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Abstract— Artificial neural networks (ANNs) aim to simulate
the biological neural activities. Interestingly, many ‘“‘engineering”
prospects in ANN have relied on motivations from cognition and
psychology studies. So far, two important learning theories that
have been subject of active research are the prototype and adap-
tive learning theories. The learning rules employed for ANNs can
be related to adaptive learning theory, where several examples
of the different classes in a task are supplied to the network for
adjusting internal parameters. Conversely, the prototype-learning
theory uses prototypes (representative examples); usually, one
prototype per class of the different classes contained in the task.
These prototypes are supplied for systematic matching with new
examples so that class association can be achieved. In this paper,
we propose and implement a novel neural network algorithm
based on modifying the emotional neural network (EmNN)
model to unify the prototype- and adaptive-learning theories.
We refer to our new model as “prototype-incorporated EmNN”’.
Furthermore, we apply the proposed model to two real-life
challenging tasks, namely, static hand-gesture recognition and
face recognition, and compare the result to those obtained using
the popular back-propagation neural network (BPNN), emotional
BPNN (EmNN), deep networks, an exemplar classification model,
and k-nearest neighbor.

Index Terms— Emotional neural network (EmNN), face recog-
nition, hand-gesture recognition, neural network, prototype
learning.

I. INTRODUCTION

ACHINE intelligence is a field that aims to achieve

various tasks such as face recognition [1], speaker
identification [2], natural language processing [3], and doc-
ument segmentation [4] based on motivations from the human
cognition processing [5], [6]. Inasmuch as these tasks are
somewhat “trivial” for humans, machines strive to perform
competitively [7], [8]. It is the hope that we can grossly
simulate machines with “thinking” or processing capabilities
such that performance on the aforementioned tasks can be
achieved with reasonably high accuracy. More important is
that machines can boast of intelligence when such systems
have the capability to learn (or adapt internal parameters)
and upgrade its performance over time based on available
experiential knowledge [9], [10]; this is analogous to learning
in humans [11], [12]. However, for us to breakthrough in
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machine intelligence and vision, we must first understand the
basis of learning and visual processing in humans [13], [14].
Unfortunately, there exist a number of different schools of
thought on how (object recognition) learning is achieved
in humans, with two considerably important and actively
researched theories of learning in humans being the prototype
and adaptive-learning theories [15], [16]. The proposed model
in this paper draws engineering inspiration from both learning
theories to realize improved learning. We give a sufficient
discussion on the two theories which give insight into the
remaining sections within this work.

A. Prototype-Learning Theory

The prototype-learning theory suggests that learning is
achieved using the prototypes (representative examples) of
different objects [17], [18]. Generally, for a particular object,
one or very few number of prototypes is (or are) stored in
the memory. When tasked with identifying a new object,
the memory is scanned for the prototype that matches the
most the new object; the class of the retrieved prototype is
associated with the new object [19], [20]. This approach can be
seen as grossly a “store-and-retrieve” memory-based system.

Many research works have described and exploited the
concept of prototypes learning to develop novel machine-
learning algorithms with motivating results. Zeithamova [21]
described a prototype as ‘a concise representation for an
entire group (category) of entities, providing means to antic-
ipate hidden properties and interact with novel stimuli based
on their similarity to prototypical members of their group’.
Chang et al. [22] in their work described, implemented, and
applied adaptive prototype-learning systems to machine-
learning problems. In the same work, various criteria such
as generalized condensed nearest neighbor, k-means (KM)
clustering, and fuzzy c-means clustering were used to select
prototypes from the training data, which constituted a subset
of the training data. It was noted that using the extracted
prototypes rather than the whole training data significantly
sped up training. At testing time, the categories of new samples
were evaluated based on the already collected prototypes. The
idea behind the learning algorithm is to select the smallest
number of prototypes which give the optimal representation
for the different classes contained in the training data; obtained
results in this work were shown to be highly competitive
with some other famous learning algorithms such as the
conventional k-nearest neighbor (k-NN) and support vector
machine. In another related work, a two-stage-based general-
ized prototype framework was described; data dimensionality
reduction was achieved in the first stage via projection onto a
line, while a thresholding stage was used for the discrimination
of projected data distribution [23], i.e., class labels.
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Although prototype-learning theory is effective in its “pure”
form, one of its major flaws is operation under real life con-
straints such as occlusion and noise (incompleteness); systems
based solely on this theory falter significantly [24], [25].
For example, consider the task of recognizing a cat with
one missing limb; such an unforeseen situation may largely
motivate the system to output a wrong class, considering that
the prototype (or very few prototypes) stored do not depict
that a cat may have three limbs. A strong point of concern on
this theory is that the human ability on objects identification
remains relatively strong even under such aforementioned con-
straints [26]-[28]. Furthermore, it is obvious that attempts to
have all unforeseen situations as prototypes is quite infeasible
because it is practically impossible to envisage all possible
variations in objects of the same class; also, memory constraint
is another major setback. Hence, other learning theories aim
to account for such high human performances considering the
aforementioned constraints.

B. Adaptive-Learning Theory

The adaptive-learning theory suggests that learning is
achieved by using several examples of the different objects
to be learned to adjust model internal parameters [29], [30];
this is as against the prototype-learning theory. Also, the whole
objects may not be stored in the memory (as in the prototype
theory); important features which differentiate objects of one
category from others are extracted or learned and stored in
the memory [31]. New objects are identified using learned
features retrieved from the memory [32], [33]; this approach
is more robust to real life constraints such as occlusion and
noise. Note that adaptive-learning theory is synonymous with
connectionism approach and explanation for learning.

