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Highlights 

 Portfolio diversification across cryptocurrencies significantly enhances the

out-of-sample Sharpe ratio and utility.

 The minimum variance model attains the smallest out-of-sample volatility and

drawdown.

 The maximum utility model achieves the highest out-of-sample return and utility.

 None of the models are consistently better than the 1/N rule in Sharpe ratio.
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1. Introduction

As the sharp increase in the trading volume of Bitcoin recently, the cryptocur-

rency market has drawn explosive attention from the media, financial industry and 

government institutions. Bitcoin is the first and largest decentralized cryptocurrency 

built upon blockchain technology, and has accumulated sufficient data of prices for 

empirical analyses. Therefore, quite a lot of academic research has been conducted on 

Bitcoin, such as market efficiency (Urquhart, 2016; Nadarajah and Chu, 2017; Bariv-

iera, 2017; Vidal-Tomás and Ibañez, 2018), price volatility (Dyhrberg, 2016; Katsi-

ampa, 2017), price clustering (Urquhart, 2017), and transaction cost (Kim, 2017). On

the other hand, different kinds of cryptocurrencies rise immensely in the last couple of 

years, resulting in rapid expansion of market dimensions. As of April 2018, the num-

ber of cryptocurrencies has exceeded 1,500, with more than 500 having a market cap-

italization over 10 million dollars. Thus, the research on cryptocurrencies beyond 

Bitcoin has received considerable impetus in recent literatures. 

There are debates on the cryptocurrencies that they are mainly regarded as a new 

class of assets rather than traditional currencies (Glaser et al., 2014; Baek and Elbeck, 

2015). Several important stylized facts of cryptocurrencies found recently are com-

mon in financial assets, such as leptokurtosis (Chan et al., 2017), heteroscedasticity 
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(Gkillas and Katsiampa, 2018) and long-memory (Phillip et al., 2018). Moreover, re-

searches on cryptocurrencies further demonstrate potential possibility of diversifica-

tion in this emerging market for institutional and retail investors. First, a sufficient 

amount of cryptocurrencies have large market capitalization at million or billion level, 

while they usually provide lower transaction costs to individuals than one of the most

efficient financial markets (Kim, 2017), which indicates ample liquidity. Second, 

there are cryptocurrencies that the dynamics are relatively isolated to the others 

(Corbet et al., 2018), which may offer diversification benefits from investors. Third, 

the variety of cryptocurrencies is still increasing, and therefore the cryptocurrency 

market has a growing place in diversification and portfolio management. However, 

despite the huge growth of the cryptocurrency market, research on the portfolio diver-

sification of cryptocurrencies is rather limited. 

In this paper, we analyze the investability and role of diversification in the cryp-

tocurrency market with applying six classical portfolilio selection models through an 

out-of-sample evaluation method. The out-of-sample method means the parameters 

involved in the models are estimated via a “rolling window” at each rebalancing date 

instead of using the entire sample (the in-sample method, which cannot reflect the real 

investment decisions). We compare the out-of-sample performance of different mod-

els using various evaluation criteria to understand which model performs the best in 

one or more specific aspects. We also analyze the portfolio performance by setting

different transaction costs, rebalancing periods, as well as the risk aversion parameters,

such that the results are robust and instructive for real investment. 

2. Data and Methodology

In this study, the cryptocurrency dataset covers the period from 07-Aug-15 to

09-Apr-18 with 977 trading days in total. The data are available at coinmarketcap.com,

consisting of open, high, low and close prices, as well as dollar volume and market 

capitalization on a daily basis. We collect those cryptocurrencies which begin trading 

no later than 07-Aug-15
1
, and whose market capitalization is larger than 1 billion. To

this end, 10 cryptocurrencies, including Bitcoin, Ethereum, Ripple, Litecoin, Stellar, 

Monero, Dash, Tether, NEM and Verge, are analyzed in this article. 

We first investigate the performance of individual cryptocurrencies. Table 1 re-

veals the mean, volatility, annualized return, maximum drawdown, Sharpe ratio and 

utility of each cryptocurrency, where the utility is defined by the quadratic form: 

2ˆ ˆ
2

k k kU


   ,   (1) 

in which ˆ
k  and 

2ˆ
k  are the mean and variance of the k-th cryptocurrency, and 

is the risk aversion parameter. We report the results for case 1   in Table 1. It can 

be found that most of cryptocurrencies have considerably high return, Sharpe ratio 

and utility. This stylized fact inspires us to further investigate the investment values of 

1 This is the date when the second largest cryptocurrency, Ethereum, begins trading. Similar consideration was 
involved in Brauneis and Mestel (2018). 



