Accepted Manuscript

Solvent-based separation and recycling of waste plastics: A review

Yi-Bo Zhao, Xu-Dong Lv, Hong-Gang Ni

PII: S0045-6535(18)31170-6

DOI: 10.1016/j.chemosphere.2018.06.095

Reference: CHEM 21627

To appear in: Chemosphere

Received Date: 08 December 2017

Accepted Date: 12 June 2018

Please cite this article as: Yi-Bo Zhao, Xu-Dong Lv, Hong-Gang Ni, Solvent-based separation and recycling of waste plastics: A review, *Chemosphere* (2018), doi: 10.1016/j.chemosphere. 2018.06.095

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Solvent-based separation and recycling of waste plastics: A review

- 2 Yi-Bo Zhao ^a Xu-Dong Lv ^b and Hong-Gang Ni^{a, *}
- ³ ^aShenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking
- 4 University, Shenzhen 518055, China
- 5 ^bCollege of Chemistry and Chemical Engineering, Northwest Normal University,
- 6 Lanzhou 730070, China
- 7

8 Corresponding Author

9 Phone: +86-755-26033017. Fax: +86-755-26033254. E-mail: nihg@pkusz.edu.cn

11 Abstract:

Since the creation of first man-made plastic, the global production and consumption of 12 plastics have been continuously increasing. However, because plastic materials are 13 durable and very slow to degrade, they become waste with high staying power. The over-14 consumption, disposal, and littering of plastics result in pollution, thus causing serious 15 environmental consequences. To date, only a fraction of waste plastics is reused and 16 recycled. In fact, recycling plastics remains a great challenge because of technical 17 challenges and relatively insufficient profits, especially in mixed plastics. This review 18 focuses on an environmentally friendly and potentially profitable method for plastics 19 separation and recovery and solvents extraction. It includes the dissolution/reprecipitation 20 method and supercritical fluid extraction, which produce high-quality recovered plastics 21 comparable to virgin materials. These methods are summarized and discussed taking 22 mass-produced plastics (PS, PC, Polyolefins, PET, ABS, and PVC) as examples. To 23 exploit the method, the quality and efficiency of solvent extraction are elaborated. By 24 eliminating these technical challenges, the solvent extraction method is becoming more 25 promising and sustainable for plastic issues and polymer markets. 26

Keywords: waste plastics; solvent extraction; dissolution/reprecipitation; supercritical
fluid extraction

1. Introduction

30	The challenge of the disposal of accumulated waste plastics and corresponding
31	environmental issues have received widespread attention from the public and
32	academicians (Rochman et al., 2013; Jambeck et al., 2015). Waste plastics can turn into
33	the resources for new plastic products; thus, a cyclic economy can be achieved by
34	coupling waste prevention with material recycling. For example, a sequential extraction
35	process using mixed solvents to recover polycarbonates can obtain a high yield (>95%)
36	and high purity similar to virgin polycarbonates recycled product using less energy
37	(Weeden et al., 2015). Although green chemistry has grown remarkably (Cui et al.,
38	2011), large amounts of waste plastics remain for safe disposal and reutilization.
39	Recycling plastics can also be viewed as a big business because of its potential
40	environmental benefits and economic profits. However, about 6300 million metric tons of
41	plastic waste have been generated until 2015, and only 9% of them are recycled, 12% are
42	incinerated, and 79% are discarded (Fig. 1) (Geyer et al., 2017). Taking the fastest-
43	growing component of the municipal solid waste stream as an example, electronic waste
44	(e-waste, global generation 20-50 million tons/year (Robinson, 2009; Herat and
45	Agamuthu, 2012)) contains valuable plastics (~30%) (Gramatyka et al., 2007). In fact, e-
46	waste plastics consist of heterogeneous polymers, which makes the recycling process
47	difficult (Schlummer et al., 2006; Ignatyev et al., 2014), such as ABS, PC, SAN, PS
48	(Beigbeder et al., 2013), PP, and PET (Martinho et al., 2012). Nevertheless, recycling the
49	e-waste plastics with environment-friendly technology necessarily contributes to reducing

50	oil and energy consumptions (Ignatyev et al., 2014), decreasing CO ₂ emission (Allwood
51	et al., 2010), and lowering costs of production (Weeden et al., 2015).
52	
53	Nowadays, most of waste plastics are landfill (Barba-Gutiérrez et al., 2008) or
54	incineration, contributing to amounts of toxic pollutants (Li et al., 2001; Schlummer et
55	al., 2007a). In addition, microplastics resulting from human material and product use or
56	derived from the breakdown of larger plastic debris are the newest emerging contaminant
57	in the environment at high levels, particularly in aquatic and marine ecosystems
58	(Rochman et al., 2013). However, no substantial increase in recycling plastics is observed
59	yet likely due to the high recovery requirement and costs of disposal (Stein, 1992;
60	Ignatyev et al., 2014; Perrin et al., 2016). The average global recycling rate is about only
61	18%, and in particular, the recycling rates in Europe, China, and the United States are
62	30%, 25%, and 9%, respectively (Geyer et al., 2017). Current methods of plastic recovery
63	include mechanical recycling, solvent recycling, pyrolysis, and gasification (Hamad et
64	al., 2013; Wang and Xu, 2014). Among these methods, mechanical recycling and
65	chemical recycling (e.g., pyrolysis) are the most widely practiced (Hamad et al., 2013).
66	Recycling of waste plastics by segregating mixed wastes into a homogenous polymer
67	(e.g., mechanical recycling) leads to a broader application and higher value (Braun, 2002;
68	Sadat-Shojai and Bakhshandeh, 2011). In terms of life cycle assessment, mechanical
69	recycling is more attractive with a smaller environmental burden (e.g., consumption of
70	fewer resources and lower impact on global warming) (Dodbiba et al., 2008).

71	Considering the decision variables such as the economic, environmental, and
72	technological performance, mechanical recycling is the most suitable for manufacturing
73	organizations also (Vinodh et al., 2014). Compared with other mechanical recovery
74	methods (e.g., manual sorting and floatation), plastic recycling by solvent extraction has
75	been proved to purify recovered plastics efficiently (Vane and Rodriguez, 1992).
76	
77	As a secondary mechanical recycling, plastic recycling by solvent extraction is a
78	promising method with widespread application in waste plastic recovery (Cervantes-
79	Reyes et al., 2015), and studies on this topic are mounting in recent four decades (Drain
80	et al., 1983; Vane and Rodriguez, 1992). Unfortunately, to the best of our knowledge, no
81	primary summary of the solvent extraction of plastic has been provided yet. Many articles
82	have been published regarding this approach for the separation and recovery of various
83	waste plastics, and here, were provide a critical review of all the relevant studies. This
84	review attempted to review the literature on current solvent extraction methods
85	(dissolution/reprecipitation technique and supercritical fluid (SCF) extraction (SFE)) of
86	recycling different types of plastics under specific conditions (e.g., different temperatures
87	and pressures). The polymer dissolution mechanism was included to better understand
88	how this method worked. To enhance this method, the solutions to improve the quality
89	and efficiency of solvent extraction recovery are also discussed.
90	

2. Basic information of extraction with solvents

92	The generic framework of plastic recycling by solvent extraction includes the removal of
93	impurities (such as SFE, MAE, ASE, and other plastic additives), dissolution
94	(homogeneous or heterogeneous dissolution), and reprecipitation or devolatilization.
95	Specifically, the polymer(s) is dissolved in the solvent(s), and then each polymer is
96	selectively crystallized. Ideally, when a solvent can dissolve either the target polymer or
97	all the other polymers except the target one, it can be used to for selective dissolution.
98	Obviously, the key to dissolution process is finding a selective solvent.
99	
100	2.1. Experimentally observed dissolution phenomena
101	The dissolution process is affected by the types of polymers and solvents (Achilias et al.,
102	2007; Hadi et al., 2014), polymer size, molecular weight of polymer (Gutierrez et al.,
103	2013a), dissolution temperature (Achilias et al., 2009a; Gutierrez et al., 2013a; Hadi et
104	al., 2014), dissolution time (Achilias et al., 2009a; Gutierrez et al., 2013a; Hadi et al.,
105	2014), and concentration (Achilias et al., 2009a). Thermodynamically, two transport
106	processes are involved during polymer dissolution, solvent diffusion and chain
107	disentanglement (Miller-Chou and Koenig, 2003b). During chain disentanglement, the
108	self-diffusion of the polymer plays the important role (Martini et al., 2006). With the
109	increase in the polymer molecular weight, the dissolution becomes disentanglement
110	controlled instead of diffusion controlled (Narasimhan and Peppas, 1996). In general, a
111	gel-like swollen layer appears with two separate interfaces because of the plasticization
112	of polymer during dissolution. That is, separate interfaces form between the glassy

113	polymer and the gel layer and between the gel layer and the solvent. According to the
114	surface lay formation process outlined by Ueberreiter (Ueberreiter, 1968), the solvents
115	push the swollen polymer into the solvent, and further infiltration of the solvent into the
116	polymer increases the swollen surface layer until a quasi-stability state is reached.
117	Kinetically, solvent dissolution depends on the solvent size and the free volume of the gel
118	phase (Devotta and Mashelkar, 1996). The dissolution times decrease with the decrease
119	in particle size and increase in the diffusivity of polymers, because of the increased mass
120	transfer rate (Miller-Chou and Koenig, 2003b). For example, the dissolution rates of
121	PMMA increased with the addition of small-molecule nonsolvent (Cooper et al., 1986).
122	In fact, the polymer dissolution mechanisms are very complicated. Therefore, only
123	dissolution phenomena are summarized in qualitative terms here. More details of polymer
124	dissolution mechanism can be found in a previous review (Miller-Chou and Koenig,
125	2003b).
126	
127	The structure of glassy polymers has an infiltration layer, a solid swollen layer, a gel

128 layer, and a liquid layer (Fig. 2). In the glassy state, the polymer contains channels and 129 holes of molecular dimensions. The solvent molecules fill these empty spaces and start 130 the diffusion process without creating new holes. All layers are formed in "normal 131 dissolution," whereas the gel layer disappears as a consequence of the decrease in stress 132 energy; this indicates the transition from normal dissolution to cracking. The insoluble 133 polymers are assumed as the additional layer by decreasing the diffusion of both solvents

