for wind turbine fault
detection via current signature analysis; 2016.

[140] Malik H, Mishra S. Application of probabilistic neural network in fault diagnosis of
wind turbine using FAST, TurbSim and Simulink. Procedia Comput Sci
2015;58:186–93.

[141] Fu X, He L, Qiu H. MEMS gyroscope sensors for wind turbine blade tip deflection
measurement. In: 2013 IEEE international instrumentation and measurement
technology conference (I2MTC), 2013. p. 1708–12.

[142] Vera-Tudela L, Kühn M. Analysing wind turbine fatigue load prediction: the im-
pact of wind farm flow conditions. Renew Energy 2017;107:352–60.

[143] Gantasala S, Luneno J-C, Aidanpää J-O. Investigating how an artificial neural
network model can be used to detect added mass on a non-rotating beam using its
natural frequencies: a possible application for wind turbine blade ice detection.
Energies 2017;10:184.

[144] Chen B, Matthews PC, Tavner PJ. Wind turbine pitch faults prognosis using a-
priori knowledge-based ANFIS. Expert Syst Appl 2013;40:6863–76.

[145] Kusiak A, Verma A. A data-driven approach for monitoring blade pitch faults in
wind turbines. IEEE Trans Sustain Energy 2011;2:87–96.

[146] Dervilis N, Choi M, Taylor S, Barthorpe R, Park G, Farrar C, et al. On damage
diagnosis for a wind turbine blade using pattern recognition. J Sound Vibr
2014;333:1833–50.

[147] Dervilis N, Choi M, Antoniadou I, Farinholt K, Taylor S, Barthorpe RJ, et al.
Machine learning applications for a wind turbine blade under continuous fatigue
loading. Key Eng Mater 2014:166–74.

[148] Marugán AP, Márquez FPG. SCADA and Artificial Neural Networks for
Maintenance Management. In: International conference on management science
and engineering management, 2017. p. 912–9.

[149] Schlechtingen M, Santos IF, Achiche S. Wind turbine condition monitoring based
on SCADA data using normal behavior models. Part 1: System description. Appl
Soft Comput 2013;13:259–70.

[150] Adouni A, Chariag D, Diallo D, Hamed MB, Sbita L. FDI based on artificial neural
network for low-voltage-ride-through in DFIG-based wind turbine. ISA Trans
2016;64:353–64.

[151] Ganjefar S, Ghassemi AA, Ahmadi MM. Improving efficiency of two-type max-
imum power point tracking methods of tip-speed ratio and optimum torque in
wind turbine system using a quantum neural network. Energy 2014;67:444–53.

[152] Karakaya A, Karakaş E. Process time and MPPT performance analysis of CF, LUT,
and ANN control methods for a PMSG-based wind energy generation system.
Turkish J Electr Eng Comput Sci 2016;24:3609–20.

[153] Medjber A, Guessoum A, Belmili H, Mellit A. New neural network and fuzzy logic
controllers to monitor maximum power for wind energy conversion system.
Energy 2016;106:137–46.

[154] Hong C-M, Cheng F-S, Chen C-H. Optimal control for variable-speed wind gen-
eration systems using General Regression Neural Network. Int J Electr Power

A.P. Marugán et al. Applied Energy 228 (2018) 1822–1836

1835

http://refhub.elsevier.com/S0306-2619(18)31104-8/h0455
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0455
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0455
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0460
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0460
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0470
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0470
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0475
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0475
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0480
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0480
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0480
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0485
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0485
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0490
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0490
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0490
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0495
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0495
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0495
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0500
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0500
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0500
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0505
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0505
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0505
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0510
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0510
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0510
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0515
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0515
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0515
http://hdl.handle.net/2099.1/20296
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0530
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0530
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0535
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0535
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0540
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0540
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0540
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0555
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0555
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0555
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0560
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0560
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0565
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0565
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0570
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0570
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0575
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0575
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0575
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0580
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0580
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0580
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0585
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0585
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0590
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0590
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0590
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0595
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0595
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0595
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0600
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0600
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0605
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0605
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0615
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0615
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0615
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0620
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0620
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0620
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0625
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0625
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0630
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0630
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0635
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0635
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0640
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0640
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0645
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0645
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0645
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0650
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0650
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0650
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0660
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0660
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0670
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0670
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0675
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0675
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0680
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0680
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0685
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0685
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0690
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0690
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0690
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0700
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0700
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0700
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0710
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0710
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0715
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0715
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0715
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0715
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0720
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0720
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0725
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0725
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0730
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0730
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0730
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0735
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0735
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0735
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0745
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0745
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0745
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0750
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0750
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0750
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0755
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0755
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0755
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0760
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0760
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0760
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0765
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0765
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0765
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0770
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0770


Energy Syst 2014;60:14–23.
[155] Petković D. Adaptive neuro-fuzzy approach for estimation of wind speed dis-

tribution. Int J Electr Power Energy Syst 2015;73:389–92.
[156] Mehta AP, Karthikeyan GRR, Venkatesan K, Ramanujam K. Neural predictive

controller for hydraulic power transmission in wind turbine. In: ASME 2014 Gas
Turbine India Conference, 2014. p. V001T07A005-V001T07A005.