5 

cryptocurrencies. Among the ten cryptocurrencies, Bitcoin performs in the relatively

lower reach compared to the newly issued cryptocurrencies, e.g. NEM and Verge. 

Tether seems quite different from others, and it is much similar to a traditional cur-

rency with a fairly flat trend of prices. 

Table 1 

Historical performance of cryptocurrencies (in % for mean, volatility, annualized return, and

maximum drawdown). The mean and volatility (standard deviation) are reported on a daily basis.

The annualized return is compound and calculated as (Ending Value/Starting Value) 
(360/days)

-1,

and the Sharpe ratio and utility reported are simply annualized (multiplied by 360  and 360, 

respectively, to the corresponding daily measure).  

Cryptocurrency Mean Volatility 
Annualized 

Return 

Maximum 

Drawdown 

Sharpe 

Ratio 
Utility 

Bitcoin 0.41 4.14 223.61 65.96 1.89 1.18 

Ethereum 0.84 7.86 523.97 84.30 2.02 1.90 

Ripple 0.78 9.75 353.00 85.90 1.51 1.08 

Litecoin 0.53 6.37 238.27 68.42 1.57 1.16 

Stellar 0.88 10.22 405.25 82.58 1.64 1.30 

Monero 0.85 7.96 635.80 67.69 2.02 1.91 

Dash 0.66 6.40 428.19 81.59 1.95 1.63 

Tether 0.00 0.64 -0.09 8.66 0.05 0.00 

NEM 1.26 11.20 1409.24 88.65 2.14 2.29 

Verge 2.52 20.03 1900.24 94.44 2.39 1.85 

Fig. 1. Correlation matrix of cryptocurrencies 
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  Fig. 1 shows the correlation matrix of the cryptocurrencies. It can be observed the 

that highest correlation among the pairs is between Bitcoin and Litecoin at 0.52, while 

most of the others are at a relatively low level for less than 0.3, especially for the last 

three, i.e. Tether, NEM and Verge. Moreover, Tether is even negative or nearly un-

correlated to the others, which coincides with the analysis from Table 1 that it is more 

like a traditional currency while the others are much more speculative and fluctuated. 

The relatively low correlations among different cryptocurrencies indicate we may 

benefit by combining several cryptocurrencies into a portfolio. 

Fig. 2. Efficient frontier of cryptocurrency portfolios 

To see the combination of the cryptocurrencies, Fig. 2 exhibits the efficient fron-

tier of the portfolios. We plot Fig. 2 under the short-selling constraints, such that the 

Tether and Verge are located on the efficient frontier, representing the lowest volatil-

ity and highest expected return among all the cryptocurrencies, respectively. The 

maximum Sharpe ratio and maximum utility can be achieved on the efficient frontier 

in Fig. 2, through reasonable asset allocation across the cryptocurrencies. Note that

Fig. 2 displays the in-sample results only, as we estimate the mean and covariance 

matrix based on the entire sample, which is infeasible for real investment. For exam-

ple, when we stand at date 1-Jan-2016, we can only obtain the data no later than

1-Jan-2016, but the in-sample method uses data before and after that date, which is 

unrealistic in real investment, and hence the performance under the in-sample method

is generally viewed as a theoretical ideal case rather than the realistic case. Thereafter, 

we will focus on the out-of-sample results of the portfolio models, where the expected

return and covariance matrix are estimated via a rolling window procedure discussed

in Section 3. 

The portfolio models
2
 considering in this article are: 1/N equal weighted rule 

(EW), minimum variance (MV), risk parity (RP), Markowitz (MW), maximum 

Sharpe ratio (MS), and maximum utility (MU). The detailed settings of those models 

are listed in Table 2. 

2
More details about the portfolio models can be found in Markowitz (1952), DeMiguel et al. (2009), Chaves et al. 

(2011) and Hatemi-J and El-Khatib (2015), etc. 
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Table 2 

List of various asset allocation models.