134	and polymers (Martini et al., 2009). Typically, normal dissolution involves the
135	penetration of the solvent, swelling of the polymers, and diffusion into the solvent
136	(Stamatialis et al., 2002).
137	
138	In reality, many factors affect polymer dissolution, such as molecular weight,
139	composition, and structure of the polymer and composition and size of the solvent
140	(Miller-Chou and Koenig, 2003a). As an example, cracks in PMMA and PS occur earlier
141	with benzene than with toluene, because of the higher vapor pressure and smaller size of
142	benzene (Miller-Chou and Koenig, 2003a). Consequently, benzene dissolves PMMA and
143	PS faster than toluene. In terms of the composition of the solvent, the presence of a small
144	portion of nonsolvent in the solvent mixture can improve the dissolution of polymers
145	(Miller-Chou and Koenig, 2003a). Furthermore, the addition of low-molecular weight
146	nonsolvent in certain ranges also results in the reduction in swelling (Devotta and
147	Mashelkar, 1996). Apparently, this indicates a more quantitative design of mixed
148	solvents. Under supercritical conditions, the high pressure of SCFs results in the swelling
149	of polymers, which can be decreased by heating (Kazarian and Chan, 2004). Therefore, a
150	balance between the pressure and temperature should necessarily be achieved.
151	
152	2.2. Solvent selection

The common solvents employed in the dissolution/reprecipitation method are shown inTable 1. Solvents and nonsolvents for polymers used in the dissolution/reprecipitation

155	method were primarily summarized by Fuchs and Suhr (Fuchs and Suhr, 1989). The
156	optimal solvents are primarily selected by following several major principles (Jilin,
157	2010). (1) According to the solubility rule "like dissolves like," high polar polymers are
158	dissolved in high polar solvents, while low polar polymers are dissolved in low polar
159	solvents. The closer the solvent and polymer are in polarity, the easier it is to dissolve the
160	polymer in the solvent; (2) when the interaction (detailed below) between the polymer
161	and solvent prevails over the cohesion of the polymers, the polymer is easily dissolved in
162	the solvent; (3) if the solubility parameters of the polymer (e.g., δ_D , δ_P , δ_H) and solvent are
163	similar or equal, the polymer is more readily dissolved in the solvent. Several solubility
164	parameter systems are developed to evaluate the solvation ability, such as Hansen
165	(Hansen and Just, 2001), Kamlet-Taft (Taft et al., 1985), Gutmann (Gutmann, 1976),
166	Swain (Swain et al., 1983), and $E_T(30)$ systems (Weerachanchai et al., 2014). The
167	solubility parameter systems should be selected properly for specific recycling. For
168	instance, the combination of Gutmann and Kamlet-Taft parameters is the best option for
169	separating PVC from PET fibers (Grause et al., 2017).
170	

solubility parameters. The HSP values account for three types of interaction: $\delta_{\rm D}$, $\delta_{\rm P}$, and

173 $\delta_{\rm H}$ (Fig. 3). The HSP values are temperature dependent and also affected by the molecular

size and molecular shape (Hansen, 2002). The solubility parameter "distance" R_a between

a polymer (subscript 1) and the solvent (subscript 2) is defined as follows:

176
$$(R_a)^2 = 4(\partial_{D1} - \partial_{D2})^2 + (\partial_{P1} - \partial_{P2})^2 + (\partial_{H1} - \partial_{H2})^2$$
(1)177The relative energy difference (RED) is defined as the ratio of R_a to R_0 :RED= R_a/R_0 (2)179where R_0 is the radius of sphere and R_a is the distance from a given solvent point to thecenter of the sphere. RED value indicates the extent of polymer solubility in a solvent:181• RED < 1, soluble and high affinity; strong solvent182182• RED > 1, nonsoluble and low affinity; weak solvent183• RED>1, nonsoluble; boundary condition184In addition, solvents cracking the polymers have RED values in the range 0.8 to 1.0,185while solvents dissolving the polymers have RED values of less than 0.8 (Hansen and186Just, 2001). According to a previous study (Weeden et al., 2015) (Table 1), the187predictions of HSP were confirmed except for isopropyl alcohol and THF. Sometimes the188real situations challenge the HSP theory, because this theory overlooks electrostatic189forces (Weeden et al., 2015) and the interactions between the solvent and polymers. For190instance, some solvents with RED <1 still cannot dissolve the polymer. Accordingly, the191solubility result based on the HSP theory has to be confirmed by a solubility test192experiment.193Several factors should be considered during the practical application, such as the194dissolution ability of the solvent, viscosity, toxicity, time consumed for the dissolution,

196 forms of the obtained polymer, and cost (Sperber and Rosen, 1976; Pappa et al., 2001). In

197	a very recent study (Zhao et al., 2017), these factors were considered in the separation
198	and recycling of PS, PC, ABS, and SAN. In particular, suitable solvents have to be used
199	to leave one polymer in solid state in each step. It is also noted that the selected solvents
200	may vary depending on the plastic compositions. Toxic solvents even with ideal
201	dissolution ability were not recommended to establish the recycling method. A moderate
202	viscosity is required to facilitate stirring and centrifugation. Recycling methods with a
203	long processing time were not practical for industrialization. The recycling method for
204	PC- and PS-dominated plastics was money and energy saving. Besides, the forms of
205	recovered polymers such as grains and fibers were applicable for reuse (Pappa et al.,
206	2001).
207	
208	Under supercritical conditions, density is also one of the factors that determine the
209	solvent strength and solubility, besides high pressure and high temperature (Martini et al.,
210	2006). The relationship between the solubility of the solutes and the density of the
211	solvents is as follows (Chrastil, 1982):
212	$C = \rho^k \exp[(a/T) + b] \tag{3}$
213	where $C(g/L)$ is the concentration of a solute in the solvent (usually less than 100-200
214	g/L); ρ (g/L) is the density of SCFs; k is the association number of the solute; and a and b
215	are the variables related to the solvent and the solute, respectively. The solubility of the
216	solute is closely related to the SCFs' density than to its pressure (Chrastil, 1982). In
217	particular, the solubility of solute increases with either higher density or higher

218	temperature of SCFs (Martini et al., 2006). Compared with energy-consuming
219	technologies such as pyrolysis, SFE has a potential of less environmental impact but a
220	high energy consumption (Wang and Xu, 2014).
221	
222	2.3. Summary of plastic recycling through solvent extraction
223	The kernel of this methodology is the selective dissolution process using traditional
224	solvents or an SCF. For the dissolution/reprecipitation technique, there are two categories
225	of solvents: "strong solvent," which has a positive solubility to the target polymer and
226	"weak solvent," which has a negative solubility to the target polymer. Fig. 4 and Table 2
227	describes the dissolution/reprecipitation method (Poulakis and Papaspyrides, 1997). The
228	advantages of the dissolution/reprecipitation method are also summarized in Table 2
229	(Kampouris et al., 1988; Poulakis and Papaspyrides, 1997; Poulakis et al., 1997).
230	
231	SFE is a relatively new recycling process for extracting polymers from waste, including
232	supercritical antisolvent precipitation (Yeo and Kiran, 2005). SCFs possess intermediate
233	properties between liquids and gases (Ajzenberg et al., 2000). Theoretically, SFE offers
234	many advantages compared with classical solvents method, such as the improvement in
235	mass transfer, better extraction time and efficiency, minimal residues in the final product,
236	and no residues of organic waste (Ben Said et al., 2016). To date, SCFs have commonly
237	been used in selective depolymerization (chemical recovery). However, their use in
238	physical recovery is increasing rapidly in recent years. SCFs possess similar solubility

239	and transport properties as those of organic solvents and gases, respectively. Particularly,
240	carbon dioxide is the most widely used SCF because it is nonpoisonous, nonpolluting,
241	and of low cost (Peng et al., 2014). The polymers are dissolved in solvents and then
242	extracted by SCFs subsequently (Fig. 5).
243	
244	Non-green solvents (e.g., some organic solvents) are not environmentally friendly and
245	may limit the applications of recovered polymers (e.g., food packaging) (García et al.,
246	2009a). Green solvents are of high costs and environmentally friendly. For instance, SFE
247	may be often more costly than the conventional method (Knez et al., 2014). With regard
248	to costs, equipment, energy consumption, and solvent losses in conventional solvent
249	dissolution/re-precipitation method are discussed (Zhao et al., 2017).
250	
251	3. Exemplary cases of polymer recovery
252	3.1 Homogeneous fractionation
253	3.1.1 PS
254	Because of the high formability and resistance to acids and alkalis, PS is widely used in
255	packaging and electronic products. However, its nondegradability and low density lead to
256	serious white pollutions. The large volume of PS results in transportation problems and
257	higher costs.
258	

259 PS can be dissolved in both environmentally benign (Noguchi et al., 1998a; Noguchi et

260	al., 1998b; García et al., 2009a; Hearon et al., 2014; Gutiérrez et al., 2015) and toxic
261	solvents (Achilias et al., 2009a; Yang and Yang, 2012). Limonene, terpinene, cymene,
262	and phellandrene were investigated as the best solvents for recycling XPS (García et al.,
263	2009a). Similarly, limonene acts as be a good solvent and antioxidant for EPS even
264	during the heating process (Noguchi et al., 1998b). A previous study found that D-
265	limonene as a diene monomer in thiol-ene reactions dissolves PS for PS reclamation from
266	solution (Hearon et al., 2014).
267	
268	MEK/methanol, MEK/n-hexane, and p-xylene/n-heptane proved to be satisfactory
269	systems for recycling PS foam (Kampouris et al., 1987). The dissolution/reprecipitation
270	method can also be used to recycle polymers from packaging waste in a
271	solvent/nonsolvent system (Achilias et al., 2009b). Conventional solvents (e.g.,
272	xylene/methanol) are applied to recycle the model PS at different dissolution
273	temperatures. In a certain temperature range, a high temperature contributed to a high
274	recovery of the PS. Considering the environmental impact, a more environment-friendly
275	solvent (D-limonene, extracted from the rinds of citrus fruits) was used to recover 100%
276	EPS (Noguchi et al., 1998a; Noguchi et al., 1998b). Despite possible chain thermal
277	degradation caused by a slight decrease in the average molecular weight, the chemical
278	structure of the polymer was not significantly altered.
279	

280 The solvent removal may present disadvantages during solvent recovery. For example,

281	the formation of byproducts from the thermal degradation of polymer chains during
282	solvent removal and the residues of "good solvents" such as aromatic compounds limit
283	further applications (Gutierrez et al., 2012). Nevertheless, SCFs could overcome this
284	disadvantage by removing the solvent completely. Therefore, SCFs have been widely
285	applied to separate polymeric matrices and solvents, especially SCCO ₂ (Ben Said et al.,
286	2016). Supercritical CO_2 is a slightly polar solvent and cannot dissolve strong polarity or
287	hydrogen-bonded polymers (Rindfleisch et al., 1996). CO2 is a poor solvent for high-
288	molecular weight polymers under specific conditions (Gutierrez et al., 2012). The studies
289	showed that CO ₂ dissolved the PS of molecular weight less than 1000 (Rindfleisch et al.,
290	1996), and PS of high molecular weight (1700 g/mol) was insoluble under the condition
291	of 3000 psia at 35 °C (O'Neill et al., 1998). Therefore, it is a practical recovery method
292	for high-molecular weight PS in commercial products. Gutierrez et al. proposed an
293	environmentally friendly method for recycling PS (Gutierrez et al., 2016). The process
294	consists of the dissolution of PS in limonene and the removal of solvents using
295	supercritical CO ₂ . The optimum conditions were a high pressure (\geq 100 bar), low
296	temperature (\leq 30°C), and moderate concentration (\leq 0.4 g PS/mL limonene). In another
297	related literature, CO ₂ acts as the antisolvent for the precipitation of PS in p-Cymene
298	(Gutiérrez et al., 2014).
299	

