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a b s t r a c t 

I investigate whether an expert system can be used for profitable long-term asset management. The trad- 

ing strategy of the expert system needs to be based on market predictions. To this end, I generate binary 

predictions of the market returns by using statistical and machine-learning algorithms. The methods used 

include logistic regressions, regularized logistic regressions and similarity-based classification. I test the 

methods in a contemporary data set involving data from eleven developed markets. Both statistical and 

economic significance of the results are considered. As an ensemble, the results seem to indicate that 

there is some degree of mild predictability in the stock markets. Some of the results obtained are highly 

significant in the economic sense, featuring annualized excess returns of 3.1% (France), 2.9% (Netherlands) 

and 0.8% (United States). However, statistically significant results are seldom found. Consequently, the re- 

sults do not completely invalidate the efficient-market hypothesis. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

This paper examines whether it is possible to use expert sys-

tems for long-term asset management in the stock markets. The

decision rule of such expert systems is trivially simple: Invest in

stocks if the stock market is likely to rise and invest in the money

market if the stock market is likely to decline. However, to this

end, one needs predictions of the market movements. According

to mainstream opinion in economics, it is impossible to predict

the stock markets, as that would generate an arbitrage opportu-

nity. This view is known as the efficient-market hypothesis (EMH;

e.g. Fama, 1991 ). However, there are other schools of thought.

For example, the adaptive-markets hypothesis of Lo (2004) states

that individuals use simple heuristics to trade in the stock mar-

kets, and consequently, they are not completely rational. This

seems to contradict EMH. Moreover, there are theoretical con-

structions within the discipline of neoclassical economics (e.g.

Singleton, 2006 , Chapter 9) which show that there can be some

degree of predictability in the stock markets, even if the assump-

tions of EMH are in force. Thus, it is a question of obvious empiri-

cal interest if the markets can be predicted or not. 

The empirical evidence regarding stock market predictability is

mixed. In an influential paper, Welch and Goyal (2008) refuted pre-

vious reports of market predictability. The argument was that most
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uthors hitherto had investigated in-sample correlations and the

odels had no out-of-sample predictive power. Even the in-sample

orrelations were often lost when the models were updated by

ew data. Thus, the results could be refuted as statistical arte-

acts. However, others have challenged the findings of Welch and

oyal (2008) . For example, Chevapatrakul (2013) has produced sig-

ificant out-of-sample predictions for the UK stock market. Simi-

arly, Skabar (2013) and Fiévet and Sornette (2018) have published

ignificant results regarding daily data from the US market. Thus,

he debate is ongoing. 

In this paper, I use contemporary statistical and machine-

earning methods to generate out-of-sample predictions in 11

eveloped stock markets. The methods considered involve ordi-

ary least squares, logistic regressions, regularized regressions (e.g.

ibshirani, 1996; Zou, 2006 ) and similarity-based classification

 Skabar, 2013 ). Some authors have reported it to be easier to give

 binary prediction of profit or loss than to give an estimate of

he expected return (e.g. Leung, Daouk, & Chen, 20 0 0; Nyberg,

011; Nyberg & Pönkä, 2016 ). At any rate, it is such sign predic-

ions that the expert system ultimately needs to manage the in-

estment. Thus, I have chosen sign prediction as the objective of

his study. I use a combination of statistical tests and trading sim-

lations to assess the potential of the expert system to perform

rofitable asset management. The rest of this paper is organized

s follows. Chapter 2 surveys related work. (The lessons learned

rom previous work to a large degree guide the modelling choices

ade in this paper.) Chapter 3 introduces the material and meth-

ds. The results are presented in Chapter 4. These are divided in

https://doi.org/10.1016/j.eswa.2018.07.061
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.07.061&domain=pdf
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wo main categories: Main results (Chapter 4.1) and results ob-

ained from sensitivity analyses (Chapter 4.2). Chapter 5 concludes

nd presents directions for future work. 

. Related work 

There is a large body of literature regarding stock market pre-

iction, both in-sample and out-of-sample. Consequently, it is pos-

ible to give only a few references to recent work in this paper.

s noted in the Introduction, Welch and Goyal (2008) refuted pre-

ictability in the stock markets. Some authors ( Fiévet & Sornette,

018; Lanne, Meitz, & Saikkonen, 2013 ) have pointed out that pre-

ictability in the stock markets is rather non-linear than linear,

nd consequently, most previous authors have been using meth-

ds ill-suited for the problem at hand. On the other hand, many

uthors have also found linear predictability in the stock markets

e.g. Chevapatrakul, 2013; Nyberg & Pönkä, 2016; Pönkä, 2016 ).

onsequently, I use a combination of linear and non-linear meth-

ds in this study. (Linearity here is to be understood in context of

he effects of covariates. If the effects of all covariates on the prob-

bility of profit are monotone, a model is said to be ‘linear’.) 

A number of factors are believed to affect the stock mar-

ets, thus allowing for profitable prediction. These involve market

olatility ( Chevapatrakul, 2013 ), oil price ( Gupta & Wohar, 2017;

iu, Ma, & Wang, 2015; Pönkä, 2016 ) and the lags of the US stock

arket return ( Narayan, Phan, & Narayan, 2018; Nyberg & Pönkä,

016 ). Dividend yield, interest rate, industrial production growth

nd exchange rate growth have also been suggested as potential

redictors ( Ang & Bekaert, 2007; Rapach, Strauss, & Zhou, 2013 ),

mong others. The factors affecting the stock market are believed

o be country-specific ( Hadhri & Ftiti, 2017 ). Thus, one would like

o have a data set sufficiently rich in covariates to attempt stock

arket prediction. One such data set is offered by the monthly

ata of Rapach et al (2013) , also analyzed by Nyberg and Pönkä

2016) and Pönkä (2016) . These data are also adopted for this

aper. 

