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Abstract—The Teager-Kaiser energy operator (TKO) belongs
to a class of autocorrelators and their linear combination that can
track the instantaneous energy of a nonstationary sinusoidal sig-
nal source. TKO-based monocomponent AM-FM demodulation
algorithms work under the basic assumption that the operator
outputs are alwayspositive. In the absence of noise, this is assured
for pure sinusoidal inputs and the instantaneous property is also
guaranteed. Noise invalidates both of these, particularly under
small signal conditions. Post-detection filtering and thresholding
are of use to reestablish these at the cost of some time to
acquire. Key questions are: (a) how many samples must one
use and (b) how much noise power at the detector input can
one tolerate. Results of study of the role of delay and the limits
imposed by additive Gaussian noise are presented along with the
computation of the cumulants and probability density functions
of the individual quadratic forms and their ratios.

Keywords—Teager-Kaiser energy operators; autocorrelators; ra-
tios of quadratic forms

I. I NTRODUCTION
There are many applications in communication and control

where decisions are made on the basis of the ratios of quanti-
ties, measured or computed, which are compared with thresh-
olds. The present work is concerned with situations, where
variables are outputs of a linear combination of quadratic
forms in correlated Gaussian random variables and their ra-
tios. Such quantities arise in a variety of contexts including,
for example, monocomponent AM-FM demodulation using a
special class of quadratic detectors called the Teager-Kaiser
Energy Operator (TKO), maximum ratio diversity combining
schemes to combat fading, directivity optimization of antenna
arrays, calculations of SINR and various error and outage
probabilities, etc. This work primarily examines the noise
sensitivity of the TKO by studying the statistical distribution
of the operator outputs and their ratios.

The TKO is an important class of product correlators used
for nonstationary signal analysis. Starting in the early 1980s,
Herbert M. Teager and Shushan M. Teager [1] developed
several tools, including the energy operator in a series of
experiments for modeling nonlinear structures in speech sig-
nals, caused by modulations and turbulence. Following their
pioneering work, the operator was systematically introduced
by Kaiser [2] and was shown to track the energy of a simple
harmonic oscillator. The past two decades have witnessed
extensive research showing the usefulness of the operators in
diverse fields, including AM-FM decomposition for monocom-
ponent signals [3], [4] and aided by the use of filter banks for
multicomponent signals [5], speech analysis [4], image texture
analysis [8], cochannel and adjacent-channel signal separation
[7], frequency and time discrimination [9], [10], etc. to name
a few.

For continuous-time signals,x(t), y(t), the kernel[x,y] ≡
ẋy− xẏ measures the instantaneous differences in the relative
rate of change betweenx andy [11], where the overdots repre-
sent time derivatives. Ifx is the Hilbert transform ofy so thatx
andy form an analytic pair,[x,y] gives the intensity-weighted
phase derivative and the instantaneous frequency (IF) is defined
asω(t) = ẋy−xẏ

x2+y2 . If y = ẋ, then we get the continuous-time
TKO: Ψ[x] ≡ [x,ẋ] = ẋ2 − xẍ. For a monocomponent non-
stationary sinusoidx(t) with time-varying amplitudea(t) and
instantaneous frequencyω(t), the operator applied to the signal
and its derivative yield respectively,Ψ[x(t)] ≈ a2(t)ω2(t) and
Ψ[ẋ(t)] ≈ a2(t)ω4(t), where the approximations hold if the
bandwidths of the amplitude/frequency modulating signals are
reasonably small compared to the carrier frequency. Under the
assumption that the operator outputs are always positive, these
observations have motivated the continuousenergy separation
algorithm (ESA) [3], [4] for AM-FM decomposition,

ω2(t) ≈ Ψ[ẋ(t)]

Ψ[x(t)]
, a2(t) ≈ (Ψ[x(t)])2

Ψ[ẋ(t)]
(1)

