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a b s t r a c t

The stock, bond and fund markets are three important components of a financial market,
and the volatility of the markets and correlations between the markets have been paid
extensive attention by researchers and investors. In this paper, we devote our efforts to
studying the Shanghai financial market, while the return series of Shanghai Composite
Index, Shanghai Bond Index and Shanghai Fund Index are considered. Statistical tests are
used to detect the nonlinear auto-correlated structures and long-range cross-correlations
of the three time series. The multifractal detrended fluctuation analysis and multifractal
spectrum analysis methods are applied, by which the existence of multifractality in these
three return series are revealed and the sources of multifractality are explored. In particu-
lar, the multiscale multifractal detrended cross-correlation analysis method is employed
for the first time to generate the Hurst surfaces, which can be used to visualize the
dynamic behaviors of cross-correlations among the markets. Empirical results show that
the cross-correlations among themarkets present different fractal features at different time
scales. Further, our study finds that the correlation between the stock and fund markets is
stronger than that of the other two groups, and the correlation between the stock and bond
markets is unstable. These findings can help to better understand the dynamicmechanisms
that govern the volatility of security markets and aid in performing better financial risk
assessment and management.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the dynamic features of financial markets have attracted much attention of many researchers. Especially,
the dynamic relationships between the stock market and other financial markets have become hot topics in financial
economics. For instance, Fang et al. [1] used the GARCH (1,1) model to investigate the relationship between the stock and
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bond markets in the United States, Britain, Japan and Germany during 1998–2004, and verified the existence of volatility
transmission in these markets. Chuliá and Torró [2] utilized the multivariate GARCH model to analyze the European stock
and bond markets, and found that there was a two-way volatility spillover effect between them. Chordia et al. [3] studied
the liquidity of stock and bond markets by using the vector autoregressive model and pointed out that the volatility and
liquidity of the two markets were significantly correlated, meaning that the liquidity and volatility of both the stock and
bond markets were co-driven by some factors. Besides, Goetzmann and Massa [4] discussed the relationship between the
index fund and the return series of S&P500 index, and showed that there was a simultaneous correlation between them.
Connolly and Stivers [5] considered the influences of the treasury yields and the stock market volatility on market pricing.
They showed that the uncertainty of stock market played an important role in cross-market pricing. Recently, Cenedese and
Mallucci [6] investigated the dynamic correlation between the international stock and bond markets. They found that the
international bonds flowing into emergingmarkets weremore sensitive to the impact of interest rates than the stockmarket
was. Kolluri et al. [7] used themultivariate cointegration test to examine the dynamics of India’s stock and bondmarkets, and
their interrelationships with five foreign equity markets. Kim et al. [8] utilized the Granger causality test to investigate the
relationships between the Korean stock and fund markets, and showed that the information created from the fund market
affected the return and volatility of the stock market. Li et al. in [9] proposed an asset pricing model for stock and bond
markets and analyzed the dynamic relationship between the two markets from the perspective of portfolios.

Statistical methods including the GARCH-class and vector auto-regressionmodels weremainly applied to investigate the
volatility, risk measurement and volatility spillover of stock market, bond market or fund market in the aforementioned
studies. They focused more on the linear correlation of the price fluctuation factors in different markets. However, many
empirical studies have shown that financial markets are complex nonlinear dynamic systems with fractal and chaotic
structures [10–14]. Financial time series are usually non-stationary because of their complexity and speculative natures.
Therefore, using nonlinear statistical analysis methods to study financial time series has become a popular approach in
financial market analysis.

