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A B S T R A C T

Attention Deficit Hyperactive Disorder (ADHD) is one of the most common diseases in school aged children. In
this paper, we consider using fMRI data with classification techniques to aid the diagnosis of ADHD and propose
a bi-objective ADHD classification scheme based on L1-norm support vector machine (SVM). In our classification
model, two objectives, namely, the margin of separation and the empirical error are considered at the same time.
Then the normal boundary intersection (NBI) method of Das and Dennis is used to solve the bi-objective opti-
mization problem. A representative nondominated set which reflects the entire trade-off information between
the two objectives is obtained. Each representative nondominated point in the set corresponds to an efficient
classifier. Finally a decision maker can choose a final efficient classifier from the set according to the perfor-
mance of each classifier. Our scheme avoids the trial and error process for regularization hyper-parameter se-
lection. Experimental results show that our bi-objective optimization classification scheme for ADHD diagnosis
performs considerably better than some traditional classification methods.

1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a very common
mental disorder in childhood. ADHD symptoms include inattention,
hyperactivity, and impulsively. It affects approximately 5–7% of all
school-age children and more than one half of the ADHD children
continue to manifest clinically significant symptoms after reaching
adulthood [1]. As the pathogenesis is not clear, the main diagnostic
method is based on the subjective experience of doctors, which results
in many children not being able to receive good treatment in the early
stage of ADHD. In addition to the traditional clinical diagnosis, there is
a pressing need to find a set of more distinctive and objective features to
characterize ADHD that can be used to facilitate ADHD diagnosis.

As a promising neuroimaging tool, functional MRI (fMRI) has been
widely used to examine the brain of ADHD patients. Abnormal brain
activations were found in task-related experiments on the dorsal ante-
rior cingulate cortex (dACC), the ventrolateral prefrontal cortex
(VLPFC) and the putamen [2]. Using resting-state fMRI, abnormalities
were found in prefrontal cortex, inferior frontal cortex, sensorimotor
cortex, anterior cingulated cortex, putamen, temporal cortex and cer-
ebellum. In addition, Castellanos et al. (2008) [3] found ADHD-related
decreases of functional connectivity between anterior cingulate and
precuneus/posterior cingulate cortex regions, as well as between pre-
cuneus and other default-mode network components, including ven-
tromedial prefrontal cortex and portions of posterior cingulate cortex.

This suggests that functional connectivity information of functional
MRI data can be used as a classification feature for ADHD diagnosis.

With the development of machine learning techniques, many efforts
have also been made to predict ADHD disease of patients. Mueller et al.
[4] have introduced a machine learning system that uses support vector
machine (SVM) to differentiate ADHD adults from control groups on the
base of the event related potentials that are generated from the EEG
measurements. In [5], Peng et al. utilized structural MRI data and ELM
for ADHD classification. Dai et al. [6] proposed using multimodal
magnetic resonance imaging to classify ADHD children. Mourão-Mir-
anda et al. [7] applied SVM algorithm to perform multivariate classi-
fication of brain states from whole fMRI volumes. They demonstrated
that SVM outperforms Fisher Linear Discriminant (FLD) classifier in
classification performance as well as in robustness of the spatial maps
obtained by a comparative analysis.

Traditional machine learning classification methods mentioned
above for ADHD are based on single optimization technique. One or
more hyper-parameters need to be selected before training a classifier.
This often leads to time-consuming training sessions and classification
inefficiency with changes in sample size. For example, when using a
SVM to classify mild cognitive impairment subtypes [8], Haller [9]
explored the gamma parameter iteratively from 0.01 to 0.09. The main
reason is that the optimization problem in training procedure normally
involves more than one objective (for example, two typical objectives in
SVMs are maximizing the margin of separation and minimizing
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empirical error). However, traditional machine learning techniques
generally use a trade-off parameter to sum up all the objectives into one
and thus turn a multi-objective optimization problem into a single ob-
jective one. Hence in order to obtain an efficient classifier normally trial
and error process is needed for choosing suitable parameters.