The discrete-time version of the operator is derived by
replacingx(t) with sequencesx[n] = x(nT ) and derivatives
ẋ with two-sample backward differences(x[n]− x[n− 1])/T
whereT is the sampling interval. The continuous-time operator
then reduces (up to one sample shift) to the discrete version
given byΨ[x[n]] = (x2[n] − x[n − 1]x[n + 1])/T 2 [2]. We
introduce a general four-sample symmetric kernel as a linear
combination of two correlators, viz.,Ψq

p[x[n]] = (x[n−p]x[n+
p]−x[n−q]x[n+q])/T 2. Forp = 0, q = 1, Ψq

p reduces to the
conventional discrete-time TKOΨ1

0 [2]. The effect of applying
Ψq

0 at a sampling rate offs = 1/T is equivalent to applyingΨ1
0

at a sampling rate offs/q, so thatq defines the underlying sub-
rate processing. Replacing the forward and backward sample
delays with time delays, and ignoring the scaling factorT , Ψq

p

as a function of the delay parameters(tp,tq) becomes

Ψq
p(x) = x(t− tp)x(t + tp)− x(t− tq)x(t+ tq), p < q (2)

A distinct advantage of the TKO is its superior localization
property. When the input to the operator is the sum of a deter-
ministic signal and a Gaussian noise process with a specified
covariance function, the discrete operator kernel is an indefinite
quadratic form in nonsingular normal vectors. In the absence
of noise, conditions for the positivity of the operator output can
be expressed in terms of the concavity of the logarithm of the
signal magnitude [6] that hold in general for pure sinusoids and
the instantaneous property is also guaranteed. Noise invalidates
both of these, particularly under small signal conditions. The
frequency computation involves noisy differentiation opera-
tions and a short time window that precludes any scope for
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averaging. Because of the inherent nonlinearity, significant
noise×noise and signal×noise perturbations exist. The effect
of these terms becomes pronounced when squaring or ratio
operations are employed to estimate signal parameters, anda
suitable post-filtering action is necessary at the cost of some
time to acquire. For the existence of moments of the ratio, the
behavior of the density of the denominator near singularities
plays a vital role. Under small signal conditions, large am-
plitudes can occur frequently when the denominator assumes
infinitesimally small values, so that the integral defining the
moments diverges because of long tails in the density function.
A way out is to eliminate negative outputs and outputs near
zero by conditioning all measurements of the ratios on the
event that the denominator exceeds some detection threshold—
the measurement is ignored if threshold detection fails to occur,
thus precluding a division by zero [12]. Thresholding retains
the speed advantage of the operator and is a viable alternative,
when filtering is not an option.

Earlier work has examined the problem of noise and found
expressions for the variance of the amplitude and frequency
estimates. Kaiser [2] briefly mentioned results for the discrete
operator in zero-mean additive white Gaussian noise. Bovik
and Maragoset al. [5] gave a more extensive treatment of
multiband demodulation and developed the basic statistical
properties of the TKO. A spline-based ESA was proposed in
[13] for robust estimation in the presence of noise. A more
recent work on short-term energy estimation in additive noise
is given in [14]. Statistical distributions of the operatoroutputs
and their ratios have not received any attention. This work is
primarily aimed at filling this gap by evaluating the cumulants
and probability density functions of the individual operator
outputs and their ratios.

II. PROPERTIES OF THETKO IN RELATION TO
FREQUENCY DISCRIMINATION

The symmetric discrete TKO operator kernel implements
a translation-invariant, sliding-window filter that integrates
energy detection with frequency filtering [15]. The frequency
responses of the three-sample input operatorΨq

0 and four-
sample input operatorΨq

p have an important difference. For
a single sine wave of unit amplitude and frequencyω, the
frequency responseΨq

0(ω) = 1 − cos(2ωtq) is unipolar
and periodic. At low frequencies (ωT < π/4q) when the
linear approximationsin(ωT ) ≈ ωT holds, Ψq

0(ω) ∝ ω2.
Traditionally, this range is used for AM-FM demodulation.
For a periodic input signal, it is easy to verify that the power
in the odd harmonics can be obtained by averaging the output
of a three-sample input TKOΨq

0 by adjusting the delaytq to
correspond to a phase difference ofπ/2 for the fundamental
frequency.