Particularly, neural networks are at the center of learning
in machines; these networks store experiential knowledge
as interconnection weights [34]. They compose massively
interconnected artificial neurons, which are stacked as layers.
Features from examples are extracted in a phase referred to as
training [35]. Generally, a large database of examples is used
for training these networks, and networks’ performances get
better with more training examples. Once a neural network
is trained, new examples can be identified by simulating
the trained network; identification is achieved using learned
features (stored as weights). Hence, it is very possible to
still recognize a cat with say one missing limb since other
preserved features that infer that the presented object is a cat
are used. It will be seen that neural networks considerably
implement the adaptive-learning theory [36], [37].

C. Multiprototype Learning Versus Exemplar Learning

In this section, we aim to clarify the delicate similarity
between multiprototype and exemplar learning; this should
eliminate arousing confusion further into the work. Also,
we provide motivational basis for multiprototype learning.

First, it is important to note that many studies consider
that prototype and exemplar learning are situated at extreme
opposite ends of the learning spectrum [38]. The exemplar-
learning theory strictly assumes that all observed examples
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so far are used for making inference on new examples.
A suitable scenario to consider for exemplar learning is k-NN
algorithm, where strictly all memorized examples per class
are “recruited” for making inference on new examples. It is
important to note that there are no reference examples in k-NN,
as all available examples per class are “equally” used (or
consequential) for performing inference.

Conversely, prototype-learning theory assumes that only
one example per class is used for performing inference on
new examples. Also, a prototype may be a single abstracted
representation or an explicit central tendency example for
a class [22], [39]. Going further, several studies perhaps
observing that in many situations, inferring the classes of new
examples from only one class representative example (proto-
type) may be misleading, hence reconsider prototype learning
such that more than one representative example per class can
be used for making inference. In other related works, chorus
of prototypes and multiprototypes were proposed for more
robust and meaningful learning [40]-[45]. In any situation,
one unanimous position among researchers is that only in
exemplar learning is it assumed that all available examples
are used for inference. One obvious scenario for prototype
learning is the KM clustering. Originally, only one prototype
per class was considered for performing inference. However,
with concerns on robustness issues, new research works have
posited the benefit of multiprototypes per class for performing
inference [46]-[48]. Hence, it can be considered that for pro-
totype learning, even with the availability of several examples
per class, only one or more representative examples per class
are used for making inference, with other examples per class
being strictly of no consequence for performing inference [22].
Nevertheless, we refrain from over-exploiting the extended
prototype learning conception with multiprototypes per class
by not proposing a “greedy” model that relies on too many
prototypes per class. In this work, we have limited the number
of prototypes per class to a maximum of 5, irrespective of the
number of available examples per class. However, we leverage
on both prototype and adaptive learning for building the
proposed model within this research. For example, Schyns [49]
described in his work the motivation for such a combined
learning scheme.

In this work, we propose prototype-incorporated emo-
tional neural network (PI-EmNN) that is based on the
emotional back-propagation (EmBP) learning algorithm [50];
in Section II, we explain that the model in [50], and there-
fore, our proposed model possesses no human emotions, but
artificially simulated emotional signals for improving learning.
The contribution of this paper is that we integrate the learning
power obtainable from conventional neural network (based
on adaptive learning: conventional network weights learning),
emotional features (based on artificially simulated processing
of global perceptions of presented training input patterns:
emotional weights learning), and a novel prototype learning
scheme (motivated by prototype learning: prototype weights
learning).

In order to demonstrate that improved learning is realized
with the novel neural network model described within this
work, we apply the developed network model (PI-EmNN)
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to two important vision-based recognition tasks, static hand-
gesture recognition, and face recognition. Although the pro-
posed model within this work should suffice on some other
learning tasks, we find vision-based tasks more suited as
applications since it is easier to evoke emotional responses
based on visual stimuli. For vision-based tasks, the input data
which are processed images have structured internal represen-
tation; that is, neighboring data (pixel) values have strong local
correlation. Generally, vision-based recognition systems use
image pixel values for learning; this is quite consistent with
human visual processing. This contrast with feature extraction-
based systems in which important features (e.g., texture and
shape metrics) are first extracted from images, after which
a classifier is then trained on such extracted features. It is
considered that vision-based recognition systems are more
naturally plausible than the feature extraction approach; hence,
they readily evoke emotional responses during learning.

The Thomas Moeslund’s static hand-gesture database [51]
and ORL (AT&T) face database [52] have been used to train
and test the proposed model within this work.

II. PROPOSED NEURAL NETWORK MODEL

In this paper, we aim to fuse both prototype- and adaptive-
learning theories in a neural network. Alternatively, we con-
sider our approach as incorporating prototype learning in
neural networks (since neural networks are traditionally based
on adaptive-learning theory).