In this paper, we propose a bi-objective optimization scheme for the
training session of a classifier. The paper is organized as follows. In
Section 2, fMRI data is preprocessed to get the functional connection
matrix, then we use SPM toolbox (Statistical Parametric Mapping) to
analyze the statistical difference between ADHD patients and healthy
controls. Next, we utilize principal component analysis method to re-
duce the dimension of the feature vector after comparing different di-
mension reduction methods. Furthermore, we present our bi-objective
optimization classification scheme which is based on L1-norm SVM for
ADHD classification. In this scheme, normal boundary intersection
(NBI) method of Das and Dennis is adopted to solve the bi-objective
optimization problem. In Section 3, experimental results and discus-
sions are presented. Finally, we draw some conclusions in Section 4.

2. Materials and methods

2.1. Subjects

Functional magnetic resonance imaging (fMRI) measures brain ac-
tivity by detecting changes associated with blood flow. This technique
relies on the fact that cerebral blood flow and neuronal activation are
coupled. When an area of the brain is in use, blood flow to that region
also increases. The fMRI data can be represented as a series of three
dimensional images. In this study we use the resting state fMRI data
from the Neuron Bureau ADHD 200 competition (http://fcon_1000.
projects.nitrc.org/). The ADHD-200 sample is dedicated to accelerating
the scientific community’s understanding of the neural basis of ADHD
through the implementation of open data-sharing and discovery-based
science. We use KKI, PU-1, PU-2, PU-3 datasets from Kennedy Krieger
Institute (KKI) and Peking University (PU), respectively. Furthermore,
we generate a dataset called PU-joint composed of PU-1, PU-2 and PU-3
and a big dataset KKI-PU-joint composed of KKI and PU-joint. In our
experiment, the experimental validations of our proposed method are
performed on four datasets KKI, PU-1, PU-joint and KKI-PU-joint. An
overview of the data is shown in Table 1. It needs to be noted that KKI-
PU-joint is only used for checking the performance of our method in
handling large-scale classification problems since it is composed of data
from different experiments.

2.2. Preprocessing

Data preprocessing is based on DPARSF toolbox (http://www.
restfmri.net/forum/DPARSF/). Because of the instability of the initial
signal and the subjects’ adaptation to the situation, the first 10 images
were discarded. Then we spatially normalized the realigned images to
the standard echo-planar imaging template and resampled them to
3×3×3mm3. In the next, the functional images were spatially
smoothed with a Gaussian kernel of 4× 4×4mm3 FWHW to decrease
spatial noise. Subsequently, the fMRI data was time-filtered from 0.01 to
0.08 Hz to eliminate the effects of low frequency drift and high fre-
quency noise. After the preprocessing process above, according to the

AAL template reported by Tzourio-Mazoyer et al. [10], the brain image
is divided into 116 brain regions, where 90 regions in the cerebra and
26 regions in the cerebella. We obtained the mean time series of each of
the 116 regions by averaging the fMRI time series over all voxels in the
region using FC (functional connectivity) method. Pearson correlation
coefficients are computed between each pair of them to obtain the re-
sulting function connection matrix. The function connection matrix is a
symmetric matrix. The lower triangular data of the matrix is taken as
the initial features of a single sample. The dimension of the initial
feature vector is 6670 ( × −116 116/2 116/2). Fig. 1 shows the functional
connection matrix acquisition flowchart. The sizes of the initial feature
matrices for the four data sets are 83×6670, 85×6670, 194× 6670
and 277×6670, respectively.

Moreover, statistical analysis is used to show the difference of the
brain between ADHD patients and healthy controls. We collected ten
patients and ten controls from the four datasets to perform a random-
effect two-tailed two-sample t-test SPM5 (http://www.fil.ion.ucl.ac.uk/
spm/) in Matlab 7.8. Using FC analysis of SPM5, the statistical differ-
ence results are obtained, see Fig. 2. The red highlighted areas which
correspond to posterior cingulate cortex (PCC), dorsal posterior cin-
gulate cortex (dPCC), dorsal anterior cingulate cortex (dACC) and so on
are considered to have statistically significant difference between the
two groups. This result further verifies that the viability of using feature
matrix to classify ADHD data.

