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SDN-based Data Transfer Security for Internet of
Things

Yanbing Liu, Yao Kuang, Yunpeng Xiao, and Guangxia Xu

Abstract—The exponential growth of devices connected to the
network has resulted in the development of new Internet of
Things (IoT) applications and on-line services, which may have
diverse and dynamic requirements on received quality. Although,
the emerging Software-Defined Networking (SDN) approach can
be leveraged for the IoT environment, to dynamically achieve
differentiated quality levels for different IoT tasks in very
heterogeneous wireless networking scenarios, the open interfaces
in SDN introduces new network attacks, which may make SDN-
based IoT malfunctioned. The challenges lies in securely using
SDN for IoT systems. To address this challenge, we design a
SDN-based data transfer security model Middlebox-Guard (M-
G). M-G aims at reducing network latency, and properly manage
dataflow to ensure the network run safely. First, according to
different security policies, middleboxes related to the defined
secure policies, are placed at the most appropriate locations, using
dataflow abstraction and a heuristic algorithm. Next, to avoid
any middlebox becoming a hot-spot, an offline Integer Linear
Program (ILP) pruning algorithm is proposed in M-G, to tackle
switch volume constraints. In addition, an online Linear Program
(LP) formulation is come up to handle load balance. Finally,
secure mechanisms are proposed to handle different attacks. And
network routing is solved flexibly, through dataflow management
protocol, which are formulated via combining tunnels and tags.
Experimental results demonstrate that this model can improve
security performance and manage dataflow effectively in SDN-
based IoT system.

Index Terms—Internet of Things; Software-Defined Network-
ing; Middlebox; Dataflow Management; Security.

I. INTRODUCTION

THE continued evolution of new services and the growth
of the information circulating the Internet, has led to the

origin of ideas, concepts and paradigms such as the Internet of
Things (IoT)[1]. However, traditional network infrastructure,
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which need high-level network policies and configuring proto-
cols, are inefficient and have significant limitations to support
the high level of scalability, high amount of traffic and mo-
bility. Software-Defined Networking(SDN)[2] decouples the
traditional closed network into data plane, control plane and
application plane, which enables logically centralized control
and management of the whole network. With this new design
principle, the network could behave more flexibly and can
easily adapt to the needs of different organizations. Besides,
the centralized architecture allows important information to be
collected from the network and in turn used to improve and
adapt their policies dynamically. Thus, as shown in Figure
1, a programmable, flexible, flow-centric SDN-based IoT
architecture is favorable. Although, open interfaces in SDN
have simplified the design of secure applications in large and
complex IoT, they are vulnerable to new network attacks [3]-
[4], and this vulnerability inevitably reduces security in SDN-
based IoT architecture. In IoT, the dataflow has to go through

Fig. 1. SDN-based IoT architecture.

several processes before all required tasks are finished. Thus,
proper handling of data flows in each device, is important for
stable and secure network operation. Recent studies about the
use of middleboxe and SDN[5]-[9] fall into three categories,
including software realized middlebox, service chaining prob-
lems and integrating traditional middlebox into SDN networks.

The first challenge is the dynamic of dataflow in IoT.The
number of users and dataflow volume in IoT vary over time.
However, most existing dataflow control techniques assume a
stable network. Therefore, such techniques can not actively
consider network security. If a large number of data streams
arrive simultaneously, the entire IoT network may become
paralyzed. Thus, when developing dataflow control strategies,
considering dataflow streams dynamics can improve the secu-
rity and stability of the entire network.

The second challenge is the deployment of middleboxes
in IoT.In traditional networks, the middlebox is deployed
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in particular position. And recent studies have broken the
restrictions, and enabled the middleboxes work collaboratively
under the control of control plane. However, network latency
is an important measure of overall IoT network performance.
In addition, different security policies may have different
demands on the order of middlebox sequences. So deploying
the middleboxes at positions with the lowest network latency,
becomes a new break point of middlebox deployment.

The last challenge is the management of dataflow streams
in IoT.Due to the lack of a valid agreement to confirm the
state of dataflow streams after going through middleboxes.
The traditional L2/L3 dataflow forwarding rules may lead to
inefficient use of available Ternary Content Addressable Mem-
ory (TCAM). When several middleboxes process one dataflow
packet, the packet may be forwarded incorrectly. Therefore, to
optimize or propose new rules in IoT to determine the status
of data packets, and to develop correct forwarding decisions,
become an important issue for dataflow management.