Regarding sign prediction in the stock markets, any method

uited for binary classification may be used. A natural starting

oint are the logit and probit regressions (e.g. Leung et al., 20 0 0 ).

n the machine-learning literature, decision trees are well known,

nd they have also been applied to stock market prediction (e.g.

iévet & Sornette, 2018 ). Same applies to artificial neural net-

orks ( Zhong & Enke, 2017a,b ) and linear discriminant analy-

is ( Leung et al., 20 0 0 ). More exotic methods used in this do-

ain include fuzzy robust principal component analysis ( Zhong &

nke, 2017a ), copulas ( Anatolyev & Gospodinov, 2010 ), empirical

ode decomposition ( Pan & Hu, 2016 ) and similarity-based clas-

ification ( Skabar, 2013 ) which is also used in this paper. 

Previous literature offers a number of suggestions regarding the

ethods used for testing the expert system. Firstly, Welch and

oyal (2008) stress the importance of out-of-sample testing. Sec-

ndly, trading simulations carried out by using historical data are

entral to the credibility of the algorithm ( Nyberg, 2011 ). Ide-

lly, the trading strategy obtained from a predictive model is ro-

ust towards substantial trading costs. It may also be desirable to

est the sensitivity of the results towards other assumptions (cf.

arayan et al., 2018 ). However, strategies may often appear eco-

omically profitable, even if the predictions are not statistically

ignificant ( Nyberg, 2011 ). Consequently, it is advisable to test the

inary predictions by contrasting them against the reality, e.g. by

sing the Pesaran–Timmermann test (2009) . As a result of these

onsiderations, this paper features trading simulations, statistical

ignificance tests and excessive sensitivity analyses. All of these

re performed out of sample, by using rolling windows. Addition-

lly, the predictive accuracy of the methods is compared and a

anking of the methods is attempted. This comparison is based
n the model-confidence set algorithm of Hansen, Lunde, and Na-

on (2011) which tests all the models against each other. 

. Material and methods 

Let us consider a binary variable y t and a vector of continuous

nd binary covariates x t − 1 . The subscript t − 1 refers to the fact

hat the covariates are observed in the previous period. The prob-

em is to predict y t from x t − 1 . In this paper, y t is a monthly indi-

ator of profit or loss and x t − 1 involves macroeconomic variables.

 discuss two types of predictions, binary ( ̂  y mt = 0 , 1 ) and continu-

us ( p mt ∈ R ) where m = 1, …, 9 denotes the predictive model. The

ontinuous predictions are called probability scores and are model-

ased estimates of E ( y t | x t − 1 ). The binary predictions are calculated

y truncating the probability scores. 

Perhaps the most basic predictive method is ordinary least

quares (OLS), also known as the linear probability model in this

ype of setting ( Cameron & Trivedi, 2005 , Chapter 14). In certain

ases, it is possible that OLS predicts p mt < 0 or p mt > 1, but even

f this occurs, OLS may give better binary predictions than other,

ore sophisticated models. Consequently, OLS is used as a base-

ine model in this study. 

.1. Logistic regression 

Logistic regression is a type of generalized linear model

 McCullagh & Nelder, 1989 ). It is used extensively in many fields

f science to model binary data. It is based on the logistic link

unction 

( x ) = 

e x 

e x + 1 

, x ∈ R . (1)

Using this link function, logistic regression can be defined as 

( y t | x t−1 ) ∼ B 

(
�

(
β0 + β′ x t−1 

))
(2) 

here B denotes a Bernoulli distribution. This implies the following

og-likelihood function 

 

(
y| X , β

)
= 

T ∑ 

t=1 

y t log �
(
β0 + β′ x t−1 

)

+ 

T ∑ 

t=1 

( 1 − y t ) log 
(
1 − �

(
β0 + β′ x t−1 

))
(3) 

here X is the matrix of covariates, β is the vector of their regres-

ion coefficients and β0 is an intercept. Another popular choice is

o use the probit link function in place of �. This yields the pro-

it regression model. In this paper, logit regression is taken as a

tarting point, in line with Anatolyev and Gospodinov (2010) and

hevapatrakul (2013) . With a suitable scaling of regression co-

fficients, the two link functions are virtually indistinguishable

 Cameron & Trivedi, 2005 , Chapter 14). 

Logistic regression if fitted by maximizing (3) over β0 and β. If

ll covariates are included in X , this yields a full model which is

rone to overfitting. To this end, one usually performs some sort

f model choice. In this paper, I use logistic regression in combi-

ation with Akaike’s information criterion (AIC; e.g. Akaike, 1974 )

nd Bayesian information criterion (BIC; Schwarz, 1978 ). I perform

tepwise search to minimize AIC and BIC. The idea of this algo-

ithm is that it starts with the full model and then removes and

dds covariates one by one, until it reaches a local minimum of AIC

r BIC. To summarize, there are three variants of logistic regression

n this paper: full model (henceforth, FM) and models chosen by

IC and BIC. 
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3.2. Regularized regression 

In regularized regression, one maximizes a regularized log-

likelihood function in place of the usual one. I modify logistic re-

gression (3) into regularized logit regression as 

� ∗
(
y| X , β

)
= 

T ∑ 

t=1 

y t log �
(
β0 + β′ x t−1 

)

+ 

T ∑ 

t=1 

( 1 − y t ) log 
(
1 − �

(
β0 + β′ x t−1 

))
− λP 

(
β
)

(4)

where P is some convex function known as the penalty and λ >

0 determines the strength of the penalty. The choice of P deter-

mines the type of regularized regression. I use regularization to

avoid overfitting. Thus, it can be seen as an alternative approach to

AIC and BIC. I consider four variants of the penalty function P ( β).