2.3. Data dimensionality reduction

For the four datasets, the number of original brain features for
classification is 6670, while the sample sizes are 83 (KKI), 85 (PU-1),
194 (PU-joint) and 277 (KKI-PU-joint) respectively. The dimensionality
of original brain features is much higher than the number of samples.
Thus, dimensionality reduction is required to improve the performance
of the classifier. For these small sample high dimension data, we have
compared three traditional methods, namely, principal component
analysis (PCA) [11], Isomap [12] and LLE [13] methods to reduce the
dimension of the original features. After comparison, we chose PCA
method as the dimensionality reduction method. Finally the sizes of
the feature matrix for the four data sets are reduced to

× × ×83 49, 85 60, 194 132 and ×277 180, respectively.

2.4. Bi-objective classification scheme

In this section, we are going to propose a multi-objective classifi-
cation scheme. The main difference between our scheme and traditional
classification methods based on regularization hyper-parameter selec-
tion can be seen in Figs. 3 and 4.

From the figures we can see that our scheme can provide a re-
presentative set of classifiers, which can make the decision maker (a
person who is responsible for making decisions) select a most desirable
classifier from it. Thus it avoids the trial and error process for reg-
ularization hyper-parameter selection.

2.4.1. Bi-objective SVMs
Support vector machines are supervised learning models with as-

sociated learning algorithms that analyze data used for classification in
machine learning. In this section we consider formulating a bi-objective
classification model based on SVMs.

Given a set of training examples of two classes
= …S x y x y x y{( , ), ( , ), , ( , )}m m1 1 2 2 , where m is the number of training

samples, ∈ ⊂x X Ri n (n is the dimension of samples) is the i-th ob-
servation and it is sampled from an input space X, and ∈ − +y { 1, 1}i is
the corresponding label for xi. The aim of a SVM is to find a hyperplane
that separates S into two half-spaces such that samples of the same class
are in the same half-space. Intuitively, a good separation is achieved by
the hyperplane that has the largest distance to the nearest training-data
point of any class since in general the larger the margin the lower the

Table 1
Description of the datasets.

Dataset Total number of
subjects

Number of ADHD
subjects

Number of control
subjects

KKI 83 22 61
PU-1 85 24 61
PU-joint 194 76 118
KKI-PU-joint 277 98 179
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generalization error of the classifier. However, practically it often
happens that the sets to discriminate are not linearly separable. Thus in
a soft-margin SVM, in addition to maximizing the margin of separation,
minimizing the measure of empirical error is also considered as an
objective. The two objectives are usually summed up by a weighting
factor C (which is used to balance the importance between the two
objectives on training samples) to form a weighted sum objective
function.

For a single sample, the empirical error is typically measured by its
distance to the margin. As for the margin of separation, in the case of
L1-norm is used, maximizing the margin of separation implies mini-
mizing L1-norm of the normal vector of the separating hyperplane.
Therefore, a typical soft-margin SVM formulation based on L1-norm can
be described as follows.

∑+

+ ⩾ − = …

⩾

=

ω C ξ

y ω x b ξ i m
ξ

L CSVM min ‖ ‖

s.t. ( · ) 1 , 1, 2, ,
0

i

m

i

i i i

i

1 1
1

where ξi denotes the empirical error associated with instance i and C is a
weighting factor. If C is changed, then the importance placed on each
objective changes as well. This may result in a different optimal solu-
tion and hence a different classifier. In practice, the chosen of C value is
typically by experimentation. By changing the value of C, a set of ef-
ficient classifiers can be created and hence the most preferred one can
be observed by a decision maker. However, the main disadvantage of
experimenting with C is that it is hard to predict the changes of the two
objectives with the changing of C. For example, suppose that one thinks
that the two objectives are equally important, then a default C value of
1 is used. If the classifier obtained has a large empirical error, then one
would like to try a larger value of C in expecting a lower empirical
error. However, only after experimentation the suitable value of C can
be identified since it is highly data dependent and cannot be known in
advance whether a C value of 5, 20, or 200 would lead to an acceptable
classifier. In an effort, Chang and Lin (2011) [14] suggest varying C
exponentially to overcome this problem.