Here, we advance on an earlier published work which
describes a novel neural network model referred to as the
emotional neural network (EmNN) [50]. The EmNN has been
used successfully with motivating performance in different
applications [53]-[55]. The main idea behind the EmNN is
such that neural network can simulate two important emotional
features in learning such as anxiety and confidence. This
is analogous to humans where anxiety is high for newly
encountered tasks and confidence quite low (this happens at
the start of training); conversely, anxiety decreases for familiar
tasks, while confidence increases (this happens as training
progresses). We emphasize that machines do not have human
physiology and hence cannot feel in the same way humans do.
Even after so much progress in machine intelligence and cog-
nitive studies, learning in machine is quite far from learning in
humans. Nevertheless, signals flow through machines; there-
fore, we can artificially simulate emotions in machines just as
learning itself. In this context, the EmNN possesses no real (or
human) but artificial emotions (anxiety and confidence) which
rely on nonprocessing emotional neurons (denoted as M:
orange in Fig. 1) which feed the hidden and output layers
with the average values (global perceptions) of presented
training patterns, referred to as Ypar [50]. Also, the weight
interconnections of the emotional neurons are updated during
learning.

In this paper, we further incorporate two additional non-
processing neurons, P (prototype neuron) and C (correlation
neuron), feeding both the hidden and output layers, i.e., shown
as gray in Fig. 1. The prototype neuron P supplies the
normalized prior prototype class label of the presented input
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Fig. 1.

pattern (attributes) to the hidden and output layers of the
network. While, the correlation neuron supplies the correlation
coefficient of the presented input pattern (attributes) with the
selected prototype to the network. One of the major motiva-
tions for implementing prototype learning in neural network is
such that overall learning can be quickly guided toward a solu-
tion space composing good local minima based on important
prior knowledge of training data labels incorporated into the
network. The weights of conventional neurons in the network
are updated using the conventional back-propagation (BP)
algorithm (shown without color in Fig. 1); while the weights of
added nonprocessing neurons P, C, and M are updated using
the EmBP algorithm. The proposed PI-EmNN model is shown
in Fig. 1, and a brief discussion on the added neurons P, C,
and M is given in the following. Note that the B in Fig. 1
represents the conventional bias neuron.

A. Prototype Neuron (P)

1) One Prototype Per Class Approach: The training data
is scanned and one example per class for all the classes in
the task is randomly selected to form the prototypes. Hence,
for a task composed of r classes, a number of r prototypes
are selected; each selected example per class is referred to as
the prototype (representative example) of that class. Therefore,
a prototype database is built for the task (from the training
data). During training, each presented pattern is compared with
all the r prototypes (prototype database); a distance metric
is used to obtain the closet prototype to the presented input
pattern (attributes). The prototype with lowest distance metric
is selected as the associated prototype of the presented input
pattern; the class of the selected prototype is coded as P. The
Euclidean distance has been used in this work as the distance
metric for obtaining the associated prototypes and therefore
classes of presented input patterns. We assume that features are
standardized. The Euclidean distance metric is defined in [56]

(1)
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where x,, is the input attribute with index u# from the presented
input pattern, x/ is the input attribute with index u from the
prototype, and n is the dimensionality of both the presented
input patterns and prototypes.

The normalization of the selected class label / is achieved
using (2). The normalized class labels of selected prototypes
are supplied to the prototype neuron P

!
P=- 2)
r

where
1<l<r. 3)

2) Multiprototypes Per Class Approach: In this approach,
a number of prototypes per class z are randomly extracted
from the training data. Each input pattern presented is com-
pared (using the Euclidean distance metric) with the prototypes
of each class; this makes the selection of associated prototype
to which the presented input pattern belongs to more robust
that is probability of associating the correct prototype and
therefore class with the input pattern increases. In this work,
we implement a voting system for selecting the associated
prototype for presented input patterns; hence, z is chosen
to have odd values. Also, we observe that a rough heuristic
for determining z is the strength of variations observable in
the training examples for each class. Note that for both one
prototype and multiprototypes per class approaches, selected
prototypes are examples sampled from the whole available
training examples with replacement.

B. Correlation Neuron (C)

Here, we obtain the strength of association of a presented
input pattern with the selected prototype. The Pearson’s cor-
relation coefficient is used to obtain the degree of relation
between the selected prototype and the presented input pattern.
The Pearson’s correlation coefficient value ranges from —1
to +1. Also, we consider selected prototypes as independent
variables and the input pattern (attributes) as dependent vari-
ables. Equation (4) describes Pearson’s correlation coefficient
R [57], where x, is the input attribute with index u from the
presented input pattern, x/ is the input attribute with index u
from the prototype, and n is the dimensionality of both the
presented input patterns and prototypes

M=

((eu — %) (xt) = %))

u=1

R =

“)

n n '
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u=1 u=1
Since, neural networks typically accept input values in the
range 0 to 1, the correlation coefficients are transformed into
the range 0 to 1 and supplied to C (correlation neuron).
More important is that we leverage on the transformation
requirement to obtain another highly important statistic used
to measure the certainty of predictions made from a certain
model, which is referred to as the coefficient of determination,
R2 (square of Pearson’s correlation coefficient) [58]. In this
work, for the sake of compactness and intuition, we denote
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R? with C, as seen in (5) [39]. C expresses the strength of
the linear association between the prototype (model) class data
and the presented input data [60]. Its values are supplied to
the correlation neuron

C =R (%)

It is noted that another important impact of the correlation
neuron is that it supports (reinforces) the evidence of correctly
associated prototype class supplied to P and dampens the
effect of incorrectly associated prototype class supplied to P.
For correctly associated prototype class and where presented
input pattern is quite similar to the selected prototype, the coef-
ficient of determination is high, i.e., close to 1. Conversely,
where the associated prototype class is incorrect, the correla-
tion coefficient is low, i.e., close to O.