During the last decades, several models and methods of fractal analysis, such as the rescaled range analysis (R/S analy-
sis) [15], detrended fluctuation analysis (DFA) [16] andmultifractal detrended fluctuation analysis (MF-DFA) [17], have been
established and developed to detect the long-range auto-correlation, to examine themarket efficiency, to explore themarket
volatility and to describe the nonlinear characteristics of markets, etc. [18–24]. In order to detect the long-range cross-
correlation between two non-stationary time series, Podobnik and Stanley [25] proposed a newmethod based on detrended
covariance, called detrended cross-correlation analysis (DCCA). Lately, a DCCA cross-correlation coefficient was introduced
[26,27] based on the DFA and DCCA methods to quantify power-law cross-correlations in non-stationary time series. The
DCCA method and the DCCA cross-correlation coefficient have been used to investigate the cross-correlations between two
financial series in some papers [28,29]. Moreover, the DCCA method was extended to its multifractal version [30], named
MF-DCCA or MF-DXA, which can reveal the multifractal features of two cross-correlated non-stationary series effectively.
Recently, Shi and Shang et al. [31] generalized MF-DCCA to multiscale multifractal detrended cross-correlation analysis
(MM-DCCA), which may provide much richer information than MF-DCCA does in the discussion of multifractal structures
for two cross-correlated time series. Now, the fractal analysis methods have been widely used in the study of many fields,
such as financial markets, energy markets, air pollution and geological survey, etc. [32–43].

On January 2, 2003, the issuance of Shanghai bond indexmarked the establishment of the index systemof China’s security
markets involving the stock, bond and fund markets. In recent years, with the rapid development of China’s economy and
the gradual improvement of the financial market systems, the co-movements among different financial markets in China
have also been greatly enhanced. The volatility, risk assessment and mutual relationships of China’s security markets have
attracted wide attention from researchers and investors.

In this paper the MF-DFA and multifractal spectrum analysis methods are firstly used to empirically analyze the
multifractal volatility characteristics of the Shanghai stock, bond and fund markets, and to investigate the possible sources
of multifractality. The MM-DCCAmethod is then employed to produce the Hurst surfaces for visualizing the dynamic cross-
correlations between themarkets at different time scales. Comparedwith some previous publications that mainly discussed
the relationships between two markets, this paper considers the three indispensable components of a financial market
namely the stock, bond and fund markets. The contributions of our study are threefold. First, we show that the return
series of the considered three security markets are not Gaussian series, but fractal series with nonlinear auto-correlation
structures and multifractal features. Second, we explore the sources of multifractality for the three return series, and find
that both the long-range correlations and fat-tailed distributions are common reasons of the multifractality, while the fat-
tailed distributions contributemore to themultifractality. Third, theMM-DCCAmethod is employed to investigate the cross-
correlations among the three security markets in China, and the dynamic behaviors of multifractal cross-correlations are
analyzed and compared at different time scales. To the best of our knowledge, this paper is the first one to visualize the
cross-correlations among Chinese security markets from a three-dimensional perspective.

The rest of the paper is organized as follows. Section 2 introduces themethodology. Section 3presents the data description
and the basic statistical tests. In Section 4, themultifractal analysis of the three return series are performed based on theMF-
DFA andmultifractal spectrum analysis. Themultifractal auto-correlation are discussed and the sources ofmultifractality are
explored. The cross-correlations of three return series are empirically studied in Section 5 based on the MM-DCCA. Finally,
the conclusions are drawn in Section 6.
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2. Methodology

2.1. Multifractal analysis methods

The MM-DCCA method developed from the classical MF-DCCA method can analyze the multiscale behaviors of cross-
correlation for non-stationary time series, and has important application in the analysis of financial time series [31]. Its
algorithmic steps can be summarized as follows.

Let x(t) and y(t), t = 1, 2, . . . ,N, be two time series of equal length N.

Step 1. Calculate the profile of each series:

X(t) =

t∑
k=1

(x(k) − x̄), Y (t) =

t∑
k=1

(y(k) − ȳ), t = 1, 2, . . . ,N, (1)

where x̄ =
1
N

∑N
t=1 x(t) and ȳ =

1
N

∑N
t=1 y(t).

Step 2. Divide each of the series {X(t)} and {Y (t)} into Ns = int(N/s) non-overlapping segments of equal length s. Since
the length N is usually not a multiple of the considered time scales s , a short part at the end of each profile will remain in
most cases. In order not to disregard this part of the series, the same procedure is repeated starting from the opposite end.
Therefore, 2Ns segments are obtained altogether.