Three of these are commonplace in literature and have been used

in a wide variety of applications across different disciplines. These

three are as follows: 

L1-norm, giving Lasso regression ( Tibshirani, 1996 ), 

P 
(
β
)

= 

p ∑ 

j=1 

∣∣β j 

∣∣, (5)

a mixture of L1-norm and L2-norm, giving Elastic Net (henceforth,

EN; Zou & Hastie, 2005 ), 

P 
(
β
)

= 

p ∑ 

j=1 

(
1 − α

2 

β2 
j + α

∣∣β j 

∣∣), α ∈ [ 0 , 1 ] , (6)

and L2-norm, giving ridge regression ( Hoerl & Kennard, 1970 ), 

P 
(
β
)

= 

p ∑ 

j=1 

β2 
j . (7)

Lasso and EN with α > 0 perform variable choice, i.e. they tend

to set less important coefficients to zero. Ridge merely offers a

shrinkage estimate of the full model (i.e. an estimate such that
ˆ β2 

j 
< 

ˆ β( ML )2 
j 

for all j ), but it is presented in this paper for com-

pleteness. 

Additionally, a fourth type of regularized regression is consid-

ered. This is the adaptive Lasso of Zou (henceforth, AL; Zou, 2006 ).

It has the penalty function 

P 
(
β
)

= 

p ∑ 

j=1 

∣∣β j 

∣∣∣∣b j ∣∣γ (8)

where b j is some initial, statistically consistent estimate of β j and

γ > 0 is a hyper-parameter to be freely chosen. It has been shown

that AL has Oracle properties in generalized linear models, includ-

ing logistic regression. The Oracle properties imply that the estima-

tor is consistent and asymptotically normal, while the coefficients

of false predictors tend to be exactly zero. More formally, 

lim 

n →∞ 

P 

(
ˆ β j = 0 

)
= 1 (9)

for all j such that β j = 0. This property is very useful in model

choice. For a proof, see Zou (2006) . 

In regularized regression, λ, α and γ are hyper-parameters and

do not have true values as such. In line with this, the type of b j 
in (8) is not determined by theory. In EN, I set α = 0.5 to repre-

sent a compromise between Lasso and ridge. In AL, I set γ = 0.5,

as large values of γ tend to cause numerical problems (personal

observation). In AL, I set 

b j = 

ˆ β( ML ) 
j 

, (10)

i.e. I use the maximum-likelihood estimate from full model. Finally,

I use leave-one-out cross validation to choose the value of λ. This
akes Lasso, EN, ridge and AL deterministic algorithms, eliminat-

ng random noise. In cross validation, I define the loss function as

eviance 

 

(
y| β)

= −2 

10 ∑ 

k =1 

∑ 

u ∈ A k 

[
y u log �

(
β0 + β′ x u −1 

)
+ ( 1 − y u ) log 

(
1 − �

(
β0 + β′ x u −1 

))]
(11)

here A k is the test data on cross validation fold k . Deviance

easures the discrepancy between observation and prediction.

 fit Lasso, EN, ridge and AL by using the R package glmnet

 Friedman, Hastie, & Tibshirani, 2010 ). 

.3. Similarity-based classification 

This method is a variant of Skabar’s (2013) similarity-based

lassification (SiBC). SiBC is a novel machine-learning method

hich is fast to calculate and robust to non-linearity. Here, I briefly

xplain the theory of SiBC, noting the modifications I have made. 

Let A ω denote the set where y t = ω ∈ {0, 1}. SiBC characterizes

 0 and A 1 in terms of their typical x k values and compares the x t 
alue of a new observation to these characterizations. In the no-

ation below, it is assumed that t and u are two arbitrary points

n time, such that x t and x u belong to the same set A ω . The same

teps (12) –(18) are performed for both A 0 and A 1 . SiBC character-

zes A 0 and A 1 as follows. 

Firstly, let us define the distance of x t and x u as 

 

2 ( x t , x u ) = ( x t − x u ) 
′ B 

−1 ( x t − x u ) . (12)

I define B as the sample covariance of x t within class A ω . In

he rare cases where B is not invertible, I use the Moore-Penrose

seudoinverse in place of B 

− 1 (pseudoinverse in R). Subsequently,

he similarity of x t and x u is calculated as 

 ( x t , x u ) = exp 

{
−d 2 ( x t , x u ) 

2 σ 2 

}
. (13)

Skabar (2013) discusses many choices of σ , as this parameter

ictates how fast similarity falls with distance. I define 

2 = 

1 

n 

2 

∑ 

t∈ A ω 

∑ 

u ∈ A ω 
d 2 ( x t , x u ) . (14)

o avoid lengthy bootstrap schemes. 

Subsequently, a graph Laplacian S is calculated for each class as

 = D 

−1 / 2 W D 

−1 / 2 (15)

here the entries of matrix D are given by 

d ii = 

n ∑ 

j=1 

w i j 

 i j = 0 , i � = j 

, (16)

nd W is given by (13) , i.e. w ij = w ( x i , x j ). Then, C is calculated as

he dominant eigenvector of the equation 

C = C . (17)

C is called the centrality vector and serves to measure the cen-

rality of each observation within its own class ( Skabar, 2013 ). No-

ably, B , σ , W, S, D and C are class-specific, even though this is not

xplicit in the notation. 

Finally, 12 –(17) are used to classify a new observation, denoted

ere as x t . The likelihood of x t falling in class ω is defined as 

p ( x t | ω ) = n ω C ω ( x t ) , ω = 0 , 1 (18)

n SiBC ( Skabar, 2013 ). Above, n ω is the sample size of class ω and

 ω ( x t ) is defined as 

 ω ( x t ) = 

∑ 

i ∈ A ω 

( 

w ti c i √ ∑ 

j∈ A ω w t j 

∑ 

k ∈ A ω w jk 

) 

(19)
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here w ti is obtained by applying (13) to x t and x i where i ∈ A ω .

n (19) , c i and w jk are the entries of matrices C and W , respectively.