300 *3.1.2 PC*

301 PC is one of the most widely used engineering thermoplastics because of its excellent

302	physical and chemical properties. To date, considerable research has been conducted to
303	treat this kind of waste polymer. By using the dissolved/reprecipitation method, Achilias
304	et al.(2009a) focused on the recycling of three types of polymers from e-waste, namely
305	PC, ABS, and PS. They recovered these model polymers using three pairs of
306	solvent/nonsolvent systems, namely dichloromethane (DCM)/methanol,
307	acetone/methanol, and chloroform/methanol, respectively. The recovery of PC reached
308	98% even at a low temperature using the DCM/methanol system. For the same solvent
309	pair, the result of e-waste plastic recycling was identical to that of the model polymer. No
310	significant difference was found in the chemical structure between the two recycled
311	polymers; this indicates that no thermodynamic degradation occurred during the
312	dissolved/reprecipitation process.
313	
314	3.1.3 Polyolefins (LDPE, HDPE, and PP)

LDPE and HDPE, the major types of thermoplastics, are widely used in the manufacture of bags, toys, containers, pipes, house-wares, and industrial wrappings (Achilias et al.,

2007). Poulakis and Papaspyrides (1995) proved toluene/acetone as a potential

318 solvent/nonsolvent for recycling PE. The recyclates exhibited a strong retention of melt

319 flow index, molecular weight, crystallinity, mechanical performance, and grain size.

Achilias et al. (2007) investigated toluene/n-hexane and xylene/n-hexane (v:v=1:3) as a

solvent system for recycling polyolefins by the dissolution/reprecipitation method and the

effects of solvent types and dissolution temperature on recovery values. They found no

323	significant structure difference between the model and recycled polymers. At the same
324	time, they also observed that the tensile strength at maximum load levels of the recycled
325	product could be comparable to that of virgin polymers. However, the elastic modulus
326	increased because of the fractionation phenomenon that occurred during the recycling
327	process. Similarly, xylene and toluene were used as solvents, while n-hexane as
328	nonsolvent in a volume ratio of 1:3 (solvent:nonsolvent) in the study by Achilias et al.
329	(2008).
330	
331	On the basis of the dissolution/re-precipitation method, a new, low-cost, pure or blend
332	solvent system to recycle polyolefin was developed by Hadi et al. (Hadi et al., 2013). In
333	their study, pure turpentine, turpentine/PetE, and turpentine/benzene as solvents with
334	different fractions and PetE and n-hexane as weak solvents were examined. To reduce
335	cost and obtain the recycled polymer in the form of powder or granules, the effects of
336	sample concentration, dissolution temperature, dissolution time, and type of waste plastic
337	products were determined. In terms of chemical structure, the thermal and tensile
338	mechanical properties of the recycled polymer did differ from those of virgin polymer.
339	Further work on this dissolution/re-precipitation method with different solvents (xylene,
340	n-hexane, and petroleum ether grades A, B, and C with boiling points of 40-60 °C, 60-80
341	°C, and 90-120 °C, respectively) for recycling LDPE, HDPE, and PP also suggested that a
342	high temperature and a low polymer concentration lead to a high polymer recovery in a
343	limited range (Hadi et al., 2014).

344

345	PP works individually or with ethylene as a copolymer and is widely used in the
346	manufacture of ropes, plastic bottles, and electric products. Recycling PP with solvent
347	techniques has been studied for years (Murphy et al., 1979). Various solvent systems
348	were examined. Murphy et al. (1979) explored tetrachloroethylene/acetone (3:2 in
349	volume) at 130 °C for recycling PP and at 60 °C-70 °C for drying the recycled product.
350	Xylene/acetone (1:3 in volume) was used to conduct a model experiment on virgin
351	material for the recycling of PP (Poulakis and Papaspyrides, 1997). Furthermore, a
352	different ratio of xylene/acetone (1:7 in volume) was also used to extract PP (Poulakis et
353	al., 1997).
354	
355	3.1.4 PET
356	The applications of PET include packaging, overhead-projector films, textiles, and
357	aluminum-coated reflective materials. Several studies on model PET recycling using
358	NMP have been published, with the aim of recycling PET bottles. A selective dissolution
359	process was used to purify recovered PET (Vane and Rodriguez, 1992). NMP/n-octane +
360	n-hexane was used as a particularly suitable solvent/nonsolvent system in the
361	dissolution/reprecipitation method for recycling PET (Poulakis and Papaspyrides, 2001).
362	The slight decrease in the number-average molecular weight after consecutive recycling
363	cycles may be related to processing and additives.

364

366	ABS is an engineering thermoplastic that involves amorphous-continuous phase
367	(poly(styreneco-acrylonitrile) copolymer) and rubbery-dispersed phase (dispersed
368	butadiene or butadiene copolymer). It is mainly used in automotive and electronic casing.
369	Arostegui et al. (2006) proposed a dissolution-based method with acetone (0.25 g/mL) at
370	room temperature. FTIR, DSC, and MFI indicated that the solvent-based method does not
371	degrade ABS. However, the dissolution and injection molding may accelerate the
372	degradation by the elimination of stabilizers, reduction in molecular weight, and
373	butadiene degradation.
374	
375	3.1.6 PVC
376	PVC is one of the most widely consumed thermoplastic materials (Sadat-Shojai and
377	Bakhshandeh, 2011). Particularly, it is also present in electronic and electrical equipment.
378	This kind of plastic, along with toxic additives and BFRs, hinders the recycling into
379	higher grade products (Tansel, 2017). Accordingly, PVC is necessarily extracted from
380	waste stream. Besides, it was claimed that the profile properties of PVC recyclate for new
381	applications were comparable to those of virgin PVC (Sadat-Shojai and Bakhshandeh,
382	2011).
383	
384	3.2 Homogeneous fractionation

3.2.1 Dissolution/reprecipitation technique

386	More recently, Weeden et al. developed a room-temperature sequential extraction using
387	DCM/ACE (v:v=1:1) to recycle PC from e-waste (recovery>95%); the results showed
388	that the method was 30% cheaper and used 84% less energy compared with those in the
389	production of virgin PC from petroleum (Weeden et al., 2015). Pappa et al. (2001)
390	studied the separation of LDPE, HDPE, and PP by xylene/propanol-1 (1:3 in volume) in a
391	pilot unit and found that it could achieve economic profits with a large scale of 30000
392	t/year. According to their study, the recovery can be profitable compared with the use of
393	virgin polymers. A solubility-based technique known as CreaSolv® process (a potential
394	commercial solvent-based recovery technique in Europe) was employed to separate HIPS
395	and ABS by removing contaminants such as flame retardants (Schlummer et al., 2006;
396	Nnorom and Osibanjo, 2008). More recently, researchers investigated the separation of
397	PC and ABS using CreaSolv [®] process at a laboratory scale (Schlummer et al., 2016). In a
398	concrete example of separating blended textiles, 96% PET was recovered by ACE or
399	N,N-dimethylformamide through Soxhlet extraction (Sun et al., 2013). More recently,
400	Zhao et al. proposed a procedure for separating and recycling PC, PS, ABS, and SAN,
401	with DCM, ACE, and ACN. The recovered polymers were yielded with high purities and
402	without degradation (Zhao et al., 2017).
403	
404	In practice, PVC can be separated from PS by cyclohexanone/hexane (solvent/nonsolvent

405 system) (Kampouris et al., 1986). A mixture of xylene/cyclohexanone (85:15 in volume)

406 could convert the PVC into a solution (Sperber and Rosen, 1976). Several operated

407	projects such as Vinyloop [®] have been developed by the dissolution/reprecipitation
408	technique in the close loop (Sadat-Shojai and Bakhshandeh, 2011). However, details
409	about the resources, particularly the solvents of those operated projects, are unknown
410	(Tukker, 2002). For waste PVC pipes, Qiao et al. (2007) used organic solvents to separate
411	PVC with a recovery rate of 86% at room temperature in 24 h from inorganic substances
412	(CaCO ₃). In another study, THF, cyclohexanone, and cyclopentanone were efficient in
413	dissolving PVC from PET fibers (Grause et al., 2017).
414	
415	3.2.2 Supercritical fluid extraction
416	By near-critical selective solubilization, PP can be dissolved by n-pentane and n-heptane
417	at supercritical pressures and above the polymer melt temperature from PP/PS blends
418	(Martini et al., 2006).
419	
420	3.3 Implications for future applications
421	The investigations mentioned above claimed that the mechanical properties of the
422	recycled products were comparable with those of virgin plastics by using the solvent
423	extraction method. Therefore, this method is proved to be an efficient way to separate and
424	recycle plastics. According to previous studies (Weeden et al., 2015; Zhao et al., 2017),
425	the method harbors definite environmentally friendly properties, compared with the
426	virgin polymers produced from oil products. Economically, the recovery processes
427	performed differently. For example, the cost of recycling PC from e-waste was 30%

lower than that for the production of virgin polymers (Weeden et al., 2015). In contrast,
the plastic composition greatly affects the recovery cost (Zhao et al., 2017). The recycling
processes should be feasible only if plenty of wastes were treated (Gutierrez et al., 2016).

432 **4.** Quality and efficiency of solvent extraction recovery

433 For quality assessment of recovered plastics, three quality aspects must be considered.

434 Namely, the composition pattern, the physicochemical property degradation (chemical

and morphological changes and mechanical and rheological property changes; Fig. 6),

and the presence of low-molecular weight impurities (solvent residues, additives, and

437 degradation products) (Karlsson, 2004; Stangenberg et al., 2004). Hence, strategies of

438 producing high-quality materials from waste plastics, such as re-stabilization, rebuilding,

439 compatibilization, and addition of elastomers and fillers, are often applied to assure

440 performance in new applications (Vilaplana and Karlsson, 2008).