C. Emotional Neuron (M)

The emotional neurons M supply input averages (global
perceptions) of presented input patterns to the model. Each
input pattern presented is averaged and supplied to the model
using

n
D Xu
M = YpaT = —u:ll’l . (6)

D. PI-EmNN Activations Computations and Weights Update

From Fig. 1, it is seen that the output of any neuron
in the network is contributed by the conventional network
input, bias input, prototype neuron input, correlation neu-
ron input, and emotional neuron input, i.e., forward—pass
computation. Furthermore, for weights update (back—pass
computation), the conventional and bias neurons weights are
updated using the conventional BP algorithm; the prototype,
correlation, and emotional neuron weights are updated using
EmBP algorithm. The inspiration for updating the prototype
and correlation neuron weights using the EmBP algorithm is
such that the network can also simulate emotional responses on
the prototype and correlation neurons weights. The network is
constrained to show anxiety and confidence on the prototype
and correlation neurons weights as training progresses; note
that the anxiety parameter (1) decreases while the confidence
parameter (k) increases. This is quite consistent with learning
in humans, where we have low confidence and high anxiety
at the beginning of learning an unfamiliar task, but over
time (with training) anxiety reduces and confidence increases.
In prototype learning, where only 1 or extremely few samples
are taken as prototypes for learning, it therefore becomes
more important and motivating that the network can show
anxiety and confidence based on exposure to vast training
data. The prototype and correlation neurons can be seen
as also supplying a global representation of the different
presented training patterns to the proposed neural network
model, analogous to the emotional neuron; albeit, based on
a different and novel approach (see Sections II-A-II-C).
Furthermore, for situations where prototypes associated with
presented input patterns can be sometimes wrong; it then
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becomes reasonable that the prototype and correlation neurons
weights are updated using the EmBP algorithm such that
confidence can increase over correctly associated prototypes
while anxiety decreases over wrongly associated prototypes
as training progresses. In the subsequent sections of this
paper, it is shown that the described and novel weights
update scheme performs as expected; an overall improved
learning experience is observed based on the recognition tasks
considered.

The output of any hypothetical hidden neuron j denoted as
Aj is computed from

n
Aj=f (Z WjuXy + Wjbh j +Wip P + wic C + wijm YpAT) @)

u=1

where x,, is the input attribute indexed by u, wjy is the weight
interconnection from input neuron u to hidden neuron j, wjp
is the weight interconnection from input bias neuron to hidden
neuron j, b; is the bias of the hidden layer, wj, is the weight
interconnection from prototype neuron P to hidden neuron j,
wjc is the weight interconnection from correlation neuron C
and hidden neuron j, wjny is the weight interconnection from
input emotional neuron M to hidden layer neuron j, Ypar is
the global average of the input pattern, and f is the activation
function.

The output (activation) of any hypothetical output neuron k
denoted Ay is obtained using

h
Ar=f Zwijj+wkbbk+wkpp+wkcc+wkaPAT
j=1

()

where A; is the output of hidden neuron j, wy; is the weight
interconnection from hidden neuron j to output neuron k,
wgp 1S the weight interconnection from hidden bias neuron
to output neuron k, by is the bias of the output layer, wyp
is the weight interconnection from prototype neuron P to
output neuron k, wyg. is the weight interconnection from
correlation neuron C to output neuron k, wgny is the weight
interconnection from hidden emotional neuron M to output
layer neuron k, Ypar is the average of the input pattern, and
f is the activation function

>

p=1k=1

, 2

E; = (Tx — Ox) - ©)

0| =

Equation (9) describes the mean squared error (MSE) cost
function at iteration i, denoted E;; where, T; and Oy are
the target and actual outputs, respectively; » is the number
of output neurons; p and N are the index and total number of
training patterns, respectively.

The global average of all presented patterns during training
is denoted Yavpar and calculated using

N
1
YAVPAT = N 21 YpaT. (10)
p:

The anxiety (x;) and confidence (k;) coefficients at iteration
i are obtained using

Y
12)

ui = Yavear + E;.
ki = o — ui.
Note that the confidence parameter k is O at the start of training
and increases as training progresses, while the anxiety u is
highest at the start of training and gradually decreases as
training progresses.
1) Hidden-Output Layer Weights Update:
1) The weights of the conventional hidden-output layer
neurons are updated using

wkj(i + 1) = wkj(@) + nAxAj + Blowkj(i)]  (13)

where 7 is the learning rate, Ay is the output layer error
signal, A; is the output of hidden neuron j, § is the
momentum rate, dwy; is the previous weight change,
and i is the iteration index.

2) The output error signal, Ay, is calculated using (14),
where function f is taken as log-sigmoid for (7) and (8)

A = Ag(1 — A (Tr — Ag). (14)

3) The weights of hidden-output layer bias neurons are
updated using

wip(@ + 1) = wip Q) + nArAp + Blowip ()]

where Ay is set to 1; dwyy is the previous weight change
for the hidden-output bias neuron.

4) The hidden-output layer prototype neuron weights are
updated using (16); dwy, is the previous weight change
for the hidden-output prototype neuron

wkp(i +1)= wkp(t) + uAgP + k[&wkp(i)].

