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Highlights

• We propose an improved neural network model to predict the stock prices

• The empirical mode decomposition and factorization machine are used in our approach

• The empirical mode decomposition helps overcome the non-stationarity of stock price

• Factorization Machine helps grasp the nonlinear interactions among the inputs

• The real data sets are used to demonstrate the accuracy of the new approach
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Abstract

Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy
and non-stationary due to the fact that stock markets are affected by a variety of factors. Predicting stock
market trend is usually subject to big challenges. The goal of this paper is to introduce a new hybrid, end-
to-end approach containing two stages, the Empirical Mode Decomposition and Factorization Machine based
Neural Network (EMD2FNN), to predict the stock market trend. To illustrate the method, we apply EMD2FNN
to predict the daily closing prices from the Shanghai Stock Exchange Composite (SSEC) index, the National
Association of Securities Dealers Automated Quotations (NASDAQ) index and the Standard & Poor’s 500
Composite Stock Price Index (S&P 500), which respectively exhibit oscillatory, upward and downward patterns.
The results are compared with predictions obtained by other methods, including the neural network (NN) model,
the factorization machine based neural network (FNN) model, the empirical mode decomposition based neural
network (EMD2NN) model and the wavelet de-noising-based back propagation (WDBP) neural network model.
Under the same conditions, the experiments indicate that the proposed methods perform better than the other
ones according to the metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE). Furthermore, we compute the profitability with a simple long-short trading
strategy to examine the trading performance of our models in the metrics of Average Annual Return (AAR),
Maximum Drawdown (MD), Sharpe Ratio (SR) and AAR/MD. The performances in two different scenarios,
when taking or not taking the transaction cost into consideration, are found economically significant.

Keywords: Empirical Mode Decomposition, Factorization Machine, Neural Network, Stock Market Prediction,
Profitability

1. Introduction

Stock market forecasting is always a remarkable topic and has attracted continuous attention in finance.
Unfortunately, stock prices exhibit dynamic, non-linear, non-parametric and chaotic properties in nature (Oh &
Kim, 2002; Wang, 2003). Many standard statistical and econometric models for forecasting must face significant
challenges, such as disobeying the statistical assumptions in dealing with non-stationary time series, or having5

unsatisfactory forecasting performance due to the requirement of observations to be distributed normally.
There are numerous models and strategies proposed for the stock market predictions. Most of them can be

classified into two categories: the ones based on statistical techniques and those using machine learning tech-
niques. In the category of statistical approaches, there are autoregressive integrated moving average (ARIMA),
generalized autoregressive conditional heteroskedasticity (GARCH) volatility (Franses & Ghijsels, 1999), and the10

smooth transition autoregressive model (STAR) (Sarantis, 2001), just to name a few. These approaches are pri-
marily based on the assumptions of stationarity in time series and linearity among normally distributed variables.
However, the stationarity, linearity and normality assumptions are not satisfied in real stock markets. On the
other side, machine learning models without these restrictive assumptions have been proposed in recent years,
and they can outperform the statistical methods (Hansen & Nelson, 2002; Zhang, 2003; Enke & Thawornwong,15

IThis research was partially supported by NSFC (Nos. 11771458, 1431015), Guangdong Youth Innovation Talent Project (Nos.
2017KQNCX083), the Major Project of Basic and Applied Research in Guangdong Universities (Nos. 2017WZDXM012). Haomin
Zhou has been partially supported by NSF Awards DMS-1419027, DMS-1620345, and ONR Award N000141310408.

∗Corresponding author
Email addresses: fengzhou@gdufe.edu.cn (Feng Zhou ), hmzhou@math.gatech.edu ( Hao-min Zhou ), yangzh@gdufe.edu.cn (

Zhihua Yang ), mcsylh@mail.sysu.edu.cn ( Lihua Yang)

Preprint submitted to Elsevier July 30, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2005; Ture & Kurt, 2006). Thus, machine learning approaches, such as support vector machine (SVM) (Kim,
2003; Qian & Gao, 2017), genetic algorithm (Kim & Han, 2000), fuzzy system (Wang, 2002; Shen & Han, 2004),
neural network (NN) (Vellido et al., 1999; Chen et al., 2003; Rather et al., 2015) and hybrid methods (Armano
et al., 2005; Wang et al., 2011; Patel et al., 2015), have been widely employed in forecasting stock prices.

Although the machine learning based models have achieved remarkable results, there are still limitations.20

Firstly, they do not have an explicitly mechanism to handle the non-stationarity of stock prices. Secondly, as
far as we know, most models do not pay attention to the interactions between features at different scales. For
example, for the neural network models or deep network models, which are also widely used in many other
applications such as image processing (Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2015a), mechanical
translation (Bahdanau et al., 2014; Luong et al., 2015), speech recognition (Hinton et al., 2012; Amodei et al.,25

2015) and so on, the non-linearities mainly handled by the activation functions, and there is few technique
addressing the non-linear interactions among the inputs.

In this paper, we propose a 2-stage, end-to-end forecasting model combining Empirical Mode Decomposition
(EMD) and Factorization Machine (FM) based Neural Network technique for stock market trend prediction. For
convenience, we abbreviate it by EMD2FNN. In the first stage, we utilize EMD (Huang et al., 1998a), which30

is very efficient in handling the non-stationary data, to decompose the original financial time series into several
components called intrinsic mode functions (IMFs). Each extracted IMF contains oscillatory patterns with scales
in a narrow range, and it can be viewed as a quasi-stationary component. In the second stage, a FM-based Neural
Network (FNN) (Rendle, 2010) technique is constructed using the values of IMFs as inputs to predict the future
stock prices trend. Owning to the combination with the FM technology, it makes FNN capable of grasping the35

factorized interactions among inputs and efficient in computation due to its linear complexity.
There exist many EMD based techniques in dealing with nonlinear and non-stationary time series, and some

have been used for data predictions (Huang et al., 1998b, 1999; Yang et al., 2004; Nunes et al., 2005; Yang et al.,
2005b, 2006a,b; Bi et al., 2007; Zhang et al., 2008; Jaber et al., 2014). A common theme in these EMD prediction
strategies is that each IMF is used as an independent time series, and every IMF has its own machine learning40

model for predicting. Different from the existing methods, the EMD2FNN uses one forecasting model, i.e., FNN,
and all IMFs are fed as the inputs of this FNN. This design makes the prediction mechanism not only simple,
easy to execute in practice, but also enable to capture the interactions among different scales.