Step 3. Calculate the local trends for each of the 2Ns segments v, v = 1, 2, . . . , 2Ns using least-square fit. Then calculate
the covariance of each series:

F 2(s, v) =
1
s

s∑
t=1

|X((v − 1)s + t) − Pv(t)| · |Y ((v − 1)s + t) − T v(t)| (2)

for v = 1, 2, . . . ,Ns and

F 2(s, v) =
1
s

s∑
t=1

|X(N − (v − 1)s + t) − Pv(t)| · |Y (N − (v − 1)s + t) − T v(t)| (3)

for v = Ns + 1,Ns + 2, . . . , 2Ns. Here Pv(t) and T v(t) denote the fitting polynomials with order k for each profile in the
segment v (conventionally called MF-DCCA-k).

Step 4. Average all segments to obtain the q-order fluctuation functions.

Fq(s) =

{
1

2Ns

2Ns∑
v=1

[F 2(s, v)]q/2
}1/q

, q ̸= 0, (4)

F0(s) = exp

{
1

4Ns

2Ns∑
v=1

ln[F 2(s, v)]

}
, q = 0, (5)

where q is a real parameter. For q = 2, the standard DCCA procedure is retrieved [25].
Step 5. Determine the scaling behaviors of the fluctuation functions through analyzing the log–log plots of Fq(s) versus

s for each fixed q. If the long-range cross-correlation exists in two series {x(t)} and {y(t)}, then the following power-law
relation holds for large values of s,

Fq(s) ∼ shxy(q), (6)

where hxy(q) is known as the generalized cross-correlation exponent, which may be used to characterize the power-law
cross-correlation between two time series.

The above five steps define the classical MF-DCCA algorithm. In particular, if the time series {x(t)} is identical to {y(t)},
MF-DCCA is equivalent toMF-DFA. In this case, the generalized cross-correlation exponent hxy(q) is just the generalizedHurst
exponent h(q).Next, to better characterize themultifractality of two cross-correlated time series at different time scales, the
following step proceeds.

Step 6. Use a moving fitting window sweeping through all the range of scales s to obtain a sequence of overlapped
windows. Then calculate the q-order fluctuation functions Fq(s) at each window to get a quasi-continuous change of hxy(q)
with respect to the scale s. Visualize this relationship by the Hurst surface hxy(q, s), and the points on the surface represent
the dependence (q, s). Note that in the process of calculating hxy(q, s), the window center and the window itself are varying
with the scale s. To better visualize the Hurst surface in a three-dimensional space, the scale axis is calibratedwith the center
of the fitting window. That is, the window s ∈ [a, b] is represented by the center s = (a + b)/2. By using MF-DCCA at each
fitting window, a multiscale multifractal analysis of time series can be performed without any initial assumptions about
time scale.

The bivariate cross-correlation exponent hxy(q, s) has similar properties and interpretations as the univariate Hurst
exponent h(q). If hxy(q, s) is independent of q, the cross-correlations between two time series are monofractal. If hxy(q, s)
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varies with the change of q, the cross-correlations between two time series are multifractal. When hxy(q, s) > 0.5, the
cross-correlations are long-range persistent. When hxy(q, s) < 0.5, the cross-correlations are anti-persistent. However, if
hxy(q, s) = 0.5, the cross-correlations between two time series do not exist or only exist in a very short-range.

The multifractal properties of time series are also studied by multifractal spectrum analysis, which is based on the
following analytical relationship between the generalized Hurst exponents h(q) and the Renyi exponent τ (q) [17]:

τ (q) = qh(q) − 1. (7)

If τ (q) is a nonlinear function of q, the time series has multifractal natures. The singularity exponent α and its multifractal
spectrum f (α) can be obtained through Legendre transform:

α = h(q) + qh′(q), f (α) = q[α − h(q)] + 1. (8)

In the multifractal case, the graph of f (α) ∼ α is the shape of a single peak bell. The multifractal spectrum width
∆α = αmax − αmin is usually used to quantify the multifractality degree of time series. The larger the ∆α, the more uneven
the distribution of time series and thus the stronger the multifractality.