441

442 *4.1. Polymer identification and property testing*

443 To determine the additives and choose suitable solvent pairs for recycling, the

444 composition of waste polymer should be analyzed first. Table 3 lists a variety of

445 assessment techniques for recovering polymers. FTIR is used to identify different

446 polymers in waste plastics by comparing the spectra of the waste sample with that of

- 447 model polymers (Achilias et al., 2009b). Unlike FTIR and DSC, NIR and Raman
- 448 spectroscopy can perform fast and reliable compositional analysis without sample

449	pretreatment (Camacho and Karlsson, 2001; Vilaplana and Karlsson, 2008). They can
450	also examine potential structure changes of recovered products. HPLC is used to analyze
451	mixed polymers. After the dissolution process, a small amount of low-molecular weight
452	polymer was lost in the extraction steps (Weeden et al., 2015). There are two ways to
453	determine the molecular weight distribution of the recycled polymer: viscosity method
454	and GPC. Thermal properties (e.g., melting point, crystallinity, and thermal history) and
455	the characterization of polymer compositions (before and after recycling) are often
456	determined with thermal analysis techniques, particularly DSC. DSC is readily employed
457	for the analysis of polymers of above 1% wt. composition fraction (Camacho and
458	Karlsson, 2001). As one of the thermal analysis techniques, TGA can be used to examine
459	the thermal decomposition and to analyze the recovered polymers in terms of humidity,
460	volatiles, additives, fillers, and nonpolymeric contaminants (e.g., metal particles)
461	(Vilaplana et al., 2007; Vilaplana and Karlsson, 2008). Long-term thermal and thermo-
462	oxidative stability of recycled polymers including oxidation temperature and oxidative
463	induction time can be assessed by DSC, TGA, and CL techniques (Camacho and
464	Karlsson, 2002).

465

466 *4.2. Additives and impurities*

Plastic materials absorb and contain low-molecular weight compounds and potential
contaminants (Camacho and Karlsson, 2000), such as BFRs, stabilizers, and impact
modifiers. During the service life, both the polymer itself and additives undergo

470	multispeed degradation (Moeller et al., 2008). Considering the potential effects on the
471	properties of recovered polymers, additives must be separated from waste plastics before
472	recovery. The presence of additives such as BFRs results in large amounts of plastic
473	disposal through landfills (Paine et al., 2014). Additionally, other polymer residuals in
474	recovered polymers may also limit the feasibility of recovery (Balart et al., 2005).
475	
476	Several methods have been developed for the extraction and determination of polymer
477	additives (Vandenburg et al., 1997). They are summarized in Table 4. Apparently,
478	compared with the conventional Soxhlet extraction, those new extraction methods are
479	more efficient, fast, and consumes less solvent (Ranz et al., 2008). For instance, BFRs
480	from plastics are easily extracted with SCFs (Wang and Xu, 2014), solvothermal
481	treatment (Zhang and Zhang, 2012), ionic liquids (Lateef et al., 2008), and MAE (Ranz et
482	al., 2008). Additionally, MAE coupled with GCMS (Li et al., 2009) and HPLC–UV
483	(Vilaplana et al., 2009) can successfully extract and quantify BFRs by hexane/water and
484	isopropanol/n-hexane, respectively. Vilaplana et al. (2008) provided a comparative
485	analysis of various extraction methods including PLE, MAE, and UAE under different
486	conditions. It was found that methanol was the optimal solvent for TBBPA removal from
487	e-waste plastic in the liquid to solid ratio of 15:1 (mL/g), at 90 $^{\circ}$ C for 2 h (Zhang and
488	Zhang, 2012). The available solvent-based options such as Creasolv (for BFR removal)
489	and Centrevap are potentially commercialized, and Creasolv process is feasible at a scale
490	of 10000 tons/year (Schlummer et al., 2006; Nnorom and Osibanjo, 2008).

491

492	SFE as a useful tool for additive extraction from polymeric materials was also studied.
493	Arias et al. (2009) developed the SCCO ₂ extraction at 45 MPa and 80 $^{\circ}$ C to extract
494	antioxidant additives (Irganox 1076 and Irgafos 168) from LDPE and HDPE. Anouar et
495	al. (2015) studied the removal of low-molecular weight additives in food grade
496	polyolefin, which acts as contaminants in food packaging materials. Compared with the
497	classic solvent technique, SCCO ₂ extraction method was more successful in terms of
498	simplicity, efficiency, and speed. Ben Said et al. (2016) used SCCO ₂ (200 bar, 90 °C and
499	7.5 h) to extract artificial contaminants from PP and found that pressure was the most
500	significant positive factor to extraction.
501	
502	It is vital to decolorize colored plastics for further applications because the color
503	pigments are serious pollutants for the environment. Low-molecular-weight organic dyes
504	can be removed by the precipitation of the polymers with a nonsolvent, for their higher
505	entropies of solution (Sperber and Rosen, 1976). An investigation was made to recycle
506	pigments by an efficient combination of selective dissolution and evaporation from PVB
507	film (Wang et al., 2012). Titanium dioxide, chromium(III) oxide, and iron(III) oxide in

ABS can be removed using acetone/water and CreaSolv[®] SB/CreaSolv[®] SBF (a

509 proprietary solvent formulation) by filtration and centrifugation (Arends et al., 2012). In

510 fact, the recycling processes may lead to color changes (Tiganis et al., 2002; Arostegui et

al., 2006). Therefore, we speculate that the physicochemical properties of the coloring

- 512 matter also changed, thus making the removal of the colored matter difficult.
- 513

514 *4.3. Compatibility issues of polymers blends*

515	Significant effects of the recycling route on the morphology of the plastics blends indeed
516	exist and thus affect the mechanical properties of the blends with different compositions
517	(de Souza et al., 2016). For instance, ABS/HIPS blends obtained by different processing
518	routes display different elongation at break and impact strength (de Souza et al., 2016).
519	Nevertheless, because of the relatively high purity (Makenji and Savage, 2012), "self
520	compatibilization" behavior may support ABS/HIPS blends (20:80 in weight) with
521	improved performance including mechanical properties (Vazquez and Barbosa, 2017).
522	This implies that the reuse of polymers requires no rigid purity of recovery. In fact, the
523	blending of polymers combines the mechanical and physical properties of the
524	components (Haba and Narkis, 2004). According to their exact use, the purity of the
525	recovered plastics should have different expectations or requirements. Doing so, we not
526	only improve the efficiency but also reduce the costs of the solvent extraction method. In
527	practice, the blends of recyclate such as PVC/ABS with poor compatibility and
528	mechanical properties can still be recommended at an industrial scale (e.g., electrical
529	housing and interior truck panels) because of low cost (Garcia et al., 2007). Similarly,
530	PVC/PS are not miscible because of repulsive interactions, and the miscibility can be
531	improved by using a third polymer (Melad and Mark, 2005). To improve the
532	characteristics of recycled blended plastics, compatibilizers would be helpful (Vazquez

533 and Barbosa, 2016).

4.4. Effect of consecutive recycling cycles

536	Generally, a slight degradation after the multiple recycles was not manifested in the
537	physical properties of products (Murphy et al., 1979). Poulakis and Papaspyrides (1997)
538	focused on the effect of sample history on mechanical properties through consecutive
539	recycling cycles and indicated no significant differences between the mechanical
540	properties (e.g., yield strength and elongation at break) of virgin and recovered materials.
541	For ABS, no changes were observed for low-strain properties (Young's modulus), but
542	high-strain properties (yield stress and impact strength) decreased during the first
543	recovery of ABS because of butadiene degradation and SAN's lower molecular weight
544	(Arostegui et al., 2006). However, these high-strain properties remained constant in
545	subsequent recycling cycles. Similarly, the MFI and the elongation at break of PP
546	significantly increased from the fifth cycle because of the depletion of stabilizers in
547	previous recycling processes (Aurrekoetxea et al., 2001). Interestingly, even after up to
548	nine cycles, PS still maintained the properties (e.g., mechanical) and stability (Maharana
549	et al., 2007). However, for various polymers, both physical (e.g., the elongation at break)
550	and chemical changes (e.g., chain scission, cross-linking) during the recycling process
551	should be paid special attention to help in ensuring that the recovered polymers are used
552	appropriately (Boldizar and Moller, 2003).

554	Molecular weight (MW) distributions of the recovered products were subject to the
555	recycling processes by the dissolution/reprecipitation method. Some low-MW polymers
556	may be extracted by solvents after each time of recycling. The MW distribution may play
557	a crucial role in the mechanical properties of some plastics (Poulakis and Papaspyrides,
558	1997). For PC, high-MW polymers provide toughness and resistance to environmental
559	stress cracking, while low-MW polymers can be easily processed (Weeden et al., 2015).
560	Poulakis and Papaspyrides (2001) found that the MW distribution of PET displayed no
561	significant difference despite the number of recycling cycles.
562	
563	4.5. Acceptable form of the recycled plastics
564	Different polymers in various solvents have various forms, such as agglomerates,
565	powder, granules, and jelly polymer lumps (Papaspyrides et al., 1994). For example, the
566	gel formation may be caused by the aggregation of particular polymer, which hinders the
567	separation of solvents and solid products. Fortunately, suitable mix solvents could alter
568	the precipitation form. Besides, the low-temperature drying results in appropriate forms
569	of polymers for reprocessing (Drain et al., 1983). Acceptable forms of the recycled
570	product can be obtained by choosing suitable solvent/nonsolvent pairs (Papaspyrides et
571	al., 1994). In general, the more acceptable forms include powder and granules instead of
572	films, sheets, or specific articles (Murphy et al., 1979).
573	

574 On the basis of the generic frameworks mentioned above, usually via varied experimental 28

575	conditions to obtain accepted forms of the recycled product in practice. For example,
576	Poulakis and Papaspyrides (1997) dissolved PP in xylene at 135 °C that precipitated in
577	the form of small grains and gained excellent recoveries of both polymer (100%) and
578	solvents (>90%) without degradation. Smaller particles had higher tensile and impact
579	strength (de Souza et al., 2016). Another interesting study was conducted by Poulakis and
580	Papaspyrides (2001) by the grain-size analysis; they found that the grain size of over
581	94% recycled polymer mass was smaller than 1 mm, which was suitable for further PET
582	processing.