With the combination of dataflow monitoring mechanisms
and dataflow rules,data transfer security will become more
comprehensive and more considerate. In this paper, we focus
on dataflow dynamics, middlebox deployment, and dataflow
management, and propose a SDN-based data transfer security
model in IoT based on middlebox, referred to as M-G. In this
model, middlebox deployment location is selected first. Next,
the dataflow in the entire network are controlled to ensure
that the network can run normally. Finally, dataflow rules are
determined in the way that related policies can be implemented
effectively. Collaboration among traffic tunnels, the control
plane, and the data plane is required to achieve the scalability
and availability of M-G. Experiment results demonstrate that
M-G can help manage dataflow in middleboxes properly, and
improve the security and stability of the entire IoT network.

This paper makes the following contributions.
• A middlebox deployment position selection algorithm

is proposed. The entire IoT network is viewed as an
undirected symmetric graph with weighted edges. The
greatest weight of middlebox sequence that respond to
the defined secure policies are selected, and an effective
deployment position is determined for this sequence.

• Two dataflow control algorithm is designed. Here, the
NP-hard load balance problem is divided into two parts.
First,the sub-sequences which do not exceed the switch
volume constraints and satisfy the coverage requirements
of logical chains are selected from the secure policy
defined middlebox sequences. Next, to address the re-
striction on middlebox, the selected sub-sequences has
been located to particular physical sequences where the
allocation satisfy the restriction of middlebox.

• Secure mechanisms and a protocol for dataflow routing
is presented. The secure mechanisms are proposed to
defense spoofing and flooding attacks. The protocol is
based on the combination of tags and tunnels. With the
help of this protocol, the state of a packet in IoT is
observed and then used, to determine the next hop of
this packet.

This paper is organized as follows. The first section intro-
duces background information. The second section includes

the related works. The discussed problems are described in
the third section. The proposed model is detailed in the fourth
section. Experimental results are presented in Section V, and
conclusions are given in Section VI.

II. RELATED WORK

As mentioned previously, the management of devices and
network resources in IoT, is a big challenge, due to the dif-
ferent requests for different user-defined tasks. Recent studies
into the use of middlebox in SDN-based IoT have focused on
software-realized middleboxes, service chaining problems and
integrating traditional middlebox into SDN network.

Software-realized middleboxes are deployed as an applica-
tion on top of the IoT architecture to achieve different user-
defined tasks. A software architecture for the development
of flexible and configurable security applications has been
proposed [10]. Joseph et al. designed a Layer-2 solution in[11]
to route traffic through middleboxes. Flowstream[12] envi-
sions virtual middleboxes with an OpenFlow[13] frontend for
routing. SoftFlow[14] deploys middlebox applications using
OpenvSwitch[15]. However, these studies and methods do
not consider the capacity constraints of SDN switches and
middleboxes , which can influence network performance.

Studies that focus on service chaining problems in SDN-
based IoT address limitations associated with middleboxes
in traditional networks, i.e., middleboxes are placed at a
fixed position, and making middleboxes works collaborative-
ly under the control of control plane. Thus, IoT network
vulnerabilities and latency are reduced. The authors of [16]
proposed a method to select the most appropriate middlebox
deployment positions, thus the performance of middlebox has
been optimized. Middleboxes deployment problem in SDN
was discussed in [17]-[20], where the related performance
evaluation methods were discussed as well.The limitations,
requirements and benefits of middlebox placement issues
were described in[21]. A previously proposed method in [22]
considered the chaining problem as a binary integer program
problem, and solved it through a heuristic algorithm. The work
more closely related to M-G is SIMPLE[23], which solves
the placement problem via enumerating all possible positions.
However, SIMPLE is time-consuming and inefficient.

Several studies have addressed integrating traditional mid-
dleboxes into SDN networks. The API interfaces have been
extended to make the middleboxes connect with SDN con-
troller [24]. Slick proposed a centralized controller in [25],
which can install and move functions to middleboxes, through
middlebox management methods in SDN. In [26] OpenFlow
protocols were used to control route, and ensure network
volume to pass particular points. The authors of [27] compared
four middlebox placement algorithms. FlowTags[6] integrat-
ed middlebox into SDN with the fewest modifications and
follows the original SDN binding policies. The solution in
[28] constructs a SDN firewall using flow tables and firewall
policies. Also, data transfer protocol among middleboxes and
middlebox management techniques in entire network were
discussed in [29]-[32].
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III. PROBLEM FORMALIZATION

A. Related Definitions

For convenience, the used symbols are shown in table1.
The proposed framework attempts to solve the following

problems: 1) How to place middleboxes such as firewall
intrusion detection systems (IDS) into SDN-based IoT system.
2) How to guarantee that the flow streams in middleboxes
and switches do not exceed their capacity limits, in order to
facilitate stable IoT network operation. Several definitions are
given below as the basis of algorithm design and functional
combination scheme.e basis of algorithm design and functional
combination scheme.