2.2. Cross-correlation test method

Anew testmethod proposed by Podobnik et al. [44] can be utilized to test the cross-correlation between two time series at
a certain significance level. For two stochastic time series {xi} and {yi}with the same length N , the cross-correlation function
and the cross-correlation test statistic are defined as follows, respectively,

Ci =

∑N
k=i+1 xkyk−i√∑N
k=1 x

2
k
∑N

k=1 y
2
k

, Qcc(m) = N2
m∑
i=1

C2
i

N − i
. (9)

Generally, the cross-correlation test statistic Qcc(m) approximately follows the χ2(m) distribution with m degrees
of freedom. If there is no cross-correlation between two time series, the cross-correlation test agrees with the χ2(m)
distribution. If the cross-correlation test exceeds the critical value of the χ2(m) distribution, then the two series are
significantly cross-correlated at a certain significance level.

3. Data description and statistical test

3.1. Data description

The Shanghai Stock Exchange, established in December 1990, is one of the two stock exchanges in mainland China. Up
to February 17, 2017, the Shanghai Stock Exchange had 1234 listed companies, 9518 listed securities, with a total market
capitalization ofmore than 30 trillion Yuan. The number of listed shares, the total market values and the turnover of treasury
bonds all rank first in mainland China. Therefore, the daily closing data of the stock index, bond index and fund index in the
Shanghai Stock Exchange can basically reflect the overall development situations of these three markets in mainland China.

The data used for this study are the time series of the Shanghai Composite Index (SHCI), Shanghai Bond Index (SHBI)
and Shanghai Fund Index (SHFI). Because the opening dates of the indexes are different, we unify the original sample data
interval from February 24, 2003 to February 17, 2017 (a total of 3399 trading days) to ensure that the sample time series of
different markets are synchronous (data obtained from http://money.163.com/). Fig. 1 shows the fluctuation shapes of the
daily closing data of SHCI, SHBI and SHFI.

To eliminate the possible heteroscedasticity of a time series, a logarithmic return series of the original data is usually
used in practical analysis. Denoting the closing index at time t by x(t), the logarithmic daily return is defined by r(t) =

log(x(t)) − log(x(t − 1)). The daily logarithmic returns of SHCI, SHBI and SHFI are presented in Fig. 2, respectively.
In Fig. 2, from the perspective of return rates, the earning rates of SHCI, SHBI and SHFI always hover around 0 over the

whole time, without significant deviation from the trend, indicating that there is no long-term profit trend in the three
markets. From the viewpoint of volatility, the violent fluctuations and volatility clustering exist in all three markets and
the volatility of both the stock and fund markets is significantly greater than that of the bond market. This is because the
bond is a financial contract issued to investors when the governments, financial institutions and industrial and commercial
enterprises directly finance or borrowmoney from the society. Besides, the bond is also a debt certification that promises to
pay interest at a certain rate and repayment of principal in accordance with the agreed terms. Different from the stock and
fund, the bond has the characteristics of low risk and low profit. Since the bond investment has interest return regularly and
is payable at maturity, the return rate of bond is more stable and its volatility is also smaller.

3.2. Basic statistical characteristics and cross-correlation test

In this subsection, classical statistical methods are first used to test the statistical characteristics of the return series of
the stock, bond and fundmarkets. Themean, maximum, minimum, standard deviation, skewness, kurtosis, and Jarque–Bera
statistics of the three return series are presented in Table 1, respectively.

http://money.163.com/
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Fig. 1. Daily closing data of SHCI, SHBI and SHFI.

Table 1
Descriptive statistics for the returns of SHCI, SHBI and SHFI.