To evaluate the performance, we apply the EMD2FNN to predict the closing prices from the empirical data
sets of Shanghai Stock Exchange Composite (SSEC) index closing prices from January 4th 2012 to December45

30th 2016, the National Association of Securities Dealers Automated Quotations (NASDAQ) index from January
4th 2012 to December 30th 2016, and the Standard & Poor’s 500 Composite (S&P 500) index covering from
January 3rd 2007 to December 30th 2011, which respectively cover oscillatory, upward and downward patterns.
We compare the proposed model with several other approaches, such as the single NN and FNN models, and
a hybrid model combining the empirical mode decomposition and neural network (EMD2NN) using the perfor-50

mance metrics such as the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE). Moreover, the EMD2FNN is compared with the wavelet de-nosing-based back propa-
gation (WDBP) neural network model (Wang et al., 2011) which aims at using the wavelet transform to avoid the
influences of noise. The results show significant improvements achieved by our model. In addition, we compute
the profitability with a simple long-short trading strategy, in two different scenarios - taking or not taking the55

transaction cost into consideration, to examine the trading performance of our model in terms of the Average
Annual Return (AAR), Maximum Drawdown (MD), Sharpe Ratio (SR) and AAR/MD. The performances are
found economically significant as well.

The contributions of this paper include the following three points. (1) We propose EMD2FNN, a 2-stage, end-
to-end model for the prediction of the stock market trend. The EMD2FNN is composed of EMD and FNN, two60

techniques that can work together for non-stationary data analysis. The EMD2FNN enjoys benefits from both
EMD and FNN. (2) We demonstrate the prediction accuracy, in various metrics, of our methods for data sets that
exhibit oscillatory, upward or downward patterns. The numerical experiments show significant improvements in
prediction accuracy over the existing methods. (3) We illustrate the effectiveness of our method in a simple
long-short trading strategy. The results are prominently better than the benchmark (i.e. buy-and-hold) strategy65

when evaluating the performance by either taking or not taking the transaction cost into consideration.
The rest of this paper is organized into following sections. We review the needed ingredients including EMD,

FM and neural network in Section 2. Our EMD2FNN model is presented in Section 3, in which a couple of other
hybrid approaches are discussed too. We show the simulation results in Section 4, and followed it by a brief
conclusion in Section 5.70
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2. EMD, Neural Networks and FM

2.1 Empirical Mode Decomposition

As an alternative to the traditional methods, such as Fourier or wavelet transforms, EMD has been proven,
by numerous studies, to be effective in analyzing non-stationary time series in recent years. It has received
considerable attention in terms of interpretations (Flandrin et al., 2004; Chen et al., 2006; Sekine, 2007; Lin75

et al., 2009; Yang et al., 2014; Zhou et al., 2016) and applications in many disciplines such as ocean science
(Huang et al., 1999), biomedicine (Huang et al., 1998b; Yang et al., 2006a), speech signal processing (Yang et al.,
2004), image processing (Bi et al., 2007), pattern recognition (Nunes et al., 2005; Yang et al., 2005b, 2006b) and
financial forecasting (Zhang et al., 2008; Jaber et al., 2014).

Many different algorithms have been proposed to carry out EMD. Examples include the strategies based on80

moving average (Smith, 2005), partial differential equation (PDE) (Delechelle et al., 2005; Diop et al., 2010),
operators (Peng & Hwang, 2008; Hong et al., 2009; Peng & Hwang, 2010; Oberlin et al., 2012; Hu et al., 2013),
filtering (Lin et al., 2009), and optimizations (Pustelnik et al., 2010; Daubechies et al., 2011; Hou & Shi, 2011;
Wu, 2013; Ding & Selesnick, 2013; Pustelnik et al., 2014; Zhou et al., 2016). In this paper, we adopt the original
EMD method given in (Huang et al., 1998b) for two reasons. Firstly, it is simple, intuitive and efficient in85

computation. Secondly, it has been demonstrated experimentally in a broad range of applications. Here is the
algorithm.

Algorithm 1 Empirical Mode Decomposition

Require: Given a signal x(t)
1). Set r(t) := x(t) and k = 0
while r(t) is not monotonous do

2). Set m(t) = r(t)
while m(t) is nontrivial do

3). Interpolate between minima (resp. maxima), ending up with some ‘envelope’ emin(t) (resp. emax(t))
4). Compute the average m(t) = (emin(t) + emax(t))/2
5). Extract the detail c(t) = r(t)−m(t), and denote c(t) as r(t)

end while
6). Set k = k + 1
7). Set imfk(t) = c(t)

8). Set r(t) = x(t)−∑k
i=1 imfi(t)

end while
Output: x(t) =

∑k
i=1 imfi(t)

In essence, the EMD method decomposes a complicated signal into a finite, and often small, number of
intrinsic mode functions (IMFs), arranged from high frequencies to low frequencies, based on local characteristic
scale, which is defined as the distance between two successive local extrema in the signal. An IMF is a function90

whose upper and lower envelopes are symmetric. Moreover, the number of zero-crossings and the number of
extremes are equal or differ at most by one (Huang et al., 1998a). Each computed IMF contains oscillatory scales
in a narrow range, and it is usually viewed as a quasi-stationary component. For example, an IMF extracted
from an economic time series with a scale of three months can be viewed as the seasonal component.

2.2 Neural Networks95

In general, neural networks possess attributes of learning, generating, parallel processing and error endurance,
which make them powerful in solving complex problems. Over the past decades, neural networks have been widely
used in many areas, including financial forecasting (Lu, 2010; Omidi et al., 2011; Wang et al., 2011; Chang et al.,
2012). Hence, we take the neural network as the benchmark for comparing the models’ forecasting accuracy.

The commonly referred neural network contains very diverse structures. For instance, selecting different num-100

ber of network layers or different activation functions can generate different models with various approximation
abilities. In this paper, we employ a neural network with 4-layer as depicted in Figure 1. The four layers are one
input layer, two hidden layers and one output layer. We want to note that the pooling and dropout layers, which
are often added in the convolutional neural network (CNN) when applied to image processing, are not included
in the NN structure.105
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Figure 1: The architecture of neural network (NN).

In the neural network of Figure 1, the neurons of the input layer denote the input features, each neuron of the
hidden and output layers is computed through combining the connection weights multiplied by the input values
and nonlinear activation function, where the activation function aims to take the nonlinearity into consideration
in the model. There are plenty of studies worked on the selection of activation functions, such as the sigmoid
(Han & Moraga, 1995), tanh, Relu (Lecun et al., 2015), PRelu (He et al., 2015b), ELU (Clevert et al., 2015) and110

so on. The loss layer calculates the error between the training and estimated values to adjust the connection
weights. In addition, a regularization term is often added to the loss layer to avoid over-fitting.

Assume that there are n input features, m1 output neurons in the 1st hidden layer, m2 output neurons in
the 2nd hidden layer and o output neurons in the output layer, the forward (forecasting) process of the neural
network can be described by the following four steps:115

1). The 1st hidden layer: the outputs of the first activation layer are calculated by the following scheme:

yIj = f(
n∑

i=1

wIijxi), (j = 1, 2, . . . ,m1), (1)

where xi denotes the value of the i-th feature, wIij is the to-be-determined weight related to the i-th input

feature and the j-th output neuron, yIj is the value of the j-th node and f is the activation function.