In contrast to the traditional SVMs, a bi-objective version of L1-norm
SVM formulation is as follows:

Fig. 1. Functional connection matrix ac-
quisition flowchart.

Fig. 2. Statistical differences between healthy controls and ADHD patients using FC method (left: active area detection results; right: 3D brain surface activation
diagram).

Fig. 3. Traditional classification methods based on regularization hyper-parameter selection.
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Here, we maximize the separation margin and minimize the empirical
error at the same time.

For a bi-objective optimization problem, the two objectives are
usually conflicting so that a feasible solution optimizing both objectives
simultaneously does not exist. Therefore, the purpose of bi-objective
optimization is to obtain nondominated points. A nondominated point
in objective space is the image of an efficient solution in variable space.
An efficient solution is defined as a feasible solution for which an im-
provement in one objective will always lead to a deterioration in the
other objective.

According to the definition of efficient solution, Aytug and Sayin
[15] defined efficient SVM classifier for problem (L BioSVM)1 .

For a particular training data set, a classifier ω b( , )0 0 is said to be
dominated by another classifier ω b( , ), if <ω ω‖ ‖ ‖ ‖1

0
1 and ∑ ≦ ∑ξ ξi i i i

0

or ≦ω ω‖ ‖ ‖ ‖1
0

1 and ∑ < ∑ξ ξi i i i
0, where ξi

0 and ξi denote the empirical
errors under each classifier respectively. A classifier is called efficient if
there does not exists other classifier dominating it.

All the efficient classifiers form the efficient frontier. For a decision
maker, any efficient classifier in the frontier may possibly be of interest
because it reflects a particular trade-off information between the
margin of separation and empirical error. Obviously, any classifier
which does not on the efficient frontier do not need be considered be-
cause an alternative one that dominates it is known to be sure exist.

To make problem (L BioSVM1 ) solvable, we use the difference of two
positive variables +ω and −ω to represent ω, i.e., = −+ −ω ω ω( ). Then the
first objective ω‖ ‖1 can be written as min ++ −e ω ω( )T . Therefore pro-
blem (L BioSVM)1 is transformed into problem (TL BioSVM1 ) as follows.
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where e is a column of ones and eT is the transpose of e.
Accordingly, for problem (TL bioSVM1 ), a classifier corresponding to

+ −ω ω b ξ( , , , ) is called efficient if there does not exist any other feasible
solution + −w w b ξ( , , , ) such that + ≦ ++ − + −e w w e ω ω( ) ( )T T and
∑ < ∑ξ ξi i i i or + < ++ − + −e w w e ω ω( ) ( )T T and ∑ ≦ ∑ξ ξi i i i.

2.4.2. Normal boundary intersection method for solving bi-objective
L1-norm SVM

Researchers have developed a lot of methods to solve multi-objec-
tive programming (MOP) problems. These algorithms basically fall into
two categories, one is for approximating the nondominated set, the
other is for finding a discrete representation of the nondominated set.
While for classification problems, since a decision maker normally
prefers a representative set of efficient classifiers for decision making,
we focus on algorithms for finding a discrete representation of the
nondominated set. For discrete representation, Sayin (2000) [16]

defined three quality criteria, namely cardinality, uniformity and cov-
erage. According to three quality criteria, a good representation should
have small cardinality, small coverage error and a high uniformity
level. Therefore we use the normal boundary intersection method
proposed by [17] to solve the L1-norm bi-objective SVM and thus
enumerates a representative set of efficient classifiers.