On the other hand, the frequency responseΨq
p(ω) =

cos(2ωtp)−cos(2ωtq) = 2sinω(tq−tp)(tq+tp) is bipolar and
is not proportional toω2 at low frequencies. The response is
zero atω = 0 and when eitherω(tq−tp) or ω(tq+tp) is a mul-
tiple of π. One observes regions where the response is linear
around the zeros ofΨq

p(ω). The location of the extrema of the
frequency response can be identified as a solution of the equa-
tion, tpsin(2ωtp) = tqsin(2ωtq). A discriminator characteristic
thus results. When the input consists of several sine waves of
amplitudesak and frequenciesωk, i.e., x(t) =

∑

aksin(ωkt),
one gets a dc term,

∑

a2k[sin
2(ωktq)− sin2(ωktp)] and a time-

varying cross-term, which is a combination of the sum and

difference frequency terms arising out of mixing operations.
A typical cross-term component is of the form (fork < l):
akal{cos(ωk−ωl)t[cos(ωk+ωl)tp−cos(ωk+ωl)tq]−cos(ωk+
ωl)t[cos(ωk − ωl)tp − cos(ωk − ωl)tq]}. The choice of a
symmetric kernel ensures that all second harmonic compo-
nents get cancelled. When the input is differentiated to give
ẋ(t) =

∑

ωkakcos(ωkt), all the cross-term components are
multiplied by ωkωl. Ordinarily, for monocomponent signals,
the dc term obtained from the TKO for the signal and its
derivative are used to find estimates of IF and amplitude. For
demodulating multicomponent signals, filter banks are used
[5]. When two frequencies are present simultaneously, the
Ψq

p outputs at the sum and difference frequency cross-terms
are of equal amplitude. If the ratio of these frequencies is
determined, one can utilize this information in combination
with theΨq

p(x) andΨq
p(ẋ) outputs to estimate amplitude and

frequency parameters. So, if the signals are closely-spaced [9]
or belong to the same filter bank, frequency discrimination
using the sum and difference frequency cross-terms generated
by a suitable combination of correlators is a viable alternative.

III. E XPERIMENTS: TKO OUTPUTS FOR ASUM OF TWO
SINUSOIDS AND SINUSOID PLUS NOISE INPUT

Given the wide usage of TKOs in IF estimation for
monocomponent signals, it is important to assess the effect
of noise or of an interfering signal upon the IF estimates, and
check for any physical inconsistencies thereof. The situation is
best analyzed by considering the effect of a sinusoidal inter-
ference. Considering the most general form of a sum of two
sinusoids with positive amplitudesa1 anda2, incommensurate
frequenciesf1 andf2, and independently uniformly distributed
phasesϕ0 andψ0,

x(t;a1,f1,a2,f2) = a1cos(2πf1t+ ϕ0) + a2cos(2πf2t+ ψ0)

= a1cosϕ+ a2cosψ

Without loss of generality, the model can be simplified by
taking into account the amplitude and frequency ratios,a =
a2/a1, f = f2/f1 andθ0 = ψ0−ϕ0 as the following analysis
is sensitive only to such relative parameters. The simplified
signal model becomes

x(t;a,f) = cos(2πt) + acos(2πft+ θ0) (3)

For certain parameter ranges in thea-f plane, the
continuous-time TKOΨ(x) = ẋ2 − xẍ can go negative,
a situation that clearly undermines the physical significance
of the operator as an energy detector. The situation is best
analyzed at the extremas ofx(t), where the probability of such
an event occurring is the highest. At an extrema, the derivative
of (3) is zero, i.e.̇x(t;a,f) ∝ sin(2πt)+afsin(2πft+θ0) = 0.
The conditions for which the operator output is negative at such
an extrema is found by evaluating the condition,−xẍ < 0, i.e.,

a2f2cos2(2πft+ θ0) + cos2(2πt)