2). The 2nd hidden layer: the neurons in the second activation layer are computed by:

yHj = f(

m1∑

i=1

wHij y
I
i ), (j = 1, 2, . . . ,m2), (2)

where wHij is the undetermined weight related to the i-th input neuron and the j-th output neuron.120

3). The output layer: the outputs of the output layer are given as follows:

yOj = f(

m2∑

i=1

wOijy
H
i ), (j = 1, 2, . . . , o), (3)

where wOij is the undetermined connection weight, yOj is the value of the j-th node of the output layer.

4). The loss layer: for different tasks, one can choose different loss functions ` to calculate the error between
the actual and the estimated values from the output layer, such as squared loss, log-loss, softmax (Arjo,
2009). In order to avoid over-fitting, we add the L2 regularized term in this layer. Hence, the loss function125

is computed as follows:

L(x, y) =
o∑

i=1

`(yOi , yi) +
α

2
(
n∑

i=1

m1∑

j=1

(wIij)
2 +

m1∑

i=1

m2∑

j=1

(wHij )2 +

m2∑

i=1

o∑

j=1

(wOij)
2), (4)

where α > 0 is a regularized parameter, yi is the actual values.

5
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All undetermined weights in the NN model are iteratively updated according to the stochastic gradient descent
(SGD) method within the back propagation process for the gradients. This process can be regarded as a special
case of our improved FNN model described in Section 3.1. Therefore, we do not describe the weight updating130

process of the NN model here.

2.3 Factorization Machine

FM is originally introduced for collaborative recommendations (Rendle, 2010). Like the support vector
machines, FMs form a general class of predictors that are able to estimate reliable parameters under the very
high sparsity assumption. FM has a key advantage in learning feature interactions, due to its learning in the135

latent space. And this is one of the main reasons we select FM in our model. Given a real valued feature
vector x ∈ Rn, FM estimates the target by modeling all interactions between each pair of features via factorized
interaction parameters:

ŷ(x) = w0 +
n∑

i=1

wi · xi +
n∑

i=1

n∑

j=i+1

〈vi,vj〉xi · xj , (5)

where the model parameters for calibration are: w0 ∈ R is the global bias, w ∈ Rn denotes linear interaction to
the target. The inner product term 〈vi,vj〉 captures the factorized interaction, where each vi ∈ Rk is the latent140

vector for feature xi, and k is a user-specified parameter for the dimension of the latent vector. The larger the
value of k, the more sensitive the training model.

FM is very flexible, in contrast to the matrix factorization that models the relation of two entities only (He
et al., 2017). FM can work with any real valued feature vectors for supervised learning. It enhances the linear
or logistic regression using the second order factorized interactions among features. By specifying input features,145

the study in (Rendle, 2010) shows that FM can mimic many specific factorization models such as the standard
matrix factorization, parallel factor analysis, and SVD++ (Koren, 2008). On the other hand, since the factorized
interactive term can be rewritten as

n∑

i=1

n∑

j=i+1

〈vi,vj〉xi · xj =
1

2

k∑

f=1

((
n∑

i=1

vif · xi)2 −
n∑

i=1

v2
if · x2

i ), (6)

this enables that the equation (5) can be computed in a linear time O(k · n). Owing to such a property, FM
has been recognized as one of the most effective methods for sparse data prediction. It has brought a plethora150

of successful applications in industry, and has yielded great promise in a variety of prediction tasks, such as
regression, classification and ranking (Oentaryo et al., 2014; Chen et al., 2016; Juan et al., 2016; Bayer et al.,
2017).

3. Our Proposed Approaches

3.1 the FNN Model155

Inspired by FM, we modify the NN model by incorporating FM ideas and name it as FNN for simplicity. The
structure of FNN is shown in Figure 2. The main differences, compared against NN, are located in the hidden
layers, where the gray nodes are still achieved by the nonlinear activation function’s operation after the linear
connections as those appeared in the NN model, but the blue nodes represent the results calculated through the
activation function of the factorized interactions. Comparing to the NN model, we summarize the properties of160

the FNN as follows:

1) From the expression (5), the term
∑n
i=1

∑n
j=i+1〈vi,vj〉xi · xj makes FNN capture the role of factorized

interactions between features, which is an advantage that most of the existing generalized linear models do
not have.

2) According to equation (6), FNN has the same level (linear) of computation complexity as that of NN model.165

The idea combining FM together with NN models has been recently reported for advertisement recommen-
dation system (He & Chua, 2017), in which FM is used to modify the 1st hidden layer only. In this paper we
advocate the idea by incorporating FM in other hidden layers as well. We use single-FNN to denote the model
that FM is used only at the 1st hidden layer, while multi-FNN is for the case where FM is used in other layers.
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Figure 2: The architecture of FM based neural network (FNN).

Suppose that there are n input features, m1 output neurons in the 1st hidden layer, m2 output neurons in the170

2nd hidden layer and o output neurons in the output layer. Next, we describe the forward (forecasting) process
of FNN.

1). The 1st hidden layer: the neurons in the first hidden layer are partitioned into two parts:

yIj = f(
n∑

i=1

wIijxi), (j = 1, 2, . . . ,m1 − k1), (7)

yIm1−k1+j = f(
1

2
((

n∑

i=1

vIij xi)
2 −

n∑

i=1

(vIij)
2 x2

i )), (j = 1, 2, . . . , k1), (8)

where xi denotes the value of i-th feature, yIj is the value of the j-th node, wIij is the undetermined linear175

weight related to the i-th input feature and the j-th output neuron, vIi ∈ Rk1 is the undetermined latent
weight corresponding to the feature xi, k1 is the user-specified dimension of vIi , and f is the activation
function.

2). The 2nd hidden layer: the outputs of the second hidden layer include the following two cases:

– single-FNN:180

yHj = f(

m1∑

i=1

wHij y
I
i ), (j = 1, 2, . . . ,m2), (9)

– multi-FNN:

yHj = f(

m1∑

i=1

wHij y
I
i ), (j = 1, 2, . . . ,m2 − k2), (10)

yHm2−k2+j = f(
1

2
((

m1∑

i=1

vHij y
I
i )2 −

m1∑

i=1

(vHij )2 (yIi )2)), (j = 1, 2, . . . , k2), (11)

where wHij is the undetermined linear weight related to the i-th input neuron and the j-th output neuron,

vHi ∈ Rk2 is the undetermined latent weight corresponding to yIi , k2 is the user-specified dimension of vHi .