NBI method is proposed for solving the generalized formulation of
MOP problem

= …

∈ = … ⩽

f x f x f x f x

x R g x g x g x g x

(MOP) min ( ) ( ( ), ( ), , ( ))

s.t. : ( ) ( ( ), ( ), , ( )) 0.
p

T

n
m

T
1 2

1 2

= ∈ = … ⩽X x R g x g x g x g x{ : ( ) ( ( ), ( ), , ( )) 0}n
m

T
1 2 is the feasible set in

decision space Rn, we assume it is nonempty. The feasible set Y in ob-
jective space Rp is defined by

= ∈Y f x x X{ ( ): }.

For problem (MOP), a feasible solution ̂ ∈x X is an efficient solution
of problem (MOP) if there exists no ∈x X such that ̂⩽f x f x( ) ( ). The
set of all efficient solutions of problem (MOP) will be denoted by XE and
called the efficient set in decision space. Correspondingly, ̂ ̂=y f x( ) is
called a nondominated point and = ∈Y f x x X{ ( ): }N E is the non-
dominated set in objective space.

NBI method is dedicated to find a finite representative subset R of
the nondominated set YN . Fig. 5 shows how the NBI method works for a
bi-objective optimization problem example. This method calculates a
reference plane, and places uniformly distributed reference points on
the reference plane, then projects the reference points to the boundary
of Y along the normal direction. Finally, a finite subset R of YN (and
their corresponding efficient solutions) that represents YN can be ob-
tained. The NBI algorithm for solving bi-objective optimization problem
is summarized in Algorithm 1. For a more detailed description, the
reader is referred to [17].

Fig. 4. Multi-objective classification scheme.

Fig. 5. The nondominated points obtained in the NBI method.
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Algorithm 1. The normal boundary intersection method for bi-
objective problem (MOP).

INPUT: Training set and the number of reference points r
Step 1. = ∈ =y f x x X k: min{ ( ): }, 1, 2k

I
k

Solve ∈ =y y Y y ymin{ : , }I
2 1 1 and ∈ =y y Y y ymin{ : , }I

1 2 2 , let y 1

and y 2 be the optimal solutions, respectively. Line segment
y y( , )1 2 is the reference plane.

Step 2. Compute r equally spaced reference points qi on the
reference plane.

Step 3. For =i 1 to r, solve

̂+ =

⩾
∈

t
q tn f x
t
x X

max
s.t. ( )

0
i

and store the nondominated points ̂+q tni to R.
OUTPUT: The representative nondominated subset R

For bi-objective optimization problem, Algorithm 1 can obtain a
representative non-dominated set. With a suitable number of
reference points, NBI method can guarantee uniformity and coverage.
In the case of bi-objective optimization problem is (TL bioSVM1 ), the
nondominated points are corresponding to efficient classifiers, thus a
set of representative efficient classifiers can be obtained.

3. Results

We implement NBI algorithm in Matlab for solving bi-objective
classification problem (TL1bioSVM). Each of the four datasets is divided
into three sets, i.e., training set, validation set and testing set by stra-
tified random sampling. More precisely, we randomly sample 60% of
both positive data and negative data as a training dataset, 20% for va-
lidation dataset and 20% for testing dataset, respectively. We then run
NBI method to solve problem (TL1bioSVM) using training data to obtain
a representative nondominated set (each nondominated point in the set
corresponds an efficient classifier) to explore the trade-off between the
two objectives, namely, the margin of separation and empirical error.
Next we test the representative efficient classifiers on the validation and
testing data.

The results are shown in Figs. 6–9. In each figure, the representative
nondominated points (efficient classifiers) generated by NBI algorithm
are the square points on the piecewise linear curve. Each square point
also represents a pair of parameters ∑ω ξ(‖ ‖ , )i1 for each classifier, and
other points with the same x-axis value represent the performance on
the dataset corresponding to the classifier. The nondominated point
curve depicts reasonable trade-offs between the margin of separation

and the empirical error. We can see that the∑ ξi curve approximates the
training error curve and it is used as a criterion for error counts.
Comparing the validation and testing errors with the training errors, we
can see that the validation and testing error curves are not only not
smooth but also not consistent with the training error curve. Usually a
large training dataset is necessary to make sure classification accuracy
since most classification algorithms are probabilistic so that an ideal
classification testing error cannot be always get. Moreover, with the
increase of the training data set, the three error curves are supposed to
converge. We also notice that the classification errors for KKI-PU-joint
are quite high. This may be due to that the data are from different
experiments.

