
J Supercomput
https://doi.org/10.1007/s11227-018-2277-x

Emergent models, frameworks, and hardware
technologies for Big data analytics

Sven Groppe1

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Today’s state-of-the-art Big data analytics engines handle masses of data,
but will reach to their limits, as the future Big data flood is predicted to still grow
with an increasing speed. Hence we need to think about the next development phase
and future features of Big data analytics engines. In this paper, we discuss possible
future enhancements in the area of Big data analytics with focus on emergent models,
frameworks, and hardware technologies. We point out a selection of new challenges
and open research questions.

Keywords Big data · Computer architectures · FPGA · GPU · Cloud Computing ·
Fog Computing · Dew Computing · Semantic Web

1 Introduction

Big data experts characterize Big data with certain words starting with a big ‘V’. The
most common ones are coined to Laney [47], which uses Volume to express that Big
data must have some certain data quantity, Velocity to refer to an enormous speed of
new data, and Variety to remember that in usually heterogeneous environments there
are a lot of data types and formats to be processed. The community actively took over
the idea of big V’s and, as a result, proposed an increasing number of V’s (e.g., [90] for
7 V’s and [19] for the top 10 list of V’s). One of these most important newly proposed
big V’s is the Value, which refers to the data usefulness: We should be able to process
the today’s masses of heterogeneous data in order to conclude new information, to use

B Sven Groppe
groppe@ifis.uni-luebeck.de

1 Institute of Information Systems, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2277-x&domain=pdf
http://orcid.org/0000-0001-5196-1117

S. Groppe

the data for new applications and have some benefits from them. Otherwise, handling
with Big data would not be meaningful for us.

Big data analytics engines are already able to handle masses of data and offer
sophisticated technologies to address the volume, velocity, and variety properties.
However, in order to handle the future’s increasing demand of Big data processing,
we need to think about new technologies and computing paradigms to be integrated
into future generations of Big data analytics engines. Furthermore, we need to discuss
ways to increase the value of Big data.

In this paper, we hence discuss possible next steps for future generations of Big data
analytics engine. We explain and analyze the possible future integration of emergent
hardware technologies into existing frameworks for Big data analytics. Furthermore,
we look at new computing paradigms besides cloud computing, which may be applied
in future Big data analytics engines as well. Moreover, we shortly discuss the Semantic
Web offering a data model targeting at the value property of Big data.

The contributions of this paper include:

– an overview of the current state of big data analytics engine, emergent hardware
technologies and new computing paradigms, and their relation to the Semantic
Web,

– a comparison of Moore’s law with the properties of top ranked parallel computers,
– an analysis of high-end hardware of different types of parallel architectures, and
– a selection of new challenges and open research questions in the intersection of

the discussed areas for data management problems of Big data analytics engines
with special focus on
– Big data analytics engines for new computing paradigms like fog and dew

computing,
– the Semantic Internet of Things area and
– index accesses of hardware-accelerated Big data analytics engines.

2 Moore and data growths

Gordon Moore observed that the number of transistors in a dense integrated circuit
doubles approximately every 2 years [63,64]. His law was later adapted to other areas
and describes in general the exponential growth of processing capabilities of a single
computer. However, what we today recognize is that the growth of data to be processed
is also somehow exponential, but growing faster than the processing capabilities.

Some decades before, it was common sense to expect that the next generation of
computers can handle those problems not process-able by the older computers. Today
this is on the one hand still true, but on the other hand, it seems to be that today’s appli-
cations and infrastructure are designed to produce as much data as possible leading at
some point to a processing demand not to be handled even by future computer genera-
tions. Furthermore, because of physical laws like those of quantum effects, the Moore
era seems to come to a natural end [65,91], i.e., the growth of processing capabilities
of a single computer may at least slow down or even the processing capabilities do
not increase at all any more.

123

Emergent models, frameworks, and hardware...

The end of the Moore era can be made visible by looking at top ranked parallel com-
puters1: Whereas the achieved GFlops2 per core seemed to be increasing following
an exponential growth until 2012 (see Fig. 1), afterward the achieved GFlops per core
even decreases. This effect can be easily overseen whenever only the achieved perfor-
mance is considered (see Fig. 2): The exponential growth of the achieved performance
is only gained by an exponential growth of used cores (see Fig. 3).

Hence there must be other ways to handle the Big data flood. Completely new com-
puting paradigms like quantum computing promising exponential speedup but only
for certain calculations and neuromorphic computing modeling processing elements
on neurons in the brain are still not far away from laboratory [91]. The only currently
feasible way seems to be using parallel computing, which requires parallel algorithms
to work on partitioned data, scalable with the Big data flood whenever the data can be
partitioned in disjoint fragments to be processed (mainly) independently from each
other. Indeed, the number of cores grows exponentially for top ranked parallel com-
puters, as we already discussed above (see Fig. 3) and which is a sign for the great
success of using more and more parallelism in order to overcome problems of the end
of Moore era.

3 Evolution of typical Big data analytics engines

Because the Big data landscape [89] covering the most important technologies, frame-
works, involved companies, and products is too huge, we can deal only with a small
excerpt of it. Hence we focus on Big data analytics engines in this paper.

The typical Big data analytics stack (see Fig. 4) includes a layer for the data and the
access to it. Engines for Big data analytics usually provide access to data in databases,
in distributed storages or streams. Engines especially deal with distributed resource
management and distributed execution. They provide their capabilities to application
developers and Big data experts in terms of an application programming interface
(API) and often by supporting a high-level scripting language and even SQL-like
query languages. Big data engines often have specialized APIs for processing streams,
applying machine learning and graph processing applications.

Big data engine developers make huge efforts to integrate their product into the
existing Big data landscape and reuse a lot of the existing technologies for import and
export of data and the processing results. However, some core modules like the APIs for
data, stream, and graph processing and machine learning as well as scripting and query
languages are often reinvented, such that there is also a big migration effort necessary
for changing an underlying Big data analytics engine in an existing application.

Let us look at the evolution of Big data analytics engines (see Table 1). While
the original Hadoop version 1 system [85] introduces the Map-/Reduce programming
paradigm with the focus on batch processing of Big data with applications, e.g., in
targeted advertisement and log analysis, the next generation of engines already sup-

1 As given in the November list at https://www.top500.org.
2 Floating-point operations per second (Flops) is a measure of computer performance representing the
number of floating-point calculations computed per second.

123

https://www.top500.org

S. Groppe

0

10

20

30

40

50

60

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

G
Fl

op
s /

 #
 C

or
es

Year

R_max / #Cores R_peak / #Cores

Fig. 1 Achieved GFlops per core of the top ranked parallel computer of the November list of the corre-
sponding year. Whereas Rmax represents the maximal LINPACK performance achieved, Rpeak contains
the numbers of the theoretical peak performance

0,01

0,1

1

10

100

1000

10000

100000

1000000

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

TF
lo

p/
s

Year

R_max R_peak

Fig. 2 TFlops of the top ranked parallel computer of the November list of the corresponding year. Note that
the y-axis has a logarithmic scale. Whereas Rmax represents the maximal LINPACK performance achieved,
Rpeak contains the numbers of the theoretical peak performance

123

Emergent models, frameworks, and hardware...

1

10

100

1000

10000

100000

1000000

10000000

100000000

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

N
um

be
r o

f C
or

es

Year

Fig. 3 Number of cores of the top ranked parallel computer of the November list of the corresponding
year. Note that the y-axis has a logarithmic scale

Fig. 4 Typical Big data analytics stack (e.g., Spark, Flink, Storm)

Table 1 Evolution of Big data analytics engines

Generation

1 2 3 4

Features Batch + Interactive + Near-Real-Time +
Iterative Processing

+ Real-Time
Streaming + Native
Iterative Processing

Processing
model

MapReduce DAG
Dataflows

Resilient Distributed
Datasets (RDD)

Cyclic Dataflows

Engine Hadoop TEZ Spark Flink

123

S. Groppe

ported enough performance for user interactivity. TEZ [87] hence also extended the
processing model to allow directed acyclic graphs for the data flow between different
processing units. The third generation to which SPARK [88] belongs, already sup-
ports near-real-time and iterative processing by handling mini-batches and introducing
Resilient Distributed Datasets enabling in-memory computations on large clusters in a
fault-tolerant manner. Apache Flink [86] is one engine of the current fourth generation,
which supports real-time processing of streams by native iterative processing instead
of internal mini-batch processing as in SPARK. The processing model of Flink also
supports cyclic dataflows, where iterative computations are optimized by Flink.

The interesting question is now: What will be the key features of the next generation?
We will try to speculate in the following sections about this issue...

4 Possible directions for the fifth generation of Big data analytics engines

Possible directions for the fifth generation of Big data analytics engines might be the
support of co-processors.