Above, (17) specifies a network-based pattern of likelihood for

 new observation x t . The question remains, how to translate this

nto the probability score p mt . In this paper, I define 

p mt = 

p ( x t | 1 ) 

p ( x t | 0 ) + p ( x t | 1 ) 
, (20) 

.e. I use the relative likelihood of y t = 1. Skabar (2013) uses a

ayesian formulation, but this is equivalent to the present choice,

f an uninformative prior is used. 

.4. Testing the predictions 

.4.1. Statistical significance 

For testing statistical significance, I truncate the probability

cores into binary predictions as ˆ y mt = 1 { p mt > 0 . 5 } for each model

 . Then, I contrast them with the reality ( y t ) and calculate the

esaran–Timmermann test ( PT test, 2009 ). To illustrate the results

rom PT test, I calculate a summary statistic 

 mt = sign 

(
cor 

(
ˆ y mt , y t 

))√ 

χmt (21) 

here χmt is PT test statistic for model m . Under the null of no

ssociation, S mt has an asymptotical standard normal distribution

 Pesaran & Timmermann, 2009 ) and is thus easy to interpret. 

.4.2. Model comparison 

I perform model comparison by calculating model confidence

ets (MCSs) by the R package MCS ( Catania & Bernardi, 2015 ). An

CS can be understood as a set where i) the best model is in-

luded and ii) none of the models differ significantly from each

ther ( Hansen et al., 2011 ). I measure model performance by the

uadratic loss function 

 mt = ( y t − p mt ) 
2 (22) 

nd assess significance at 0.05 level by using the T R , M 

approach

 Hansen et al., 2011 ). In the other approach of Hansen et al. (2011) ,

roperty ii) is modified so that none of the models differ signifi-

antly from the mean performance of the MCS. However, I find the

est model a more natural point of comparison. 

.4.3. Trading simulations 

I perform trading simulations according to the following algo-

ithm. These simulations demonstrate what would be obtained if

n expert system was let to manage investments in the real world.

1. Truncate the probability scores p mt into binary predictions as

ˆ y mt = 1 { p mt > 0 . 5 } . 
2. Assume ˆ y m 0 = 0 , indicating that the investor starts with cash. 

3. At each time step t = 1, 2, …, if ˆ y mt = 1 , invest all money in

stocks. If ˆ y m ( t−1 ) = 0 , a trading cost of ζ s = 0.50% is incurred. 

4. At each time step t = 1, 2, …, if ˆ y mt = 0 , invest all money in

the risk-free rate. If ˆ y m ( t−1 ) = 1 , a trading cost of ζ b = 0.10% is

incurred. 

The stock return is taken to be the return of the stock mar-

et index obtained from data, whereas the risk-free rate is taken

o be the three-month interest rate. Parameters ζ s and ζ b mea-

ure the trading costs, and their values follow the convention in

he field ( Chevapatrakul, 2013; Nyberg, 2011 ). However, the values

f ζ s and ζ b are doubled in the sensitivity analysis, as trading suc-

ess is likely to be sensitive towards these parameters. 

For each model m , a resepective portfolio is obtained. I compare

he historical performance of this portfolio to that of the buy-and-

old (BH) strategy. Portfolio m is called mean-variance dominat-

ng, if the mean return is higher and the volatility is lower than
or BH. According to standard financial theory, any risk averse in-

estor should favour such portfolios over the BH portfolio. In this

nalysis, I concern monthly figures, as mean-variance analysis is

ost relevant in short time scales where the portfolio returns are

pproximately normal (as opposed to e.g. log-normal). 

.5. Empirical data 

I use the same data as Rapach et al. (2013) because these data

nvolve a number of macroeconomic covariates. The data com-

rise nine variables: Excess stock market return (denoted z t in the

equel), real oil price, three-month interest rate, dividend yield,

PI inflation, term spread, the growth of industrial production,

he US recession indicator, and the growth rate of real exchange

ate (for the non-US markets). Some of these covariates have been

ound highly significant predictors in the previous literature (see

hapter 2). The data have been downloaded from the homepage

f David Rapach ( http://sites.slu.edu/rapachde/home/research ) and

hey concern the time period 1980/03 - 2010/12. The countries

oncerned are Australia (AUS), Canada (CAN), France (FRA), Ger-

any (GER), Italy (ITA), Japan (JPN), the Netherlands (NLD), Swe-

en (SWE), Switzerland (SUI), the United Kingdom (UK) and the

nited States (US). Industrial production was missing from AUS,

TA and SUI. 

I use the lags of the nine variables to predict the binary excess

eturn ( y t = 1{ z t > 0}). I also consider the lags of the binary returns,

nd for the non-US data, the lagged US excess return. As some of

he variables are highly non-stationary in some of the markets, I

ake first differences of all predictor variables. The total sample size

s T = 370, of which one observation is lost due to differentiation.

he size of the rolling windows is taken to be 185 and the models

re tested by calculating 184 predictions. Thus, the period used for

ut-of-sample testing is 1995/08 - 2010/11. 

. Results 

.1. Main results 

Table 1 presents results from PT test where ˆ y mt and y t are com-

ared to each other. This analysis tests the predictive power in the

implest, most intuitive way: Can you tell the correct label or not?

ignificant associations can be found in four cases: by using SiBC

n Canada, by using Lasso or EN in Netherlands, and by using Lasso

n Sweden. The point estimate of success ratio appears fairly high

around 0.60) also in a few other cases. However, this is not to be

nterpreted as significant, because an investor could get more than

0% of the sign returns right merely by guessing that the index is

lways rising. In fact, the more uneven the distribution of y t , the

asier it is to guess correctly. Consequently, a rigorous statistical

est has been used. Furthermore, in Table 1 , the summary statistic

 mt is sometimes negative, implying a negative correlation of pre-

iction and reality (significant only for SiBC in CAN). 