5)

(16)

5) The weights of the hidden-output layer correlation neu-
ron are updated using

ke (i + 1) = wie (1) + . Ak C + k[dwke ()] (17)

where Jwyg. is the previous weight change for the
hidden-output correlation neuron.

6) The hidden-output layer emotional neuron weights are
updated using

Wkm (i + 1) = wgm (t) +p A Ypar +k[dwkm(P)]  (18)

where x4 and k are the anxiety and confidence coefficients;
Owy, 1s the previous weight change for the hidden-output
emotional neuron.

2) Input-Hidden Layer Weights Update:

1) The weights of the conventional input-hidden layer

neurons are updated using
wiu(@ + 1) = wu (@) + 1A A, + Blowu@)]  (19)

where A ; is the error signal to the hidden layer, A, is the
input to hidden neuron j, dwj, is the previous weight
change, and A; is calculated using

-
Aj :Aj(l_Aj)Zwijk-
j=1

(20)
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Fig. 2. Samples of the 24 unprocessed static hand-gestures from the Thomas Moeslund’s database [51].
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Fig. 3. Samples of preprocessed hand gestures.

2) The weights of the input-hidden layer bias neurons wj
are updated using (21); where dw;, is the previous
weight change

wib(@ + 1) = wip (@) + nAjAp + Blowp@)].  (21)

3) The weights of the input-hidden layer prototype neuron
are updated using

wip(i + 1) = wjp (i) + uA; P + k[owjp(i)].  (22)
4) The weights of the input-hidden layer correlation neuron
are updated using

wicli + 1) = wic(i) + A ;C + k[dwic ()], (23)

5) The weights of the input-hidden layer emotional neuron
are updated using

wim(i +1) = wim () +u A jYpar +k[6wim (D). (24)

One important highlight of (16)—(18) and (22)—(24) used to
update the prototype, correlation, and emotional weights is that
as the anxiety coefficient reduces and confidence parameter
increases, the network is made to pay less attention to the error
signal, but more attention to the previous weight changes. This
novel weights update scheme for the prototype, correlation,
and emotional neurons can be considered an extra inertia to
the network during learning, and motivates the network against
convergence to poor local minima. Also, note that emotional
parameters are self-taught during training.
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Fig. 4. Samples of the 24 segmented hand gestures.

III. DATABASE ANALYSIS AND PROCESSING

A. Static Hand-Gesture Database

The database used in this work is obtained from the Thomas
Moeslund’s static hand-gesture database [51]. The database
contains the 24 static hand-gestures for the American sign
language; the two alphabets which are missing are the non-
static sign languages (“J” and “Z”). The sample images of
unprocessed hand gestures are shown in Fig. 2. It is obvious
that for a more reasonable training (reducing redundant infor-
mation in the training data); the hand gestures in Fig. 2 should
be segmented. Critical to the segmentation stage is the image
preprocessing stage described in the following.

1) Image Preprocessing: The images are preprocessed by
conversion to binary (black and white). The binary conversion
is achieved by thresholding the images at 0.5 gray level.
Furthermore, the binary images are filtered with a median
filter of size 10 x 15; the filtering denoises the images prior to
the segmentation. Some samples of hand gestures converted
to binary and with the median filtering applied on them are
shown in Fig. 3.
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Fig. 5.

ORL face database [52].

2) Image Segmentation: The images are segmented by run-
ning an algorithm on the preprocessed images; the algorithm
extracts the white pixels contained in the images in a form of
bounding box. The 24 segmented hand-gesture sample images
are shown in Fig. 4.

The static hand-gestures recognition database contains
2040 samples; all images are rescaled to 32 x 32 pixels (this
reduces training computational requirements). In this work,
we have taken 1440 samples (~70%) as the training data
and 600 samples (~30%) as the testing data. The training-to-
testing data ratio has been chosen such as not to bias learning,
i.e., using too many training samples, but few testing samples.

B. Face Database

The ORL (AT &T) face database is used in this work for
training and testing the proposed model. The face database
contains frontal poses of 40 different subjects with moderate
variations in presentations; this makes recognition more chal-
lenging. Also, the same subjects are captured with varying
facial expressions, and some subjects have glasses on in some
of the images, while the same subjects are without glasses
in other images; these variations make the recognition task
even further challenging. The database contains ten sample
images (in grayscale) per subject; hence, a total of 400 sample
images (in grayscale) for the 40 different subjects. The sample
images of the 40 different subjects are shown in Fig. 5.

For training the proposed model in this work, five images
per subject (200 images for the 40 subjects: 50% of avail-
able data) are used, while the remaining five images per
subject (200 images for the 40 subjects: remaining 50% of
available data) are used for testing the trained models. Further-
more, the images are rescaled to 32 x 32 pixels, which reduce
computational requirements. The training-to-testing data ratio
has been chosen such that comparative analysis with an earlier
work can be achieved with ease.
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Fig. 6. Learning curve for PI-EmNN3 for gesture recognition.

IV. PI-EMNN APPLICATION TO RECOGNITION TASKS

In this section, we describe the training of the proposed
network model (PI-EmNN) for the static hand-gesture recog-
nition and face recognition tasks. Furthermore, PI-EmNNs
are trained using different number of prototypes per class,
ie., 1, 3, and 5 prototypes per class for both static hand
gesture and face recognition tasks. This allows the observation
of learning experience and performance of the PI-EmNNs
with different number of prototypes per class as described
in Section II.