There are already some few research efforts to use GPUs and FPGAs in Spark [25,
80], but these systems seem to be preliminary. Another direction could be to integrate
the use of smart SSDs (e.g., [92]) into the engines, such that data is already filtered at
the SSD using the processing capabilities of smart SSDs in order to drastically reduce
transfer costs between the SSD and the memory of a cluster node.

There might be also tendencies to go away from cloud computing [23] as the
transfer to nodes are bottlenecks especially for Internet of Things [59] scenarios such
that processing capabilities closer to the sources of data generation are used instead
or complimentary. Approaches like fog and dew computing [18,82] may be adapted
for future generations of Big data analytics engines.

We try to shed lights on these emergent hardware technologies and computing
paradigms for the usage in Big data analytics engines in the following subsections.

4.1 Co-processors

We will compare multi-core CPUs, many-core CPUs, GPUs, and FPGAs with each
other.

In a simplified schematic view (see Fig. 5) of the parallel architectures, we can
divide the components of the architecture in computational units, execution controllers,
interconnection network, and on-chip memory.

4.1.1 Multi-core CPU

The multi-core CPU has shared memory for all cores, but each core owns own mem-
ory (typically fast memory in form of caches), its own execution controller and a
computational unit.

Multi-cores are suitable for applications [74] that

– benefit from high single-core performance,

123

Emergent models, frameworks, and hardware...

Field Programmable Gate Arrays (FPGA) Graphics Processing Unit (GPU)

Many-Core CPU Multi-Core CPU

Fig. 5 Schematic view of parallel architectures (adapted from [74])

– scale only moderately,
– run threads with different functionality (according to the multiple-instruction

multiple-data (MIMD) paradigm),
– are control flow dominated,
– rely on shared memory, and
– access memory only in irregular patterns (with benefits from caches).

The use of multi-core CPUs is currently standard in Big data analytics engines.

4.1.2 Many-core CPU

Many-core CPUs manage now much more cores, but the architecture remains similar
to the one of the multi-core CPU. However, many-core CPUs are optimized for a
higher degree of explicit parallelism, and often for higher throughput at the expense
of latency and lower single thread performance.

Many-cores are suitable for applications [74] that

– scale well,
– have threads with different control flows, and
– compute mostly on private data (sometimes with access to some shared data),

Because of the similarity to multi-core CPUs, the extension of the support of Big
data analytics engines to many-core CPUs seems to be straightforward on a first
look, but there are many challenges remaining for future research like for optimizing
massively parallel execution plans and coordinating competing accesses to data.

123

S. Groppe

4.1.3 GPU

A special type of many-core CPUs are graphics processing units (GPUs) suitable for
vector processing evaluating the same instructions on multiple data in different cores.
Groups of cores typically share some faster memories most often used as caches of
the global memory.

General-purpose graphics processing units (GPGPUs) turn the massive computa-
tional power of a modern graphics accelerator’s shader pipeline into general-purpose
computing power. Although graphics processing units (GPUs) are not necessarily
meant for general-purpose computing, GPGPUs and GPUs are often used syn-
onymously. GPUs basically work according to the single-instruction multiple-data
paradigm, where the same instruction is executed on different data on different cores
at the same time, i.e., not all parallel algorithms are suitable for GPUs. Modern
GPUs offer several thousand computing cores, such that some applications are greatly
speeded up in comparison with multi-core CPUs. There exists a lot of proprietary and
also vector-independent programming standards for programming GPUs. The most
important one is OpenCL [83].

GPUs are suitable for applications [74] that

– utilize data parallelism,
– run threads with identical control flow,
– access memory in regular patterns,
– work on small, static working sets without dynamic memory allocation, and
– use floating-point arithmetic.

It seems to be that one of the most important challenges for a tight integration of GPU
acceleration into future Big data analytics engines is the further design of algorithms
for typical processing tasks tailored to the GPU hardware architecture utilizing the
massive parallelism on the one hand, but masking the overhead for communication
between host computer and GPU on the other hand.

In this context, it is worth to consider AMD Accelerated Processing Units (APU)
[7], which are designed to act as a CPU and GPU on a single die. While the processing
capabilities are typically more restricted in comparison with (high-end) single GPUs,
they have the great feature to access the main memory coherently to and as fast as the
CPU, i.e., communication costs for the transfer to the GPU are avoided in contrast
to PCI-attached GPUs. In this way computations may benefit already for smaller
problem sizes from GPU acceleration, because APUs do not have to first neutralize
communication overhead (as PCI-attached GPUs have to do).

4.1.4 FPGA

Field-programmable gate arrays (FPGAs) consist of an array of programmable logic
blocks as well as reconfigurable interconnects for connecting these blocks with each
other. Logic blocks can be configured to perform simple logic gates (like AND and
XOR) up to complex combinational functions.

123

Emergent models, frameworks, and hardware...

The FPGA configuration is typically specified by using a hardware description lan-
guage (HDL). In comparison with software development, developing HDL programs
is several factors slower and more error prone [1].

Recently, high-level synthesis (e.g., OpenCL) is more mature (e.g., [102]), such that
the development efforts of FPGA programs becomes comparable to software devel-
opment (but still performance-critical parts should not be implemented in OpenCL,
as they have a high overhead). Furthermore, although OpenCL programs developed
for GPUs are also running on FPGAs, they need to be optimized for FPGAs to avoid
worse performance and achieve better results with FPGAs.

A main disadvantage of FPGAs is that it takes a very long time from an HDL or
OpenCL program to running the configuration on the FPGA. Often developers need
to wait hours. There is no problem if the FPGA should run only one configuration.
However, if the FPGA should be reconfigured during runtime, there are some tricks
for an efficient procedure necessary. Hence there are still many open challenges for
the integration of FPGAs in the processing pipeline of Big data analytics engines in
order to allow a certain flexibility in specifying the processing tasks at runtime, but
having a short time for reconfiguration.

Summarizing, FPGAs are special because the interconnection network between its
cores can be configured making them ideally suitable for data-flow-driven algorithms
as well as fast on-chip memory is massively distributed and hence can be accessed in
parallel by its numerous cores.

Hence FPGAs are suitable for applications [74] that

– are designed in a data flow style by implementing processing pipelines, and
– process streams of data.

Also for FPGAs is one main task for future research the investigation of new algo-
rithms for Big data analytics tasks especially designed for the FPGA. Note that besides
PCI-attached FPGA acceleration cards (running on the most widespread platforms),
recently shared-memory systems like HARP23 (e.g., [94]) are developed, which do
not have the disadvantages of communication overhead (as for PCI-attached FPGA
cards), because CPU and FPGA can (coherently) operate on the same main memory
(in parallel). Analogous to APUs, calculations may benefit for much smaller problem
sizes from accelerations by shared-memory systems in comparison with PCI-attached
FPGAs.

4.1.5 Comparison

Table 2 contains the high-end hardware (in terms of achieved GFlops (single preci-
sion)) for the recent 10 years, which we have considered for our comparisons of the
different types of parallel hardware architectures. For a reasonable selection and sim-
plicity of presentation, we consider only leading manufacturers of different types of
hardware4: Intel CPUs for servers, many-core CPUs of Intel and GPUs from NVIDIA

3 https://software.intel.com/en-us/hardware-accelerator-research-program.
4 Inspired by [77], the numbers for the considered hardware are collected from https://www.
intel.com/content/www/us/en/support/articles/000006779/processors.html for Intel Xeon processors,

123

https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.intel.com/content/www/us/en/support/articles/000006779/processors.html
https://www.intel.com/content/www/us/en/support/articles/000006779/processors.html

S. Groppe

Table 2 Considered high-end hardware

Year Intel server CPU Intel many-core NVIDIA GPU AMD GPU

2007 Xeon X5482 GeForce 8800 GTS Radeon HD 3870

2008 Xeon X5492 GeForce GTX 280 Radeon HD 4870

2009 Xeon W5590 GeForce GTX 285 Radeon HD 5870

2010 Xeon X5680 GeForce GTX 580 Radeon HD 6970

2011 Xeon X5690 GeForce GTX 580 Radeon HD 6970

2012 Xeon E5-2690 Xeon Phi SE10 GeForce GTX 680 Radeon HD 7970 GHz Ed.

2013 Xeon E5-2697 v2 Xeon Phi 7120 GeForce GTX Titan Radeon HD 8970

2014 Xeon E5-2699 v3 Xeon Phi 7120 Tesla K40 FirePro W9100

2015 Xeon E5-2699 v3 Xeon Phi 7120 GeForce GTX Titan X FirePro S9170

2016 Xeon E5-2699 v4 Xeon Phi 7290 NVIDIA Titan X FirePro S9170

2017 Intel Xeon Platinum 8180 Xeon Phi 7290 Tesla V100 Radeon Vega Frontier Edition

and AMD. We can expect that the main trends remain for high-end hardware of other
manufacturers.