583

584 5. Conclusion and outlook

Despite the environmentally friendly properties including energy saving and less CO₂ 585 emission of the current solvent extraction of waste plastics technique (Weeden et al., 586 2015; Zhao et al., 2017), it still faces difficulties and challenges, which hinder its 587 development to some extent. Generally, waste plastics are mixed polymers. Therefore, 588 the primary challenge is the separation and recycling of waste components one by one 589 (Hopewell et al., 2009). It is not difficult to understand why those foregoing research 590 mainly focused on the recycling of single plastic and rarely discussed the disposal of 591 mixed plastics waste. On the one hand, the dissolution of mixed plastics in solvents (pure 592 or mixed) is complex and differ from that of individual plastic, because of the 593 interactions between the solutes. On the other hand, inappropriate formations such as gel 594 from sequential extraction always hinder the further separation due to difficulties in 595

596	centrifugation or filtration. More recently, investigations on separation and recovery of
597	multiple plastics have emerged (Hadi et al., 2012; Zhao et al., 2017).
598	
599	Existence of solvents and impurities in the recovered products results in the degeneration
600	of material properties compared with those of virgin materials. Further, atmospheric or
601	vacuum distillation also leads to the thermal degradation of polymer chains and worse
602	plastic quality (Garcia et al., 2009); therefore, the development of proper solvent removal
603	and purifying techniques (e.g., SFE) is very crucial (Gutierrez et al., 2013b). In reality,
604	the final products do not have uniform properties due to the inconsistent composition of
605	solid waste. The presence of a low level of minor polymers is inherent in recycling
606	scheme (Sperber and Rosen, 1974). Considering both these factors, the balance between
607	the purity and efficiency in recovery process should also be carefully investigated.
608	
609	The life cycle analysis of polymeric materials primarily involves processing, service life,
610	and further disposal. Specifically, degradation during their service life mostly affects
611	their recycling and performance in second market (Vilaplana et al., 2006). Obviously, the
612	appropriate applications were subject to the properties of recycled and upgraded
613	polymers compared with those of virgin materials (Espert et al., 2004). Environmentally,
614	the removal of toxic flame retardants (e.g., BFRs) should be conducted at the first step of
615	recovery (Schlummer and Maurer, 2006; Schlummer et al., 2007b). Economically,
616	obtaining recovered polymers with acceptable quality by markets (close to that of virgin 30

617	plastics) (Garforth et al., 2004). To meet the needs of material markets for recycled
618	products, which have a lower price than virgin products, a cost-efficient method of plastic
619	recycling and upgradation is developed (Drain et al., 1981). Apparently, offsetting the
620	costs of high-quality recovered polymers through technical progress is the only and
621	important way.
622	
623	The selection of optimum solvents and solvent pairs for extraction is crucial, as well as
624	the reduction of extraction time and solvent usage (Vandenburg et al., 1997). However,
625	some organic solvents are hazardous (Prat et al., 2016), which limits their usage.
626	Consequently, choosing low-poisonous and cheaper extractors (e.g., natural solvents,
627	such as terpene oils) is one of the future directions for recycling polymers. "Green"
628	solvents are a good choice, for example, SCFs (Knez et al., 2014) and natural solvents
629	(Noguchi et al., 1998b) gain a growing interest at present. In a word, an efficient
630	separation of the polymers would powerfully impulse the recycling industry (Martinho et
631	al., 2012). Another important thing is an efficient and economic recovery system to
632	recycle the solvents involved in the process of recycling. In the future, the recovery of
633	waste plastics will certainly soar, considering the fact that the diversity of contaminants
634	and materials in plastics continuously shrinks (Schlummer et al., 2007a).
635	
636	List of Abbreviations

ABS acrylonitrile-butadiene-styrene

- ACE acetone
- ASE accelerated solvent extraction
- BFRs brominated flame retardants
- C concentration of a solute in the solvent in grams of each liter
- CL chemiluminescence
- DCM dichloromethane
- DSC differential scanning calorimetry
- EPS expanded polystyrene
- FTIR Fourier transform infrared spectroscopy
- GC-MS gas chromatography-mass spectrometry
- GPC gel permeation chromatography
- HDPE high-density polyethylene
- HIPS high-impact polystyrene
- HPLC high-performance liquid chromatography
- HPLC– UV liquid chromatography with UV detection
- HSP Hansen solubility parameter

LDPE low-density polyethylene

- MAE microwave-assisted extraction
- MEK methyl ethyl ketone
- MFI melt flow index
- NIR diffuse-reflectance near-infrared
- NMP N-methyl-2-pyrrolidone
- PC polycarbonate
- PET Poly(ethy1ene terephthalate)
- PetE petroleum ether
- PLE pressurized liquid extraction
- PMMA poly(methyl methacrylate)
- PP polypropylene
- PS polystyrene
- PVB polyvinyl butyral
- PVC polyvinyl chloride
- RED relative energy difference
- SAN styrene-acrylonitrile
- SCCO₂ supercritical CO₂

SCFs supercritical fluids

- SEM scanning electron microscopy
- SFE supercritical fluid extraction
- TBBP A tetrabromobisphenol A
- TGA Thermogravimetric analysis
- THF tetrahydrofuran
- UAE ultrasonic-assisted extraction
- WEEE waste electrical and electronic equipment
- XPS extruded polystyrene
- δ_D interaction: dispersion forces
- δ_P permanent dipole–permanent dipole forces
- δ_{H} hydrogen bonding
- R_a distance between the polymer and the solvent
- R₀ radius of the polymer solubility sphere
- ρ density of the fluid (gas) in grams of each liter

637

638 Acknowledgments

639 This work was financed by the Guangdong Science and Technology Plan Public Welfare

640	Project (2016A020221003). We also thank the anonymous reviewers for their
641	constructive comments.
642	
643	References
644 645 646	Achilias, D.S., Antonakou, E., Roupakias, C., Megalokonomos, P., Lappas, A., 2008. Recycling techniques of polyolefins from plastic wastes. Global Nest Journal 10, 114-122.
647 648 649	Achilias, D.S., Antonakou, E.V., Koutsokosta, E., Lappas, A.A., 2009a. Chemical Recycling of Polymers from Waste Electric and Electronic Equipment. J. Appl. Polym. Sci. 114, 212–221.
650 651 652	Achilias, D.S., Giannoulis, A., Papageorgiou, G.Z., 2009b. Recycling of polymers from plastic packaging materials using the dissolution-reprecipitation technique. Polym. Bull. 63, 449–465.
653 654 655	 Achilias, D.S., Roupakias, C., Megalokonomos, P., Lappas, A.A., Antonakou, E.V., 2007. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J. Hazard. Mater. 149, 536–542.
656 657	Ajzenberg, N., Trabelsi, F., Recasens, F., 2000. What's New in Industrial Polymerization with Supercritical Solvents? A Short Review. Chem. Eng. Technol. 23, 829–839.
658 659	Allwood, J.M., Cullen, J.M., Milford, R.L., 2010. Options for achieving a 50% cut in industrial carbon emissions by 2050. Environ. Sci. Technol. 44, 1888–1894.
660 661 662	Anouar, B.S., Guinot, C., Ruiz, JC., Charton, F., Dole, P., Joly, C., Yvan, C., 2015. Purification of post-consumer polyolefins via supercritical CO2 extraction for the recycling in food contact applications. J. Supercrit. Fluid. 98, 25–32.
663 664 665	Arends, D., Schlummer, M., Maurer, A., 2012. Removal of inorganic colour pigments from acrylonitrile butadiene styrene by dissolution-based recycling. J. Mater. Cycles Waste Manage. 14, 85–93.
666 667 668 669	Arias, M., Penichet, I., Ysambertt, F., Bauza, R., Zougagh, M., Ríos, Á., 2009. Fast supercritical fluid extraction of low- and high-density polyethylene additives: Comparison with conventional reflux and automatic Soxhlet extraction. J. Supercrit. Fluid. 50, 22–28.

670 671 672	Arostegui, A., Sarrionandia, M., Aurrekoetxea, J., Urrutibeascoa, I., 2006. Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile-butadiene-styrene copolymer. Polym. Degrad. Stab. 91, 2768–2774.
673 674 675	Aurrekoetxea, J., Sarrionandia, M.A., Urrutibeascoa, I., Maspoch, M.L., 2001. Effects of recycling on the microstructure and the mechanical properties of isotactic polypropylene. J. Mater. Sci. 36, 2607–2613.
676 677 678	Balart, R., Lopez, J., Garcia, D., Salvador, M.D., 2005. Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. Eur. Polym. J. 41, 2150–2160.
679 680 681	Barba-Gutiérrez, Y., Adenso-Díaz, B., Hopp, M., 2008. An analysis of some environmental consequences of European electrical and electronic waste regulation. Resour. Conserv. Recycl. 52, 481–495.
682 683 684 685	Beigbeder, J., Perrin, D., Mascaro, JF., Lopez-Cuesta, JM., 2013. Study of the physico-chemical properties of recycled polymers from waste electrical and electronic equipment (WEEE) sorted by high resolution near infrared devices. Resour. Conserv. Recycl. 78, 105–114.
686 687 688 689	 Ben Said, A., Guinot, C., Ruiz, J.C., Grandjean, A., Dole, P., Joly, C., Chalamet, Y., 2016. Supercritical CO2 extraction of contaminants from polypropylene intended for food contact: Effects of contaminant molecular structure and processing parameters. J. Supercrit. Fluid. 110, 22–31.
690 691	Boldizar, A., Moller, K., 2003. Degradation of ABS during repeated processing and accelerated ageing. Polym. Degrad. Stab. 81, 359–366.
692	Braun, D., 2002. Recycling of PVC. Prog. Polym. Sci. 27, 2171–2195.
693 694 695	Camacho, W., Karlsson, S., 2000. Quality-determination of recycled plastic packaging waste by identification of contaminants by GC–MS after microwave assisted extraction (MAE). Polym. Degrad. Stab. 71, 123–134.
696 697 698	Camacho, W., Karlsson, S., 2001. NIR, DSC, and FTIR as quantitative methods for compositional analysis of blends of polymers obtained from recycled mixed plastic waste. Polym. Eng. Sci. 41, 1626–1635.
699 700 701	Camacho, W., Karlsson, S., 2002. Assessment of thermal and thermo-oxidative stability of multiextruded recycled PP, HDPE and a blend thereof. Polym. Degrad. Stab. 78, 385–391.
702	Cervantes-Reyes, A., Nunez-Pineda, A., Barrera-Diaz, C., Varela-Guerrero, V.,

703	Martinez-Barrera, G., Cuevas-Yanez, E., 2015. Solvent effect in the polyethylene
704	recovery from multilayer postconsumer aseptic packaging. Waste Manage. 38, 61-
705	64.
706	Chrastil, J., 1982. Solubility of solids and liquids in supercritical gases. J. Phys. Chem.
707	86, 3016–3021.
708	Cooper, W.J., Krasicky, P.D., Rodriguez, F., 1986. Dissolution rates of poly(methyl
709	methacrylate) films in mixed-solvents. J. Appl. Polym. Sci. 31, 65-73.
710	Cui, Z., Beach, E.S., Anastas, P.T., 2011. Green chemistry in China. Pure Appl. Chem.
711	83, 1379–1390.
712	de Souza, A.M.C., Cucchiara, M.G., Ereio, A.V., 2016. ABS/HIPS blends obtained from
713	WEEE: Influence of processing conditions and composition. J. Appl. Polym. Sci.
714	133.
715	Devotta, I., Mashelkar, R.A., 1996. Role of thermodynamic and kinetic factors in
716	polymer dissolution in mixed solvents. Chem. Eng. Commun. 156, 31-43.
717	Dodbiba, G., Takahashi, K., Sadaki, J., Fujita, T., 2008. The recycling of plastic wastes
718	from discarded TV sets: comparing energy recovery with mechanical recycling in the
719	context of life cycle assessment. J. Clean. Prod. 16, 458-470.
720	Drain, K.F., Murphy, W.R., Otterburn, M.S., 1981. Polymer waste - resource recovery.
721	Conserv. Recycl. 4, 201–218.
722	Drain, K.F., Murphy, W.R., Otterburn, M.S., 1983. A solvent technique for the recycling
723	of polypropylene - degradation on recycling. Conserv. Recycl. 6, 123–137.
724	Espert, A., Vilaplana, F., Karlsson, S., 2004. Comparison of water absorption in natural
725	cellulosic fibres from wood and one-year crops in polypropylene composites and its
726	influence on their mechanical properties. Compos. Part A-Appl. Sci. Manuf. 35,
727	1267–1276.
728	Fuchs, O., Suhr, H.H., 1989. Solvents and Non Solvents for Polymers. in: J, B., EH, I.
729	(Eds.). Polymer handbook. 3rd ed, New York: John Wiley & Sons.
730	García, M.T., Duque, G., Gracia, I., de Lucas, A., Rodríguez, J.F., 2009a. Recycling
731	extruded polystyrene by dissolution with suitable solvents. J. Mater. Cycles Waste
732	Manage. 11, 2–5.
733	García, M.T., Gracia, I., Duque, G., Lucas, A.d., Rodríguez, J.F., 2009b. Study of the
734	solubility and stability of polystyrene wastes in a dissolution recycling process.