# Model Abb. Objective function Type Constraints 

1 1/N rule EW 

2 Minimum variance MV wΣw  Minimize 1,  w 1 w 0

3 Risk parity RP  
2

1

( ) /
N

i i

i

w N


 Σw wΣw Minimize 1,  w 1 w 0

4 Markowitz MW wΣw  Minimize 
0,

1,

 

  

w μ

w 1 w 0

5 Maximum Sharpe MS / wμ wΣw Maximize 1,  w 1 w 0

6 Maximum utility MU 
2


 w μ w Σw Maximize 1,  w 1 w 0

Notice that in Table 2, if we remove the short-selling constraints, there would be 

additional 5 models (except for the 1/N rule). To save space, we only present the re-

sults for the constrained models in Section 3 (while we did the same procedures for 

the unconstrained models, which did not generate better performance). In the follow-

ing empirical analysis, 0  in the Markowitz model is set to be the corresponding 

mean under 1/N rule, and the risk aversion parameter   is 1 in the maximum utility 

model (results for other values of   are separately discussed as a robustness check 

in Table 4). 

3. Empirical Results

In this section, we compare the out-of-sample performance of the asset allocation 

models listed in Table 2. The weights of different models are calculated in a rolling 

window procedure via the following steps: 1) Utilize the nearest M=360 days’ data 

before and on the rebalancing time t to estimate the parameters in the optimization, i.e. 

μ  and Σ ; 2) Solve the corresponding optimization problem and obtain the weights 

at t; 3) Rebalance the weights by conducting steps 1) and 2) after the holding period 

 (also called rebalancing period). 

For example, our dataset is ranging from 07-Aug-15 to 09-Apr-18, and suppose 

the rebalancing period is 30  . The first rebalancing date is 01-Aug-16, and we use 

the starting 360 days’ returns (from 07-Aug-15 to 01-Aug-16) to estimate the param-

eters of the models and solve the weights on 01-Aug-16, which will last for the fol-

lowing 30   days (from 02-Aug-16 to 31-Aug-16). The second rebalancing date is 
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31-Aug-16, and we use the nearest 360 days’ return (from 7-Sep-15 to 31-Aug-16) to

estimate the parameters of the models and solve the weights on 31-Aug-16, which

will last for the following 30   days (from 1-Sep-16 to 30-Sep-16). The third re-

balancing date is 30-Sep-16, and the followings are routine repeated. 

Once obtaining the weights, we can investigate the backtesting performance of 

different models through the portfolio return , 1, ,t h t t hR h  
 w r , where t  is at 

each rebalancing time, t hR   is the portfolio return, and t hr  comprises the returns of 

cryptocurrencies. In other words, we utilize the information never after day t to de-

termine the weights tw , and compute the portfolio returns of the future   days 

based on weights tw . 

Table 3 presents the empirical performance of portfolio models with the re-

balancing period  =30. Comparing to the individual results in Table 1 for each

cryptocurrency, we observe that the Sharpe ratio and utility of portfolios are greatly 

increased, implying that diversification across cryptocurrencies does enhance the in-

vestment results. The minimum variance model achieves the smallest out-of-sample 

volatility and maximum drawdown, but performs less attractive in Sharpe ratio and 

utility. Moreover, the maximum Sharpe model does not maximize the out-of-sample 

Sharpe ratio, while the maximum utility model attains the highest out-of-sample re-

turn and utility. It is worth noting that none of the sophisticated models beat the naïve 

1/N rule in the criterion of Sharpe ratio. This might be due to the estimation error of 

μ̂  and Σ̂ , also discussed in DeMiguel et al. (2009) for stock markets. 

Table 3 

Empirical performance of portfolio models (in % for mean, volatility, annualized return, maxi-

mum drawdown, and turnover) with the rebalancing period being =30 and the transaction cost 

being 1% multiplied by the spot turnover at each rebalancing day. The model parameters are esti-

mated using the nearest one year data (M=360). The annualized measures (annualized return, 

Sharpe ratio and utility) are computed as the same method presented in Table 1. 