+a(f2 + 1)cos(2πt)cos(2πft+ θ0) 6 0 (4)

The required condition is obtained by solving the inequality (4)
which is a quadratic incos(2πft + θ0), giving the following
result: If x(t;a,f) admits an extremum att = t0, whenever
cos(2πft+ θ0) evaluated at such an extrema lies between the
curvesyR = −cos(2πt)/a and yG = −cos(2πt)/af2, Ψ(x)
will be negative. Of course, the operator output can be negative



Fig. 1. TKO Response for two sinusoid input:a = 0.6,f = 2.3. x(t) = cos(2πt) + acos(2πft+ θ0). In the top panel, the derivative of the first component
(M1) and the opposite of the derivative of the second component (M2) are plotted, so that their intersections correspond to theextremas ofx(t). The marked
extrema locations contribute to the zero-crossings of the TKO output shown in the bottom panel. The middle panel shows that whenevercos(2πft + θ0)
evaluated at the extrema points lies between the curves marked yG and yR, the corresponding extrema ofx(t) would contribute to the zero crossing of the
TKO output

at points other than the extrema, albeit with a lesser probability.
The situation is depicted in Fig. 1.

The foregoing analysis for the sum of two sinusoids is
easily extended to the more general, sinusoid plus noise input
case, by considering a spectral distribution of the noise concen-
trated solely at a frequencyf , making the noise a sinusoidal
Gaussian process with Rayleigh-distributed amplitude [16].
Intuitively, the most vulnerable are the inflection points given
by the positive minimas(x > 0, ẋ = 0, ẍ > 0) and the
negative maximas(x < 0, ẋ = 0, ẍ < 0). The zero-crossing
rate of the operator output as well as the distribution of the
time duration for which the operator output remains negative
provide valuable insights into the problem at hand. In partic-
ular, the average time duration for which the operator output
remains negative can provide valuable insight in deciding on
appropriate delay parameters (e.g.,tp, tq for Ψq

p) or a suitable
integration time constant in the post-detection filtering stage.

IV. STATISTICAL DISTRIBUTIONS OFTKO OUTPUTS
AND THEIR RATIOS

A. Probability Density Functions of the TKO outputs
Notation: tr(·), (·)′, (·)† denote respectively, the trace,

nonconjugate and conjugate transpose operators.E[·] is the
expectation operator andIm[·] is the imaginary part operator.
i =

√
−1 is the imaginary unit. The characteristic function

(chf) of a random variable (RV)X is φX(ξ) = E[exp(iξX)].
We write fX(x) = Pr{X = x} to denote the probability
density function (pdf) andFX(x) to denote the cumulative
distribution function (cdf) of RVX .

We first consider the case when the signals at the detector
input are contaminated with additive, zero-mean, stationary
Gaussian noise with power spectral densityN0. Let X be the
column matrix formed fromr real signal plus noise samples
xj , j = 1,...,r. Let µ = EX be the matrix of the means and
M = E[(X−EX)(X−EX)′] the positive definite (unnormal-
ized) covariance matrix, i.e.,X ∼ Nr(µ,M). For the jointly
Gaussian random variates(x[n− q],x[n],x[n+ q]), the matrix

of the symmetric kernelΨq
0 is given by J =

(

0 0 − 1
2

0 1 0
− 1

2
0 0

)

.

Likewise, for jointly distributed RVs(x[n− q],x[n− p],x[n+
p],x[n + q]), the matrix of the symmetric kernelΨq

p is given

by J =





0 0 0 − 1
2

0 0 1
2

0

0 1
2

0 0

− 1
2

0 0 0



.