The databases used in the training of the networks for
the aforementioned tasks are described in Section III.
Also, for comparative analysis, the conventional back-
propagation neural network (BPNN), EmNN, deep
neural models, and k-NN are trained for the considered
tasks.
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TABLE I
TRAINING HYPER-PARAMETERS FOR STATIC HAND-GESTURE RECOGNITION

Network PI-EmNNI1 PI-EmNN3 PI-EmNNS5 EmNN BPNN
(1-prototype)  (3-prototypes)  (5-prototypes)
Number of training samples 1,440 1,440 1,440 1,440 1,440
Activation function Sigmoid Sigmoid Sigmoid Sigmoid  Sigmoid
Number of hidden neurons 30 30 30 30 30
Momentum rate (f) 0. 002 0.002 0.002 0.002 0.002
Epochs 6,000 6,000 6,000 6,000 6,000
Mean Squared Error (MSE) 0.0035 0.0030 0.0077 0.0057 0.0058
Anxiety coefficient (x) 0.0321 0.0097 0.0108 0.0123 -
Confidence coefficient (k) 0.2798 0.4946 0.3427 0.4201 -
* Using a 2.0GHz (Dual core) PC with 3GB of RAM, Windows 7 OS and MATLAB programming environment
0.5
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Fig. 7. PI-EmNN3 learning curve for emotional parameters. Fig. 8. Learning curve for PI-EmNNS3 for face recognition.

A. Static Hand-Gesture Recognition

Several experiments are carried out to determine the hyper-
parameters for the networks; these parameters are presented
in Table I. Input images are all of size 32 x 32 pixels. The input
layer has 1024 neurons (the size of input images), the output
layer has 24 neurons (the number of output classes in the task);
the number of hidden neurons was obtained heuristically as
30 during the training phase. Note that the sigmoid activations
in Table I are the logistic function type. Table I shows that
the PI-EmNN with three prototypes per class (PI-EmNN?3)
achieved the lowest MSE of 0.0030.

Also, it is observed that PI-EmNN3 achieved the lowest
anxiety coefficient (u), 0.0097, and highest confidence coef-
ficient (k), 0.4946, at the end of training. The learning curve
for PI-EmNN3 is shown in Fig. 6. The curve describing the
learning of emotional parameters, anxiety coefficient (u), and
confidence coefficient (k) are shown in Fig. 7. As expected,

it is observed that the anxiety coefficient drops as training
progresses, while the confidence coefficient increases.

B. Face Recognition

The ORL face database described in Section III is used for
the training of the PI-EmNNs. Networks are of 1024 input
neurons (since input images are of size 32 x 32 pixels) and
40 output neurons; the suitable number of hidden neurons
was obtained heuristically as 70 during training. Furthermore,
the training hyper-parameters for the different networks are
shown in Table II. Note that the activations functions shown
in Table II are of the logistic function type. Also, it can
be observed that the conventional EmNN and BPNN are
not shown in Table II; the aforementioned networks are not
considered for training in this work as results for comparative
analysis with the proposed network models are obtained from
an earlier work [50]. From Table II, it can be observed



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

OYEDOTUN AND KHASHMAN: PROTOTYPE-INCORPORATED EMOTIONAL NEURAL NETWORK 9

TABLE 11
TRAINING HYPER-PARAMETERS FOR FACE RECOGNITION

Network PI-EmNNI1 PI-EmNN3 PI-EmNNS5
(1-prototype) (3-prototypes)  (5-prototypes)
Number of training samples 200 200 200
Activation function Sigmoid Sigmoid Sigmoid
Number of hidden neurons 70 70 70
Learning rate (#) 0.0089 0.0089 0.0089
Momentum rate (5) 0. 002 0.002 0.002
Epochs 3,000 3,000 3,000
Training time (secs) 643.8 657.2 668.5
Mean Squared Error (MSE) 0.0038 0.0025 0.0017
Anxiety coefficient (1) 0.0054 0.0050 0.0049
Confidence coefficient (k) 0.6187 0.6221 0.6253

* Using a 2.0GHz (Dual core) PC with 3GB of RAM, Windows 7 OS and MATLAB programming environment
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Fig. 9. PI-EmNNS3 learning curve for emotional parameters.

that PI-EmNNS5 achieved the lowest MSE on training. The
error learning curve for PI-EmNNS is shown in Fig. 8. Also,
the learning curve of emotional parameters for PI-EmNNS5 is
shown in Fig. 9. It can be observed that for PI-EmNNS; the
anxiety level has decreased to 0.0049 but confidence level has
increased to 0.6253 at the end of training.

It is noteworthy to restate that emotional parameters, anx-
iety (u), and confidence (k) are not set before training. The
parameters are self-taught during training; detailed descrip-
tions relating to how these parameters are learned during train-
ing are provided in Section II. Note that emotional parameters
are updated progressively at the end of each iteration, and
only the final values for the emotional parameters are reported,
i.e., Tables I and II.

V. RESULTS, COMPARISON, AND DISCUSSION

For both tasks considered in this work, the trained networks
are simulated with the training data. Also, the trained networks

are simulated with the test data; this allows the observation
of the generalization capability of the trained networks. The
performances of the networks are assessed based on achieved
recognition rates. The recognition rates (classification accu-
racy) of the models are obtained using

/ICOITCCtS

(25)

Recognition rate =
total simulated samples
where Acorrects 1S the number of correctly classified samples
and A¢otal simulated samples 1S the total number of simulated sam-
ples.