[157] Brekken TK, Yokochi A, Von Jouanne A, Yen ZZ, Hapke HM, Halamay DA. Optimal
energy storage sizing and control for wind power applications. IEEE Trans Sustain
Energy 2011;2:69–77.

[158] Thongam JS, Bouchard P, Ezzaidi H, Ouhrouche M. Artificial neural network-
based maximum power point tracking control for variable speed wind energy
conversion systems. In: Control Applications, (CCA) & Intelligent Control, (ISIC),
2009 IEEE, 2009. p. 1667–71.

[159] Yin M, Zhang X, Zou Y, Zhou L. Improved MPPT control of wind turbines based on
optimization of tracking range. Power Syst. Technol 2014;38:2180–5.

[160] Lee C-Y, Chen P-H, Shen Y-X. Maximum power point tracking (MPPT) system of
small wind power generator using RBFNN approach. Expert Syst Appl
2011;38:12058–65.

[161] Meharrar A, Tioursi M, Hatti M, Stambouli AB. A variable speed wind generator
maximum power tracking based on adaptative neuro-fuzzy inference system.
Expert Syst Appl 2011;38:7659–64.

[162] Sabzevari S, Karimpour A, Monfared M, Naghibi Sistani MB. MPPT control of wind
turbines by direct adaptive fuzzy-PI controller and using ANN-PSO wind speed
estimator. J Renew Sustain Energy 2017;9. 013302.

[163] Pucci M, Cirrincione M. Neural MPPT control of wind generators with induction
machines without speed sensors. IEEE Trans Ind Electron 2011;58:37–47.

[164] Lin W-M, Hong C-M. A new Elman neural network-based control algorithm for
adjustable-pitch variable-speed wind-energy conversion systems. IEEE Trans
Power Electron 2011;26:473–81.

[165] Bagheri P, Sun Q. Adaptive robust control of a class of non-affine variable-speed
variable-pitch wind turbines with unmodeled dynamics. ISA Trans
2016;63:233–41.

[166] Dahbi A, Nait-Said N, Nait-Said M-S. A novel combined MPPT-pitch angle control
for wide range variable speed wind turbine based on neural network. Int J
Hydrogen Energy 2016;41:9427–42.

[167] Perng J-W, Chen G-Y, Hsieh S-C. Optimal pid controller design based on PSO-
RBFNN for wind turbine systems. Energies 2014;7:191–209.

[168] Jafarnejadsani H, Pieper J, Ehlers J. Adaptive control of a variable-speed variable-
pitch wind turbine using radial-basis function neural network. IEEE Trans Control
Syst Technol 2013;21:2264–72.

[169] Yilmaz AS, Özer Z. Pitch angle control in wind turbines above the rated wind
speed by multi-layer perceptron and radial basis function neural networks. Expert
Syst Appl 2009;36:9767–75.

[170] El Hajjaji A, Khamlichi A. Analysis of a RBF neural network based controller for
pitch angle of variable-speed wind turbines. Procedia Eng 2017;181:552–9.

[171] Han B, Zhou L, Zhang Z. LIDAR-assisted radial basis function neural network
optimization for wind turbines. IEEJ Trans Electr Electron Eng 2017.

[172] Liu Z, Huo F, Xiao S, Zhang X, Zhu S, Ji G, et al. Individual pitch control of wind
turbine based on RBF neural network. In: Control Conference (CCC), 2016 35th
Chinese, 2016. p. 5769–73.

[173] Hong C-M, Huang C-H, Cheng F-S. Sliding mode control for variable-speed wind
turbine generation systems using artificial neural network. Energy Procedia
2014;61:1626–9.

[174] Assareh E, Biglari M. A novel approach to capture the maximum power from
variable speed wind turbines using PI controller, RBF neural network and GSA
evolutionary algorithm. Renew Sustain Energy Rev 2015;51:1023–37.

[175] Jaramillo-Lopez F, Kenne G, Lamnabhi-Lagarrigue F. A novel online training
neural network-based algorithm for wind speed estimation and adaptive control of
PMSG wind turbine system for maximum power extraction. Renew Energy
2016;86:38–48.