Table 2 presents results from the model comparison exercise.

he results are fairly even. Most methods are present in all model

onfidence sets (AIC, BIC, Lasso, EN, ridge, AL and SiBC). OLS and

M are present in 10 out of 11 MCSs. Based on these results, it is

mpossible to say which method is the best. Consequently, it is of

nterest to try variants of the MCS procedure, as has been done in

he sensitivity analyses (see Appendix). The results of this exercise

re discussed in Chapter 4.2. 

Table 3 presents results from the trading simulations. Best re-

ults can be found by using ridge in FRA which brings excess re-

urns of 24 monthly basis points (24 mbp), and by using Lasso in

LD (22 mbp). Annualized, this would mean 3.1% excess returns

http://sites.slu.edu/rapachde/home/research
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Table 1 

Results of PT test. The format of the numbers is such that the first figure is success ratio, the figure in parenthesis is S mt , and the figure in square brackets 

is the P value. S mt is a summary statistic calculated out of PT test statistic and it has an asymptotic standard normal distribution. The sign of S mt tells the 

sign of correlation between prediction and reality. NA indicates cases where PT test cannot be calculated, because the model always predicts either profit or 

loss. The significance codes are: ∗ significant at 0.05 level, ∗∗ significant at 0.01 level, ∗∗∗ significant at 0.001 level. 

AUS CAN FRA GER ITA JPN NLD SWE SUI UK US 

OLS 0.57 

( −0.63) 

[0.53] 

0.59 

(1.3) 

[0.21] 

0.6 

(1.3) 

[0.18] 

0.54 

(0.15) 

[0.88] 

0.51 

(0.39) 

[0.7] 

0.51 

(0.12) 

[0.9] 

0.59 

(1) 

[0.31] 

0.59 

(1.4) 

[0.16] 

0.6 

( −0.019) 

[0.98] 

0.55 

( −0.28) 

[0.78] 

0.56 

(0.57) 

[0.57] 

FM 0.57 

( −0.53) 

[0.59] 

0.58 

(1.1) 

[0.26] 

0.59 

(1.2) 

[0.24] 

0.54 

(0.18) 

[0.86] 

0.5 

(0.22) 

[0.82] 

0.52 

(0.47) 

[0.64] 

0.59 (0.84) 

[0.4] 

0.6 

(1.7) 

[0.083] 

0.6 

( −0.16) 

[0.88] 

0.54 

( −0.44) 

[0.66] 

0.57 

(0.98) 

[0.33] 

AIC 0.59 

( −0.026) 

[0.98] 

0.58 

(0.79) 

[0.43] 

0.55 

(0.33) 

[0.74] 

0.54 

(0.32) 

[0.75] 

0.52 

(0.81) 

[0.42] 

0.49 

( −0.63) 

[0.53] 

0.57 (0.32) 

[0.75] 

0.6 

(1.8) 

[0.071] 

0.6 

( −0.29) 

[0.77] 

0.54 

( −0.68) 

[0.49] 

0.53 

( −0.81) 

[0.42] 

BIC 0.62 

(0) 

[NA] 

0.58 

(0.69) 

[0.49] 

0.61 (1.1) 

[0.27] 

0.57 

(0.58) 

[0.56] 

0.52 

(0.56) 

[0.57] 

0.47 

( −0.24) 

[0.81] 

0.61 (0.93) 

[0.35] 

0.6 

(1.5) 

[0.13] 

0.62 

( −0.83) 

[0.41] 

0.59 

( −0.88) 

[0.38] 

0.54 

( −1.8) 

[0.065] 

Lasso 0.61 

( −0.085) 

[0.93] 

0.57 

( −0.57) 

[0.57] 

0.61 

(0.69) 

[0.49] 

0.57 

(1.1) 

[0.27] 

0.53 

(1.1) 

[0.29] 

0.51 

(0.083) 

[0.93] 

0.64 (2.3) 

[0.022] ∗
0.61 

(2.1) 

[0.04] ∗

0.64 

(0.56) 

[0.58] 

0.6 

(1.2) 

[0.22] 

0.56 

( −1.1) 

[0.26] 

EN 0.61 

( −0.085) 

[0.93] 

0.56 

( −0.82) 

[0.41] 

0.61 

(0.44) 

[0.66] 

0.56 

(0.65) 

[0.51] 

0.53 

(1.2) 

[0.25] 

0.51 

(0.22) 

[0.83] 

0.64 (2.7) 

[0.0079] ∗∗
0.61 

(1.8) 

[0.073] 

0.63 

(0.23) 

[0.82] 

0.6 

(1.2) 

[0.24] 

0.57 

( −0.87) 

[0.39] 

ridge 0.62 

(0) 

[NA] 

0.61 

(0.71) 

[0.48] 

0.63 

(1.4) 

[0.15] 

0.59 

(1.3) 

[0.19] 

0.49 

( −0.28) 

[0.78] 

0.49 

( −0.81) 

[0.42] 

0.61 (0.13) 

[0.9] 

0.6 

(1.6) 

[0.12] 

0.63 

( −0.053) 

[0.96] 

0.59 

(0) 

[NA] 

0.59 

(0.63) 

[0.53] 

AL 0.61 

(0.85) 

[0.39] 

0.58 

(0.1) 

[0.92] 

0.6 

(0.28) 

[0.78] 

0.58 

(1.5) 

[0.14] 

0.52 

(0.93) 

[0.35] 

0.54 

(1.2) 

[0.24] 

0.61 (0.77) 

[0.44] 

0.6 

(1.7) 

[0.087] 

0.61 

( −0.7) 

[0.48] 

0.58 

( −0.98) 

[0.33] 

0.57 

( −0.24) 

[0.81] 

SiBC 0.62 

(0.21) 

[0.83] 

0.54 

( −2.5) 

[0.014] ∗

0.61 

(0.56) 

[0.58] 

0.58 

(0.71) 

[0.48] 

0.44 

( −0.41) 

[0.68] 

0.48 

( −0.72) 

[0.47] 

0.6 ( −1.1) 

[0.28] 

0.58 

( −0.048) 

[0.96] 

0.65 

(1.5) 

[0.14] 

0.6 

(1.4) 

[0.16] 

0.61 

(1.6) 

[0.099] 

Table 2 

Model confidence sets (MCSs) based on mean squared error. The figures in parenthesis are the mean squared errors. 