Definition 1. G(N,A): The entire IoT network can be con-
sidered as an undirected graph G(N,A), where N is the set of
switches and A is the set of links.

Definition 2. Processing policy: The secure policy is best
expressed via a dataflow abstraction. The operator who op-
erate the network annotate each policy (e.g. <External, We-
b>) with its ingress and egress locations and IP prefix-
es. For example, a external web traffic may be specified
by a traffic filter such as:<src=internal prefix, dst=external
prefixes,srcport=*,dstport=80,proto=TCP>. Here, PoChainc

denotes the required middlebox policy chain for this class(e.g.
Firewall-IDS)

Definition 3. Successor nodes SCS(i): for node i and j, if
aij ∈ A , node j is the successor node of node i.

Definition 4. Dependency degree: two middleboxes are
dependent if they appear consecutively in a policy chain, and
the dependency degree is determined based on the amount of
traffic with such middlebox chain requirement.

Definition 5. Given two different paths priu ̸= priv from an
origin node r to a node i, priu FSD dominates priv if the inverse
CDF of the link travel time distribution at λ confidence level
satisfies ϕ−1

T ri
u (yr)(λ) < ϕ−1

T ri
v (yr)(λ), ∀λ ∈ (0, 1).

Definition 6. Nondominate road DL; A path considered
nondominated if it can not be FSD dominated by any other
path.

FW
IDS

Proxy

S1

S2

S3

S4
S6

S5

Inadd. Outadd.

Fig. 2. Example of the related definitions.

To clearly explain above definitions, we use Figure 2 as an
example to illustrate the meaning of those terms.

The middlebox chain (inadd.-firewall-IDS-Proxy-outadd.) is
the PoChain the operator denoted for this topology. PhSeqc
(S1,S2,S3,S4,S5,S6)is the positions that middleboxes may be
placed. PhSeqc,q (S1,S3,S5) is the sub-sequence of PhSeqc,
that is chose to place middlebox. Ic,q indicate whether a link

TABLE I
M-G FRAMEWORK SYMBOLS AND MEANINGS

Symbol Meaning Symbol Meaning

PoChainc
A secure policy
class

ϕ(·)
Cumulative dis-
tribution function
(CDF) of random
variable X

PhSeqc

The set of
all physical
sequences for
PoChainc

ϕ−1(·)
Inverse CDF of
random variable
X

∆
Length of dis-
crete time inter-
val

E(·) Mean of a ran-
dom variable

PhSeqc,q
One instance
from PhSeqc

Routec,q
The switch-
level route for
PhSeqc,q

Mj A middlebox Rulesk,c,q

The number
of rules that
required
on switch
Sk to route
traffic through
Routec,q

Sk A SDN switch Ic,q

A binary indica-
tor variales to de-
note whether a
particular physi-
cal sequence has
been chosen

ai,j
A link connect-
ing node i and n-
ode j

Cov A target coverage
level

qu,v
The delay value
in au,v

TCAM
The available
space in SDN
switch

⊕

Path
concatenation
operator
prwu = priu ⊕piw

means that
path prwu goes
through subpaths
priu and piw .

Ftprtc,j

The per-packet
processing cost
for a packet
belonging to
class c at the
middlebox Mj

MaxMbO

The maximum
occurrences
across all middle
boxes

fc,q

The fraction
of traffic for
PoChainc that
is assigned to
each pruned
PhSeqc,q

Vc

The traffic vol-
ume in each mid-
dlebox

MbUsedj

The number of
chosen sequences
in which a mid-
dlebox occurs

ProcCapj

Per-class
ftprt across
all physical
sequences

Loadj
The load on each
middlebox

MMbLd

The maximum
middlebox
load across the
network

λ
Confidence Level
λ ∈ (0, 1)

T rs
u (yr)

The travel time
for a journey
starting at
departure time
yr and going
through path prs
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has been chosen, in figure 2 I1,2 is 0, and I1,3 is 1. In
PhSeqc,q (S1,S3,S5) the number of MbUsedj is 3, because
there are three middleboxes in t.he chose sequence. And
MaxMbO is the maximum number of all MbUsedj in the
entire network, here it is 3, because there is only one sequence.
Frprtc,j is the cost that a middlebox need to processing a
packet. ProcCapj is the Ftprt across sequence S1-S3-S5.