3). The output layer: the output layer in FNN is the same as that in the NN model, i.e.,185

yOj = f(

m2∑

i=1

wOijy
H
i ), (j = 1, 2, . . . , o), (12)

where wOij is the undetermined connection weight, yOj is the value of the j-th node of the output layer.
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4). The loss layer: FNN can be applied to a variety of forecasting tasks by taking different loss functions
`, including classification, regression and ranking. For regression, a commonly used loss function is the
squared loss defined by `(yOi , yi) = 1

2 (yOi − yi)2. For classification task, the loss function is usually taken
as the log-loss `(yOi , yi) = −yi log yOi − (1 − yi) log(1 − yOi ). For ranking task, it optimizes contrastive190

max-margin loss or pairwise personalized ranking loss. Similar to the loss layer in the NN model, the loss
layer in FNN is computed as follows:

L(x, y) =
o∑

i=1

`(yOi , yi) +
α

2
(
n∑

i=1

m1−k1∑

j=1

(wIij)
2 +

m1∑

i=1

m2−k2∑

j=1

(wHij )2

+

m2∑

i=1

o∑

j=1

(wOij)
2 +

n∑

i=1

k1∑

j=1

(vIij)
2 +

m1∑

i=1

k2∑

j=1

(vHij )2),

(13)

where α > 0 denotes the regularized parameter, yi is the actual values.

To optimize the FNN model, the back propagation process is used to iteratively calculating the gradient in
each layer, and then the stochastic gradient descent (SGD) is adopted to update the weights until convergence.195

The backward (training) process of FNN would be given in Section 3.2.

3.2 the EMD2FNN Model

In this section, we present the EMD2FNN approach. It would be used for two tasks in this paper, determining
the changes (directions) and predicting the future prices (trends) in stock prices. The former is a classification
problem, and the later a regression task.200

There are two stages in EMD2FNN. At the first stage, the original data sequence is decomposed into several
components (IMFs) via the EMD algorithms given in Algorithm 1. The resulting IMFs are used as the inputs
for the FNN model for the prediction. The detailed steps are presented in Algorithm 2 accompanied by a
flowchart shown in Figure 3.

Figure 3: The flowchart of our proposed EMD2FNN.
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Algorithm 2 EMD2FNN

Require: Given a stock prices series {xi}ñi=1

Stage one - the EMD process:
1). Following the Algorithm 1, decompose the original stock prices {xi}ñi=1 into several IMFs {Cj}Lj=1,

where Cj ∈ Rñ, and denote the number of IMFs as L.
Stage two - the FNN process:

2). Each IMF Cj is normalized into Bj ∈ [0, 1] defined by Bj =
Cj−min ({Cj}Lj=1)

max ({Cj}Lj=1)−min ({Cj}Lj=1)
.

3). Take the set constituted of M consecutive values from each IMF (i.e., {Bj,k, Bj,k+1, . . . , Bj,k+M−1}Lj=1)
as the input features, and the set constituted of next o consecutive values from original stock prices

(i.e., {xk+M , xk+M+1, . . . , xk+M+o−1}) as the labels for regression task, where k = 1, 2, . . . , ñ−M−o+1.
For classification task, the labels are taken as the direction of the stock price change (i.e., 1 if xk+M ≥
xk+M−1; -1 otherwise), where k = 1, 2, . . . , ñ−M .

4). Divide the samples into training and testing data sets.
5). The FNN model is learnt on the training data.
6). According to the forward process of FNN described in Section 3.1, using the testing data to measure

how well the network is able to extrapolate the unknown samples.
7). For regression task, the predicted values are scaled back to the original range.

The step 5) (i.e., the FNN model) appeared at the stage two in Algorithm 2 is the only part involving205

machine learning. The backward (training or learning) process of FNN is detailed in the following points.

1). The gradients of the inputs and weights in the output layer are computed as:

∂L

∂yOj
=
∂`

∂yOj
,
∂L

∂wOij
=

∂L

∂yOj
· ∂f
∂z

∣∣∣∣
z=

∑m2
h=0 w

O
hjy

H
h

· yHi + α · wOij ;

wOij ←wOij − η ·
∂L

∂wOij
.

(14)

where i = 1, 2, . . . ,m2, j = 1, 2, . . . , o and η denotes the learning rate.

2). The gradienst of the inputs and weights in the 2nd hidden layer are calculated as the following two cases:

∂L

∂yHj
=

o∑

i=1

∂L

∂yOi
· ∂f
z

∣∣∣∣
z=

∑m2
h=0 w

O
hjy

H
h

· wOji, (15)

– single-EMD2FNN:210

∂L

∂wHij
=
∂L

∂yHj
· ∂f
∂z

∣∣∣∣
z=

∑m1
h=0 w

H
hjy

I
h

· yIi + α · wHij , wHij ← wHij − η ·
∂L

∂wHij
, (16)

– multi-EMD2FNN:

∂L

∂wHij1
=
∂L

∂yHj1
· ∂f
∂z

∣∣∣∣
z=

∑m1
i=0 w

H
hj1

yIh

· yIi + α · wHij1 , z̄j2 =
1

2
((

m1∑

h=1

vHhj2 y
I
h)2 −

m1∑

h=1

(vHhj2)2 (yIh)2),

∂L

∂vHij2
=

∂L

∂yH(m2−k2+j2)

· ∂f
∂z

∣∣∣∣
z=z̄j2

· [(
m1∑

h=1

vHhj2y
I
h)yIi − vHij2(yIi )2] + α · vHij2 ,

wHij1 ←wHij1 − η ·
∂L

∂wHij1
, vHij2 ← vHij2 − η ·

∂L

∂vHij2
,

(17)

where i = 1, 2, . . . ,m1, j1 = 1, 2, . . . ,m2 − k2, j2 = 1, 2, . . . , k2 and η is the learning rate.

3). The gradients of the inputs and weights in the 1st hidden layer are computed by:

– single-EMD2FNN:

∂L

∂yIj
=

m2∑

i=1

∂L

∂yHi
· ∂f
∂z

∣∣∣∣
z=

∑m1
h=0 w

H
hjy

I
h

· wHij , (18)
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– multi-EMD2FNN:215

ẑj1 =

m1∑

h=0

wHhj1y
I
h, z̃j2 =

1

2
((

m1∑

h=1

vHhj2 · yIh)2 −
m1∑

h=1

(vHhj2)2 · (yIh)2),

∂L

∂yIj
=

m2−k2∑

i=1

∂L

∂yHi

∂f

∂z

∣∣∣∣
z=ẑi

wHij +

k2∑

i=1

∂L

∂yHm2−k2+i

∂f

∂z

∣∣∣∣
z=z̃i

[(

m1∑

h=1

vHhjy
I
h)vHij − (vHij )2yIi ],

(19)

∂L

∂wIij3
=
∂L

∂yIj3
· ∂f
∂z

∣∣∣∣
z=

∑n
h=0 w

I
hj3

xh

· xi + α · wIij3 , z̄j4 =
1

2
((

n∑

h=1

vIhj4 · xh)2 −
n∑

h=1

(vIhj4)2 · xh)2),

∂L

∂vIij4
=

∂L

∂yI(m1−k1+j4)

· ∂f
∂z

∣∣∣∣
z=z̄j4

· [(
n∑

h=1

vIhj4xh)xi − vIij4(xi)
2] + α · vIij4 ,

wIij3 ←wIij3 − η ·
∂L

∂wIij3
, vIij4 ← vIij4 − η ·

∂L

∂vIij4
,

(20)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m1, j1 = 1, 2, . . . ,m2 − k2, j2 = 1, 2, . . . , k2, j3 = 1, 2, . . . ,m1 − k1,
j4 = 1, 2, . . . , k1, η denotes the learning rate, and the single-EMD2FNN shares the equation (20) with the
case of multi-EMD2FNN.