The most accurate method for each market is indicated by an asterisk, but the models within an MCS cannot be 

statistically distinguished from each other. 

AUS OLS (0.26), FM (0.26), AIC (0.25), BIC (0.24), Lasso (0.24), EN (0.24) ∗ , ridge (0.24), AL (0.24), SiBC (0.24) 

CAN OLS (0.25), FM (0.25), AIC (0.24), BIC (0.25), Lasso (0.25), EN (0.25), ridge (0.24) ∗ , AL (0.24), SiBC (0.25) 

FRA OLS (0.26), FM (0.25), AIC (0.26), BIC (0.25), Lasso (0.24), EN (0.25), ridge (0.24) ∗ , AL (0.25), SiBC (0.24) 

DEU AIC (0.26), BIC (0.26), Lasso (0.26), EN (0.26), ridge (0.25) ∗ , AL (0.25), SiBC (0.25) 

ITA OLS (0.27), FM (0.27), AIC (0.27), BIC (0.26), Lasso (0.25), EN (0.25) ∗ , ridge (0.25), AL (0.26), SiBC (0.26) 

JPN OLS (0.27), FM (0.27), AIC (0.26), BIC (0.26), Lasso (0.25), EN (0.25), ridge (0.25), AL (0.25), SiBC (0.25) ∗

NLD OLS (0.25), FM (0.25), AIC (0.25), BIC (0.24), Lasso (0.23) ∗ , EN (0.23), ridge (0.24), AL (0.24), SiBC (0.24) 

SWE OLS (0.25), FM (0.24), AIC (0.24), BIC (0.25), Lasso (0.24), EN (0.24), ridge (0.24) ∗ , AL (0.24), SiBC (0.25) 

CHE OLS (0.24), FM (0.24), AIC (0.23), BIC (0.24), Lasso (0.24), EN (0.24) ∗ , ridge (0.24), AL (0.23), SiBC (0.24) 

UK OLS (0.26), FM (0.26), AIC (0.26), BIC (0.25), Lasso (0.24), EN (0.24) ∗ , ridge (0.24), AL (0.25), SiBC (0.24) 

US OLS (0.26), FM (0.26), AIC (0.26), BIC (0.26), Lasso (0.25), EN (0.25), ridge (0.25), AL (0.25), SiBC (0.25) ∗
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1  
for FRA, and 2.9% excess returns for NLD. However, a more typical

example is perhaps OLS in US which has 6 mbp, yielding 0.77% an-

nualized excess returns. Based on the trading simulations, AL and

SiBC seem to be promising methods, as they can generate excess

returns in most of the markets concerned (in six and seven mar-

kets, respectively). However, statistical significance ( Table 1 ) coin-

cides with economic significance only in three cases: For Lasso and

EN in NLD, and for Lasso in SWE. It is a common result in literature

that statistical significance and results from trading simulations do

not coincide (e.g. Nyberg, 2011 ). Given the fact that the stock mar-

kets are notoriously difficult to forecast, the predictive power of

algorithms is bound to be small. Consequently, the present sample

size ( T = 184 used for testing the predictions) may be too small to

detect any significant effects which may partly explain the negative

results of Table 1 . 

Fig. 1 illustrates the trading simulations in four markets. Ridge

in FRA beats consistently the index. Yet, it was found statistically

insignificant in Table 1 . EN in ITA is neither economically nor sta-

tistically significant. Yet, it offers a relatively smooth performance

as a result of decreased volatility. Lasso in NLD and SWE is eco-

nomically and statistically significant in both markets. Yet, in NLD,

it first tracks the index and then for a while underperforms, with
he economic gains occurring only towards the end of the sampling

eriod. This illustrates how appealing summary statistics may be

btained, even if the results are not consistent in time (cf. Welch

 Goyal, 2008; Liu et al., 2015 ). 

.2. Robustness 

This Chapter presents a summary of the results obtained in sen-

itivity analyses. These analyses are explained in full detail in Ap-

endix. The names of the analyses here refer to Appendix, such

hat the first part of the name indicates the primary analysis, e.g.

T-1 is a perturbation of the Pesaran-Timmermann test. Analyses

-1, X-2 and X-3 cover all of the analyses presented in the main

atter. 

The results are somewhat sensitive towards the choice of sta-

istical test ( PT-1 ). Positive results of PT test and Fisher’s exact test

nly coincide for Lasso and EN in NLD. On the other hand, both

ests produce null results in most cases. Relaxing the significance

hreshold of PT test does not much improve the results ( PT-2 ). As

xpected, changing the loss function in the MCS algorithm ( MCS-

 ) changes the ranking of the methods, but the results are still
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Table 3 

Results of the trading simulations. The format of the numbers is such that the first figure is the mean return, the figure in parenthesis is the volatility and 

the figure in square brackets is the Sharpe’s ratio. Portfolios which mean-variance dominate the buy-and-hold portfolio (BH) are indicated by an asterisk. All 

figures are monthly percentage points. 