735	Waste Manage. 29, 1814-1818.
736 737	Garcia, D., Balart, R., Sanchez, L., Lopez, J., 2007. Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polym. Eng. Sci. 47, 789–796.
738 739 740	Garcia, M.T., Gracia, I., Duque, G., de Lucas, A., Rodriguez, J.F., 2009. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manage. 29, 1814–1818.
741 742	Garforth, A.A., Ali, S., Hernandez-Martinez, J., Akah, A., 2004. Feedstock recycling of polymer wastes. Curr. Opin. Solid State Mater. Sci. 8, 419–425.
743 744	Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Advan. 3.
745 746	Gramatyka, P., Nowosielski, R., Sakiewicz, P., 2007. Recycling of waste electrical and electronic equipment. J. Achiev. Mater. Manuf. Eng. 20, 535–538.
747 748 749	Grause, G., Hirahashi, S., Toyoda, H., Kameda, T., Yoshioka, T., 2017. Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers. J. Mater. Cycles Waste Manage. 19, 612-622.
750 751 752 753	Gutiérrez, C., de Haro, J.C., García, M.T., Gracia, I., de Lucas, A., Rodríguez, J.F., 2015.Polystyrene Wastes: Threat or Opportunity? in: Jiménez, E., Cabañas, B., Lefebvre, G. (Eds.). Environment, Energy and Climate Change I: Environmental Chemistry of Pollutants and Wastes. Springer International Publishing, Cham, pp. 261-286.
754 755 756	Gutiérrez, C., Rodríguez, J.F., Gracia, I., de Lucas, A., García, M.T., 2014. Determination of the high-pressure phase equilibria of Polystyrene/p-Cymene in presence of CO2. J. Supercrit. Fluid. 92, 288–298.
757 758 759	Gutierrez, C., Francisco Rodriguez, J., Gracia, I., de Lucas, A., Teresa Garcia, M., 2016. Optimization of a High Pressure CO2 Antisolvent Process for the Recycling of Polystyrene Wastes. PolymPlast. Technol. Eng. 55, 335–342.
760 761 762	Gutierrez, C., Garcia, M.T., Gracia, I., de Lucas, A., Rodriguez, J.F., 2012. Recycling of extruded polystyrene wastes by dissolution and supercritical CO2 technology. J. Mater. Cycles Waste Manage. 14, 308–316.
763 764 765	Gutierrez, C., Garcia, M.T., Gracia, I., de Lucas, A., Rodriguez, J.F., 2013a. The Selective Dissolution Technique as Initial Step for Polystyrene Recycling. Waste Biomass Valorization 4, 29–36.
766	Gutierrez, C., Rodriguez, J.F., Gracia, I., de Lucas, A., Garcia, M.T., 2013b. High-

767 768	pressure phase equilibria of Polystyrene dissolutions in Limonene in presence of CO2. J. Supercrit. Fluid. 84, 211–220.
769 770	Gutmann, V., 1976. Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 21, 661-670.
771 772	Haba, Y., Narkis, A., 2004. Development and characterization of reactively extruded PVC/polystyrene blends. Polym. Eng. Sci. 44, 1473–1483.
773 774 775	 Hadi, A.J., Najmuldeen, G.F., Ahmed, I., 2012. Polyolefins Waste Materials Reconditioning Using Dissolution/Reprecipitation Method. in: Dan, Y. (Ed.). 2nd International Conference on Chemistry and Chemical Process, pp. 281-286.
776 777 778	Hadi, A.J., Najmuldeen, G.F., Ahmed, I., 2014. Quality restoration of waste polyolefin plastic material through the dissolution-reprecipitation technique. Chem. Ind. Chem. Eng. Q. 20, 163–170.
779 780 781	Hadi, A.J., Najmuldeen, G.F., Bin Yusoh, K., 2013. Dissolution/reprecipitation technique for waste polyolefin recycling using new pure and blend organic solvents. J. Polym. Eng. 33, 471–481.
782 783	Hamad, K., Kaseem, M., Deri, F., 2013. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stabil. 98, 2801-2812.
784 785	Hansen, C.M., 2002. On predicting environmental stress cracking in polymers. Polym. Degrad. Stabil. 77, 43-53.
786 787	Hansen, C.M., Just, L., 2001. Prediction of Environmental Stress Cracking in Plastics with Hansen Solubility Parameters. Ind. Eng. Chem. Res. 40, 21–25.
788 789 790 791	Hearon, K., Nash, L.D., Rodriguez, J.N., Lonnecker, A.T., Raymond, J.E., Wilson, T.S., Wooley, K.L., Maitland, D.J., 2014. A High-Performance Recycling Solution for Polystyrene Achieved by the Synthesis of Renewable Poly(thioether) Networks Derived from d-Limonene. Advan. Mater. 26, 1552–1558.
792 793	Herat, S., Agamuthu, P., 2012. E-waste: a problem or an opportunity? Review of issues, challenges and solutions in Asian countries. Waste Manage. Res. 30, 1113–1129.
794 795	Hopewell, J., Dvorak, R., Kosior, E., 2009. Plastics recycling: challenges and opportunities. Phil. Trans. Roy. Soc. B-Biol. Sci. 364, 2115–2126.
796 797	Ignatyev, I.A., Thielemans, W., Vander Beke, B., 2014. Recycling of Polymers: A Review. Chemsuschem 7, 1579–1593.

798 799 800	Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science 347, 768–771.
801 802	Jilin, W., 2010. Recycling of Waste Polystyrene Foam by Solvent. Plast. Sci. Technol. 38, 69–73.
803	K., U. (Ed.), 1968. Diffusion in polymers, New York, NY.
804 805	Kampouris, E.M., Diakoulaki, D.C., Papaspyrides, C.D., 1986. Solvent recycling of rigid poly(vinyl chloride) bottles. J. Vinyl Technol. 8, 79–82.
806 807 808	Kampouris, E.M., Papaspyrides, C.D., Lekakou, C.N., 1987. A model recovery process for scrap polystyrene foam by means of solvent systems. Conserv. Recycl. 10, 315– 319.
809 810	Kampouris, E.M., Papaspyrides, C.D., Lekakou, C.N., 1988. A model process for the solvent recycling of polystyrene. Polym. Eng. Sci. 28, 534–537.
811 812	Karlsson, S., 2004. Recycled polyolefins. Material properties and means for quality determination. Long-Term Properties of Polyolefins 169, 201–229.
813 814	Kazarian, S.G., Chan, K.L.A., 2004. FTIR imaging of polymeric materials under high- pressure carbon dioxide. Macromolecules 37, 579–584.
815 816	Knez, Ž., Markočič, E., Leitgeb, M., Primožič, M., Knez Hrnčič, M., Škerget, M., 2014. Industrial applications of supercritical fluids: A review. Energy 77, 235-243.
817 818 819	Lateef, H., Grimes, S.M., Morton, R., Mehtal, L., 2008. Extraction of components of composite materials: ionic liquids in the extraction of flame retardants from plastics.J. Chem. Technol. Biotechnol. 83, 541–545.
820 821	Li, CT., Zhuang, HK., Hsieh, LT., Lee, WJ., Tsao, MC., 2001. PAH emission from the incineration of three plastic wastes. Environ. Int. 27, 61–67.
822 823 824	Li, Y., Wang, T.R., Hashi, Y.K., Li, H.F., Lin, J.M., 2009. Determination of brominated flame retardants in electrical and electronic equipments with microwave-assisted extraction and gas chromatography-mass spectrometry. Talanta 78, 1429–1435.
825 826	Maharana, T., Negi, Y.S., Mohanty, B., 2007. Review article: Recycling of polystyrene. PolymPlast. Technol. Eng. 46, 729–736.
827 828	Makenji, K., Savage, M., 2012. 10 - Mechanical methods of recycling plastics from WEEE. Waste Electrical and Electronic Equipment (WEEE) Handbook. Woodhead

829	Publishing, pp. 212–238.
830 831 832	Martinho, G., Pires, A., Saraiva, L., Ribeiro, R., 2012. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Manage. 32, 1213–1217.
833 834 835	Martini, R.E., Barbosa, S., Brignole, E., 2006. Demixing of polypropylene/polystyrene blends by near-critical selective solubilization. Ind. Eng. Chem. Res. 45, 3393–3399.
836 837 838	Martini, R.E., Brignole, E.A., Barbosa, S.E., 2009. Dissolution Mechanism of Polymers in High Pressure-High Temperature n-Alkanes-Application to Blends Separation. Polym. Eng. Sci. 49, 602–612.
839 840 841	Melad, O., Mark, J.E., 2005. Compatibility studies of pairs of polymers by viscometric measurements on ternary solutions of the two polymers. J. Macromol. SciPhys. B44, 833–842.
842 843 844	Miller-Chou, B.A., Koenig, J.L., 2003a. Dissolution of symmetric diblock copolymers with neutral solvents, a selective solvent, a nonsolvent, and mixtures of a solvent and nonsolvent monitored by FT-IR imaging. Macromolecules 36, 4851–4861.
845 846	Miller-Chou, B.A., Koenig, J.L., 2003b. A review of polymer dissolution. Prog. Polym. Sci. 28, 1223–1270.
847 848 849	Moeller, J., Stroemberg, E., Karlsson, S., 2008. Comparison of extraction methods for sampling of low molecular compounds in polymers degraded during recycling. Eur. Polym. J. 44, 1583–1593.
850 851	Murphy, W.R., Otterburn, M.S., Ward, J.A., 1979. Solvent recycling of polypropylene .1. properties of the recycled polymer. Polymer 20, 333–336.
852 853	Narasimhan, B., Peppas, N.A., 1996. On the importance of chain reptation in models of dissolution of glassy polymers. Macromolecules 29, 3283–3291.
854 855 856	Nnorom, I.C., Osibanjo, O., 2008. Sound management of brominated flame retarded (BFR) plastics from electronic wastes: State of the art and options in Nigeria. Resour. Conserv. Recycl. 52, 1362–1372.
857 858 859	Noguchi, T., Inagaki, Y., Miyashita, M., Watanabe, H., 1998a. A new recycling system for expanded polystyrene using a natural solvent. Part 2. Development of a prototype production system. Packag. Technol. Sci. 11, 29–37.
860	Noguchi, T., Miyashita, M., Inagaki, Y., Watanabe, H., 1998b. A new recycling system