It is worth noting that the EMD2FNN need only one prediction model, in which all normalized IMFs are fed
as the inputs. This gives several advantages for EMD2FNN:220

• It makes the prediction mechanism simple and easy to control in practice.

• Since each IMF is not completely independent to the others, EMD2FNN is able to excavate the interactions
among IMFs.

As mentioned in section 3.1, both single-FNN and multi-FNN structures can be used in the second stage for
prediction. We call them single-EMD2FNN and multi-EMD2FNN respectively.225

We want to remark that after replacing the FNN model by NN, one can construct another hybrid approach
called EMD2NN that will be compared with our model in the next section. In fact, the idea of using EMD
together with neural network has been recently reported in a few applications, e.g., wind speed series prediction
(Liu et al., 2012), tourism demand prediction (Chen et al., 2012), and water temperature prediction (Liu et al.,
2016). A common structure in those studies is that every IMF has its own machine learning model for predicting,230

and the neural network models are completely independent of each other, including the training and predicting
stages. In contrast, our EMD2FNN uses FM to exploit the interactions between IMFs and that helps to improve
the prediction accuracy significantly.

4. Simulation Results and Evaluation

4.1 Experimental Data235

The data1 for our experiments are the Shanghai Stock Exchange Composite (SSEC) index, the National
Association of Securities Dealers Automated Quotations (NASDAQ) index and the Standard & Poor’s 500
Composite Stock Price Index (S&P 500). For the SSEC and NASDAQ data sets, their total number of values
are 1214 collected from trading days ranged from January 4th 2012 to December 30th 2016. For the S&P 500,
the size of series is 1260. It is taken from January 3rd 2007 to December 30th 2011. Figure 4 shows the original240

time series, from which it covers oscillatory (top panel), upward (middle panel) and downward (bottom panel)
patterns. We partition them into training sets (80% of the total trading days) and testing sets (20% of the total
trading days). Table 1 describes their statistics, where Nall and Nout denote the sizes of the whole data and the
testing samples respectively.

1All the data in this paper are downloaded from www.finance.yahoo.com.
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Figure 4: The original data. Top: SSEC. Middle: NASDAQ. Bottom: S&P500.

Table 1: The data and their descriptive statistical analysis.

Name Nall Nout Mean Std. Data range

SSEC 1214 242 2665.19 667.26 2012.01.04-2016.12.30

NASDAQ 1214 242 4161.88 825.13 2012.01.04-2016.12.30

S&P500 1260 252 2677.27 672.07 2007.01.03-2011.12.30

4.2 the Setup in Models245

To evaluate the performance of the proposed single-EMD2FNN and multi-EMD2FNN models, we first com-
pare them with other models in forecasting the stock prices to determine the prediction accuracy. And then, they
are used in predicting the trend of the price change to prove their reliability in trading with a simple long-short
trading strategy.

Suppose that the stock price series is decomposed into L IMFs via the EMD, we take the set constituted of250

M consecutive values from each IMF as the input samples, the activation function f from the hidden layers as
tanh. The activation function f , the size of output neurons in the output layer and the loss function in the loss
layer are set as the identity function, M and squared loss respectively for the case of stock price prediction, i.e.,
f(x) = x, o = M and `(yOi , yi) = 1

2 (yOi −yi)2, where yi is the true stock price and yOi denotes the predicted stock
price. In the case of trend prediction, they are taken as the sigmoid function, 1 and the log-loss respectively, i.e.,255

f(x) = 1/(1 + exp(−x)), o = 1 and `(yOi , yi) = −yi log yOi − (1 − yi) log(1 − yOi ), where yi is the true direction
of the price change, i.e., yi = 1 if the (i + 1)-th price is larger than the i-th price, and yi = −1 otherwise, yOi
denotes the predicted value.

After the training and testing data sets divided, the FNN model will be learnt on the training samples with
the input size n = M ∗ L. In this paper, all undetermined weights are assigned with normal distributed random260

values initially, and then updated according to the back-propagation process on the training samples, which is
concretely depicted in Section 3.1.2. For the hyper-parameters m1, m2, k1, k2 mentioned in Section 3.1.1 and
3.1.2, to reduce the FNN model’s complexity in our experiments, we fix m2 = bm1

2 c, k1 = m1 − 1, k2 = m2 − 1.
The rest values of hyper-parameter m1, the learning rate η in back-propagation process and the regularized
parameter α are obtained by the grid search algorithm, which aims at finding the optimal parameters from265

various parameter combinations via minimizing the squared loss on training set.
For the parameters in the NN model, including the parameters m1, m2, o, and the activation functions f from

the hidden layers and the output layer, we take the similar setup as FNN, i.e., m2 = bm1

2 c, the activation functions
from the hidden layers are set to be tanh, the activation function f and the size of output neurons in the output
layer and the loss function in the loss layer are set as f(x) = x, o = M and `(yOi , yi) = 1

2 (yOi −yi)2 respectively for270

the case of stock price prediction; as f(x) = 1/(1+exp(−x)), o = 1 and `(yOi , yi) = −yi log yOi −(1−yi) log(1−yOi )
respectively for the case of predicting the direction of price change.
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4.3 Evaluation Criteria

Three accuracy measures are chosen to evaluate the predicted values ŷ ∈ Ro×N relative to the actual closing
price y ∈ Ro×N , where N is the sample size. They are mean absolute error (MAE), root mean square error275

(RMSE) and mean absolute percentage error (MAPE). Their definitions are given in Table 2. In our experiments,
we use all three measures to judge the prediction performance. Smaller values of these indexes indicate more
accurate forecast. When the results are not consistent among the indexes, we choose the relatively more stable
one, MAPE as suggested by Makridakis (Makridakis, 1993), to be the main reference substance.

Table 2: Evaluation indexes.