A. Static Hand-Gesture Recognition

The trained networks for the static hand-gesture recognition
in Section IV-A are simulated with the training data and
testing data. The achieved recognition rates for the trained
networks, PI-EmNNI1, PI-EmNN3, PI-EmNN5, EmNN, and
BPNN are presented in Table III. It can be seen that stacked
denoising auto encoder (SDAE) achieved the highest recog-
nition rate on training data (i.e., 99.44%); PI-EmNN3 (with
three prototypes per class) follows SDAE, outperforming other
models including BPNN, EmNN, k-NN, and convolutional
neural network (CNN). Also, in Table III, it can be seen that
k-NN (with k& = 7) achieved the highest recognition rate on
the test data (i.e., 95.83%), slightly outperforming PI-EmNN3.
More important is that on the test data, PI-EmNN3 and
PI-EmNNS5 outperform the other models including EmNN,
BPNN, k-NN (with k£ = 15), SDAE, and CNN. Particularly, for
the PI-EmNN models, it is observed that PI-EmNN3 achieved
the highest recognition rate on the testing data (94.33%).
PI-EmNNS5 follows PI-EmNN3 in performance, while
PI-EmNNI1 slightly lags the EmNN in performance. It is
observed that the incorporation of prototype knowledge into
the conventional emotional BPNN improved the overall learn-
ing experience of the proposed model for the task; that is,
the PI-EmNN3 and PI-EmNNS5 outperform models which rely
essentially on adaptive learning (i.e., BPNN, EmNN, SDAE,
and CNN) and a model which rely solely on exemplar learning
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TABLE III
RECOGNITION RATE (%) FOR STATIC HAND-GESTURE RECOGNITION

Model Train Test
data data
PI-EmNN1 (1-prototype) 96.60 90.33
PI-EmNN3 (3-prototypes) 99.24 94.33
PI-EmNNS (5-prototypes) 97.71 93.00
EmNN 96.39 90.83
BPNN 95.63 88.17
k-NN (with k=7) 98.96 95.83
k-NN (with k=15) 96.88 92.83
SDAE (4 hidden layers) [61] 99.44 92.83
CNN (4 hidden layers) [61] 98.13 91.33

TABLE IV
RECOGNITION RATE (%) FOR FACE RECOGNITION TASK

Model Train Test
data data
PI-EmNNI (1-prototype) 100 91.50
PI-EmNN3 (3-prototypes) 100 93.50
PI-EmNNS (5-prototypes) 100 92.00
EmNN [50] 100 90.00
BPNN [50] 100 87.00
k-NN (with k=1) 100 91.00
k-NN (with k=3) 96.50 84.50
SDAE (3 hidden layers) 100 92.50
CNN (4 hidden layers) 99.50 83.00
SOM+CNN (4 hidden layers) [62] - 96.20

(i.e., k-NN). This strengthens our aforementioned position that
adaptive learning can benefit from prototype learning since our
proposed model, PI-EmNN, relies on both.

B. Face Recognition

The trained networks in Section IV-B are simulated with
both the training (200 samples) and testing data (200 samples).

Table IV shows the obtained recognition rates for the differ-
ent models on both training and testing data. From all exper-
iments performed in this work, it is observed that PI-EmNN3
(with three prototypes per class) outperforms EmNN,

BPNN, k-NN, SDAE, and CNN on testing data. For the
SDAE, best performance was obtained with three hidden
layers.

For the PI-EmNN models, it is observed that PI-EmNNS5
(with five prototypes per class) follows PI-EmNN3 on per-
formance, while PI-EmNNI1 (with one prototype per class)
slightly lags PI-EmNNS5 on performance. In addition, we com-
pare our models with models from another work [62] which
employed the five images per subject for training and the
other five images per subject for testing. Although a higher

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

recognition rate was reported in [62], we note that they
used self-organizing map (SOM) for explicit feature extrac-
tion and dimensionality reduction before classification with
a CNN. This truly reflected on computational requirements
in their experiments. For example, the SOM + CNN model
was reported to have required 4 h for training; the explicit
feature extraction via SOM alone took 100000 weights
updates for the ordering phase and 50000 weights updates
for the fine-adjustment phase. Conversely, our proposed
model (PI-EmNN) did not employ any explicit feature extrac-
tion as observed in [62], required only 3000 epochs and a
maximum training time of 670 s, see Table II. Also, it is
well-known that CNNs are data “hungry” if they are to
yield competitive performances. Therefore, we note that the
explicit feature extraction and simultaneous data dimensional-
ity reduction could be responsible for the improvement in the
performance of CNN from 83% as obtained in our experiment
in this work to 96.2% as reported in [62], see Table IV.
In fact, [62] acknowledged the poor performance of CNN
without the employed explicit feature extraction.

One significant finding on the proposed model is that the
best performances are obtained when three prototypes per class
are used; for both recognition tasks, the PI.-EmNN with three
prototypes per class yielded the best performances. In this
paper, we experiment with 0, 1, 3, and 5 prototypes per
class; note that the zero prototype per class can be seen as
equivalent to the conventional EmNN presented in an earlier
work [50]. The proposed models with five prototypes per class
are found to follow the three prototypes per class models on
performance.