3.1. Discussion

Considering the classification error of each specific classifier, we

Fig. 6. Norm versus empirical error: training, validation and testing sets for KKI
dataset.

Fig. 7. Norm versus empirical error: training, validation and testing sets for PU-
1 dataset.

Fig. 8. Norm versus empirical error: training, validation and testing sets for PU-
joint dataset.

Fig. 9. Norm versus empirical error: training, validation and testing sets for
KKI-PU-joint dataset.

L. Shao et al. Journal of Biomedical Informatics 84 (2018) 164–170

168



select four representative classifiers for each problem. They are corre-
sponding to nondominated points (9.46, 9.29), (8.50, 10.72), (7.57, 12.18)
and (6.65, 13.64) for KKI data; (1.21, 9.06), (1.46, 6.46), (1.61, 5.16) and
(1.78, 3.87) for PU-1 data; (2.73, 8.96), (2.45, 13.45), (2.20, 17.95) and
(1.95, 22.45) for PU-joint data; (11.40, 14.20), (7.97, 19.93), (4.88, 25.76)
and (3.36, 32.03) for KKI-PU-joint data, which are shown in Figs. 6–9,
respectively. For each classifier, we calculate sensitivity, specificity and
accuracy for training and testing datasets. They are summarized in
Tables 2–5.

According to the classification errors and the above three indicators,
a decision maker can weigh the relationship between the two objectives
and obtain a range of efficient classifiers with different properties. It
needs to be noted that the specificity is generally low for the three data
sets, this may be due to the imbalanced property of the data which
makes the prediction of negative samples less accurate.

3.2. Comparison of different classification methods

To further show the performance our bi-objective classification
scheme, we compare our method with L CSVM, L CSVM1 2 (norm-2
SVM) [18], k-nearest neighbors (KNN) [19,20], AdaBoost [21] Random
Forest (RF) [22], Multi-layer Perceptron (MLP) [23] and extreme
learning machine (ELM) [5] methods on KKI, PU-1 and PU-joint

datasets.
We use the same stratified random sampling procedure as the one

for (TL1bioSVM) and tune the hyper-parameters on the validation da-
tasets for above mentioned methods. For all the methods, we train the
parameters of the classifiers based on the training datasets and test the
performance of the classifiers on the testing datasets. We run the ex-
periment ten times, finally we come out an average performance for
each method. For our bi-objective method, each time for a different
training dataset we choose a most desirable efficient classifier from all
classifiers according to the performance on the validation set to avoid
overfitting.

For all the other methods, the hyper-parameters used are listed as
below. In consistence with our (TL1bioSVM), no kernel are used for
both L CSVM1 and L CSVM2 ; the C value for both L CSVM1 and L CSVM2

is 0.8; the number of neighbors for KNN is 5; the base estimator for
AdaBoost is decision tree, the number of estimators is 30 and learning
rate is 0.2; for RF, the number of estimators is 10; for MLP, the number
of hidden layers is 3 and the number of neurons for each layer is 20, 30
and 20; for ELM, the number of neurons in the hidden layer is 180 and
the activation function is sigmoid. Parameters of all classifiers men-
tioned above are tuned according to the performance of the validation
dataset and are evaluated on the performance of the testing dataset.

The average accuracy and Matthews’ correlation coefficient (MCC)
[24] of testing datasets are shown in Tables 6 and 7, respectively. From
the tables, we can see that our method behaves well in general. The
MCC parameters obtained by our method are the highest among all the
methods for all the three datasets. We also notice that in Table 6 the
accuracy of classification is not too high. This may be due to not enough
dataset samples and data imbalanced..