Measure Expression

MAE 1
N

∑N
n=1

∑o
i=1 |ŷin − yin|

RMSE
√

1
N

∑N
n=1

∑o
i=1(ŷin − yin)2

MAPE 1
N

∑N
n=1

∑o
i=1

ŷin−yin
yin

|

In addition, Table 3 lists all statistical metrics used for examining the trading performance in this study. The280

Sharpe Ratio (SR) measures the risk-adjusted return. AAR/MD is slightly modified from the Calmar ratio and
is calculated as the Average Annual Return (AAR) derived by the Maximum Drawdown (MD) for the whole
duration considered. For the MD, defined as the largest accumulated percentage loss due to a sequence of drops
over a investment horizon, a lower output means a better performance. For the Average Annual Return, Sharpe
Ratio and AAR/MD, a higher output is better.285

Table 3: Description of the measures of trading performance. ri is the return in year i; rm denotes the realized return from the
trade; rb is the return of risk-free; σ is the standard deviation of the difference E[rm − rb]; Rt is the return at date t.

Statistical measure Describe

Trade Counts Total number of entered trades

Average Annual Return AAR=(
∏N
i=1(1 + ri))

1
N − 1

Sharpe Ratio SR=E[rm−rb]
σ

Maximum Drawdown MD= max
τ∈(0,T )

( max
τ∈(t,τ)

(Rt −Rτ ))

Average Annual Return/Maximum Drawdown AAR/MD

4.4 Empirical Mode Decomposition

From Figure 4, it can be seen that the data includes long term tendencies, periodic vibrations and noise.
These patterns can be extracted from the observed data by EMD. The IMFs of SSEC are depicted in Figure 5
as the frequencies changing from high to low, and plots in Figure 6 show the IMFs of NASDAQ and S&P 500
by the EMD technique.290
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Figure 5: The IMFs of SSEC data.

Figure 6: Left: the IMFs of NASDAQ data; Right: the IMFs of S&P500 data.

4.5 Results by the EMD2FNN Model

After the FNN model set up and the IMFs obtained from the EMD technique, we discuss how to select the
window size M . Table 4-6 describe the results obtained from the multi-EMD2FNN model on SSEC, NASDAQ
and S&P 500 of selecting M as 3, 4, 5 respectively. Figure 7 depicts the results graphically with bar charts. From
them, the results of M = 3 outperform the others, so we take M = 3 in this paper.295
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Table 4: The performance of different window sizes M on SSEC.

M
training data testing data

MAE RMSE MAPE MAE RMSE MAPE

3 35.0131 54.8787 0.0128 37.1778 61.5138 0.0123

4 52.2786 73.7618 0.0193 43.5513 66.7576 0.0143

5 51.5614 71.8362 0.0195 54.8499 89.9065 0.0152

Table 5: The performance of different window sizes M on NASDAQ.

M
training data testing data

MAE RMSE MAPE MAE RMSE MAPE

3 36.4873 49.4673 0.0092 52.4773 70.4576 0.0108

4 41.0351 55.9020 0.0104 62.4763 82.4402 0.0128

5 50.7281 62.8714 0.0135 65.0425 83.1258 0.0150

Table 6: The performance of different window sizes M on S&P500.

M
training data testing data

MAE RMSE MAPE MAE RMSE MAPE

3 13.0210 17.5318 0.0117 13.0396 17.6591 0.0105

4 15.1725 20.3924 0.0137 15.1386 20.3978 0.0122

5 15.5838 20.7445 0.0139 16.1700 22.1277 0.0130

Figure 7: The graphic illustrations of the performance of selecting different M . Top: SSEC; Bottom left: NASDAQ; Bottom right:
S&P 500.

Figure 8-10 depict the results of the single-EMD2FNN and multi-EMD2FNN, where the blue curves denote
the observations, the cyan ones characterize the results of the single-EMD2FNN, and the red ones are the results
of the multi-EMD2FNN model. The errors are also shown in the figures. It can be seen from the figures that
both the fittings and predictions look reasonably accurate, and the results obtained by the models are similar.
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Figure 8: The performances of EMD2FNN models on SSEC. The top panel depicts the fitting and prediction capabilities of different
models, and the bottom panel gives the errors of fitting and prediction from different models, where the blue curve denotes the
observation, the cyan and red ones represent the performances from the single-EMD2FNN and multi-EMD2FNN models respectively,
the green dotted line is the boundary between the training and testing sets.

Figure 9: The performances of EMD2FNN models on NASDAQ. The top panel depicts the fitting and prediction capabilities
of different models, and the bottom panel gives the errors of fitting and prediction from different models, where the blue curve
denotes the observation, the cyan and red ones represent the performances from the single-EMD2FNN and multi-EMD2FNN models
respectively, the green dotted line is the boundary between the training and testing sets.

Figure 10: The performances of EMD2FNN models on S&P 500. The top panel depicts the fitting and prediction capabilities
of different models, and the bottom panel gives the errors of fitting and prediction from different models, where the blue curve
denotes the observation, the cyan and red ones represent the performances from the single-EMD2FNN and multi-EMD2FNN models
respectively, the green dotted line is the boundary between the training and testing sets.
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4.6 the Discussion of Predicted Accuracy300

In order to evaluate the predicted accuracy of the proposed EMD2FNN (single-EMD2FNN and multi-
EMD2FNN) models, we compare them with the NN, FNN (single-FNN and multi-FNN), and the EMD2NN
models.

For the NN, single-FNN, multi-FNN, EMD2NN and EMD2FNN-based models, their predicted values on
SSEC, NASDAQ and S&P 500 are depicted in Figure 11, 12 and 13 respectively with the corresponding colors305

and curve types, where each top panel shows the predicted values on the whole testing data set, each bottom
panel depicts the results zoomed in to see detailed local values. In order to clearly observe the performance of
the proposed models, we mark the ranges that the proposed models prominently surpass the other ones, and vice
versa. We use colored rectangles to box the regions where the EMD2FNN is better than the others (red), the
others are better than EMD2FNN (blue), and they can’t be clearly tell which one is better (green). According310

to the results, we have that:

1). From the top panels of Figures 11-13, it indicates that all neural network based models have good prediction
ability, especially for the trend of stock prices.

2). In the bottom panel of Figure 11, the SSEC values ranged from March 1st, 2016 to May 20th, 2016, which
contain both upward and downward patterns, there are more red rectangles covering the majority of the315

interval. This indicates that the EMD2FNN models predicted values closer to the true stock prices than
those obtained by the other models.

3). The bottom panel of Figure 12 is the NASDAQ data ranged from September 10th, 2016 to December
30th, 2016. In the figure, there are three red rectangle boxes showing that the predicted values from the
EMD2FNN models are better than those from the other models. And the overall coverage of the red320

rectangle boxes is the largest.

4). The data of S&P 500 from January 3rd, 2007 to April 5th, 2007 is shown in the bottom panel of Figure
13. There are three red rectangles, two blue boxes and two green ones. Again, the range covered by the
red boxes is the largest one showing the EMD2FNN produce better predication results in general.