Also, the one prototype per class models are found to have
almost the same performance with the zero prototype per class
models (EmNNs) and slightly lag the five prototypes per class
models. For the static hand gesture and face recognition tasks,
Fig. 10 shows the achieved recognition rates on the testing data
for the proposed models based on the number of prototypes
per class, i.e., from Tables IV and V. From Fig. 10, it can
be observed that the proposed model (PI-EmNN) peaks for
the static hand gestures and face recognition tasks with three
prototypes per class, after which the performance of the model
begins to decrease.

We conjecture that the initial increase in performance is
associated with the prior knowledge acquired by the net-
work based on the incorporation of prototype learning. Also,
with three prototypes per class, the model is exposed to a
more robust prototype learning based on the voting criterion
described in Section II-A. In the one prototype per class
scenario, insufficient or incorrect prior knowledge due to
wrong associations of prototypes with other class labels is as
a result of using only one prototype per class to determine
the class labels of the training data; this may negatively
impact learning as is seen in the static hand-gesture recognition
task, where PI-EmNNI slightly lags EmNN (zero prototype
per class PI-EmNN) on testing recognition rate. Conversely,
increasing the number of prototypes per class beyond 3
begins to introduce too many variations in the samples of
possible prototypes; hence, the possibility that a presented
input pattern will be wrongly associated with one of the
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Fig. 10. PI-EmNN recognition rates on testing data against the number of

prototypes per class.

TABLE V
TEN-FOLD CROSS-VALIDATION RECOGNITION RATE (%) ON TEST DATA

Model/recognition task Hand Face
gesture
PI-EmNNI (1-prototype) 98.14 97.25
PI-EmNN3 (3-prototypes) 99.12 98.00
PI-EmNNS (5-prototypes)  98.92 97.25
BPNN 97.94 96.75
EmNN 98.04 97.25
k-NN 98.58 (k=7)  97.50 (k=1)
k-NN 97.16 (k=15) 95.25 (k=3)
SDAE 98.58 96.50
CNN 98.87 95.75

prototypes of another class may again increase. Interestingly,
Reisinger and Mooney reported similar performance in their
work on multiprototype learning [45]. We posit that based
on prototype learning, the acquired prior knowledge on class
labels is useful in quickly guiding the PI-EmNNs toward good
local minima in solution space. In fact, various pretraining
schemes for deep neural networks are also somewhat hinged
on this premise [63].

Furthermore, we consider how the generalization perfor-
mances of the PI-EmNNs vary with the percentage of training
data taken as prototypes. Fig. 11 shows the testing recognition
rates of the PI-EmNNs for the hand gesture and face recogni-
tion tasks with the percentage of training data T taken as proto-
types. This percentage can be calculated as (P xC/T) x 100%,
where P is the number of prototypes per class, C is the number
of classes in the classification task, and 7 is the total number
of training examples available for the task. Note that though
we restricted the number of prototypes per class to a maximum
of 5 irrespective of the number of available examples per class,
a small training data set with respect to the number of classes
can make the percentage of prototype data quite high; this
is observable in the face recognition task. In this case, it is
interesting to note that when the network is activated, only one
of those prototypes (which could almost be identical to one of
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Fig. 11. PI-EmNN testing recognition rates as a function of the percentage
of training data T selected as prototypes.

the exemplars) is provided so that learning remains unbiased
in view of available data for training. It should be observed
that for sufficiently large data sets such that the ratio C/T
is extremely small; the percentage of prototype data will be
quite small even at five prototypes per class, i.e., observable in
the hand-gesture recognition task. Nevertheless, generalization
performance did not strictly increase with the percentage of
prototype data.

In order to further demonstrate the competitiveness of
the proposed model, we perform additional experiments for
the earlier recognition tasks using ten-fold cross-validation
training scheme with the same model architectures and hyper-
parameters as in the previous experiments. Table V shows the
results obtained for the test data.

Particularly, for both recognition tasks considered in this
work, we note that PI-EmNN3 outperforms all the other
models based on ten-fold cross-validation results. The results
are more interesting when one considers that the PI-EmNN
models have only one hidden layer, but still outperforms both
SDAE and CNN both with many hidden layers.

VI. CONCLUSION

This work builds on two fundamental-learning theories
for explaining category generalization in humans, that is,
prototype- and adaptive-learning theories. We share the idea
that both the prototype and adaptive theories are valid for
learning. Therefore, we propose that incorporating prototype
knowledge into neural networks can be used to improve the
overall learning experiences of such networks. The proposed
neural network model has been applied to two challenging
tasks in machine vision; namely, static hand-gesture recogni-
tion and face recognition. All the experiments performed in
this work show that the incorporation of prototype learning
into the EmNN improves overall learning and generalization.
In addition, it is interesting that our proposed model which
employs only one hidden layer and no convolution operations
for feature learning achieves competitive performance against
models with many hidden layers of features abstraction and
convolution operations, i.e., deep neural networks.

Future work includes the application of the proposed model
to a wider domain of machine vision and pattern recognition
problems. The authors believe that using an expanded domain
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of problems, it is possible to investigate even further that the
optimum number of prototypes per class obtained within this
work holds for a broad range of visual tasks. Furthermore,
the connection between prototype learning and semisupervised
learning as obtains in deep networks is an interesting future
research direction.
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