Mean Max Min S.D Ske Kur J–B

SHCI −0.0000985 0.040199 −0.03924 0.00725 0.50453 7.070572 2489.4***
SHBI −0.0000590 0.006022 −0.00441 0.00043 1.90401 39.32784 188846.8***
SHFI −0.000228 0.040578 −0.04087 0.00646 −0.0069 8.677341 4562.226***

***Denote 1% significance level.

Table 1 shows that the average returns of the stock, bond and fund markets are -0.00985%, −0.00590% and -0.0228%,

respectively. All of them are close to 0, meaning that the three return series have the function of returning to balance. The
fluctuations of both SHCI and SHFI are significantly greater than those of SHBI according to their standard deviations, which
is in accordance with the results in Fig. 2. The skewnesses of the three return series are not equal to zero. SHCI and SHBI
appear skewed to the right, while SHFI to the left. All kurtosises are greater than 3, and the J–B statistics indicate that the
normality assumption of the three return series is rejected at 1% significance level, implying that all the three series present
the features of sharp peaks and fat-tailed distributions.

Next, we perform the Ljung–Box auto-correlation test on the three return series, and the modified Q statistics with lags
are given in Table 2.

As seen in Table 2, all the modified Q statistics of the three return series are significant at 1% significance level, indicating
that the null hypothesis of white noise is rejected and showing the existence of auto-correlation. In order to further explore
whether there are nonlinear structures in the three return series, we perform the BDS test. After eliminating the short-term
linear factors in the series, according to the AIC criterion, the AR (4), AR (1) and AR (4) models are respectively applied
to the fitting of the three return series, so as to obtain three systems of linearly independent residuals used in the BDS
test. The BDS statistics from two-dimension to six-dimension are displayed in Table 3, from which it can be seen that the
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Fig. 2. Logarithmic returns of SHCI, SHBI and SHFI.

Table 2
Ljung–Box test: the modified Q statistics with lags.
Lags 5 10 20 30 40 50

SHCI 21.194*** 36.964*** 68.027*** 78.536*** 105.77*** 124.88***
SHBI 329.33*** 461.82*** 497.71*** 516.40*** 566.11*** 582.49***
SHFI 27.132*** 51.547*** 78.391*** 92.805*** 118.07*** 154.12***

***Denote 1% significance level.

Table 3
BDS statistics at different dimensions.
Dimensions 2 3 4 5 6

SHCI 0.015039 0.035039 0.0495 0.058145 0.062229
(0.00) (0.00) (0.00) (0.00) (0.00)

SHBI 0.047257 0.091001 0.119943 0.138064 0.147062
(0.00) (0.00) (0.00) (0.00) (0.00)

SHFI 0.024691 0.054572 0.074273 0.087175 0.093354
(0.00) (0.00) (0.00) (0.00) (0.00)

Note: (0.00) denote the values of probability.

probability values are all zero, meaning that the null hypothesis of the series being independent is rejected and showing that
the nonlinear structures exist in the three series.

Fig. 3 presents the log–log plots of cross-correlation test statisticsQcc(m) for the three return series. The number of degrees
of freedom varies from 1 to 1000. The log–log plots of the critical values of the χ2(m) distribution at 5% significance level
are also shown in Fig. 3 for comparison. We can find that the cross-correlation statistics of the three systems of series are all
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Fig. 3. Log–log plots of Qcc (m) versusm.

greater than the critical values at 5% significance level. Therefore, the null hypothesis of no cross-correlations can be rejected,
indicating that the long-range cross-correlations exist in the three series.

4. Multifractal analysis of the auto-correlations

In Section 3, the basic characteristic statistics and the cross-correlation test have shown that nonlinear auto-correlated
structures and long-range cross-correlations exist in the return series of SHCI, SHBI and SHFI. In this section, the multifractal
analysis methods are used to quantitatively describe the complexity of the auto-correlated structures. We confirm that the
auto-correlations have multifractality and explore the sources of multifractality for the three return series.