B. Problem

Due to the reasons that network latency is important to
measure network performance, and properly management of
dataflow is the key to ensure network security. To reduce the
network latency, the used middleboxes need to be placed at
the locations, where the communication link is the shortest.
To ensure the entire network can run stably and securely, the
dataflow should be properly managed. The following problems
will be investigated in this paper.

• How to find the most appropriate position for middle-
box? Through dataflow abstraction, we annotate each
policy (e.g. <External, Web>) with its ingress and egress
locations and IP prefixes. And the most appropriate
middlebox deployment location PhSeqc,q is selected by
our heuristic algorithm.

• How to ensure that dataflow in the entire IoT network do
not exceed switch and middlebox capacity, to avoid any s-
ingle piece of equipment from becoming a hotspot? First,
switch constraints is tackled. Here, MaxMbO, the max-
imum occurrences of middleboxes in a physic sequence
PhSeqc,q is minimized to obtain the most appropriate
route. Next, network loads is balanced. We run linear
program formulation in the selected route to get Loadj ,
the loads on each middlebox, and the maximum loads on
middlebox across the entire IoT network, and minimize
it, to make the entire IoT network load balancing. As a
result, the above problem can be solved, by obtaining the
minimized MaxMbO and MMbLd values.

• How to ensure the state of each data packet, for correct
policy implementation? Through data tracking, we use
tunnels and tags to generate related flow rules. The tun-
nels indicate the tunnel to next switch, the tags includes
the status of each dataflow in every switch. Thus, we can
route the IoT network flexibly and effectively.

IV. FRAMEWORK

A. Framework Detail

To solve the above problems, the proposed model is based
on network topologies, policy requirements, and related mid-
dleboxes. First, routes are selected based on the security
policies, and effective middlebox deployment positions on
each route are selected. Next, the amount of traffic on each
line is limited, such that the traffic does not exceed switch and
middleboxes capacities. Finally, SwitchTunnel is selected ac-
cording to network size, for each physical sequence PhSeqc,q
add ProcState to a packet header. The next step is determined
according to the labels. The model framework is shown in
Figure 3.

The dataflow streams of the entire IoT network are shown in
Figure 4, In M-G middleboxes are connected to SDN switches.
The controller route dataflow streams in SDN switches using
OpenFlow(blue dotted lines in Figure 4). The most appropriate
middlebox position is selected by the controller using a place-
ment selection algorithm. We use an ILP pruning algorithm
to control the volume of traffic in each route, and use an LP
formulation to balance loads across middleboxes.

Admi n

FW IDS Proxy
Secure

Policy

Middlebox Placement Route Selection

Dataflow Management

Topology Policychain
Mbox,Switch

constraints

Port Tag Tunnel

Dataflow Management 

protocol

Inadd. Nextadd. Nextport

FW
IDS

Proxy

SDN 

Switch

SDN 

Switch

SDN 

Switch

SDN 

Switch

SDN 

Switch

SDN 

Switch

Fig. 5. Overview of M-G approach for using SDN to manage
middlebox deployments and dataflow.

B. Algorithm

Figure 5 gives an overview of the M-G architecture , show-
ing the inputs needed for various components, the interactions
between them, and the interfaces to the data plane. Note
that M-G only configured SDN-enabled switches, and did not
extend middlebox to support new SDN-like capabilities. Each
middlebox is directly connect to a SDN-enabled switch.

1) Middlebox Placement: We want to position middlebox-
es, where the IoT network delay is the shortest. To address this
challenge, the entire IoT network is considered an undirected
graph G(N,A).The IoT network delay at each link ai,j is qu,v ,
qu,v = qv,u = 1. Different PoChainc values correspond
to different middlebox sequences. All possible positions are
expressed as PhSeqc = ∥A∥, and the final result finds
PhSeqc,q to minimize the total network delay

∑
qu,v .

A heuristic algorithm is proposed to solve the middlebox
placement problem in IoT. First, the middleboxes with the
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Fig. 3. Framework detail

Fig. 4. Dataflow streams.

highest dependency degree are found using a greedy approach,
and a middlebox dependency graph is formed between all
middleboxes. Next, we find the most appropriate position for
the chosen middlebox and remove it from the dependency
graph.

Let r ∈ N and s ∈ N represent the origin and destination
nodes, respectively. prs is a path from the origin to the
destination, and T rs(yr) denotes the time required to traverse
prs with departure time yr. T rs(yr) is expressed as follows.