Figure 11: The performance of the models including NN, single-FNN, multi-FNN, EMD2NN, single-EMD2FNN and multi-EMD2FNN
on SSEC. Top: all the predicted values covering the whole testing data set; Bottom: the detail with enlarged scale of the top panel,
where red rectangle boxes denote the EMD2FNN models surpass the other ones, the green ones denote the other models exceed the
EMD2FNN models, and the blue ones denote that it is blurry to judge which model predicts better.
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Figure 12: The performance of the models including NN, single-FNN, multi-FNN, EMD2NN, single-EMD2FNN and multi-EMD2FNN
on NASDAQ. Top: all the predicted values covering the whole testing data set; Bottom: the detail with enlarged scale of the top
panel, where red rectangle boxes denote the EMD2FNN models surpass the other ones, the green ones denote the other models
exceed the EMD2FNN models, and the blue ones denote that it is blurry to judge which model predicts better.

Figure 13: The performance of the models including NN, single-FNN, multi-FNN, EMD2NN, single-EMD2FNN and multi-EMD2FNN
on S&P 500. Top: all the predicted values covering the whole testing data set; Bottom: the detail with enlarged scale of the top
panel, where red rectangle boxes denote the EMD2FNN models surpass the other ones, the green ones denote the other models
exceed the EMD2FNN models, and the blue ones denote that it is blurry to judge which model predicts better.

In order to know more clearly about the effects from FM and EMD techniques, we evaluate the models325

with the indexes listed in Table 2. Table 7-9 show the gains of the single-FNN, multi-FNN, EMD2NN, single-
EMD2FNN and mulit-EMD2FNN models compared with the benchmark (NN) model on SSEC, NASDAQ and
S&P 500. The smaller the gain value, the better the model improves. Besides, Figure 14 plots the metrics’ values
with bar chart. From the results, it can conclude that:
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• Compared with the benchmark model, the values indicate both EMD and FM techniques can improve330

the accuracies. For the EMD2FNN based models, the MAPE indexes are respectively improved as high
as 1.9‰ and 1.0‰ for the training and testing data in the SSEC data set. The same conclusion can be
obtained for the NASDAQ data set (the accuracies of MAPE are improved as high as 0.4‰ and 1.6‰ for
the training and testing data respectively), and S&P 500 data set (the accuracies of MAPE are improved
as high as 3.7‰ and 3.6‰ for the training and testing data respectively).335

• Compared with the other models, the gain values of the EMD2FNN based models are basically smaller. It
indicates the single-EMD2FNN or multi-EMD2FNN are the best among these models, and both EMD and
FM techniques are useful in improving the accuracies.

• Consider the differences between multi-EMD2FNN and single-EMD2FNN structures, the gain values of
multi-EMD2FNN model are generally smaller than those of single-EMD2FNN model. It indicates the340

multi-EMD2FNN model is more robust than single-EMD2FNN.

Table 7: The performances of different models on SSEC.

Models
training data testing data

MAE Gain RMSE Gain MAPE Gain MAE Gain RMSE Gain MAPE Gain

Benchmark: NN 0.0000 0.0000 0.0‰ 0.0000 0.0000 0.0‰
single-FNN -0.1408 -0.5235 -0.0‰ -0.4923 0.4900 -0.1‰
multi-FNN 1.001 0.1077 -0.0‰ 0.1374 -0.1435 -0.1‰
EMD2NN -7.0951 -16.1093 -2.1‰ 0.3309 10.0282 -0.2‰

single-EMD2FNN -0.9250 -14.5796 -1.9‰ -2.8577 1.6113 -1.0‰
multi-EMD2FNN -7.1983 -19.8979 -1.8‰ -1.5161 5.0094 -0.4‰

Table 8: The performances of different models on NASDAQ.

Models
training data testing data

MAE Gain RMSE Gain MAPE Gain MAE Gain RMSE Gain MAPE Gain

Benchmark: NN 0.0000 0.0000 0.0‰ 0.0000 0.0000 0.0‰
single-FNN 0.1552 -1.1318 0.1‰ -3.7139 -2.6285 -0.7‰
multi-FNN -0.1061 -0.1676 -0.1‰ -1.8645 -0.8479 -0.3‰
EMD2NN 1.8459 -0.9002 1.3‰ -3.7176 2.0391 -0.5‰

single-EMD2FNN -1.1246 -3.0685 -0.2‰ -5.1145 -4.4529 -0.9‰
multi-EMD2FNN -1.6514 -3.3447 -0.4‰ -8.6644 -6.8494 -1.6‰

Table 9: The performances of different models on S&P500.

Models
training data testing data

MAE Gain RMSE Gain MAPE Gain MAE Gain RMSE Gain MAPE Gain

Benchmark: NN 0.0000 0.0000 0.0‰ 0.0000 0.0000 0.0‰
single-FNN 0.012 -0.1202 -0.1‰ -0.1356 -0.2523 -0.2‰
multi-FNN -0.0053 -0.1218 -0.1‰ -0.1223 -0.3279 -0.1‰
EMD2NN -2.2764 -4.0868 -2.7‰ -3.2361 -5.0912 -2.7‰

single-EMD2FNN -3.9365 -4.9230 -3.6‰ -3.8347 -5.5865 -3.1‰
multi-EMD2FNN -4.0252 -5.8653 -3.7‰ -4.3960 -6.3499 -3.6‰
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Figure 14: The performance of the forecasting models on three datasets. Top: SSEC; Bottom left: NASDAQ; Bottom right: S&P
500.

Finally, the EMD2FNN models are compared against the WDBP technique that is proposed in (Wang et al.,
2011). The data from (Wang et al., 2011) is also the closing prices collected on the Shanghai Stock Exchange. The
total number of values is from 204 trading months, from January 1993 to December 2009. Table 10 lists the results
obtained from the WDBP (Wang et al., 2011) and the EMD2FNN models. From the table, the MAPE index is345

reduced from 19.48% to 6.47% and 5.68% corresponding to single-EMD2FNN and multi-EMD2FNN respectively.
This shows that the proposed technique has achieved a significant improvement in predicting accuracy, and also
proves that the multi-EMD2FNN is superior to the single-EMD2FNN.

Table 10: The performances of multi-EMD2FNN and WDBP on SSEC.

Models
training data testing data

MAE RMSE MAPE MAE RMSE MAPE

WDBP – – – 675.9543 847.5841 0.1948

single-EMD2FNN 83.7839 105.7786 0.0597 186.4379 235.7480 0.0647

multi-EMD2FNN 99.4046 136.8320 0.0673 164.1967 215.8639 0.0568

4.7 the Discussion on Profitability

Since having a high prediction accuracy does not necessarily imply that the strategy makes profit, we compute350

the profitability with a simple long-short trading strategy to prove the reliability of the EMD2FNN models in
trading, where we follow the philosophy of (Zhou et al., 2011) in viewing strategies as nonlinear transforms of
the input time series that help revealing the properties of the price generating process.