4.1. Confirmation of the multifractality

Firstly, MF-DFAmethod is applied to verify the existence of multifractality. Using 3-order fitting polynomial to eliminate
the local trends of the series, we calculate the q-order fluctuation functions for different q from −5 to 5, and obtain the
q-order generalized Hurst exponent h(q). Fig. 4 shows the curves of the generalized Hurst exponents h(q) versus q for the
three return series.

It can be seen from Fig. 4 that these generalized Hurst exponents are obviously not constant but monotonically decrease
with the increase of q from −5 to 5, meaning that the auto-correlations of the three return series are multifractal and also
indicating that linear or monofractal analysis methods are irrelevant for the analysis. Moreover, Fig. 4 shows that none of
the generalized Hurst exponents are identical to 0.5, indicating that the three markets are not stochastic but fractal markets.
Specifically, the values of h(q) of both SHBI and SHFI are greater than 0.5, implying that the fluctuations of the bond and fund
markets are long-range persistent. That is to say, the returns of markets at next period are likely positive if the returns at
the current period are positive. But, the values of h(q) of SHCI are less than 0.5, indicating that the fluctuations of the stock
market are anti-persistent, that is, the return is likely negative at the next period if it is positive at the current period and
vice versa. Therefore, the multifractal analysis of the security markets can provide some references for investors to predict
the short-term trends of markets.

Fig. 5 provides the plots of the Renyi exponents τ (q) versus q and the multifractal spectra f (α) versus α for the three
return series. As seen from Fig. 5(a), the Renyi exponents of the three return series vary with q from −5 to 5 and all curves
are concave. This shows that the multifractalities exist in auto-correlations of the three return series. Besides, the three
multifractal spectra exhibit a bell shape as seen in Fig. 5(b). Further, it is seen that the multifractal spectra of both SHCI and
SHFI are with right hooks, i.e., ∆f = f (αmin)− f (αmax) < 0. This shows that the opportunity of the index loss is greater than
that of the index profit. Similarly, the multifractal spectrum of SHBI is with left hook, i.e., ∆f = f (αmin) − f (αmax) > 0. This
implies that the chance of the index loss is lower than that of the profit. According to the results, it can be suggested that
bond investment may be a better choice for risk-averse investors.

4.2. Sources of the multifractality

Previous analysis has confirmed that the return series of SHCI, SHBI and SHFI have obviousmultifractal features. Generally,
there are two major factors contributing to the multifractality, that is, the different long-range correlations for small and
large fluctuations and the fat-tailed probability distribution in fluctuations. To explore the sources of multifractalities of
the three return series, we need to shuffle and phase-randomize the original series so as to obtain the shuffled series and
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Fig. 4. Generalized Hurst exponents of the three return series.

Fig. 5. Renyi exponents and multifractal spectra of SHCI, SHBI and SHFI.

the surrogated series, respectively. Note that the shuffling procedure can destroy the auto-correlation of original series but
preserve the distributions of fluctuations, while the phase-randomization process canweaken the non-Gaussianity in series.
Thus,we calculate the generalizedHurst exponentsh(q) for the original, shuffled and surrogated series and the corresponding
multifractality degrees ∆h = h(q)max − h(q)min to find the sources of multifractality.

The generalized Hurst exponents and the multifractal spectra of the original, shuffled and surrogated series for the three
return series are plotted in Figs. 6 and 7, respectively.
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Fig. 6. Generalized Hurst exponents of the original, shuffled and surrogated series.

According to Fig. 6, the generalized Hurst exponents of both the shuffled and surrogated series vary with the values of q,
and themultifractality degrees of the two series are obviously weaker than that of the original series, which shows that both
long-range correlations and fat-tailed distributions contribute to themultifractality of the original series. Moreover, we note
that the multifractality degrees of the surrogated series are weaker than those of the corresponding shuffled series, which
implies that fat-tailed distributions in the three series have a dominant influence on their multifractality while long-range
correlations are less important.