For this high-end hardware of the recent years, the end of the Moore era can be
shown by looking at the frequency of computational units (i.e., CPU and GPUs) (see
Fig. 6), which does not increase any more in big jumps and sometimes even decreases
(e.g., Intel Xeon) in order to allow more computational units on a die for more parallel
computations.

The number of computational units5 grows more extensive in the considered recent
high-end hardware (see Fig. 7), which is a sign for the trend to using more and more
parallelism for satisfying the increasing demand for processing capabilities.

Figure 8 and Table 36 contain the performance metrics GFlops (single precision) of
the considered high-end hardware (see Table 2) of the different parallel architectures:
Many-core CPUs close the gap between CPUs and GPUs in terms of GFlops perfor-
mance. FPGAs are also somewhere between CPU and GPU GFlops performance.

Footnote 4 continued
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/high-performance-
xeon-phi-coprocessor-brief.pdf and https://www.intel.com/content/www/us/en/processors/xeon/scalable/
xeon-scalable-platform-brief.html for Xeon Phi, http://en.wikipedia.org/wiki/List_of_Nvidia_graphics_
processing_units for NVIDIA GPUs and http://en.wikipedia.org/wiki/Comparison_of_AMD_graphics_
processing_units for AMD GPUs.
5 We define the number of computational units of CPUs as the number of cores, and compare these number
with the number of streaming multi-processors (NVIDIA GPU) and compute units (AMD GPU). We do
not present here the number of compute units of GPUs, groups of which are meant for handling single-
instruction multiple-data (SIMD) in GPUs and hence are not independent of each other as the cores of
CPUs.
6 Note that there is a big discussion of about how to determine the GFlops of an FPGA (see, e.g., https://
www.altera.com/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-
claims.pdf). We considered the numbers presented in previously mentioned web document. Further note
that due to the different architectures it is much more difficult to define the number of computational units
of an FPGA, which are comparable to those of CPUs and GPUs. Hence we do not provide the numbers of
computational units for FPGAs here.

123

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/high-performance-xeon-phi-coprocessor-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/high-performance-xeon-phi-coprocessor-brief.pdf
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform-brief.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform-brief.html
http://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
http://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
http://en.wikipedia.org/wiki/Comparison_of_AMD_graphics_processing_units
http://en.wikipedia.org/wiki/Comparison_of_AMD_graphics_processing_units
https://www.altera.com/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf

Emergent models, frameworks, and hardware...

0

500

1000

1500

2000

2500

3000

3500

4000

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Fr
eq

ue
nc

y
of

 C
om

pu
ta

�o
na

l U
ni

ts
 in

 M
hz

Year
AMD GPUs NVIDIA GPUs Intel Xeon Intel Phi

Fig. 6 Frequency of computational units of high-end hardware (Intel Server CPUs, Intel many-core chips,
NVIDIA and AMD GPUs)

0

10

20

30

40

50

60

70

80

90

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

#C
om

pu
ta

�o
na

l U
ni

ts

Year

AMD GPUs NVIDIA GPUs Intel Xeon Intel Phi

Fig. 7 Number of computational units of high-end hardware (Intel Server CPUs, Intel many-core chips,
NVIDIA and AMD GPUs)

123

S. Groppe

0

2000

4000

6000

8000

10000

12000

14000

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

G
Fl

op
s S

in
gl

e
Pr

ec
is

io
n

Year
AMD GPUs NVIDIA GPUs Intel Xeon Intel Phi

Fig. 8 Single-precision GFlops

Table 3 GFlops of FPGAs

Vendor FPGA GFlops

Intel/Altera Midrange Arria 10 devices 160 to 1500

High-end Stratix 10 devices 10,000

Xilinx Zynq-7000 778

7 Series 2000

UltraScale 4903

However, if we compare the performance (in terms of GFlops) per computational
units of the different types of high-end hardware (see Fig. 9), we recognize that these
performances are much more close to each other than one would expect just when
looking at the overall performance (see Fig. 8).

Based on these and further observations, we now compare the different architectures
concerning performance in terms of integer and floating-point operations per second,
ease of coding, flexibility of usage, suitability for hard real time, and the operations
per Watt by rough estimations. An overview is provided in Fig. 10.

The multi-core CPU is known to be very flexible and easy to program, but is not
very efficient as only few cores are available for parallel programs and consumes much
electric power.

GPUs are highly parallel and hence have a better performance by a slightly reduced
flexibility, but consuming less electric power.

FPGAs are still fully flexible, having a better integer performance by reduced con-
sumption of electric power by a factor of about 10 in comparison with a CPU/GPU

123

Emergent models, frameworks, and hardware...

0

50

100

150

200

250

300

350

400

450

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

G
Fl

op
s S

in
gl

e
Pr

ec
is

io
n

/

Co
m

pu
ta

�o
na

l U
ni

ts

Year
AMD GPUs NVIDIA GPUs Intel Xeon Intel Phi

Fig. 9 Single-precision GFlops divided with the number of computational units

Ops/W

Integer Ops/s Flops/s

Ease of code

Flexibility Hard real �me

Further from
center is bee� r

Mul�core CPU
GPU
FPGA

Fig. 10 Comparison of parallel architectures

system according to some recent studies [70], but are very difficult to program. The
situation about their ease of coding is currently changing with the support of OpenCL,
but still FPGA providers state that at least performance-critical parts should not be
implemented with high-level synthesis like OpenCL.

4.2 Cloud and new computing paradigms

While acceleration by co-processors like GPU and FPGA are suitable as extensions to
today’s computing infrastructure, which have a central gateway like it is the case for
cloud computing [23], we want to discuss about other emergent computing paradigms
here. For this purpose, we first point out the problems of cloud computing in context
of new application scenarios and contexts like the one of Internet of Things [59].

123

S. Groppe

4.2.1 Cloud Computing

In the Internet of Things, many small devices produce a lot of sensor data and other
data. Just let us consider the smart home scenario, where your things at home can
be accessed via internet and maybe high-level applications need to process all their
generated sensor data in real time. Today’s solutions typically just use a cloud to collect
and store all the sensor data and other data of your things.

However, the connection from your things to the cloud is a bottleneck, as these data
must be continuously transferred over wide-area networks. It is also not a scalable
solution, as the problem of the bottleneck becomes bigger for more things at your
home. Furthermore, the transferred data may contain sensible data like exact times
of your presence at home. Hence there is a security risk for you as the data may be
misused by the company, by criminals within the company or criminals hacking the
company’s computer infrastructure.

4.2.2 Fog Computing

The fog computing paradigm [18,82] is mainly coined to Cisco systems. There are
also other names for the same paradigm like edge computing.

Fog computing utilizes near-things edge devices with higher capabilities to carry
out a substantial amount of storage (rather than stored primarily in cloud data centers),
communication (rather than routed over the internet backbone), and application logic.

The main advantage is also that data resides at owners infrastructure, which reduces
the discussed security risks of cloud computing.

However, fog computing is not really scalable in the number of connected things,
as the near-things edge devices do not increase in number and capabilities in the same
way.

4.2.3 Dew Computing

Hence there are ideas collected under the dew computing [31,82,93] paradigm, which
also utilize the things themselves for storing, processing and management tasks accord-
ing to the observation that their capabilities also steadily increase.

In dew computing, the near-things edge devices are still used, but additionally now
the things themselves fulfill tasks of the high-level application and store the raw data
and its processed results. Additional transfer of data to, storing and processing in the
cloud are optional. Hence the advantage remains that security risks are reduced com-
pared to cloud computing as the data resides at the owner’s infrastructure. Furthermore,
dew computing is really scalable with the number of things: As more things are there
and produce data, as more things also offer their capabilities for storing and process-
ing. Disadvantages are besides problems of heterogeneous environments in general,
that the poor availability of some things needs to be compensated, which leads to
further redundancies. And small things typically have limited storing and computing
capabilities, such that the overall system must take care about the properties of each
thing, too.

123

Emergent models, frameworks, and hardware...

Table 4 Comparison of computing paradigms in the context of the Internet of Things

Computing paradigm Advantages Disadvantages

Cloud Computing Scalable in processing, (illusion of)
unlimited storing and processing
capabilities

communication bottleneck between
things and Cloud

Fog Computing Data resides at owners infra-
structure (reduces security risks)

Not really scalable

Dew Computing Data resides at owners infrastructure
(reduces security risks), scalable
with number of things

Poor availability of some things need
to be compensated, limited storage
and computing capabilities of
things

Our Semantic Web framework LUPOSDATE [35–37] already supports P2P net-
works as data source [61], which is a reasonable communication infrastructure for
Internet of Things environments [62]. However, extended research is necessary to
address a lot of open questions concerning fog and dew computing

4.2.4 Comparison and discussion

Table 4 summarizes the results of our comparison between the different computing
paradigms.