Equivalently, the TKO outputs can be viewed as a linear
combination of quadratic detectors with the product correla-
tions reduced to a sum and difference of squares. Thus, for
instance, for jointly distributed Gaussian RVs(x[n],s[n],d[n])
where s[n] = (x[n + q] + x[n − q])/2 and d[n] = (x[n +
q] − x[n + q])/2, Ψq

0[x[n]] = x2[n] − s2[n] + d2[n] and
J = diag(1,−1,1).

Given J , the related quadratic form inX is V (X) =
X ′JX . For a zero-mean, stationary random process whose
spectrum is Gaussian, the covariance kernel may take the form
R(t) = exp(−ct2). Letting M = LL′, Y = L−1X and
Z = Y − L−1µ, we haveZ ∼ Nr(0,I), where I is the
identity matrix. LetP be a r × r orthogonal matrix which



diagonalizesL′JL, so thatP ′L′JLP = diag(λ1,...,λr) =
Λ and PP ′ = I, where λ1,...,λr are the eigenvalues of
MJ . Then, letting U = P ′Z, we haveU ∼ Nr(0,I)
and V (X) = (Z + L−1µ)′L′JL(Z + L−1µ) = (U +
s)′Λ(U + s) =

∑r
j=1λj(Uj+sj)

2 =
∑r

j=1λjW
2
j , where

s = P ′L−1µ = (s1,...,sr)
′ andW 2

j
′
s are independentχ2 RVs

with a single degree of freedom and noncentrality parameter

s2j , i.e.,W 2
j

ind∼ χ2
1(s

2
j). For an indefinite quadratic form where

theλ′js can be any real number, lettingλj > 0 for j = 1,...,k,
λj < 0 for j = k + 1,...,l, andλj = 0 for j = l+ 1,...,r, it is
easy to see thatV = V1 − V2, whereV1 =

∑k
j=1λjW

2
j and

V2 =
∑l

j=k+1−λjW 2
j . Thus, whenX ∼ Nr(µ,M), M > 0,

indefinite quadratic forms inX are distributed as the difference
of two weighted sums of independentχ2 RVs [17].

The characteristic function (chf) ofV (X) is given by

φV (ξ) =
exp

{

− 1
2µ

′[I − (I − 2iξMJ)−1]M−1µ
}

|I − 2iξMJ | 12
(5)

Alternatively, (5) can be put into the following diagonal form
[27], [17], [18],

φV (ξ) =

r
∏

j=1

(1− 2iξλkN0)
−1/2

exp{
s2j
2N0

2iξλjN0

1− 2iξλjN0
}

(6)

For the more specialized case of narrowband inputs, the
correlator outputs can be represented as a linear combination of
independent, scaled non-centralχ2 variables with two degrees
of freedom [18], [19]. Now the noise power per cycleN0 is
equally split between the in-phase and quadrature components,
so that for each in-phase component of noise at the detector
input, an additional independent quadrature component of
noise is added to the output. The latter contributes an extra
signal independent term so that in effect, the chf in (6) is
multiplied by its value for noise alone and we get [26], [27],

φV (ξ) =

r
∏

j=1

(1 − iξλkN0)
−1

exp{sj
2

N0

iξλjN0

1− iξλjN0
} (7)

Formally, letC be the column matrix formed fromr complex
RVs, cj = aj + ibj, j = 1,...,r, whereaj , bj are normally dis-
tributed RVs withE[(ak−Eak)(al−Eal)] = E[(bk−Ebk)(bl−
Ebl)], andE[(ak−Eak)(bl−Ebl)] = −E[(al−Eal)(bk−Ebk)]
Let EC = C̄ andL = E[(C−EC)(C−EC)†] be the complex
(nonsingular) covariance matrix. Then, given any Hermitian
matrixQ, the chf of the (real) quadratic formV (C) = C†QC
is given by [19]

φV (ξ) =
exp

{

−C̄†[I − (I − iξLQ)−1]L−1C̄
}

|I − iξLQ| (8)

when a straightforward calculation of the matrix operations
leads to (7).