From Fig. 7, we can see that the spectra widths ∆α = αmax − αmin of all shuffled and surrogated series are smaller than
those of the corresponding original series, confirming that the long-range correlations and fat-tailed distributions are the
common causes of multifractality. Further, the fat-tailed distributions have more contributions to the multifractality than
the long-range correlations because of the narrower spectra widths of the surrogated series. This conclusion agrees with the
previous analysis from Fig. 6.

5. Multiscale multifractal analysis of the cross-correlations

The cross-correlation test based on the statistic Qcc(m) can only test the existence of cross-correlation between two time
series qualitatively. In order to quantitatively study the cross-correlations between the return series of Chinese security
markets, the MM-DCCA method is used to calculate the Hurst surfaces hxy(q, s) at different time scales s to visualize the
cross-correlations.

Fig. 8 shows the log–log plots of the fluctuation functions Fq(s) versus s between two series in the three return series. It
can be seen that these log–log curves present a linear trendwith q varying from−5 to 5, indicating that there are power-law
cross-correlations in the three series.

We use a sliding fitting window sweeping through all time scales s to observe the changes of the generalized cross-
correlation exponents hxy(q) at small scales s ∈ (10, 50) and large scales s ∈ (120, 600), respectively. By applying MF-DCCA



H.-Y. Wang, T.-T. Wang / Physica A 512 (2018) 280–292 289

Fig. 7. Multifractal spectra of the original, shuffled and surrogated series.

to each fitting window, we obtain three Hurst surfaces hxy(q, s) as shown in Fig. 9, where the s-scale axis has been calibrated
by the center of the fittingwindowwith s = 30 (the center of (10, 50)) at the beginning and s = 360 (the center of (120, 600))
at the end. Obviously, the shapes of the three Hurst surfaces vary with (q, s), and the fluctuations at small and large scales
are different. Moreover, all three surfaces show that the generalized cross-correlation exponents between any two series are
greater than 0.5, indicating that there exist long-range cross-correlations among the three series.

From Fig. 9, the values of hxy(q, s) for SHCI with SHFI (Fig. 9(a)) are larger than those for SHCI with SHBI and SHBI with
SHFI (Fig. 9(b) and (c)), which means that the cross-correlation between the stock and fund markets is the strongest among
the three cross-correlations. This can be explained as in China’s fund market, the funds are usually divided into stock funds,
bond funds, moneymarket funds and hybrid funds according to the classification of fund investment. The stock funds invest
primarily in stocks. Especially, since a new policy regarding the stock position of stock funds was implemented in Chinese
security markets on August 8, 2015, the stock position rose to no less than 80% in stock funds, which directly leads to the
increase of stock proportion in the fund investment and the enhancement of impact on the stockmarket. For the bond funds,
more than 80% of the fund assets are required to invest in the bondmarket, and the rest can be invested in the stock market,
while the hybrid funds also have a certain proportion of stock investment. As a large amount of money in the fund market is
invested in the stock market, the cross-correlation between the fund and stock markets is relatively larger than that of the
other two. Thus, it also implies that there exist greater risks in the portfolio of the stocks and funds. In addition, the Hurst
surface of SHCI with SHFI has obvious fluctuations at small scales, while the surface is close to flat at large scales. That is to
say, the cross-correlations have a monofractal feature in the range of large scales. It also shows that the cross-correlations
described at the small scales can exhibit much richer multifractal properties of the series.

The Hurst surface of SHCI with SHBI in Fig. 9(b) is different from those shown in Fig. 9(a) and (c). It presents an obviously
downward slope at small scales, which suggests that the cross-correlation between the stock and bond markets is not very
stable. The possible reasons are that the operation mechanisms for China’s stock and bond markets are different, and the
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Fig. 8. Log–log plots of Fq(s) versus s between the return series.