Model Mean Volatility 
Annualized 

Return 

Maximum 

Drawdown 

Sharpe 

Ratio 
Utility Turnover 

EW 1.09 5.33 2890.70 67.67 3.88 3.41 5.00 

MV 0.06 0.82 22.19 8.66 1.37 0.20 6.87 

RP 1.03 5.12 2392.57 65.24 3.81 3.23 6.53 

MW 0.81 4.84 1088.60 66.48 3.16 2.48 32.38 

MS 0.72 4.48 812.41 61.59 3.03 2.21 40.95 

MU 1.47 8.85 5034.35 81.88 3.14 3.87 39.58 
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Fig. 3 Portfolio Sharpe ratio (Panel A) and utility (Panel B) versus transaction cost 

Fig. 4 Portfolio Sharpe ratio (Panel A) and utility (Panel B) versus rebalancing period 

Notice that among the portfolio models in Table 2, we only need to estimate the 

covariance matrix for MV and RP, while the expected return requires to be estimated

for MW, MS and MU, and hence the latter models lead to much higher turnover rate. 

The reported turnover is computed by the averaged tTurnover  at each rebalancing

time t, where 

, ,

1

n

t j t j t

j

Turnover w w 



  .      (2) 

The higher turnover results in a higher transaction cost. Fig. 3 illustrates how the 

transaction cost influences the portfolio performance. The EW and RP are nearly not

affected by the transaction cost due to their low turnover rates reported in Table 3. But

the Sharpe ratio of MV is still sensitive to the transaction cost even though it has rela-

tively low turnover. This is caused by its low expected return, which is further dis-

torted by the expensive cost of the first trading. Nevertheless, the assessment of the 

model performance illustrated from Fig. 3 does not change compared to Table 2. 
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To further demonstrate the robustness of our results, Fig. 4 plots the portfolio 

performance versus different rebalancing periods  . The results are still similar to

the findings in Table 3. Note that RP performs analogously to the 1/N rule, but none 

of the models are consistently better than the naïve 1/N portfolio in Sharpe ratio. If we 

consider the utility as the evaluation criterion, then MU stably dominates the perfor-

mance. 

Table 4 

Out-of-sample utility with different selection of risk aversion parameters. The results reported are 

annualized by multiplying 360 to the daily utility, and the MU model is calculated by the corre-

sponding   in each column. The other settings are the same as in Table 3. 

 =0  =0.1  =0.2  =0.5  =1  =2  =5  =10  =10
6 

EW 3.92 3.87 3.82 3.67 3.41 2.90 1.37 -1.19 -5.11 10
5

MV 0.21 0.21 0.21 0.21 0.20 0.19 0.15 0.08 -1.21 10
4

RP 3.70 3.65 3.61 3.46 3.23 2.75 1.34 -1.03 -4.73 10
5

MW 2.91 2.86 2.82 2.69 2.48 2.06 0.79 -1.32 -4.22 10
5

MS 2.58 2.54 2.50 2.39 2.21 1.85 0.77 -1.03 -3.61 10
5

MU 10.55 8.70 7.73 5.45 3.87 2.40 0.83 0.08 -1.17 10
4

As the utility defined as equation (1) relies on the risk aversion parameter  ,

Table 4 illustrates the out-of-sample utility of the portfolio models according to dif-

ferent  . For the two extreme cases 0   and    , the MU model becomes the 

maximum expected return and minimum variance (MV) model respectively. As a re-

sult, we can observe that in Table 4, for 10  , the performance of MU has been 

very close to MV, while the other models fall into negative utility under such circum-

stance, and the distance between MU (or MV) and the others is more amplified for the 

case of 610  . Table 4 also shows MU outperform the others for most cases, and 

the results are more significant for relatively small  . Since when 0   the MU

model can be related to a momentum strategy, the large value of MU reveals that

there are considerable momentum effects in the cryptocurrencies, which might be 

hardly captured by the naïve 1/N portfolio. 

4. Conclusion

This article examines the investability and role of diversification in cryptocur-

rencies as an alternative asset class, and further demonstrates whether the portfolio 

selection theory can benefit the cryptocurrency market. It is found that diversification

among the cryptocurrencies can significantly enhance the Sharpe ratio and utility. By

comparing the out-of-sample performance of six classical asset allocation models, we 

show that the minimum variance model is less risky with the smallest maximum

drawdown, the maximum utility model possesses higher return and utility, but most of

the models cannot beat the naïve 1/N rule under the Sharpe ratio criterion. These 
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findings can help investors make more informed decisions. 

On the other hand, the complexities of the cryptocurrency market are far from 

fully explored. For instance, the results in this article indicate that the estimation error 

in mean and covariances may offset the gains from optimal diversification, raising a 

problem about how to improve the estimation with sufficiently considering the styl-

ized facts of cryptocurrencies. We leave a more detailed analysis of estimation risk in 

future research. 
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