AUS CAN FRA GER ITA JPN NLD SWE SUI UK US 

BH 0.41 

(3.8) 

[0.11] 

0.61 

(4.7) 

[0.13] 

0.58 

(5.6) 

[0.1] 

0.53 

(6.2) 

[0.085] 

0.4 

(6.4) 

[0.064] 

−0.0021 

(5.2) 

[ −0.0 0 031] 

0.53 

(5.9) 

[0.089] 

0.83 

(6.4) 

[0.13] 

0.61 

(4.7) 

[0.13] 

0.29 

(4.2) 

[0.068] 

0.43 

(4.7) 

[0.093] 

OLS 0.14 

(3.5) 

[0.04] 

0.54 

(3.3) 

[0.17] 

0.58 

(3.9) 

[0.15] ∗

0.34 

(5) 

[0.07] 

0.13 

(4.2) 

[0.031] 

0.0028 

(3.3) 

[0.0 0 098] ∗

0.65 

(5.1) 

[0.13] ∗

0.73 

(5.3) 

[0.14] 

0.52 

(4.3) 

[0.12] 

0.23 

(3.3) 

[0.07] 

0.49 

(3.9) 

[0.13] ∗

FM 0.12 

(3.5) 

[0.036] 

0.52 

(3.3) 

[0.16] 

0.53 

(3.9) 

[0.14] 

0.32 

(4.9) 

[0.065] 

0.1 

(4.2) 

[0.026] 

0.033 

(3.3) 

[0.01] ∗

0.64 

(5.1) 

[0.12] ∗

0.79 

(5.3) 

[0.15] 

0.46 

(4.3) 

[0.11] 

0.21 

(3.3) 

[0.063] 

0.51 

(3.9) 

[0.13] ∗

AIC 0.25 

(3.6) 

[0.068] 

0.58 

(3.5) 

[0.17] 

0.32 

(4.2) 

[0.076] 

0.44 

(5.1) 

[0.087] 

0.31 

(3.9) 

[0.08] 

−0.061 

(3.1) 

[ −0.019] 

0.68 

(4.9) 

[0.14] ∗

0.84 

(5.3) 

[0.16] ∗

0.44 

(4.4) 

[0.1] 

0.099 

(3.8) 

[0.027] 

0.31 

(3.9) 

[0.08] 

BIC 0.41 

(3.8) 

[0.11] 

0.66 

(3.8) 

[0.17] ∗

0.57 

(5) 

[0.11] 

0.41 

(5.7) 

[0.071] 

0.29 

(4.8) 

[0.062] 

−0.18 

(3.5) 

[ −0.052] 

0.59 

(5.6) 

[0.11] ∗

0.79 

(5.7) 

[0.14] 

0.5 

(4.6) 

[0.11] 

0.27 

(4.2) 

[0.064] 

0.31 

(4.5) 

[0.068] 

Lasso 0.35 

(3.8) 

[0.093] 

0.5 

(4.2) 

[0.12] 

0.65 

(5) 

[0.13] ∗

0.51 

(5.5) 

[0.093] 

0.27 

(4.1) 

[0.068] 

−0.037 

(3) 

[ −0.012] 

0.75 

(5.6) 

[0.13] ∗

0.95 

(5.8) 

[0.16] ∗

0.65 

(4.6) 

[0.14] ∗

0.36 

(4.1) 

[0.088] ∗

0.38 

(4.3) 

[0.089] 

EN 0.35 

(3.8) 

[0.093] 

0.49 

(4.3) 

[0.12] 

0.63 

(5) 

[0.13] ∗

0.47 

(5.5) 

[0.086] 

0.36 

(4) 

[0.091] 

−0.032 

(3) 

[ −0.011] 

0.69 

(5.7) 

[0.12] ∗

0.87 

(5.9) 

[0.15] ∗

0.63 

(4.6) 

[0.14] ∗

0.31 

(4.2) 

[0.073] ∗

0.4 

(4.3) 

[0.092] 

ridge 0.41 

(3.8) 

[0.11] 

0.76 

(4.1) 

[0.18] ∗

0.81 

(4.7) 

[0.17] ∗

0.6 

(5.8) 

[0.1] ∗

0.028 

(4.2) 

[0.0078] 

−0.0078 

(3.3) 

[ −0.0022] 

0.48 

(5.8) 

[0.082] 

0.82 

(5.9) 

[0.14] 

0.63 

(4.7) 

[0.14] ∗

0.29 

(4.2) 

[0.068] 

0.49 

(4.4) 

[0.11] ∗

AL 0.35 

(3.8) 

[0.094] 

0.62 

(4.1) 

[0.15] ∗

0.67 

(4.7) 

[0.14] ∗

0.55 

(5.4) 

[0.1] ∗

0.33 

(4.3) 

[0.077] 

0.17 

(2.9) 

[0.059] ∗

0.49 

(5.8) 

[0.085] 

0.98 

(5.4) 

[0.18] ∗

0.56 

(4.4) 

[0.13] 

0.24 

(4) 

[0.059] 

0.44 

(4.3) 

[0.1] ∗

SiBC 0.41 

(3.8) 

[0.11] ∗

0.38 

(4.5) 

[0.085] 

0.63 

(5.2) 

[0.12] ∗

0.54 

(5.6) 

[0.096] ∗

−0.34 

(3.4) 

[ −0.097] 

0.029 

(3.5) 

[0.0084] ∗

0.51 

(5.9) 

[0.086] 

0.78 

(6.4) 

[0.12] 

0.76 

(4.5) 

[0.17] ∗

0.3 

(4.1) 

[0.075] ∗

0.57 

(4.2) 

[0.13] ∗
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ery even. Likewise, relaxing the significance threshold ( MCS-2 and

CS-3 ) does not much help ranking the methods. 