Big data analytics engines are typically designed to run in the cloud. Hence, for the
support of fog and dew computing, Big data analytics engines need to be evolved such
that a heterogeneous hard and software environment is supported, near-things edge
devices and things are detected, deployed, and managed, and computing and storage
tasks are distributed between them by optimizing according to their capabilities and
availability. Especially because of the low availability of things, further (efficient)
strategies about redundancies in the computing and storage infrastructure need to be
developed in order to avoid lost data and lost computing results.

4.2.5 Open challenges for Big data analytics engines for new computing paradigms

We point out a selection of open challenges and new research questions for data man-
agement of Big data analytics engines for new computing paradigms in this section.

Current Big data analytics engines are developed to be deployed in cloud environ-
ments. However, other execution environments like fog and dew computing impose
new challenges for Big data analytics engines:

1. The hardware in fog and dew computing environments are much more heteroge-
neous in comparison with clouds. Hence new technologies are needed to distribute
resources fairly in environments with components of diverse capabilities.

2. The network components in fog and dew computing may also differ much more
than in clouds. Hence we need new research on routing for data management pur-
poses in such networks with various different bandwidths between its components.

123

S. Groppe

3. Components especially in dew computing environments fail more often than in
clouds (because of limited battery capacities, lower lifetimes, mobile components,
the networks got partitioned, ...). Hence we need sophisticated technologies to
overcome related problems. Furthermore, in fog and dew computing, there is often
a need of stream processing applying long-time queries in form of continuous
queries. Hence processing tasks for long-time queries must be distributed among
the heterogeneous components in fog and dew computing environments, such that
as less work as possible must be repeated for fails and crashes. For this purpose,
currently a backup of the states in stream processing is often proposed, which could
be seen as a form of data replication (e.g., [20,69]). Another approach would be
the replication of tasks, i.e., the replicated processing of tasks within the dew
computing network for avoiding data loss. Also a predictive migration of tasks
before components fail may be a promising future research direction.

4. There is a need for advanced privacy and security protection approaches, which
work well in heterogeneous fog and dew computing environments, where often
new components are deployed and the hardware of the components are more
accessible by other possibly unauthorized persons (compared to close-able rooms
of server farms for cloud computing).

5. Fog and dew computing environments are often organized as decentralized
approach. Hence data in these environments must be also managed in a decen-
tralized way. However, databases rely on a centralized (for centralized and parallel
databases) or only slightly distributed architecture (for distributed databases).
Recent approaches [32,60] try to use blockchain technologies (as known from the
Bitcoin currency [68] and its transactions) for massive decentralized databases.
However, these approach still do not adapt the blockchain technologies in a really
consequent way to be suitable for fog and dew computing environments. Further-
more, there are still problems with the performance of blockchain technologies,
the improvement of which must be further researched, which is a key for their
success.

5 Semantic Web

Having in mind that the growth of data is today exponential, we must take care that
the value of the data and the value of the result of data processing also scales with this
exponential growth. Hence there are some efforts to support scalable value already in
the data model. One of these efforts is the Semantic Web [15].

The Semantic Web uses ontologies as additional abstraction layer. In this additional
abstraction layer, background knowledge can be specified (based on which new facts
can be derived), which avoids redundant information, supports reuse of data and data
integration, but increases computational complexity.

An example for initiatives for Big data collection resides in the Semantic Web
community and includes the Linking Open Data (LOD) project [52], which maintains
a Big data collection of freely available and accessible large-scale data sets. These
data sets currently contain approximately 150 billion triples in over 2800 data sets
[54,55] as well as links (of equivalent entities) between these data sets. In particular,

123

Emergent models, frameworks, and hardware...

the links of equivalent entities address the volume and value properties of Big data, as
only with these links the information of different data sets can be combined.

There are already many contributions running Semantic Web tasks on Big data ana-
lytics engines (e.g., [2,34,38,58,79]). For the future development of Big data analytics
engines, investigations are necessary in order to point out drawbacks in the design of
Big data analytics engines when running Semantic Web tasks, such that Big data ana-
lytics engines can be further evolved for faster processing of not only Semantic Web
tasks. There seems to be much space left for future enhancements in the optimizer
of Big data analytics engines when handling simpler data models (like the triples
of Semantic Web) and more complex operations (like OWL inference resulting in
complex cyclic data flows).

5.1 Open challenges for Semantic IoT

Research activities in the Semantic Web community are still very active. However, we
want to point out a selection of open challenges especially for the Semantic Internet
of Things (SIoT), which applies Semantic Web technologies to the Internet of Things
area, as we expect a big attention of the scientific community to this area in the near
future.

5.1.1 Open research questions in heterogeneous environments

It is expected that the number of IoT devices per user will quickly and steadily increase
with the consequence that the user will soon have a zoo of different IoT devices.
Today, manufacturers typically offer for each IoT device (or for a subset of their
IoT devices) another application (as app for smartphones, web application and/or PC
software). Hence, for the control of its IoT devices, the user has to run a lot of different
applications, especially if the user owns IoT devices of different manufacturers. From
the users’ point of view, there is a need for interoperable IoT devices, such that all
its IoT devices can be managed by one application. Furthermore, interoperable IoT
devices can be utilized for applications and services across different IoT devices of
different manufacturers (e.g., combining IoT devices for the detection of persons at
home with the data about favorite music songs of persons to play only music which is
liked by all present persons).

In the following paragraphs, we discuss different approaches to support interoper-
able IoT devices.

1. For the support of interoperable IoT devices, we need standardized ontologies for
data exchange, protocols for communication with and between the IoT devices,
and maybe an additional code for specific applications utilizing all the features
of the IoT device. The typical way is that manufacturers offer some form of data
structure (e.g., described by ontologies), protocols and applications for one or a
group of IoT devices, where often versions are released to deal with new devices,
new requirements or just to fix errors (see a) in Fig. 11). The applications are
based on the offered data structures and protocols, which can be manufactured-
specific or standardized. If an application is developed for a newer version than

123

S. Groppe

Fig. 11 Possibilities for
ontologies, protocols, and
application code in
heterogeneous environments

X {Ontology, Protocol, Applica�on Code}:

(without Applica�on Code)

(a) Versioned X

(b) Several standardized Xs

(c) Plug-in X

Evolu�on/Update

V1 V2 V3 …

Mapping

X3

X1

X2

Basic X

Plug-in Plug-in Plug-in Plug-in

supported by its addressed IoT devices, it must be taken care of releasing only
downwardly compatible versions, or ontology and protocol evolution approaches
must be applied. New IoT devices or their full potential may not be usable, for
the time their special features are not considered in data structures, protocols,
and applications. In particular, standardizations need time, which often lead to
manufacturer-specific proprietary solutions in the meanwhile. New research is
necessary for the development of adequate evolutionary approaches for jointly
evolving ontologies and protocols in SIoT.

2. Standardizations typically can never support all the heterogeneous IoT devices
and their features. This may lead to the development of several standardized or
manufacturer-specific ontologies and protocols for different domains and subsets
of IoT devices. To enable applications to use different ontologies and protocols,
mapping approaches need to be applied (see b) in Fig. 11). In particular, for
direct communication between IoT devices, there needs to be research on mapping
approaches, which can overcome the limits of the sparse (storage, computing and
energy) resources of IoT devices.

3. The two approaches above are not flexible enough for the fast-growing heteroge-
neous universe of IoT devices for the purpose of their quick and easy deployment.
We hence envision a plug-in support of new IoT devices (see c) in Fig. 11): an
IoT device should bring all necessary data with them such that it can be deployed
and used in any environment immediately. Based on a basic ontology, protocol,
and application, the IoT device could have a plug-in ontology, which extends the

123

Emergent models, frameworks, and hardware...

basic ontology, a plug-in extension of the basic protocol as well as code to be
plugged into the application for the purpose of fully utilizing the IoT device in the
application. The development of such a plug-in environment and infrastructure is
one of the biggest challenges for research and standardization.

5.1.2 Open research questions for continuous queries for Semantic IoT

Nowadays, Internet of Things applications generates large amounts of data at an ever
increasing rate. These flows of continuously generated data have led to the emergence
of a new kind of data known as data stream. Data streams can be defined as an
infinite sequence of data arriving continuously in real time. (Infinite) data streams are
generated from, e.g., sensor networks, which obtain data from their environment in
high speed rate. In order to determine useful knowledge(like a probably upcoming
earthquake) from data streams, we need to consider the infinite nature and support
the computation of intermediate results based on a window, which contains the recent
data of the infinite data stream. In many scenarios, the intermediate results must be
calculated in a timely fashion, e.g., a probably upcoming earthquake must be detected
as early as possible allowing no delays for the computations.