participants of markets are significantly distinct. There are plenty of retail investors in China’s stock market, as well as
many institutional investors such as funds, insurance, securities traders and private equity. However, the bond market is
mainly composed of the exchange market and the inter-bank bond market, while the latter is the major component and
its participants are mainly various commercial banks. These commercial banks account for the majority of transactions and
are not allowed to involve in the stock market. Besides, China’s bond market is also largely influenced by the government’s
intervention and control, as well as the macroeconomic situation and policies. In contrast, the stock market is relatively
open and free, and the trends of the market are mainly influenced by market supply and demand. From the perspective of
investors, risk seeker tends to invest in the stock market, expecting to get higher yields, while low-risk bond investments
are often favored by risk averter. As a result, the investors’ different risk preferences and investment decisions have partially
contributed to the instability of the interaction. All these lead to a conclusion that it is difficult to establish a relatively stable
relationship between the stock and bond markets.

Comparedwith the former two patterns, Fig. 9(c) exhibits a slight change from small scales to large scaleswith a relatively
flat surface. This shows that there is aweaker cross-correlation between the bond and fundmarkets. This is because themain
trading bodies of China’s bond market are the financial institutions dominated by banks, while the investors in the fund
market are relatively diversified. Moreover, the existence of securities type index fund, whose index computation is mainly
based on the stock funds, makes the fund index relies largely on the float of the stock index. Therefore, the cross-correlation
between the fund and bond indexes is weak.

A comprehensive comparison of Fig. 9(a), (b) and (c) leads to two findings. On one hand, from the perspective of
multifractal analysis, the three Hurst surfaces exhibit relatively large fluctuations at small scales but relatively flat at large
scales. This indicates that using small time scales to analyze the volatility of time series can reveal some hidden information
that the series has not been detected in larger scale processing. It is also a reminder to researchers that when analyzing a
shorter time series, the results obtained may be meaningless if the time scale is large and the time window is too wide. On
the other hand, from the viewpoint of risk diversification, whether it is the stock market or the fund market, the results of
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Fig. 9. Hurst surfaces of the return series for SHCI, SHBI and SHFI.

MM-DCCA indicate that the cross-correlations between the bond market and the above two markets are weak. Therefore,
for the investors in the security markets, it is a good idea to try out a portfolio of bonds and stocks or bonds and funds, which
can reduce the risk of investment while maximizing the profits.

6. Conclusions

In this paper, multifractal analysis methods were mainly applied to study the multifractal properties of China’s stock,
bond and fund markets. Different from some published papers, such as references [1–3,6–9], this paper studied the
correlations among three financial markets instead of two, and focused mainly on their multifractal auto-correlations and
cross-correlations, and emphasized more on different dynamic behaviors of the three markets at different time scales. Our
findings can be summarized as follows.

Firstly, the descriptive statistics showed that the return series of the three markets disobey the Gaussian distribution.
That is, the distributions of the three return series are non-normal due to their sharp peaks and fat-tailed statistical features.
Moreover, the Ljung–Box and cross-correlation tests indicate that there exist nonlinear auto-correlated structures and long-
range cross-correlations in the three series.

Then, themultifractal characteristics of three return serieswere analyzed by using theMF-DFA andmultifractal spectrum
analysis methods. The results showed that the auto-correlations of the three return series have multifractality. In addition,
the sources of multifractality were explored. We found that both the long-range correlations and fat-tailed distributions are
common causes for the multifractality, and fat-tailed distributions have major effect on the multifractality.

Finally, the multifractal cross-correlations between the return series were investigated based on MM-DCCA. By using
a sliding scale window technology to obtain the Hurst surfaces visualizing the cross-correlations, we found that the three
cross-correlations exhibit different multifractal features at small and large scales, and the cross-correlation between the
stock and fund markets is stronger than that of the other two groups, while the cross-correlation between the stock and
bond markets is unstable.
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It is well known that the multifractal degree of interrelationship between two financial markets not only reflects the
complexity of cross-correlations, but also reveals the level of the portfolio risk in the markets. According to the empirical
results, some suggestions were offered to investors from the perspective of risk diversification in this paper. Therefore, this
research has great reference value for the trading decision and risk management of security markets.
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