4. Conclusion and future work

In this paper we have addressed the problem of classification of
ADHD patients and healthy controls based upon fMRI data. We use the
function connectivity information as the feature information for clas-
sification. Instead of the traditional weighted sum formulation, we
adopt a bi-objective SVM formulation based on L1-norm in which the
two objectives are to minimize empirical error and maximize the
margin of separation. The normal boundary intersection algorithm is
used to generate a representative nondominated set. Each non-
dominated point in the set corresponds to an efficient classifier for
decision makers to choose.

Experimental results show that our method can be used for ob-
taining a good representative set of classifiers in comparison to the
traditional SVM formulation with a trade-off parameter C. With bi-ob-
jective optimization scheme, an efficient classifier can be selected from
the representative set of classifier frontier by decision makers.
Comparative analysis shows that our method gives a better perfor-
mance than L CSVM, L CSVM1 2 , KNN, AdaBoost, RF, MLP and ELM

Table 2
The performance on training/testing dataset of KKI.

Classifier (9.46, 9.29) (8.50, 10.72) (7.57, 12.18) (6.65, 13.64)

Sensitivity 1.0000/0.7500 0.9722/0.6667 0.9722/0.6667 0.9722/0.6667
Specificity 0.7857/1.0000 0.7857/1.0000 0.7857/0.7500 0.7857/0.7500
Accuracy 0.9400/0.8125 0.9200/0.7500 0.9200/0.6875 0.9200/0.6875

Table 3
The performance on training/testing dataset of PU-1.

Classifier (1.21, 9.06) (1.46, 6.46) (1.61, 5.16) (1.78, 3.87)

Sensitivity 1.0000/1.0000 1.0000/1.0000 1.0000/1.0000 1.0000/1.0000
Specificity 1.0000/0.4731 0.8227/0.2306 0.8227/0.2306 0.6419/0.2306
Accuracy 1.0000/0.8000 0.9559/0.8000 0.9559/0.8000 0.9175/0.8000

Table 4
The performance on training/testing dataset of PU-joint.

Classifier (2.73, 8.96) (2.45, 13.45) (2.20, 17.95) (1.95, 22.45)

Sensitivity 0.9850/0.7727 0.9850/0.9090 0.9850/0.9090 0.9701/0.9090
Specificity 0.9777/0.6667 0.9777/0.6667 0.9555/0.5333 0.8667/0.4000
Accuracy 0.9821/0.7297 0.9821/0.8108 0.9732/0.7567 0.9285/0.7027

Table 5
The performance on training/testing dataset of KKI-PU-joint.

Classifier (11.40, 14.20) (7.97, 19.93) (4.88, 25.76) (3.36, 32.03)

Sensitivity 0.9902/0.8529 1.0000/0.8235 1.0000/0.9117 0.9902/0.9117
Specificity 0.8983/0.7368 0.8135/0.5789 0.7627/0.5263 0.7627/0.5789
Accuracy 0.9567/0.8113 0.9320/0.7358 0.9135/0.7733 0.9074/0.7924

Table 6
Average classification accuracy for different methods.

Dataset L BioSVM1 L CSVM1 L CSVM2 KNN AdaBoost RF MLP ELM

KKI 81.25% 69.70% 68.75% 62.50% 87.50% 68.75% 62.50% 81.25%
PU-1 86.67% 74.19% 73.33% 73.33% 86.67% 86.67% 73.33% 80.00%

PU-joint 81.08% 66.67% 78.38% 70.27% 72.97% 64.86% 64.86% 75.60%

Table 7
Average MCC value for different methods.

Dataset L BioSVM1 L CSVM1 L CSVM2 KNN AdaBoost RF MLP ELM

KKI 0.66 0.19 0.36 0.15 0.66 0.36 0.29 0.65
PU-1 0.65 0.50 0.56 0.21 0.65 0.65 0.00 0.45

PU-joint 0.60 0.36 0.55 0.37 0.42 0.23 0.32 0.52
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methods. Further work can be done on the processing of imbalanced
data in order to improve the accuracy of classification.
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