Analyzing data streams requires special techniques and method for querying. We
distinguish three types of queries: (a) One-time queries are comparable to traditional
queries in databases and consider all data in the data stream. Their results are computed
and returned right after they are set up. (b) Trigger queries are waiting until their results
are non-empty and return their non-empty results. (c) The results of continuous queries
are periodically computed and returned.

Table 5 provides an overview over areas with new research possibilities for the dif-
ferent query types (one-time, trigger, and continuous queries) as well as considering
the support of ontology inference with respect to the different execution environ-
ments local computer, cloud, and P2P networks. Following the observation that trigger
queries are a special form of continuous queries and trigger queries are seldom looked
at in research, we only deal with continuous queries in the following paragraphs,
although special research for trigger queries may lead to new results.

Without support of ontology inference, all query types are already considered in
every of the execution environments, but sometimes only few contributions exist:

There exist many approaches to query RDF data stored in a cloud [46]. Features of
continuous queries like windowing is supported by Cloud computing environments
like Apache Spark7 and Apache Storm.8 There are some contributions to support
SPARQL processing in the Spark environment (e.g., [24]), but we are not aware of
any approach to evaluate continuous SPARQL queries in Spark or Storm.

Continuous queries in P2P networks are supported by, e.g., P2P-DIET [42,43],
CoQUOS [76] and CQC/CSBV [51]. There are only few contributions in this area,
such that much space is left for new research and ground-breaking approaches.

7 http://spark.apache.org/.
8 http://storm.apache.org/.

123

http://spark.apache.org/
http://storm.apache.org/

S. Groppe

Table 5 Discussed versus missing approaches for different query types in different execution environments
= many approaches exist, = only few approaches exist, = not yet dealt with in scientific

literature (to the best of our knowledge)

Ontology
inference

Query type Local Cloud P2P

With
Continuous
trigger
one-time

Without
Continuous
trigger
one-time

Only few approaches exist for the support of ontologies during query processing
in the cloud [46]. Most of them support only RDFS and only few a very restricted
fragment of OWL called OWL Horst fragment consisting of 24 rules [84]. SPOWL
[53] maps axioms in the T-Box of a given ontology (in a slightly larger fragment
than OWL2RL) to Spark programs for iterative execution in order to materialize a
closure of reasoning results. Other approaches utilize a cluster to distribute reasoning
on messages of IoT devices [44,57] avoiding to reason on large data.

Continuous queries with OWL ontology support (in the OWL2RL fragment) have
been dealt with, e.g., in [10,11]. Again, much space is left for further research trying to
increase the performance of continuous queries with ontology support. Furthermore,
no investigations have been done so far in scenarios where the ontologies are dynamic
and change over time, i.e., where the ontological statements come along the streams
and are themselves considered for processing in windows.

[13,45] describe approaches to consider inference for RDFS ontologies during the
processing of one-time queries. The support of OWL in P2P networks is still missing.

Continuous queries with the support of ontologies (considering their inferences in
the query answers) have not been investigated so far in P2P networks and only few
approaches exist for cloud clusters [44,57], which are favored networks types for fog
and dew computing environments.

5.1.3 Semantic blockchain databases

There are already first approaches for Semantic blockchains (e.g., [78]), which
are designed for Semantic resource and service discovery layer built upon a basic
blockchain infrastructure in order to gain a consensus validation. However, while
the studies show proof-of-concepts, the performance is still a problem especially
on devices with low storage and processing capabilities facing a higher processing
demand because of inferring tasks of the Semantic reasoner.

The techniques presented in [78] need to be refined to be applicable for a Semantic
blockchain database.

6 Hardware-accelerated Big data analytics engines

We deal with hardware-accelerated Big data analytics engines in this section

123

Emergent models, frameworks, and hardware...

– by first summarizing our own contributions to FPGA-accelerated processing of
Semantic Big data, and

– by reviewing scientific literature of hardware acceleration of database indices for
the purpose of identifying open research questions in this area.

6.1 Own contributions to hardware-accelerated processing of Semantic Big data

We developed LUPOSDATE [35–37], which is an open-source Semantic Web database
supporting different types of indices for large-scale data sets (disk based) and for
medium-scale data sets (memory based) as well as processing of (possibly infinite)
data streams. LUPOSDATE supports the RDF query language SPARQL 1.1, the rule
language RIF BLD, the ontology languages RDFS and OWL2RL, parts of geosparql
and stsparql, visual editing of SPARQL queries, RIF rules and RDF data, and visual
representation of query execution plans (operator graphs), optimization and evalua-
tion steps, and abstract syntax trees of parsed queries and rules. The advantages of
LUPOSDATE are the easy way of extending LUPOSDATE, its flexibility in configura-
tion (e.g., for index structures, integration of different data sources, using or not using
a dictionary, ...), and it is open-source [37]. These advantages make LUPOSDATE
best suited for any extensions for scientific research. Hence LUPOSDATE is already
extended for Internet of Things scenarios by supporting dew computing utilizing a P2P
network spanning over the things for data storage and processing [61]. Also traditional
cloud computing environments can be utilized by LUPOSDATE [38].

Recently there are some efforts to use FPGAs as hardware accelerators for query
processing in LUPOSDATE [40,41,96–99]. Werner [95] describes a fully integrated
hardware-accelerated query engine for large-scale data sets in the context of Semantic
Web databases, where the proposed architecture automatically adapts and executes
a user-defined query on a runtime reconfigurable FPGA. By using dynamic partial
reconfiguration, the query can be exchanged within few milliseconds resulting in
speedups of up to 32 for queries on data sets of over 1 billion triples.

It seems to be promising to use our experience of processing Semantic Web tasks
in order to research on future generations of Big data analytics engines.

6.2 Open research questions for hardware-accelerated Big data analytics
engines

Whereas there are already numerous implementations for hardware-accelerated query
processing for FPGAs (e.g., [95–99]) and GPUs (e.g., [39,49,73]), it is maybe time
to step back and research on hardware acceleration of even more basic tasks like data
access based on indexes having in mind that index accesses are a dominant factor in
query processing times.

Surprisingly, there are only few contributions to hardware accelerations of well-
known indexes. Whereas many of the contributions presented in the following sections
contain experimental evaluations based on PCI-attached GPUs or FPGAs, the utiliza-
tion of GPUs and FPGAs may become even more beneficial if shared-memory systems

123

S. Groppe

(APUs [7] or, e.g., HARP [94]) are applied. Shared-memory systems avoid commu-
nication costs, such that speedups are already achieved for smaller problem sizes.

6.2.1 B-trees

B-trees [26] and its variants like the B+-tree are optimized for block-oriented storages
(like hard disks, but also SSDs) for Big data. B-trees are very fast for read accesses,
but typically suffer a bad write performance.

[41] utilizes an FPGA to search in parallel in nodes of the upper levels of a given
B+-tree. The extended contribution in [40] contains a discussion of how much update
operations can benefit from the hardware acceleration of their necessary searches. [81]
describes a (main memory) B+-tree implementation for GPUs, and [27] for APUs.

6.2.2 Cache-oblivious lookahead array

Cache-Oblivious Lookahead Array (COLA) [14] consists of levels 0 to n, where the
k-th level contains 2k sorted elements. A level is either completely full up or empty.
Insertions are first done in the level 0. If the level 0 is full up, then the inserted element
is merged with the level 0. The result is stored in the next level, if the next level is empty
and otherwise merged with the elements of the next level (repeatedly proceeded until
an empty level is found). All full levels must be investigated for a search by utilizing
binary search or (in a variant) fractional cascading [22], which uses additional pointers
between the elements of full levels for speeding up the search.

We are not aware of hardware acceleration approaches for the COLA data structure,
although it seems to be promising to investigate how parallel search capabilities of
FPGAs and GPUs can speed up index accesses as well as how the merging step can
be accelerated. There is great potential for FPGA acceleration of the merging step
by applying merge networks [3,9,12,29,67], which can merge in logarithmic time
instead of a linear one as in software.

6.2.3 Log structured merge: trees

Log Structured Merge (LSM)—trees [71] are optimized for update operations. LSM
trees are slightly slower for reading accesses compared to B+-trees. The LSM-tree
consists of several levels, which all must be considered for search queries. Insertions
(and deletions implemented by inserting deletion markers) are processed in the first
level, which are traditionally located in the fast main memory. If one level is full, then
this level (or big parts of this level) are rolled out into the next level, which can be
optimized for presorted elements by merging algorithms.