The results are surprisingly robust towards increasing the trad-

ng costs ( Trading-1 ). For example, in Netherlands, mean-variance

ominating portfolios can still be constructed by using six meth-

ds. Lasso can still be used to obtain economically significant re-

ults in five markets and the best annual excess returns still ex-

eed 2%. Eliminating the trading costs ( Trading-2 ) greatly improves

he economic significance of the results. If the costs are eliminated,

ost methods can be used to construct mean-variance dominating

ortfolios in the majority of markets concerned. The use of soft

oundaries (i.e. acting on basis of p mt , not ˆ y mt ) gives mixed re-

ults, improving the performance in some markets and impairing

t in others ( Trading-3 ). 

Using GARCH-based volatility ( Engle & Kroner, 1995 ) as a

ovariate ( X-1 ) gives mixed results and changes the pattern

f statistical significance. This is contrary to earlier findings

 Chevapatrakul, 2013 ). Some of the most interesting results are

ound in X-2 where y t is re-defined as y t = 1{ z t > −0.02}, i.e. as a

arge downturn not occurring. The results are generally better than

or the original response variable y t = 1{ z t > 0}. This is reflected

oth in the PT test and in trading simulations. Some of the PT

est results are highly significant, and statistically significant pre-

ictions can now be generated in the majority of markets. In line

ith this, mean-variance dominating portfolios can now be gen-

rated in all markets. The best annual excess returns exceed 4%

n this analysis. Thus, predicting large downturns seems as a prof-

table direction for future research. However, some of the models

lways predict y t = 1. This can be seen as a limitation, because in

hese cases, the models cannot do any better than BH. This be-

aviour seems to be more common for ridge and SiBC than for

ther methods. 

In X-3 , random forests ( Breiman, 2001 ) and artificial neural net-

orks (e.g. Ripley, 1996 ) are included in the suite of models. Ran-
om forests generate economically and statistically significant re-

ults for the UK market (9 mbp and P = 0.002). Neural networks do

ot produce any statistically significant results and underperform

n the model comparison. This may partly result from the fact that

hese two methods (random forests and neural networks) are used

ere with default parameter values to save computation time. Oth-

rwise, the inclusion of new methods does not change the results. 

. Conclusions 

This paper demonstrates how algorithmic methods and macroe-

onomic covariates can be used to construct an expert system to

erform independent trading in the stock markets. Some of the re-

ults are qualitatively appealing, but statistically significant results

re seldom found. Moreover, for a large number of statistical tests,

ositive results are bound to occur randomly. In Table 1 , there

re four significant associations, about as many as would be ex-

ected at random (4.95). In the trading test ( Table 3 ), there are 39

ean-variance dominating portfolios, significantly less would be

xpected if the portfolios were equally likely to be mean-variance

ominating or not ( P = 0.02). However, if the trading costs are re-

oved (Appendix), there are 61 dominating portfolios, more than

ould be expected at random ( P = 0.008). 

Interesting results are found by using Lasso and Elastic Net in

etherlands. These results are both statistically and economically

ignificant ( Tables 1 and 3 , respectively) and they are robust both

owards the choice of statistical test and increasing the trading

osts (Appendix). Moreover, very interesting results are found if

he target of the analysis is shifted, i.e. if the algorithms are used

o predict large downturns (more than 2% monthly) in place of sign

eturn. In that case, statistically significant predictions can be gen-

rated in most markets and economically significant results can be

btained in all markets. This result gives hope that there is use for
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Fig. 1. Within each panel, the solid line represents the model-based portfolio, with the initial investment scaled as 100. The dotted line represents the value of the total 

return index (BH strategy in the text). The investment horizon in this figure is 1995/08 - 2010/11 and the unit of x axis is months. ∗ refers to statistical significance at 

0.05 level (see Results). The annualized mean returns of the model-based portfolios are 10.2%, 4.4%, 9.4% and 12.0% in FRA, ITA, NLD and SWE, respectively. These may be 

compared to the annualized mean returns of the BH strategy (7.1%, 5.0%, 6.5% and 10.4% in FRA , ITA , NLD and SWE, respectively). 
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expert systems in long-term asset management. The question is,

what to predict and by using which data. 

Based on these considerations, the following directions for fu-

ture research may be given: 

1. Development of standardized, high-quality data sets which in-

volve meaningful covariates. Then, these data sets may be used

as a basis for benchmarking different methods and comparing

them to each other. The data set of Rapach et al. (2013) , also

used in this paper, is emerging as one such data set, but it is

starting to be rather old, with the latest observations coming

from 2010. 

2. Use of higher-frequency, e.g. daily data. While daily stock mar-

ket data are easily available, the covariates seldom are. Most

macroeconomic time series are updated less frequently than fi-

nancial data, i.e. monthly, quarterly or even annually. 

3. More thorough analysis of the large downturns. In the sensi-

tivity analyses of this paper, it was found that large downturns

are easier to predict than the sign return. It would be of inter-

est to see, if this result holds more generally, or whether it is a

peculiar feature of these data. 

4. Analysis of volatility. Volatility (i.e. standard deviation of the in-

stantaneous return) to a large degree determines the frequency

of large downturns. In the econometric literature, it is custom-

ary to model volatility by using GARCH-type models ( Engle &
Kroner, 1995 ). These models have some predictive power, but it

is possible that other methods could give more accurate predic-

tions. For example, one might use the machine-learning meth-

ods presented in this paper to predict the volatility. 

As an ensemble, the results presented in this paper seem to

ndicate that there is some degree of mild predictability in the

tock markets. This conclusion is based on the large number of

ignificant results found in the sensitivity analyses, i.e. when the

rading costs are removed or when the large downturns are pre-

icted. However, it is more difficult to say when and where this

redictability occurs and which method should be used to exploit

t. An exception to this rule are the results found for Netherlands

n the main analysis. Consequently, the results do not serve to in-

alidate EMH. It is conceivable that the struggle between the pro-

onents of EMH and other schools of thought (e.g. Lo, 2004 ) will

o on for the foreseeable future. One can only hope that the results

rom meticulous data analyses and applications of expert systems

elp to inform this discussion. 
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