T rs(yr) =
∑

aij∈A

Tij(Yj)δ
rs
ij (1)

where Yj is the arrival time at node i, and δrsij is the path-link
incidence variable; δrsij = 1 indicates that link aij is on path
prs, if link aij is not on path prs, δrsij = 0 . Since network
status differs over time, we model travel speed as a normal
distribution. Let V n

ij be the travel speed distribution of link aij
during time interval (∆n−1,∆n). Suppose the dataflow enters
link aij at time instance yi ∈ (∆n−1,∆n) . Then, the travel

distance at time instance ya ∈ (∆m−1,∆m) can be calculated
as follows.

Dyi(ya) = V n
ij (∆n−yi)+V n+1

ij ∆+...+V m−1
ij ∆+V m

ij (ya−∆m−1)
(2)

As travel speeds are random variables, so is travel distance
Dya

yi .
Let dij be the length of link aij . The probability that the

dataflow has arrived at head node i before time instance ya
can be expressed as follows.

λ = Pr(Dya
yi

≥ dij) (3)

Let ϕ(·) and ϕ−1(·) be the CDF and inverse CDF of a
random variable, respectively. The arrival probability λ can be
expressed in terms of the CDF of the arrival time distribution
as follows.

λ = ΦYj(yi)(ya) (4)

where Yj(yi) is the arrival time distribution of the dataflow
arriving at head node i. Based on(4) , the inverse CDF of
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the arrival time distribution at the λ confidence level can be
calculated as follows.

ya = Φ−1
Yj(yi)

(λ) (5)

Φ−1
Yj(yi)

(λ) can be calculated by (2)-(5), thus, link travel
time can be expressed as follows.

Tij(yi) = Yj(yi)− yi (6)

The shortest path can be calculated based on the link travel
time. First a heuristic evaluation function is calculated to
determine the level for path priu as follows.

F (priu ) = E(T ri
u (yr)) + h(i) (7)

s.t F (prju ) = E(T rj
u (yr))+h(j) ≥ F (priu ) = E(T ri

u (yr))+h(i)
(8)

where h(i) is the mean path travel time from node i to des-
tination s. Equation(8) indicates that F (priu ) should increase
monotonically with path extension.

Let P ri = {pri1 , ..., prin } be a set of nondominated paths
from the origin r to node i. All nondominated paths are main-
tained in a priority queue that is ordered based on F (priu ). In
each iteration, the label priu with minimum F (priu ) is selected.
An acyclic temporary path priu = priu ⊕ aij is then constructed
by extending the selected path priu to each successor node
∀j ∈ SCS(i). The temporary path priu is inserted to prj if priu
is a DL path to prj If priu dominate paths in prj . Then these
dominated paths are removed. This iteration continues until
the destination is reached or the queue becomes empty.

Algorithm 1 PLACEMENT SELECTION ALGORITHM
Input: original and destination nodes and departure time yr ;
Output: The least expected time path

Step1 Initialization
Create a path prru from original to itself
Set arrival time distribution Yr(yr) = 0 for the path prru
Calculate h(r) and F (prru )
Set P rr = {prru } and SE = {prru }

Step2 Path selection
If SE = φ,stop; otherwise, continue
Select priu at the top of SE and remove priu from SE
If i = s, stop ;otherwise, continue

Step3 Path extension
For every successor node j ∈ SCS(i)
If j /∈ priu ,continue; otherwise, scan next successor node
Construct a temporary path prju = priu ⊕ aij
Generate arrival time distribution Yj(yr) for the temporary path priu
Calculate h(j) and F (priu )
If prju is a nondominated path, then insert it into P rj and SE and
remove all paths dominated by prju from P rj and SE

The placement selection algorithm, first calculates F (prju )
based on the time required to traverse each path. Then all
paths ordered by F (prju ) are put into a priority queue. The
path with minimum F (prju ) is selected, in each iteration, An
acyclic temporary path prju is then constructed by extending
the selected path to each successor node SCS(i). If priu is a
nondominated path, it is inserted into pri. If priu FSD dominate
any path in prju , the dominated paths are deleted from prj .The
algorithm continues until the destination is reached or the
queue becomes empty. The time complexity of this algorithm
is O(n ∗m).

2) Route Selection: After deploying middleboxes, two con-
straints exist. One is the cost to process dataflow streams
in IoT, such as the mandatory use of the CPU, RAM and
counter. The other is the volumn restrictions in SDN switches.
To address these challenges, First, an offline Integer Linear
Program(ILP) pruning algorithm is proposed to tackle the
switch constraints. Then an online Linear Program formulation
is proposed to deal with load balancing.