LSM trees may have benefits from hardware acceleration whenever the management
of the first level is taken over by GPU or FPGA. Also searching in higher levels or
merging higher levels are good candidates for hardware acceleration. Note that runs in
higher levels are often stored in a variant of B+-trees [71] or in SSTables (e.g., BigTable
[21], LevelDB [33], RocksDB [30] and Cassandra [28]). Hardware acceleration of B+-
trees has already been investigated [40,41,81] and adapted variants for SSTables seem
to be feasible.

123

Emergent models, frameworks, and hardware...

There exists first attempts to GPU acceleration of LSM trees [8], but we are not
aware of approaches utilizing FPGAs for speeding up the index accesses of LSM trees.

Zhang et al. [101] introduces a variant of the LSM-tree for main memory databases:
Here, the first level contains a data structure for fast updates (called dynamic index),
which are rolled out in the second level, which contains a compressed data structure
optimized for reading and low memory footprint (called static index).

Here, hardware acceleration for this index structure for main memory databases
promises performance boosts. Basic steps to be accelerated are the insertion in the
dynamic index, the search in the dynamic and static indexes, merging the dynamic
and static indexes as well as the generation of the static index from the dynamic index.

6.2.4 Hash tables

Hash tables are often used in main memory databases for data indexing. According
to [6], cuckoo hashing [72] is the most efficient index structure for point queries, but
B+-trees are faster for range queries. Cuckoo hashing [72] uses k hash tables and k
different hash functions h1 to hk . Whereas in all k hash tables is searched for a key, the
insertion of x is first tried only in the first hash table. In the case that there is already
a value y at the position h1(x) in the first hash table, this value will be replaced with
x and y will be probed in the second hash table maybe pushing another value to the
third hash table, and so on. A value of the kth hash table will be inserted in the first
hash table, where an endless cycle is detected when the same value is to be inserted
into the same hash table (such that a reorganization must be triggered).

Alcantara et al. [5] demonstrate that large-size hash tables (using cuckoo hashing)
can be built and accessed on the GPU at interactive rates. Liang et al. [50] describes
that also FPGAs can greatly speed up cuckoo hashing [72] by pipelining the single
steps of cuckoo hashing.

6.2.5 Adaptive radix trees

An alternative to hash tables in main memory databases are adaptive variants of radix
trees (e.g., [48]). Because radix tree are order-preserving, range queries are faster than
in hash tables, but not so fast than in B+-trees [6].

We are not aware of any adaptive radix tree implementations for FPGAs, but for
GPUs [4]. However, there are first implementations of radix trees on FPGAs [16,17].

6.2.6 Other data structures

There are some few contributions to hardware acceleration of other data structures
optimized for GPUs like skip lists [66] and R-trees [56,75,100].

7 Summary and conclusions

We observe an increasing speed in the growth of the Big data flood, which may show
the limits of state-of-the-art Big data analytics engines in the near future.

123

S. Groppe

Hence we start a discussion about possible future development phases of Big data
analytics engines. For this purpose, we look at the integration of emergent hardware
technologies as co-processors for Big data analytics engines. Moreover, we discuss
new computing paradigms, which may be also utilized for future generations of Big
data analytics engines. We also take a short look at the Semantic Web, the data model
of which supports mechanisms to increase the value of Big data.

We discuss open challenges and new research questions with special focus on Big
data analytics engines for new computing paradigms like fog and dew computing, the
Semantic Internet of Things area and index accesses of hardware-accelerated Big data
analytics engines.

References

1. Abdelfattah MS, Hagiescu A, Singh D (2014) Gzip on a Chip: High performance lossless data
compression on FPGAs using OpenCL. In: Proceedings of the International Workshop on OpenCL
2014, IWOCL ’14. ACM, New York, NY, USA, pp 4:1–4:9

2. Ahn J, Im D, Kim H (2015) Sigmr: Mapreduce-based SPARQL query processing by signature encod-
ing and multi-way join. J Supercomput 71(10):3695–3725

3. Ajtai M, Komlós J, Szemerédi E (1983) An 0(n log n) sorting network. In: Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC ’83. ACM, New York, NY, USA, pp 1–9

4. Alam M, Yoginath SB, Perumalla KS (2016) Performance of point and range queries for in-memory
databases using radix trees on GPUS. In: 2016 IEEE 18th International Conference on High Perfor-
mance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE
2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp 1493–1500

5. Alcantara DA, Sharf A, Abbasinejad F, Sengupta S, Mitzenmacher M, Owens JD, Amenta N (2009)
Real-time parallel hashing on the gpu. ACM Trans Graph 28(5):154

6. Alvarez V, Richter S, Chen X, Dittrich J (2015) A comparison of adaptive radix trees and hash tables.
In: ICDE

7. AMD (2014) Compute Cores, White Paper. http://www.amd.com/Documents/Compute_Cores_
Whitepaper.pdf. Accessed 19 Feb 2018

8. Ashkiani S, Li S, Farach-Colton M, Amenta N, Owens JD (2017) GPU LSM: a dynamic dictionary
data structure for the GPU. CoRR. arXiv:1707.05354. Accessed 19 Feb 2018

9. Baddar SWA-H, Batcher KE (2011) Designing sorting networks: a new paradigm. Springer, Berlin
10. Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010) Incremental reasoning on streams

and rich background knowledge. Springer, Berlin, pp 1–15
11. Barbieri DF, Braga D, Ceri S, Valle ED, Huang Y, Tresp V, Rettinger A, Wermser H (2010) Deductive

and inductive stream reasoning for semantic social media analytics. IEEE Intell Syst 25(6):32–41
12. Batcher KE (1968) Sorting networks and their applications. In: AFIPS
13. Battré D, Heine F, Höing A, Kao O (2007) On triple dissemination, forward-chaining, and load bal-

ancing in DHT based RDF stores. In: Proceedings of the 2006 International Conference on Databases,
Information Systems, and Peer-to-Peer Computing. Springer, pp 343–354

14. Bender MA et al (2007) Cache-oblivious streaming B-trees. In: SPAA
15. Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Scientific American Magazine 284:34–

43
16. Blochwitz C, Joseph JM, Pionteck T, Backasch R, Werner S, Heinrich D, Groppe S (2015) An

optimized radix-tree for hardware-accelerated index generation for Semantic Web Databases. In:
International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico,
December 7–9

17. Blochwitz C, Wolff J, Joseph JM, Werner S, Heinrich D, Groppe S, Pionteck T (2017) Hardware-
accelerated radix-tree based string sorting for Big data applications. In: Architecture of Computing
Systems (ARCS 2017) - 30th International Conference (LNCS), vol 10172, Vienna, Austria, pp
47–58, 3–6 April 2017

123

http://www.amd.com/Documents/Compute_Cores_Whitepaper.pdf
http://www.amd.com/Documents/Compute_Cores_Whitepaper.pdf
http://arxiv.org/abs/1707.05354

Emergent models, frameworks, and hardware...

18. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things.
In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12.
ACM, New York, pp 13–16

19. Borne K (2014) Top 10 Big Data Challenges A Serious Look at 10 Big Data Vs. Gartner. https://www.
mapr.com/blog/top-10-big-data-challenges-serious-look-10-big-data-vs. Accessed 19 Feb 2018

20. Carbone P, Ewen S, Fóra G, Haridi S, Richter S, Tzoumas K (2017) State management in apache
flink: consistent stateful distributed stream processing. Proc. VLDB Endow. 10(12):1718–1729

21. Chang F et al (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput
Syst 26(2):4:1–4:26

22. Chazelle B, Guibas LJ (1986) Fractional cascading: I. A data structuring technique. Algorithmica
1(1):133–162

23. Chellappa R (1997) Intermediaries in cloud-computing: a new computing paradigm. In: INFORMS
24. Chen X, Chen H, Zhang N, Zhang S (2014) Sparkrdf: elastic discreted rdf graph processing engine

with distributed memory. In: Proceedings of the 2014 International Conference on Posters & Demon-
strations Track, ISWC-PD’14, vol 1272, pp 261–264, Aachen, Germany. CEUR-WS.org

25. Chen Y-T, Cong J, Fang Z, Lei J, Wei P (2016) When spark meets FPGAs: a case study for
next-generation DNA sequencing acceleration. In: 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, 2016. USENIX Association

26. Comer D (1979) Ubiquitous B-tree. ACM Comput Surv 11(2):121–137
27. Daga M, Nutter M (2012) Exploiting coarse-grained parallelism in B+ tree searches on an APU. In:

High performance computing, networking, storage and analysis (SCC), 2012 SC companion. IEEE,
pp 240–247