861 862	for expanded polystyrene using a natural solvent. Part 1. A new recycling technique. Packag. Technol. Sci. 11, 19–27.
863	O'Neill, M.L., Cao, Q., Fang, R., Johnston, K.P., Wilkinson, S.P., Smith, C.D.,
864	Kerschner, J.L., Jureller, S.H., 1998. Solubility of homopolymers and copolymers in
865	carbon dioxide. Ind. Eng. Chem. Res. 37, 3067–3079.
866	Paine, M.R.L., Rae, I.D., Blanksby, S.J., 2014. Direct detection of brominated flame
867	retardants from plastic e-waste using liquid extraction surface analysis mass
868	spectrometry. Rapid Commun. Mass Spectrom. 28, 1203–1208.
869 870 871	Papaspyrides, C.D., Gouli, S., Poulakis, J.G., 1994. Recovery of poly(methyl methacrylate) by the dissolution reprecipitation process - a model study. Adv. Polym. Technol. 13, 213–218.
872	Pappa, G., Boukouvalas, C., Giannaris, C., Ntaras, N., Zografos, V., Magoulas, K.,
873	Lygeros, A., Tassios, D., 2001. The selective dissolution/precipitation technique for
874	polymer recycling: a pilot unit application. Resour. Conserv. Recycl. 34, 33–44.
875	Peng, S.H., Liang, S., Yu, M., Li, X., 2014. Extraction of polybrominated diphenyl ethers
876	contained in waste high impact polystyrene by supercritical carbon dioxide. J. Mater.
877	Cycles Waste Manage. 16, 178–185.
878	Perrin, D., Mantaux, O., Ienny, P., Léger, R., Dumon, M., Lopez-Cuesta, J.M., 2016.
879	Influence of impurities on the performances of HIPS recycled from Waste Electric
880	and Electronic Equipment (WEEE). Waste Manage. 56, 438–445.
881	Poulakis, J.C., Papaspyrides, C.D., 2001. Dissolution/reprecipitation: A model process
882	for PET bottle recycling. J. Appl. Polym. Sci. 81, 91–95.
883 884 885	Poulakis, J.G., Papaspyrides, C.D., 1995. The dissolution reprecipitation technique applied on high-density polyethylene .1. model recycling experiments. Adv. Polym. Technol. 14, 237–242.
886 887 888	Poulakis, J.G., Papaspyrides, C.D., 1997. Recycling of polypropylene by the dissolution/reprecipitation technique .1. A model study. Resour. Conserv. Recycl. 20, 31–41.
889	Poulakis, J.G., Varelidis, P.C., Papaspyrides, C.D., 1997. Recycling of polypropylene-
890	based composites. Adv. Polym. Technol. 16, 313–322.
891	Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C.R., Abou-Shehada, S., Dunn,
892	P.J., 2016. CHEM21 selection guide of classical- and less classical-solvents. Green
893	Chem. 18, 288–296.

894 895 896	Qiao, W.M., Yoon, S.H., Mochida, I., Yang, J.H., 2007. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers. Waste Manage. 27, 1884–1890.
897 898	Ranz, A., Maier, E., Trampitsch, C., Lankmayr, E., 2008. Microwave-assisted extraction of decabromodiphenylether from polymers. Talanta 76, 102–106.
899 900	Rindfleisch, F., DiNoia, T.P., McHugh, M.A., 1996. Solubility of polymers and copolymers in supercritical CO2. J. Phys. Chem. 100, 15581–15587.
901 902	Robinson, B.H., 2009. E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 408, 183–191.
903 904 905	Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C., 2013. Classify plastic waste as hazardous. Nature 494, 169–171.
906 907	Sadat-Shojai, M., Bakhshandeh, G.R., 2011. Recycling of PVC wastes. Polym. Degrad. Stab. 96, 404–415.
908 909 910	Schlummer, M., Gruber, L., Maeurer, A., Woiz, G., van Eldik, R., 2007a.Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 67, 1866–1876.
911 912 913	Schlummer, M., Gruber, L., Maurer, A., Woiz, G., van Eldik, R., 2007b. Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 67, 1866–1876.
914 915 916	Schlummer, M., Mäurer, A., Leitner, T., Spruzina, W., 2006. Report: recycling of flame- retarded plastics from waste electric and electronic equipment (WEEE). Waste Manage. Res. 24, 573–583.
917 918 919	Schlummer, M., Maurer, A., 2006. Recycling of styrene polymers from shredded screen housings containing brominated flame retardants. J. Appl. Polym. Sci. 102, 1262–1273.
920 921 922	Schlummer, M., Wolff, F., Mäurer, A., 2016. Recovery of PC/ABS from WEEE plastic shred by the CreaSolv process. 2016 Electronics Goes Green 2016+ (EGG), pp. 1-6.
923 924 925	Shikata, S., Watanabe, T., Hattori, K., Aoyama, M., Miyakoshi, T., 2011. Dissolution of polystyrene into cyclic monoterpenes present in tree essential oils. J. Mater. Cycles Waste Manage. 13, 127.

926 927	Sperber, R.J., Rosen, S.L., 1974. Reuse of Polymer Waste. PolymPlast. Technol. Eng. 3, 215–239.
928 929	Sperber, R.J., Rosen, S.L., 1976. Recycling of thermoplastic waste - phase-equilibrium in polystyrene-pvc-polyolefin solvent systems. Polym. Eng. Sci. 16, 246–251.
930 931 932	Stamatialis, D.F., Sanopoulou, M., Raptis, I., 2002. Swelling and dissolution behavior of poly(methyl methacrylate) films in methyl ethyl ketone/methyl alcohol mixtures studied by optical techniques. J. Appl. Polym. Sci. 83, 2823–2834.
933 934	Stangenberg, F., Agren, S., Karlsson, S., 2004. Quality assessments of recycled plastics by spectroscopy and chromatography. Chromatographia 59, 101–106.
935 936	Stein, R.S., 1992. Polymer recycling - opportunities and limitations. Proc. Nat. Acad. Sci. U. S. A. 89, 835–838.
937 938 939	Sun, X., Lu, C., Zhang, W., Tian, D., Zhang, X., 2013. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation. Carbohyd. Polym. 98, 405–411.
940 941 942	Swain, C.G., Swain, M.S., Powell, A.L., Alunni, S., 1983. Solvent effects on chemical reactivity. Evaluation of anion- and cation-solvation components. J. Am. Chem. Soc. 105, 502-513.
943 944	Taft, R.W., Abboud, JL.M., Kamlet, M.J., Abraham, M.H., 1985. Linear solvation energy relations. J. Solut. Chem. 14, 153-186.
945 946	Tansel, B., 2017. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environ. Int. 98, 35–45.
947 948	Tiganis, B.E., Burn, L.S., Davis, P., Hill, A.J., 2002. Thermal degradation of acrylonitrile-butadiene-styrene (ABS) blends. Polym. Degrad. Stab. 76, 425–434.
949 950	Tukker, A., 2002. Plastics Waste: Feedstock Recycling, Chemical Recycling, and Incineration. iSmithers Rapra Publishing.
951 952	Ueberreiter, K., 1968. The solution process. in: J, C., GS, P. (Eds.). Diffusion in polymers. Academic Press: New York, pp. 219–257.
953 954 955	Vandenburg, H.J., Clifford, A.A., Bartle, K.D., Carroll, J., Newton, I., Garden, L.M., Dean, J.R., Costley, C.T., 1997. Analytical extraction of additives from polymers. Analyst 122, R101–R115.
956	Vane, L.M., Rodriguez, F., 1992. Selected aspects of poly(ethylene-terephthalate)

957 958	solution behavior - application to a selective dissolution process for the separation of mixed plastics. ACS Symp. Ser. 513, 147–162.
959	Vazquez, Y.V., Barbosa, S.E., 2016. Recycling of mixed plastic waste from electrical and
960	electronic equipment. Added value by compatibilization. Waste Manage. 53, 196–
961	203.
962	Vazquez, Y.V., Barbosa, S.E., 2017. Process Window for Direct Recycling of
963	Acrylonitrile-Butadiene-Styrene and High-Impact Polystyrene from Electrical and
964	Electronic Equipment Waste. Waste Manage. 59, 403–408.
965	Vilaplana, F., Karlsson, P., Ribes-Greus, A., Ivarsson, P., Karlsson, S., 2008. Analysis of
966	brominated flame retardants in styrenic polymers - Comparison of the extraction
967	efficiency of ultrasonication, microwave-assisted extraction and pressurised liquid
968	extraction. J. Chromatogr. A 1196, 139–146.
969 970	Vilaplana, F., Karlsson, S., 2008. Quality concepts for the improved use of recycled polymeric materials: A review. Macromol. Mater. Eng. 293, 274–297.
971 972 973	Vilaplana, F., Ribes-Greus, A., Karisson, S., 2007. Analytical strategies for the quality assessment of recycled high-impact polystyrene: A combination of thermal analysis, vibrational spectroscopy, and chromatography. Anal. Chim. Acta 604, 18–28.
974	Vilaplana, F., Ribes-Greus, A., Karlsson, S., 2006. Degradation of recycled high-impact
975	polystyrene. Simulation by reprocessing and thermo-oxidation. Polym. Degrad. Stab.
976	91, 2163–2170.
977 978 979 980	Vilaplana, F., Ribes-Greus, A., Karlsson, S., 2009. Microwave-assisted extraction for qualitative and quantitative determination of brominated flame retardants in styrenic plastic fractions from waste electrical and electronic equipment (WEEE). Talanta 78, 33–39.
981	Vinodh, S., Prasanna, M., Prakash, N.H., 2014. Integrated Fuzzy AHP-TOPSIS for
982	selecting the best plastic recycling method: A case study. Appl. Math. Model. 38,
983	4662–4672.
984	Wang, H., Xie, C., Yu, W.T., Fu, J.G., 2012. Efficient combined method of selective
985	dissolution and evaporation for recycling waste polyvinylbutyral films. Plast. Rubber
986	Compos. 41, 8–12.
987	Wang, R., Xu, Z., 2014. Recycling of non-metallic fractions from waste electrical and
988	electronic equipment (WEEE): A review. Waste Manage. 34, 1455–1469.
989	Weeden, G.S., Soepriatna, N.H., Wang, N.H.L., 2015. Method for Efficient Recovery of

990 991	High-Purity Polycarbonates from Electronic Waste. Environ. Sci. Technol. 49, 2425–2433.
992 993 994	Weerachanchai, P., Lim, K.H., Lee, JM., 2014. Influence of organic solvent on the separation of an ionic liquid from a lignin–ionic liquid mixture. Bioresource Technol. 156, 404-407.
995 996	Yang, Sj., Yang, Q., 2012. Study on process of recovering polystyrene with solvent method. Mod. Chem. Ind. 32, 43–45.
997 998	Yeo, SD., Kiran, E., 2005. Formation of polymer particles with supercritical fluids: A review. J. Supercrit. Fluid. 34, 287–308.
999 1000 1001	Zhang, C.C., Zhang, F.S., 2012. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique. J. Hazard. Mater. 221, 193–198.
1002 1003 1004	Zhao, YB., Lv, XD., Yang, WD., Ni, HG., 2017. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste. Waste Manage. 69, 393–399.