After the middlebox is deployed, we need to select the
route which can minimize the network load. A binary indicator
variable Ic,q is used to indicate whether a particular sequence
has been selected. To ensure that each logical chain has
a related physical sequence, a target coverage level Cov is
defined as follows. ∑

q

Ic,q ≥ Cov (9)

Ic,q ∈ {0, 1} (10)

Then, the loads on each switch are determined to ensure
that loads do not exceed switch constraints TCAM.∑

Sk∈PhSeqc,q

Rulesk,c,q × Ic,q ≤ TCAMk (11)

To ensure that no middlebox becomes a hot-spot, the
number of middleboxes in the selected sequences is calculated
using Linear Program pruning algorithm.

MbUsedj =
∑

Mj∈PhSeqc,q

Ic,q (12)

Then find the maximum occurrences.

MaxMbO = max(MbUsedj) (13)

Finally minimize the maximum number.

MaxMbO ≥ MbUsedj (14)

Algorithm 2 ILP PATH SELECTION ALGORITHM
Input: PoChainc

Output: Improved security network
Initialization:Cov, TCAM, SIc,q , Srules, MbUsed, MaxMbO;
for each PoChainc do

all possible physical chains are PhSeqc;
end for
for PhSeqc,q ∈ PhSeqc do

if this PhSeqc,qischoosed then
Ic,q = 1;
apply Rulesk,c,q ;

else {Ic,q = 0}
SIc,q+ = Ic,q ;

end if
if Sk ∈ PhSeqc, q then

Srules+ = Rulesk,c,q ∗ Ic,q ;
end if
if Mj ∈ PhSeqc,q then

MbUsed+ = Ic,q ;
MaxMbO = max(MbUsed);

end if
end for
Obtain:

SIc,q ≥ Cov
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The ILP pruning algorithm first determines whether a par-
ticular sequence has been selected. Then the total number of
selected sequences are calculated and let it larger than the
coverage level Cov. Next the loads on each switch is calculated
to ensure that the load does not exceed the constraints. Finally
the total number of middleboxes in each selected sequence is
obtained, and the maximum number is minimized. The time
complexity of this algorithm is O(n ∗m).

When a physical sequence is selected, the load balance
problem must be addressed to protect the network.

First, we need to ensure that traffic on all logical chains is
assigned to some physical sequence.∑

PhSeqc,q∈Pruned

fc,q = 1 (15)

fc,q ∈ [0, 1] (16)

Next, the load on each middlebox is modeled as follows.

Loadj =

∑
Mj∈PhSeqc,q
PhSeqc,q∈Pruned

fc,q × Tc × Ftprtc,j

ProcCapj
(17)

Finally, a specific load-balancing objective is selected to
minimize the maximum middlebox load across the network.

MMbLd ≥ Loadj (18)

Algorithm 3 LP LOAD BALANCE ALGORITHM
Input: PoChainc

Output: load balanced network
for each PoChainc do

if PhSeqc,q is selected then
0 ≤ fc,q ≤ 1;

end if
Sfc,q+ = fc,q ;
if Mj ∈ PhSeqc, q then

Loadj =

∑
Mj∈PhSeqc,q
PhSeqc,q∈Pruned

fc,q×Tc×Ftprtc,j

ProcCapj
;

MMbLd = max(Loadj)
end if

end for
Obtain:

Sfc,q = 1
MMbLd ≥ Loadj

The LP formulation algorithm first divides the whole net-
work into several sequences based on fc,q. , to ensure that
traffic on all logical chains is assigned to some physical
sequences. Next the load on each middlebox is modeled, and
then a special load balance objective is selected to minimize
the maximum middlebox load across the network. The time
complexity of this algorithm is O(n).

V. SECURE MECHANISMS AND DATAFLOW
MANAGEMENT PROTOCOL

The SDN controller set up flow rules based on switch
ports provided switches and middleboxes. Thus, it is subject
to spoofing attacks(MAC spoofing, IP spoofing, VLAN tag
spoofing), since a dishonest switch can forge such information
inside a packet. The controller is also subject to flooding
attacks- an attacker may generate a large number of packets

with arbitrary MAC and IP addresses, resulting in creating a
large number of messages sent to the controller and a large
number of flow tables inside a switch. Thus , it is possible
to cause DoS or packet interception, as unknown packets are
also flooded. For example, if the memory allocated for host
profiles in a controller is full, an existing host profile(e.g., the
oldest) will be overwritten, resulting in the flooding of a new
packet destined to that host.

Table 2 summarize the secure mechanisms and the related
attack forms. To defense these attacks, we propose a security
mechanism. First, Allowing a switch to bind a port to one
or several MAC addresses(MAC binding) to mitigate MAC
spoofing attacks. Next, allowing limits on the number of MAC
addresses to be associated with a switch port(MAC limiting)
to mitigate MAC flooding attacks.