In general, inversion of the chf does not yield closed-form
solutions for the pdf, except for a few trivial cases. For a single
eigenvalueλ, using the Laplace transform pair 29.3.77 [20],
inversion of the chf in (6) yields [27]

fV (v) =
exp

{

− 1
2N0

[s2 + v
λ ]
}

√
2πN0λv

cosh

(

s

N0

√

v

λ

)

, v > 0,

and zero otherwise. Likewise, for inversion of the chf in (7),
the equivalent expression is that of a Rician distribution for
the envelope [26].

fV (v) =
exp

{

− 1
N0

[s2 + v
λ ]
}

λN0
I0

(

2|s|
N0

√

v

λ

)

, v > 0,

and zero otherwise, whereI0(·) is the zeroth-order modified
Bessel function of the first kind.

For positive only eigenvalues, one can use non-causal
convolution of the individual density functions corresponding
to the independent eigenmodes yielding the composite density
functionfV+

(v+), and similarly for negative only eigenvalues,
the density function,fV

−

(v−). The final density function
fV (v) of V is obtained by convolution of the independent
densities.

fV (v) =

∞
∫

max(0,v)

dv+fV+
(v+)fV

−

(v − v+) (9)

If v > 0, the lower limit ofv+ is v, while if v < 0, the lower
limit is zero.

As an example, consider the central case (µ = 0) with
eigenvaluesλ1, λ2 > 0 and λ3, λ4 < 0. The corresponding
chfs are given by,

φV + = (1− 2jξλ1N0)
−1/2(1− 2jξλ2N0)

−1/2

φV − = (1 + 2jξλ3N0)
−1/2(1 + 2jξλ4N0)

−1/2

Using the Laplace transform pair 29.3.49 [20], the correspond-
ing density functions are

fV+
(v+) =

exp{− v+
4N0

(λ−1

1
+λ−1

2
)}I0(

v+
4N0

(λ−1

1
−λ−1

2
))

2N0

√
λ1λ2

for v+ > 0 and zero otherwise.

fV
−

(v−) =
exp{+ v

−

4N0
(λ−1

1
+λ−1

2
)}J0(

v
−

4N0
(λ−1

1
−λ−1

2
))

2N0

√
λ1λ2

for v− < 0 and zero otherwise.J0(·) is the zeroth-order Bessel
function of the first kind. The final density function can be
found by convolvingfV+

(v+) andfV
−

(v−) using (9).
Efficient numerical algorithms exist for evaluating the cdf

of a quadratic form [21], which mostly rely on Gil-Pelaez’s
inversion theorem [22]:

FV (v) =
1

2
− 1

π

∞
∫

0

Im[exp(−iξv)φV (ξ)]
ξ

dξ (10)

The cumulant generating function admits a power series
expansionKV (ξ) = logφV (ξ) =

∑∞
s=1κs

iξs

s! , and the cumu-
lantsκs are defined by the following identity [23]:

κs = 2s−1(s− 1)!{tr(MJ)s + sµ′J(MJ)s−1µ} (11)

The cumulantsκ1 and κ2 are the mean and the variance,
respectively. For a pair of independent RVs(X,Y ), κs(pX +
qY ) = psκs(X) + qsκs(Y ). For s > 2, the standardized
cumulants given byρs = κsκ

−s/2
2 , are invariant under affine

transformations and provide summary measures of departure
from normality in the sense that for a normal distribution,
κs = 0 for s > 2. In particular,ρ3 measures the skewness
andρ4 measures the kurtosis of the distribution.



B. Probability Density Functions of the Ratio of Two TKO
Outputs

The statistical properties of ratios of quadratic forms,
their moments, densities and distributions, or approximations
thereof, have been extensively studied [23]–[25], [29]. The
reader is referred to [17] for a survey of the mainstream
statistical literature. In general, for any two real functionsV1
andV2 (which need not be quadratic forms), the distribution
of the ratio,R = V1

V2
can be computed if the joint density

function ofV1 andV2, fV1,V2
(v1,v2) is known. Assuming that

V2 is not negative, the probability density ofR is given by

fR(r) =

∞
∫

0

v2fV1,V2
(rv2,v2)dv2.