[176] Petković D, Ćojbašić Ž, Nikolić V, Shamshirband S, Kiah MLM, Anuar NB, et al.
Adaptive neuro-fuzzy maximal power extraction of wind turbine with con-
tinuously variable transmission. Energy 2014;64:868–74.

[177] Wang L, Zuo S, Song Y, Zhou Z. Variable torque control of offshore wind turbine
on spar floating platform using advanced RBF neural network. Abstract Appl Anal
2014.

[178] El Mjabber E, El Hajjaji A, Khamlichi A. An adaptive control for a variable speed
wind turbine using RBF neural network. In: MATEC Web of Conferences, 2016, p.
09007.

[179] Tang Y, He H, Ni Z, Wen J, Sui X. Reactive power control of grid-connected wind
farm based on adaptive dynamic programming. Neurocomputing
2014;125:125–33.

[180] Tang Y, He H, Wen J, Liu J. Power system stability control for a wind farm based
on adaptive dynamic programming. IEEE Trans Smart Grid 2015;6:166–77.

[181] Qiao W, Harley RG, Venayagamoorthy GK. Coordinated reactive power control of
a large wind farm and a STATCOM using heuristic dynamic programming. IEEE
Trans Energy Convers 2009;24:493–503.

[182] Barani A, Abdi H. Loss minimization control of DFIG variable speed wind turbines
based on neural network; 2013.

[183] Wai R-J, Chen M-W, Liu Y-K. Design of adaptive control and fuzzy neural network
control for single-stage boost inverter. IEEE Trans Ind Electron 2015;62:5434–45.

[184] Li S, Fairbank M, Johnson C, Wunsch DC, Alonso E, Proao JL. Artificial neural
networks for control of a grid-connected rectifier/inverter under disturbance,
dynamic and power converter switching conditions. IEEE Trans Neural Netw.
Learn Syst 2014;25:738–50.

[185] Fu X, Li S, Fairbank M, Wunsch DC, Alonso E. Training recurrent neural networks
with the Levenberg–Marquardt algorithm for optimal control of a grid-connected
converter. IEEE Trans Neural Netw Learn Syst 2015;26:1900–12.

[186] Kanellos F, Hatziargyriou N. A new control scheme for variable speed wind tur-
bines using neural networks. In: IEEE, 2002 power engineering society winter
meeting, 2002. p. 360–5.

[187] Ata R. Artificial neural networks applications in wind energy systems: a review.
Renew Sustain Energy Rev 2015;49:534–62.

[188] Ren Y, Bao G. Control strategy of maximum wind energy capture of direct-drive
wind turbine generator based on neural-network. In: 2010 Asia-Pacific power and
energy engineering conference (APPEEC), 2010. p. 1–4.

[189] Aghajani A, Kazemzadeh R, Ebrahimi A. A novel hybrid approach for predicting
wind farm power production based on wavelet transform, hybrid neural networks
and imperialist competitive algorithm. Energy Convers Manage 2016;121:232–40.

A.P. Marugán et al. Applied Energy 228 (2018) 1822–1836

1836

http://refhub.elsevier.com/S0306-2619(18)31104-8/h0770
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0775
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0775
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0785
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0785
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0785
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0795
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0795
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0800
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0800
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0800
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0805
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0805
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0805
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0810
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0810
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0810
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0815
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0815
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0820
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0820
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0820
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0825
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0825
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0825
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0830
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0830
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0830
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0835
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0835
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0840
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0840
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0840
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0845
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0845
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0845
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0850
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0850
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0855
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0855
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0865
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0865
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0865
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0870
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0870
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0870
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0875
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0875
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0875
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0875
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0880
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0880
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0880
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0885
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0885
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0885
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0895
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0895
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0895
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0900
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0900
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0905
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0905
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0905
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0915
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0915
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0920
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0920
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0920
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0920
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0925
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0925
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0925
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0935
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0935
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0945
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0945
http://refhub.elsevier.com/S0306-2619(18)31104-8/h0945

	A survey of artificial neural network in wind energy systems
	Introduction and motivation
	ANN applications in wind energy
	Forecasting and predictions
	Wind speed forecasting
	Wind power forecasting
	Other parameters forecasting

	Design optimization
	Wind turbine design
	Wind farm design

	Fault detection and diagnosis
	Gearbox and bearing
	Generator, power electronics and electric controls
	Rotors, blades and hydraulic controls
	False-alarm rate reduction

	Optimal control
	Maximum power point tracking
	Pitch angle control
	Speed and torque control
	Reactive power control
	Converter control

	Discussion of NNs applied in wind energy systems and some trends
	Conclusions
	Acknowledgement
	References