To mitigate VLAN Spoofing, an SDN switch can designate
its ports as User-to-Network Interfaces(UNIs) and Network-to-
Network Interfaces(NNIs), and remove VLAN tags in packets
received from UNIs.

To mitigate IP spoofing, the controller plan IP address
assignment and configure flow tables with IP prefixes to avoid
learning IP based forwarding rules.

TABLE II
SECURE MECHANISMS AND RELATED ATTACKS

Mechanisms Attacks

MAC binding MAC spoofing attacks

MAC limiting MAC flooding attacks

UNIs,NNIs ports VLAN spoofing

Flow table with IP prefixes IP spoofing
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Fig. 6. IoT controller architecture.

The IoT controller architecture is shown in Figure 6, the
data collection component collects network/device information
from the IoT environment and stores it into databases. This
information is then utilized by the layered components in the
left side. The lower level Flow and Network layers decide
which networks should be used for application flows and how
application flows should be routed across the network. These
decisions will be sent out to the corresponding devices via the
communication and control layer.
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Fig. 7. Three stages of proposed protocol.

During the management of dataflows in IoT, a packet may
go through the same switch many times, thus knowing the
state of the packet is required to determine how to forward it.

A dataflow management protocol is proposed in IoT, to
account for this challenge. The protocol involves three stages:
initialization phase, tunnel ensuring phase and route ensuring
phase. As shown in Figure 7, phase 2 and phase 3 are the
execution stages, and including several steps. And the process
details of the execution stages is shown in Figure 8.

Phase 1: Initialization. In this phase, the direction of a
packet is determined by its ingress port. Then, a tag is given
to the packet based on the security policy in M-G.

Switch Controller

port tag1) Ask for next tunnel

Next tunnel

2) Respond with

next tunnel

Inaddress destaddress3) Ask for route

Next Port

4) Respond with next route

Traditional routing 

indicators.

Fig. 8. The process of tunnel ensuring and route ensuring.

Phase2: Tunnel ensuring. The next tunnel of the packet is
confirmed in this phase.

Step 1: The switch sends parameters including the in port
of this packet and the tag to the controller.

Step 2: After receiving the parameters, the controller
compute the traditional routing indicators based on port and
tags, and return the next tunnel to the switch.

Phase3: Route ensuring. The switch get the route to the next
tunnel in this phase.

Step 3: The switch sends its address and the address of
the tunnel to the controller.

Step 4: After receiving the ingress address and destination
address, the controller get the next hop based on route selection
algorithm.

VI. EXPERIMENT

A. Comparison between M-G and SIMPLE

M-G is most close to SIMPLE[23], both solves middle-
box placement and route selection problems.The comparison
between M-G and SIMPLE is shown in table III.

TABLE III
Comparison between M-G and SIMPLE

item M-G SIMPLE
placement selection the shortest path exhaustive search

security secure mechanisms and
protocols

none

latency short long
load light heavy

B. Experiment Configurations

In our experiments. POX was used as the controller, and
OpenvSwitch was used as the SDN switch. The custom Click
modules was used to act as middleboxes. Each switch was
connected to a host with at most a middlebox. iPerf was
run on the host to emulate different network matrices, and
different port numbers/host addresses were used to distinguish
traffic across chains. Each link has an emulated bandwidth of
100Mbps. The evaluated metrics are discussed below.

1) Placement:The aim of the placement selection algorithm
is to find the deployment position for middlebox to reduce
the network lentency. Here, we replayed the first week
dataflow of open DARPA dataset to compare the latency
in M-G and SIMPLE[23] to evaluate the effectiveness of
the placement selection algorithm in M-G.

2) Volume constraints: The ILP and LP algorithms are pro-
posed to tackle switch and middlebox volume constraints.
After replayed the first week dataflow of open DARPA
dataset, the load on each middlebox and the number of
rules in each switch are used to measure the availability
of M-G.

3) Security mechanisms: The aim of M-G is to improve
network security. In case middlebox failure and traffic
over load in some chains, M-G should rebalance the
network in time, so that the whole IoT system could run
stably and safely. The response time of M-G in those two
scene are evaluated.

4) Protocol: The dataflow management protocol is used to
efficiently manage dataflow. The time needed to deploy
the protocol and the switch capacity after using the
protocol are discussed, to evaluate the scalability of the
protocol.

C. Availability

Effective middlebox placement in IoT is ensured using
the placement selection algorithm. Then, Integer Linear Pro-
gram, uses the pruning algorithm to select the appropriate
route and Linear Program formulation is used to balance
loads across middleboxes. To evaluate the availability of these
algorithms, the following experiments were performed and the
results are shown below.
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Fig. 9. Delay distribution of all flows.
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Fig. 10. Latency with different number of middlebox.