However, it is very rarely that the joint density is known orV1
andV2 are independent in which case a simple relation applies.
WhenV1 andV2 are not necessarily independent, Geary [28]
showed that the density of the ratioR can be written as

fR(r) =
1

2πi

∞
∫

−∞

[

∂φV1,V2
(ξ1,ξ2)

∂ξ2

]

ξ2=−rξ1

dξ1 (12)

When V1 and V2 are noncentral quadratic forms in cor-
related Gaussian RVs, an efficient numerical algorithm is
given in [29] that uses Geary’s formulation for computing the
density function of the ratioR. The technique can be used for
computing the pdf of the ratiosΨ[ẋ(t)]

Ψ[x(t)] and (Ψ[x(t)])2

Ψ[ẋ(t)] for the
instantaneous frequency squared and instantaneous amplitude
or envelope squared estimates, respectively. For the latter,
the density function for the numerator which is of the form,
V3 = V 2

1 can be obtained from the density function ofV1
by a nonlinear transformation. Correspondingly,fV3V2

(v3,v2)
needs be transformed for use in (12), to get the pdf of the ratio
V3/V2.

V. RESULTS AND DISCUSSION
An important consequence of the assumption of a sta-

tionary Gaussian noise structure at the detector input is that
all higher order probability densities are completely speci-
fied if the covariance function of the input noise is known.
Because of stationarity, the covariance matrix has elements
mij = E[xixj ], which depend only on the absolute difference
or distance|i−j| between the samples and accordingly, a single
subscriptmj = E[xixj ], i,j = 0,±1,±2,... etc., suffices, where
xi ≡ x[i]. The covariance function of the input noise process
is taken to be a Gaussian kernel given byexp(−t2/2). Smooth
estimates of the signal derivative are obtained from a finer grid
by interpolating the signal samples. The first few moments of
the TKO output are easy to find. For instance, writing the
output of Ψq

p as (s1 + n1)(s2 + n2) − (s3 + n3)(s4 + n4),
wheresi andni are the signal and noise components at sample
point i, we haveE[Ψq

p] = (s1s2 − s3s4) + (m2p − m2q).
The varianceVar[Ψq

p] has the formN0

∑4
i=1s

2
i +2[s1s2m2p+

s3s4m2q − (s1s3 + s2s4)mq−p − (s1s4 + s2s3)mq+p]. We
see that there is an average term contributed solely by noise,
as well as a few signal×noise terms that cause strong time-
varying fluctuations. For a time-varying signal, the mean,
variance, and the covariance are also time-varying and an
averaging over one complete cycle of the input sinusoid
is necessary to have meaningful expressions for the mean,

Fig. 2. Pdfs for the TKO outputs (normalized by the noise power into
detector) for the signal, signal derivative and the ratios (Input SNR = 17 dB).
For the distribution of the ratios, two different sets of pdfs show the effect
of noise power into detector: the sets (a,b,c) and (a’,b’,c’) correspond to an
input SNR of 17 dB and 25 dB respectively

variance as well as the higher-order moments. Also, signal and
signal derivative product terms lead to the creation of second
harmonics, and a suitable post-filtering action is necessary.

The computed probability densities of the outputs of dif-
ferent TKO variants, as well as the ratioΨ[ẋ(t)]

Ψ[x(t)] which yields
the instantaneous frequency squared are shown in Fig. 2 for
different input signal-to-noise ratios (SNRs). As expected, the
mean output SNRE[κ1(S+N)/κ1(N)] improved as the delay



Fig. 3. Pdfs for the individual quadratic forms:(I1Q2 − I2Q1), (I1Q2 +
I2Q1), and(I2