For each model, the so-called long-short strategy we use consists of buying (respectively selling) if the price
is predicted to increase (respectively decrease) from today to the next day. More specifically, one buys one unit355

of the index (position +1) if the price is predicted to increase. This strategy is kept until the first prediction for
a price decrease is obtained, at which time one sells the index (position −1), i.e., one sells the existing position
and further borrows one additional unit of the index and sells it. This short position −1 is reversed to position
+1 at the next prediction for an upward index direction, by buying two units of the index, where one unit is
used to cancel the short position and the other one is to be the net long position. And so on.360

We compare the performance of this simple long-short strategy for both single-EMD2FNN and multi-EMD2FNN
prediction models to (i) the buy-and-hold strategy, i.e., enter the market with buying one unit of index and hold-
ing the long position until the end; and (ii) a look-ahead ‘ex post trading strategy’, which would be realized if
one had perfect foresight of the sign of the price change from today to tomorrow. Although, the ‘ex post trading
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strategy’ can never be achieved in practice, and is expected to give extraordinary large returns, it provides an365

interesting upper bound of the performance.
Table 11 reports the performance metrics defined in Table 3 of the simple long-short strategy using our

proposed prediction models, together with those of the buy-and-hold (denoted as Benchmark) and of the look-
ahead ‘ex post trading strategy’. As expected, the Ex post strategy would achieve a whooping 285% of average
annual return (AAR) and zero drawdown since perfect foresight is assumed. In contrast, the Benchmark370

strategy delivers -1% of AAR with maximum drawdowns 19%. Remarkably, the single-EMD2FNN and multi-
EMD2FNN models respectively have the AAR close to 13% and 25% with small maximum drawdowns in the
range of 5%. Their Sharpe ratios are also impressive. From it, we can also see that the multi-EMD2FNN performs
much better than the single-EMD2FNN.

Table 11: The performance of the simple long-short strategy without transaction cost using EMD2FNN-based prediction models,
together with those of the buy-and-hold (denoted as Benchmark) and of the look-ahead ‘ex post trading strategy’ (denoted as Ex
post) for S&P500.

Transaction cost Measure Ex post Benchmark single-EMD2FNN multi-EMD2FNN

No

AAR 2.85 -0.01 0.13 0.25
MD 0.00 0.19 0.05 0.04
SR 10.05 0.07 1.72 2.60

AAR/MD +∞ -0.05 2.60 6.25
Trade Counts 59 1 17 22

It is often the case that very good results are reported in the absence of transaction cost (as well as when375

neglecting slippage and other real market frictions), while it wipes out all profits. In such a case, the prediction
ability of a model would be a statistical reality but would be economically irrelevant. The market would still
provide apparent arbitrage opportunities, which would be however in-exploitable due to the market frictions.

Transaction cost mainly consists of stamp duty, commission and transfer fees. In addition, an order to buy
at a given price may not be implemented at the desired price due to lack of counter-parties (lack of liquidity380

and fast moving prices), leading to adverse slippage. In order to simplify the process of estimating the impact
of transaction cost, we use a rather conservative value of 0.3% for each trade, to include all possible cost and
frictions. This means that a given transaction consisting of buying an index and then selling it in the future will
be exposed to a total of 0.6% of transaction cost.

Table 12 shows that, as expected, transaction cost reduces dramatically the AAR and other performance385

indicators. However, the multi-EMD2FNN still gives impressive results with AAR 14% and maximum drawdown
4%. Meanwhile, the single-EMD2FNN have the metrics with AAR 11% and maximum drawdown 17%.

Table 12: The performance of the simple long-short strategy with transaction cost using EMD2FNN-based prediction models,
together with those of the buy-and-hold (denoted as Benchmark) and of the look-ahead ‘ex post trading strategy’ (denoted as Ex
post) for S&P500.

Transaction cost Measure Ex post Benchmark single-EMD2FNN multi-EMD2FNN

Yes

AAR 1.66 -0.02 0.11 0.14
MD 0.01 0.19 0.17 0.05
SR 7.17 0.04 0.58 1.30

AAR/MD 166.0 -0.11 0.65 2.80
Trade Counts 59 1 16 23
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Figure 15: Top: Time evolution of the performance of the strategy in the test (out-of-sample) period based on the predictions of
the EMD2FNN-based models on S&P 500 index without taking transaction cost into account. Middle: buy and sell signals of the
single-EMD2FNN-based trading strategy. Bottom: buy and sell signals of the multi-EMD2FNN-based trading strategy.

Figure 16: Top: Time evolution of the performance of the strategy in the test (out-of-sample) period based on the predictions of
the EMD2FNN-based models on S&P 500 index with taking transaction cost into account. Middle: buy and sell signals of the
single-EMD2FNN-based trading strategy. Bottom: buy and sell signals of the multi-EMD2FNN-based trading strategy.

Figures 16 and 15 show the time evolution of the performance of the strategy in the test (out-of-sample)
period based on the predictions of the EMD2FNN models for two cases: taking or not taking the transaction cost
into consideration for the S&P 500, in comparison with the buy-and-hold strategy (that reproduces the AAR of390

the indices). The top panels of these three figures present the normalized cumulative compounded returns of the
buy-and-hold (black curve), single-EMD2FNN-based strategy (blue curve) and multi-EMD2FNN-based strategy
(red curve) respectively. The initial value of return is set as 1, and thus the initial volume equals to 1 divided
by the price at that base day. In the following days, we update the volume according to the return divided by
the close price one day before. In a sense, we compound the returns. The other two panels of each of these395

three figures show the corresponding buy or sell signals of the single-EMD2FNN-based trading strategy (middle
panel), and multi-EMD2FNN-based trading strategy (bottom panel).
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5. Concluding Remarks

This paper introduces a novel method for predicting the stock prices by integrating EMD, FM and the neural
network together. EMD is used to decompose the original nonlinear and non-stationary time series into IMFs400

that can be considered quasi-stationary. The produced IMFs are used as inputs to the neural network, which
incorporates the FM strategy to exploit the nonlinear interactions between features extracted at different time
scales. The resulting EMD2FNN can handle not only the nonlinearity but also the influence among time scales,
which are two aspects that the existing methods face challenges. The numerical experiments demonstrated that
the integrated methods have significant advantages in improving the prediction accuracies, measured by MAE,405

RMSE and MAPE. Furthermore, the profitability is computed with a simple long-short trading strategy to
examine the trading performance of the proposed models by taking transaction cost into account or not. The
performances, measured by AAR, MD, SR and AAR/MD, are also found economically significant.

This study is another example that demonstrates the power of combining EMD with neural network to achieve
outstanding performance in stock price predictions. In fact, we believe that EMD can be used in conjunction410

with other statistic or artificial intelligent strategies to form general methods for predicting, especially for the
time series that is nonlinear and non-stationary in nature. Various combinations in algorithm design can be
investigated in the future to tackle problems emerging from different applications.
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