1) Availability of placement selection algorithm: The
topology we used is Internet2. First, we allocate middlebox
to each application, and compared the random placement and
the placement selection algorithm. Figure 9 shows the delay
distribution of all flows. For 50% of the flows, the proposed
algorithm achieved 40ms latency, while random placement
required 80ms. The number of middleboxes is varied in Figure
10, thus, it is easy to observe that the M-G can efficiently
reduce the latency over time.

2) Availability of dataflow control algorithm: To evaluate
the dataflow control algorithm, we compared the middlebox
loads with and without the proposed M-G. The common one
stands for that in each ingress-egress pair, the middleboxes
closest to the ingress are selected. Here, the assumption is that
there exist two types of middleboxes. i.e. Firewall and IDS,
and that each switch is attached to one instance of a firewall
and an IDS. As shown in Figure 11, after running M-G, the
maximum loads are reduced by nearly 50%. Figure 12 shows
the maximum middlebox load for different topologies. As can
be seen, the performance gap is obvious. When running M-G,

performance is improved by nearly four times.
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Fig. 12. Maximum middlebox load for different topologies.

3) Availability of Integer Linear Program pruning algo-
rithm: Data from the first week of the open DARPA dataset
was used to verify the availability of M-G under real-world
settings. We replayed that dataflow and emulated the build
and drop of rules in switches. If a rule was inactive in a time
series it was removed. Here, n=1min and n=10min timeout
thresholds were used and the different flow definitions are
shown in Figure 13. As can be seen, increases to table size
slowed down over time. Note that a greater timeout interval
leads to fewer rules and faster convergence.

Figure 14 shows the time required to deploy rules in
switch, which varied with different numbers of switches and
middleboxes, because the controller deploys rules in switches
sequentially.

D. Security
To evaluate the security of M-G, two situations were

simulated using the Internet2 topology, i.e., middlebox failures
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Fig. 13. Number of rules per switch with different timeout
thresholds.
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and traffic overload on some chains. In both cases, the load
must be rebalanced. Here, we focus on the time required
to reconfigure the network. Figure 15 shows the response
time to generate rules and update rules in both failure and
overload two scenarios. As can be seen, the overall time
is very low(<0.15s). This means that the network can react
quickly. The optimization(without the ILP pruning algorithm)
also proves the effectiveness of ILP algorithm.

In dataflow management protocol tunnels and tags were
used to ensure the status of data packets. Figure16 shows the
fraction of sequences selected by optimization(without the ILP
pruning algorithm) and by M-G, which needs the ProcState
tags. Although careful placement of middlebox can reduce the
need for ProcState, it is necessary to use sequences with loops
for correct policy traversal, under both failure and overload
conditions.

E. Scalability
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topologies.
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Next, we focused on the scalability and optimality of M-
G. The available TCAM size in switches and the number of
policy chains per class in the Internet2 and Geant topologies
are compared. For brevity, we only show results obtained when
the length of each policy was three. Figure 17 shows that the
coverage for each logical chain increases, after using switch
tunnels. A coverage of 0 means no feasible solution was found.
Note that we could only find feasible solutions when switch
tunnels were used.

Figure 18 shows the time required to deploy related
dataflow streams management protocols in M-G and optimiza-
tion (without ILP pruning algorithm) using switch tunnels.
By using tunnels and tags the required time was obviously
decreased and the efficiency of M-G was improved.

VII. CONCLUSION

Middlebox placement, the middlebox and flow table
capacity constraints of SDN switches are key challenges when
combining middlebox and SDN together. The goal of this
study was to use middlebox in SDN-based IoT to manage
dataflow, and improve the stability and security of the network.
To this end, M-G, a SDN-based data transfer security model
in IoT based on middleboxes was proposed. M-G attempts to
improve the availability of SDN-based IoT secure applications
and actively respond to network threats. We first addressed
middlebox placements. Appropriate positions are selected us-
ing a placement selection algorithm, which reduces network
latency. Next, we considered network balance. Here, an ILP
pruning algorithm and an LP formulation are deployed to
balance load across middleboxes and switches. Finally, we
investigated dataflow management. The secure mechanisms
can defend several attacks. By using the proposed dataflow
management protocol, the status of a packet is observed and
the route is properly determined. Our experimental results
demonstrate that the proposed M-G model and corresponding
protocols manage dataflow in middleboxes effectively, and can
improve the overall IoT network security and stability.
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