28. DataStax, Inc (2016) How is data written?. http://docs.datastax.com/en/cassandra/3.0/cassandra/dml/
dmlHowDataWritten.html. Accessed 19 Feb 2018

29. Dowd M et al (1989) The periodic balanced sorting network. J ACM 36(4):738–757
30. Facebook (2015) Indexing SST files for better lookup performance. https://github.com/facebook/

rocksdb/wiki/Indexing-SST-Files-for-Better-Lookup-Performance. Accessed 19 Feb 2018
31. Fisher DE, Yang S (2016) Doing more with the dew: a new approach to cloud-dew architecture. Open

J Cloud Comput 3(1):8–19
32. Gaetani E, Aniello L, Baldoni R, Lombardi F, Margheri A, Sassone V (2017) Blockchain-based

database to ensure data integrity in cloud computing environments. In: ITASEC, pp 146–155
33. Google (2015) Leveldb file layout and compactions. https://rawgit.com/google/leveldb/master/doc/

impl.html. Accessed 19 Feb 2018
34. Graux D, Jachiet L, Genevès P, Layaïda N (2016) SPARQLGX: efficient distributed evaluation of

SPARQL with apache spark. In: The Semantic Web - ISWC 2016—15th International Semantic Web
Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II, pp 80–87

35. Groppe J, Groppe S, Schleifer A, Linnemann V (Nov. 2009) LuposDate: a semantic web database
system. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management
(ACM CIKM 2009). ACM, Hong Kong, China, pp 2083–2084

36. Groppe S (2011) Data management and query processing in semantic web databases. Springer, Berlin
37. Groppe S (2017) LUPOSDATE Semantic Web Database Management System. https://github.com/

luposdate/luposdate. Accessed 3 Feb 2017
38. Groppe S, Kiencke T, Werner S, Heinrich D, Stelzner M, Gruenwald L (2014) P-luposdate: using

precomputed bloom filters to speed up sparql processing in the cloud. Open J Semant Web 1(2):25–55
39. Heimel M, Saecker M, Pirk H, Manegold S, Markl V (2013) Hardware-oblivious parallelism for

in-memory column-stores. Proc VLDB Endow 6(9):709–720
40. Heinrich D, Werner S, Blochwitz C, Pionteck T, Groppe S (2017) Search & update optimization of

a B+ tree in a hardware aided semantic web database system. In: Proceedings of the 7th Interna-
tional Conference on Emerging Databases (EDB)(Lecture Notes in Electrical Engineering (LNEE)).
Springer, vol 461 , pp 172–182

41. Heinrich D, Werner S, Stelzner M, Blochwitz C, Pionteck T, Groppe S (2015) Hybrid FPGA approach
for a B+ tree in a semantic web database system. In: Proceedings of the 10th International Symposium
on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC 2015), Bremen, Germany,
June 29–July 1 2015. IEEE

42. Idreos S, Koubarakis M (2004) Methods and applications of artificial intelligence. In: Third Hellenic
Conference on AI, SETN 2004, Samos, Greece, May 5–8, 2004. Proceedings, Chapter P2P-DIET:

123

https://www.mapr.com/blog/top-10-big-data-challenges-serious-look-10-big-data-vs
https://www.mapr.com/blog/top-10-big-data-challenges-serious-look-10-big-data-vs
http://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlHowDataWritten.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlHowDataWritten.html
https://github.com/facebook/rocksdb/wiki/Indexing-SST-Files-for-Better-Lookup-Performance
https://github.com/facebook/rocksdb/wiki/Indexing-SST-Files-for-Better-Lookup-Performance
https://rawgit.com/google/leveldb/master/doc/impl.html
https://rawgit.com/google/leveldb/master/doc/impl.html
https://github.com/luposdate/luposdate
https://github.com/luposdate/luposdate

S. Groppe

Ad-hoc and Continuous Queries in Peer-to-Peer Networks Using Mobile Agents. Springer, Berlin,
pp 23–32

43. Idreos S, Koubarakis M, Tryfonopoulos C (2004) Advances in database technology—EDBT 2004.
In: 9th International Conference on Extending Database Technology, Heraklion, Crete, Greece,
March 14–18, 2004, chapter P2P-DIET: One-Time and Continuous Queries in Super-Peer Networks.
Springer, Berlin, pp 851–853

44. Jung HS, Yoon CS, Lee YW, Park JW, Yun CH (2017) Processing IoT data with cloud computing for
smart cities. Int J Web Appl (IJWA) 9(3):88–95

45. Kaoudi Z, Koubarakis M, Kyzirakos K, Miliaraki I, Magiridou M, Papadakis-Pesaresi A (2010) Atlas:
storing, updating and querying RDF(S) data on top of DHTs. Web Semant Sci Serv Agents World
Wide Web 8(4):271–277

46. Kaoudi Z, Manolescu I (2015) Rdf in the clouds: a survey. VLDB J 24(1):67–91
47. Laney D (2001) 3D Data Management: controlling data volume, velocity and variety. Gart-

ner, http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-
Data-Volume-Velocity-and-Variety.pdf. Accessed 19 Feb 2018

48. Leis V, Kemper A, Neumann T (2013) The adaptive radix tree: artful indexing for main-memory
databases. In: ICDE

49. Li J, Tseng H-W, Lin C, Papakonstantinou Y, Swanson S (2016) Hippogriffdb: balancing i/o and gpu
bandwidth in big data analytics. Proc. VLDB Endow. 9(14):1647–1658

50. Liang W, Yin W, Kang P, Wang L (2016) Memory efficient and high performance key-value store on
FPGA using cuckoo hashing. In: FPL

51. Liarou E, Idreos S, Koubarakis M (2007) The Semantic Web. In: 6th International Semantic Web Con-
ference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November
11–15, 2007. Proceedings, chapter Continuous RDF Query Processing over DHTs. Springer, Berlin,
pp 324–339

52. Linked Data (2016) Linked data—connect distributed data across the Web. Accessed 4 Nov 2016
53. Liu Y, McBrien P (2017) Spowl: spark-based owl 2 reasoning materialisation. In: Proceedings

of the 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond
(BeyondMR’17)

54. LOD2 (2016) LODStats. Accessed 4 Nov 2016
55. LOD2 (2016) Welcome—LOD2—Creating knowledge out of interlinked data. Accessed 4 Nov 2016
56. Luo L, Wong MDF, Leong L (2012) Parallel implementation of r-trees on the GPU. In: 17th Asia and

South Pacific Design Automation Conference, pp 353–358
57. Maarala AI, Su X, Riekki J (2017) Semantic reasoning for context-aware internet of things applica-

tions. IEEE Internet Things J 4(2):461–473
58. Mammo M, Bansal SK (2015) Distributed SPARQL over big RDF data: a comparative analysis using

presto and mapreduce. In: 2015 IEEE International Congress on Big Data, New York City, NY, USA,
June 27–July 2, pp 33–40

59. Mattern F, Floerkemeier C (2010) From the internet of computers to the internet of things. In: From
Active Data Management to Event-based Systems and More. Springer, pp 242–259

60. McConaghy T, Marques R, Müller A, De Jonghe D, McConaghy T, McMullen G, Henderson R,
Bellemare S, Granzotto A (2016) Bigchaindb: a scalable blockchain database. White paper

61. Mietz R, Groppe S, Oliver Kleine DB, Fischer S, Römer K, Pfisterer D (2013) A P2P semantic query
framework for the internet of things. PIK - Praxis der Informationsverarbeitung und Kommunikation
36(2):73–79

62. Mietz R, Groppe S, Römer K, Pfisterer D (2013) Semantic models for scalable search in the internet
of things. J Sens Actuator Netw 2(2):172–195

63. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117
64. Moore GE (1975) Progress in digital integrated electronics. In: Electron Devices Meeting, 1975

International. IEEE, vol 21, pp 11–13
65. Moore GE (2015) The man whose name means progress, the visionary engineer reflects on 50

years of Moore’s Law. IEEE Spectrum: special report: 50 years of Moore’s Law (Interview). Inter-
view with Rachel Courtland. http://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-
whose-name-means-progress. Accessed 19 Feb 2018

66. Moscovici N, Cohen N, Petrank E (2017) A GPU-friendly skiplist algorithm. In: 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE, pp 246–259

67. Mueller R, Teubner J, Alonso G (2012) Sorting networks on fpgas. VLDB J 21(1):1–23

123

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-whose-name-means-progress
http://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-whose-name-means-progress

Emergent models, frameworks, and hardware...

68. Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.
Accessed 19 Feb 2018

69. Noghabi SA, Paramasivam K, Pan Y, Ramesh N, Bringhurst J, Gupta I, Campbell RH (2017) Samza:
stateful scalable stream processing at linkedin. Proc VLDB Endow 10(12):1634–1645

70. Nurvitadhi E, Sim J, Sheffield D, Mishra A, Krishnan S, Marr D (2016) Accelerating recurrent neural
networks in analytics servers: comparison of FPGA, CPU, GPU, and ASIC. In: 26th International
Conference on Field Programmable Logic and Applications (FPL)

71. ONeil P et al (1996) The log-structured merge-tree (LSM-tree). Acta Inform 33(4):351–385
72. Pagh R, Rodler F (2004) Cuckoo hashing. J Algorithms 51(2):122–144
73. Pirk H, Moll O, Zaharia M, Madden S (2016) Voodoo—a vector algebra for portable database per-

formance on modern hardware. Proc VLDB Endow 9(14):1707–1718
74. Plessl C (2012) Accelerating scientific computing with massively parallel computer architec-

tures. IMPRS Winter School, Wroclaw. http://www.imprs-dynamics.mpg.de/pdfs/Plessl_talk.pdf.
Accessed 19 Feb 2018

75. Prasad SK, McDermott M, He X, Puri S (2015) Gpu-based parallel r-tree construction and querying.
In: Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International.
IEEE, pp 618–627

76. Ramaswamy L, Chen J (2011) The coquos approach to continuous queries in unstructured overlays.
IEEE Trans Knowl Data Eng 23(3):463–478

77. Rupp K (2016) CPU, GPU and MIC hardware characteristics over time. Posted in
blog GPGPU/MIC computing. https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/, 2013, last update

78. Ruta M, Scioscia F, Ieva S, Capurso G, Sciascio ED (2017) Semantic blockchain to improve scalability
in the internet of things. Open J Internet Things, 3(1):46–61. Special Issue: Proceedings of the
International Workshop on Very Large Internet of Things (VLIoT 2017) in conjunction with the
VLDB 2017 Conference in Munich, Germany

79. Schätzle A, Przyjaciel-Zablocki M, Skilevic S, Lausen G (2016) S2RDF: RDF querying with SPARQL
on spark. PVLDB 9(10):804–815

80. Segal O, Colangelo P, Nasiri N, Qian Z, Margala M (2015) SparkCL: A unified programming frame-
work for accelerators on heterogeneous clusters. CoRR. arXiv:1505.01120. Accessed 19 Feb 2018

81. Shahvarani A, Jacobsen H-A (2016) A hybrid b+-tree as solution for in-memory indexing on CPU-
GPU heterogeneous computing platforms. In: Proceedings of the 2016 International Conference on
Management of Data (SIGMOD), pp 1523–1538

82. Skala K, Davidovic D, Afgan E, Sovic I, Sojat Z (2015) Scalable distributed computing hierarchy:
cloud, fog and dew computing. Open J Cloud Comput 2(1):16–24

83. Stone JE, Gohara D, Shi G (2010) Opencl: a parallel programming standard for heterogeneous com-
puting systems. IEEE Des. Test 12(3):66–73

84. ter Horst HJ (2005) Completeness, decidability and complexity of entailment for RDF schema and a
semantic extension involving the OWL vocabulary. Web Semant 3(2–3):79–115

85. The Apache Software Foundation (2014) Welcome to Apache Hadoop!. http://hadoop.apache.org/.
Accessed 19 Feb 2018

86. The Apache Software Foundation (2016) Apache Flink: scalable stream and batch data processing.
https://flink.apache.org/. Accessed 19 Feb 2018

87. The Apache Software Foundation (2016) Apache Tez–Welcome to Apache Tez. https://tez.apache.
org/. Accessed 19 Feb 2018

88. The Apache Software Foundation (2017) Apache Spark—Lightning-fast cluster computing. http://
spark.apache.org/. Accessed 19 Feb 2018

89. Turck M (2016) Is Big data still a thing? (The 2016 Big data landscape). Blog of Matt Turck. http://
mattturck.com/2016/02/01/big-data-landscape. Accessed 19 Feb 2018

90. Khan MA, Uddin MF, Gupta N (2014) Seven v’s of Big data understanding Big data to extract value.
In: Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education,
pp 1–5

91. Waldrop MM (2016) The chips are down for Moores law. Nature 530(7589):144–147
92. Wang J, Park D, Papakonstantinou Y, Swanson S (2017) SSD in-storage computing for search engines.

IEEE Trans Comput (to appear)
93. Wang Y (2016) Definition and categorization of dew computing. Open J Cloud Comput 3(1):1–7

123

https://bitcoin.org/bitcoin.pdf
http://www.imprs-dynamics.mpg.de/pdfs/Plessl_talk.pdf
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
http://arxiv.org/abs/1505.01120
http://hadoop.apache.org/
https://flink.apache.org/
https://tez.apache.org/
https://tez.apache.org/
http://spark.apache.org/
http://spark.apache.org/
http://mattturck.com/2016/02/01/big-data-landscape
http://mattturck.com/2016/02/01/big-data-landscape

S. Groppe

94. Weisz G, Melber J, Wang Y, Fleming K, Nurvitadhi E, Hoe JC (2016) A study of pointer-chasing
performance on shared-memory processor-fpga systems. In: Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA ’16, New York, NY, USA,
2016. ACM, pp 264–273

95. Werner S (2017) Hybrid Architecture for Hardware-accelerated query processing in semantic web
databases based on Runtime Reconfigurable FPGAs. PhD thesis, University of Lübeck

96. Werner S, Groppe S, Linnemann V, Pionteck T (2013) Hardware-accelerated join processing in large
semantic web databases with FPGAs. In: Proceedings of the 2013 International Conference on High
Performance Computing & Simulation (HPCS 2013), Helsinki, Finland, July 1–5 2013. IEEE, pp
131–138

97. Werner S, Heinrich D, Piper J, Groppe S, Backasch R, Blochwitz C, Pionteck T (2015) Automated
composition and execution of hardware-accelerated operator graphs. In: Proceedings of the 10th
International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC
2015), Bremen, Germany, June 29–July 1 2015. IEEE

98. Werner S, Heinrich D, Stelzner M, Groppe S, Backasch R, Pionteck T (2014) Parallel and pipelined
filter operator for hardware-accelerated operator graphs in semantic web databases. In: Proceedings
of the 14th IEEE International Conference on Computer and Information Technology (CIT 2014),
Xian, China, September 11–13 2014. IEEE

99. Werner S, Heinrich D, Stelzner M, Linnemann V, Pionteck T, Groppe S (2016) Accelerated join
evaluation in semantic web databases by using FPGAs. Concurr Comput Pract Exp 28(7):2031–2051

100. You S, Zhang J, Gruenwald L (2013) Parallel spatial query processing on gpus using r-trees. In:
Proceedings of the 2Nd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial
Data (BigSpatial), pp 23–31

101. Zhang H, Andersen DG, Pavlo A, Kaminsky M, Ma L, Shen R (2016) Reducing the storage over-
head of main-memory oltp databases with hybrid indexes. In: Proceedings of the 2016 International
Conference on Management of Data (SIGMOD), pp 1567–1581

102. Zohouri HR, Maruyama N, Smith A, Matsuda M, Matsuoka S (2016) Evaluating and optimizing
opencl kernels for high performance computing with FPGAs. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’16, Piscat-
away, NJ, USA. IEEE Press, pp 35:1–35:12

123

	Emergent models, frameworks, and hardware technologies for Big data analytics
	Abstract
	1 Introduction
	2 Moore and data growths
	3 Evolution of typical Big data analytics engines
	4 Possible directions for the fifth generation of Big data analytics engines
	4.1 Co-processors
	4.1.1 Multi-core CPU
	4.1.2 Many-core CPU
	4.1.3 GPU
	4.1.4 FPGA
	4.1.5 Comparison

	4.2 Cloud and new computing paradigms
	4.2.1 Cloud Computing
	4.2.2 Fog Computing
	4.2.3 Dew Computing
	4.2.4 Comparison and discussion
	4.2.5 Open challenges for Big data analytics engines for new computing paradigms

	5 Semantic Web
	5.1 Open challenges for Semantic IoT
	5.1.1 Open research questions in heterogeneous environments
	5.1.2 Open research questions for continuous queries for Semantic IoT
	5.1.3 Semantic blockchain databases

	6 Hardware-accelerated Big data analytics engines
	6.1 Own contributions to hardware-accelerated processing of Semantic Big data
	6.2 Open research questions for hardware-accelerated Big data analytics engines
	6.2.1 B-trees
	6.2.2 Cache-oblivious lookahead array
	6.2.3 Log structured merge: trees
	6.2.4 Hash tables
	6.2.5 Adaptive radix trees
	6.2.6 Other data structures

	7 Summary and conclusions
	References