1
+ I2

2
+Q2

1
+Q2

2
). Input SNR = 9.04 dB.Inset: pdfs of the

sine and tangent I-Q correlators (a)2(I1Q2 − I2Q1)/(I21 + I2
2
+Q2

1
+Q2

2
)

and (b)(I1Q2 − I2Q1)/(I1Q2 + I2Q1)

parameters (tp,tq) are increased. For the TKO applied to the
signal, at an input SNR of 17 dB, the output SNRs for the
operatorsΨ1

0, Ψ4
0 and Ψ4

2 are respectively (a) 6.65 dB, (b)
24.92 dB, and (c) 29.52 dB. Evidently, the four-sample input
TKO Ψq

p provides a better noise performance compared to a
three-sample input TKOΨq

0. This can be attributed to the fact
that the mean and variance of the noise terms are larger in the
latter case. Similar remarks hold for the TKO applied to the
signal derivative.

Furthermore, depending upon the structure of the operator
kernel J and the input noise correlation, a finite number of
eigenvalues associated with the productMJ in (5) are always
found to be negative. For instance, at an input SNR of 17 dB,
the eigenvalues ofMJ computed for the operatorsΨ1

0, Ψ4
0 and

Ψ4
2 are respectively,(.836,.475,−.361), (.952,.498,−.455),

and (.655,.376,−.321,−.042). Negative eigenvalues corre-
spond physically to the fact that the operator outputV (t) can
go negative for some timet (> 0), although there can still be
a positive mean value. If the delay parameters (tp,tq) are large
(vis-à-vis the correlation time of the input noise,δc), we have
a large number of eigenvalues and an asymptotically normal
density function can be expected. Conversely, for small delay
parameters we expect large departures from normality, as is
evidenced in the plots in Fig. 2. From Fig. 2, it is also evident
that the probability of excursion towards the negative region
is lower forΨ4

2 compared toΨ4
0 andΨ1

0.
For narrowband inputs, ratios of quadratic forms that yield

the sine and tangent of the phase difference are respec-
tively, (a) 2(I1Q2 − I2Q1)/(I

2
1 + I22 + Q2

1 + Q2
2) and (b)

(I1Q2 − I2Q1)/(I1Q2 + I2Q1), where Ii and Qi are the
in-phase and quadrature components,i = 1,2 denoting two
adjacent samples. Fig. 3 shows the density functions of the
individual quadratic forms and their ratios. For the quadratic
form (I1Q2 − I2Q1), the mean and the higher odd order
moments of the noise term are zero. It is easy to show that the
covariance of(I1Q2−I2Q1) and(I21+I

2
2+Q

2
1+Q

2
2) is greater

than that of(I1Q2 − I2Q1) and (I1Q2 + I2Q1). This gives a
marginally higher variance for the ratio in (b) compared to that
in (a). Pdf of the ratios shown in the inset of Fig. 3 confirms

Fig. 4. TKO output before and after post-detection filteringusing a three-
point Binomial filter with an impulse response(1,2,1). Input SNR = 11 dB.

these observations.
A way of increasing the signal mean value and ensuring

the positivity of the operator outputs is to sum several TKO
outputs. If the observation time is long enough to allow for
decorrelation in time, the constituent outputs are independent
and the cumulants add. This ensures an increase in the
mean value. Positivity can also be achieved by introducing
a spectrally narrow low-pass filter at the TKO post-detection
stage (e.g., a filter with a long time constant compared to
δc). Integration attenuates high frequency spectral components
and is an effective option for filtering the strong time-varying
fluctuations induced by the signal×noise terms. A long time
constant however compromises the “instantaneous” property of
the TKO. Results of applying a three-point binomial filter at
the TKO outputΨ[ẋ(t)] is shown in Fig. 4. The short impulse
response(1,2,1) of the filter preserves the superior localization
property of the TKO and restores positivity of the operator
outputs. When filtering is not an option, simple thresholding
to remove negative outputs or outputs near zero is a viable
alternative that can retain the speed advantage of the operator,
if the penalty in terms of missed data is not a concern.
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