1007 Common solvents for target polymers used in the dissolution/reprecipitation method.

Poly	Strong	Weak	Experimental conditions	References
mer	solvents	solvents		
PS	DCM Toluene	methanol	5-10 g/100 mL solution was obtained, and the experiment temperature was 100 °C.	(Achilias et al., 2009a)
PS	Toluene Xylene	n-hexane Methanol	1 g PS was dissolved in 20 mL solvent with heating for 30 min, reprecipitated, and dried at 89°C for 24 h.	(Achilias et al., 2009b)
PS	Limonene Terpinene Cymene Phellandrene	-	The solution (~0.25 g/mL) in glass tubes was obtained at 25°C.	(García et al., 2009a; García et al., 2009b)
PS	Cyclic monoterpene s	Water	0.2 g PS film was dissolved in 2 cm ³ cyclic monoterpenes with strokes of 120 min ⁻¹ , then water (50 cm ³) was added.	(Shikata et al., 2011)
PS	D-limonene	-	A volume of 5 cm ³ limonene dissolved EPS (125 cm ³) in 3 min.	(Noguchi et al., 1998b)
PS	Benzene/tolu ene	water	PS was dissolved in benzene or toluene, and 3 times of water was added with stirring (800 rpm), which was dried in the oven at 70°C for 24	(Kampouris et al., 1988)
ÞS	MEK MEK	Methanol n-hexane	n. The PS solution (0.25-0.3 kg/L) was filtered (200-150 μ m) under pressure (0.2-0.3 MPa, 20 °C), and a non-	(Kampouris et al., 1987)
15	p-xylene	n-hexane	solvent (4-10 times volume of solvent) was added with stirring for 30 min, followed by centrifugation.	
PC	DCM	DCM/AC E (v/v=1)	The e-waste plastic was dissolved in 50/50 (vol %) ACE/DCM at room temperature, and PC was precipitated.	(Weeden et al., 2015)
PC	DCM	Methanol	5-10 g/100 mL solution was obtained, and the experiment temperature was 50 °C.	(Achilias et al., 2009a)
PE	Xylene	Propanol	30 L xylene was added into a mixture of 3 kg PE and 3 kg PP with	(Pappa et al., 2001)

			stirring for 1 h at 85 °C, and PE was dissolved, precipitated by 90 L propanol, and dried at 80 °C for 6 h.	
PE	Xylene	n-hexane methanol	1 g PE was dissolved in 20 mL solvent with heating (100 °C) for 30 min, reprecipitated, and dried at 89°C for 24 h.	(Achilias et al., 2009b)
PP	Xylene	ACE	The solution of 0.15 kg/L was obtained at 135 °C and filtered under pressure through a 20-70 µm filter. ACE was added to precipitate and wash.	(Poulakis and Papaspyrid es, 1997)
РР	Xylene	n-hexane	1 g PP was dissolved in 20 mL solvent with heating (140 °C) for 30 min, reprecipitated, and dried at 89°C for 24 h.	(Achilias et al., 2009b)
PP	Tetrachloroet hylene	ACE	300 g PP was dissolved in 3 L Tetrachloroethylene by heating at 121 °C for 15 min and then became a gel in 2 L acetone.	(Murphy et al., 1979)
PET	Benzyl alcohol	methanol	1 g PET was dissolved in 20 mL solvent with heat (180 °C) for 30 min, reprecipitated, and dried at 89°C for 24 h.	(Achilias et al., 2009b)
PET	NMP	-	NMP was used to remove impurities at 130 °C, and then PET was dissolved at 160 °C. 0.1 kg PET bottle was dissolved in	(Vane and Rodriguez, 1992) (Poulakis
PET	NMP	n-octane + n-hexane	0.5 L NMP to form a solution of 0.02 kg/L at 165 °C with stirring for 90 min. 1L n-octane and 2 L n-hexane were added with stirring, and the recovered polymer was dried at 90 °C for 14 h.	and Papaspyrid es, 2001)
ABS	ACE	Methanol	5-10 g/100 mL solution was obtained, and the experiment temperature was 25 °C.	(Achilias et al., 2009a)
ABS	ACE	-	ABS was dissolved to form a solution for 40 min (0.25g/mL ACE)	(Arostegui et al., 2006)
PVC	85/15	-	at room temperature Up to 15% cyclohexanone and	(Sperber

	xylene/cyclo		temperature range of 115-125 °C	and Rosen,
	hexanone		were employed to separate	1976)
			polyolefin, PS, and PVC.	
			0.30 kg PVC /L cyclohexanone and	(Kampouris
	Cyclohexano ne	n-hexane	1/7 in volume solvent/nonsolvent	et al., 1986)
			were used. PVC was dissolved with	
PVC			stirring and heating for 15-60 min	
			filtered (0.2-0.3 MPa), and	
			precipitated at room temperature	
			with stirring (50 rpm).	
			1 g PVC was dissolved in 20 mL	(Achilias et
DVC	DCM	mathanal	solvent with heating for 30 min,	al., 2009b)
PVC	Toluene	methanol	reprecipitated, and dried at 89 °C for	
			24 h.	

1010 General comparison of solvent extraction with primary mechanical recovery.

1	1 2	J	
	Solvent extraction	Primary mechanical recovery	
Procedures	(1) Cut and remove the pollutant and	(1) Shred (grind) plastic in a	
	impurity.	suitable form	
	(2) Dissolve to the highest possible	(2) Wash the plastics by	
	concentration.	water	
	(3) Re-precipitate the polymer in	(3) Agglutinated by pigments	
	solvents by adding nonsolvents (add	and additives	
	supercritical fluids to extract	(4) Extrusion	
	solvents)	(5) Quenching	
	(4) Filter, wash, and dry the obtained	(6) Granulation	
	polymer		
	(5) Separate and recover		
	solvent/nonsolvent		
	(solvent/supercritical fluids).		
Advantages	(1) Obtained in accepted form, such	(1) The properties of the	
	as granules and powder.	recycled product are	
	(2) Remove the additives and	competitive compared with	
	insoluble contaminants.	virgin products.	
	(3) No further degradation occurs	(2) Simple operation	
	except heating for a fully dissolution.		
	(4) The properties of the recycled		
	product are competitive compared		
	with virgin products.		
	(5) A massive decrease in the bulk		
	volume.		
Disadvantages	(1) Relatively high technical	(1) Degradation of recovered	
	requirements	product	
	(2) Relatively high costs	(2) Limited applications	

1013 Description of assessment techniques for recovered polymers.

1	Descriptions	Applications
FT-IR	It analyzes possible oxidative	Specific functional groups
	degradation and quantify the	Changes in the chemical structure
	relative polymer contents in	Possible oxidative degradation
	blends	
DSC	It provides thermograms of	Kinetics of crystallization
	polymers	Degree of crystallinity
		Apparent crystallization
		Compatibility of the blends
Raman	The technique to infrared	Analysis of conformation, tacticity,
spectroscopy	spectroscopy	orientation, crystallinity, and
		functional groups
TGA	It is used for thermogravimetric	Thermal degradation studies
	analysis	
GPC	A kind of size exclusion	Determination of relative
	chromatography	molecular weight and distribution
		of molecular weights of polymers
HPLC	Separation, identification, and	Determination of concentration and
	quantification of each component in	identification of species
~~	a mixture	
CL	It analyzes the emission of light	Monitoring oxidation reactions
~~ ~ ~ ~	from the chemical reactions	
GC-MS	It identifies substances of a sample	Identification of elements and
	integrating gas-chromatography	species
	and mass spectrometry	
MH	A measure of flow of molten	Determination of melt viscosity,
	polymers	molecular weight (indirectly)
SEM	It analyzes the blend morphology	Morphology of tracture surfaces,
	ot polymers	reactive and physical blends

1016 Extraction techniques of additives (including BFRs) in waste plastics.

	Description	Advantages	Disadvantages
PLE	The solvent extraction	Fast, high recovery yield,	High cost of
	is accelerated by	automated	equipment, less
	higher pressures and		selective
	temperatures above		
	normal boiling points		
MAE	The solvents are heated	Lower solvent consumption,	Expensive,
	by microwave energy	exact reaction control in	requires additional
		temperature and pressure,	process
		less time consuming	
UAE	The separation is	Cheap, easy to use, effective,	Not always
	powered by ultrasound	multi-extraction	effective
SFE	Supercritical fluids are	High extraction efficiency,	Relatively
	employed under	low toxicity, nonexplosive	expensive
	relatively high pressure	properties	
	and temperature		
Soxhlet	The target compounds	Simply operation, low cost	Slow, solvent
extraction	are extracted by the		consuming
	solvent, and the other		
	materials are insoluble		

1018 Figure captions:

- 1019 Fig. 1. Global cumulative generated plastic waste and plastic disposal(Geyer et al., 2017).
- 1020 Fig. 2. Composition of surface layers during the dissolution process.
- 1021 Fig. 3. Hansen solubility sphere for the specific polymer (in yellow) along with "strong
- solvents" (points in yellow) and "weak solvents" (points in blue).
- 1023 **Fig. 4.** Schematic drawing of the dissolution/reprecipitation technique.
- 1024 **Fig. 5.** Schematic drawing of the supercritical fluid extraction recycling.
- 1025 Fig. 6. Mechanical degradation mechanisms during the recovery processes (increased
- 1026 recovery is marked in red and decreased recovery is marked in blue).

Fig. 4.

Fig. 5.

Research highlights

- Solvent extraction is a promising method to separate waste mixed plastics.
- The method is potentially applied for recycling mass-produced plastics.
- The method is environmentally benign and is potentially profitable.