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Background: Colorectal cancer remains a leading cause of cancer-related mortality world-

wide. Metastases to the liver are often present at initial presentation and will form in most

patients during their course of disease. We have previously demonstrated that enhanced

trafficking and activation of tumor-infiltrating lymphocytes in colorectal liver metastases

(CRLM) may improve antitumor immune responses. Thus, development of novel mecha-

nisms to increase lymphocyte infiltration and activation are needed to improve patient

outcomes.

Methods: CT26 murine colorectal cancer cells were treated with physiologic levels of the

potent inducer of immunogenic cell death mitoxantrone (MTX). An in situ vaccine was

created with treated cells in an established model of CRLM. Cells were evaluated by flow

cytometry for cell cycle evaluation and calreticulin expression. Splenic and tumor-

infiltrating lymphocytes were isolated for phenotypic studies.

Results: MTX-treatment of colon cancer cells resulted in a sub-G1 peak, inhibition of G1 cell

cycle progression, and increased G2/M cell fractions while simultaneously increasing dy-

namic exposure of calreticulin on the cell surface (P < 0.05). Vaccination with MTX-treated

cells resulted in significant decreases in CRLM formation associated with increased tumor-

infiltrating leukocytes that displayed increased expression of the T cell surface activation

marker CD69.

Conclusions: Vaccination with MTX-treated primary colon cancer cells enhances tumor-

infiltrating lymphocytes and clinical responses in CRLM.

ª 2018 Elsevier Inc. All rights reserved.
Introduction (CRLM) are often present at the time of diagnosis and remain
Colorectal cancer remains one of the leading causes of cancer-

related mortality worldwide. Colorectal liver metastases
th Academic Surgical Co
Oncology, Department of
; fax: þ1 773 296 7731.
ker).
ier Inc. All rights reserved
the most common site of metastatic disease.1 In selected pa-

tients, surgical resection of CRLM has improved long-term

survival, but unfortunately only 10%-20% of patients are
ngress, Las Vegas, NV, 2017.
Surgery, University of Illinois at Chicago, 835 South Wolcott, MC

.

mailto:amaker@uic.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.07.068&domain=pdf
www.sciencedirect.com/science/journal/00224804
http://www.JournalofSurgicalResearch.com
https://doi.org/10.1016/j.jss.2018.07.068
https://doi.org/10.1016/j.jss.2018.07.068
https://doi.org/10.1016/j.jss.2018.07.068
https://doi.org/10.1016/j.jss.2018.07.068


58 j o u rn a l o f s u r g i c a l r e s e a r c h � j a n u a r y 2 0 1 9 ( 2 3 3 ) 5 7e6 4
surgical candidates. Most stage IV patients with CRLM will be

managed with palliative intent utilizing multidrug chemo-

therapy regimens. However, systemic chemotherapy has

limited efficacy with many treatment-related toxicities.2 New

therapeutic strategies are focusing on enhancing the anti-

tumor immune response by attempting to drive increased

numbers of tumor-infiltrating lymphocytes into the tumor

microenvironment. Although this strategy has increased

response rates in microsatellite instable colon cancers, which

represent less than 5% of colon cancers, to date current

immunotherapeutic strategies have been unsuccessful in

achieving this goal for most colon cancers.3-6

Previous studies have documented that the presence of

activated and proliferating T cells within primary colorectal

tumors is associated with improved survival.7,8 In addition,

we have previously demonstrated an association between

increased T cell infiltrates and improved outcomes in patients

with CRLM.9,10 Thus, enhancing the antitumor immune

response may play a viable role in treating patients with

advanced gastrointestinal malignancies, including colon

cancer and CRLM.

Although chemotherapy is traditionally linked to its

immunosuppressive effects in treating cancer patients,

emerging studies have demonstrated that selected chemo-

therapeutics may enhance tumor immunogenicity.11

Chemotherapy-induced immunogenic cell death (ICD) is

characterized by the release and/or increased expression of

defined damage-associated molecular patterns, including

calreticulin (CRT),12-14 and we have previously demonstrated

that induction of ICD in colon cancer cells can generate spe-

cific antitumor immunity in colorectal cancer.15 Therefore,

chemotherapy agents not traditionally used in colon cancer

but that may induce ICD could have potential for enhancing

antitumor immunity in colon cancer patients.

Mitoxantrone (MTX) is a well-established anthracenedione

antineoplastic agent used in the treatment of multiple scle-

rosis, lymphoma, leukemia, hormone-refractory prostate

cancer, and advanced stage breast cancer.16,17 MTX has

recently been demonstrated to induce ICD and may elicit a

tumor-specific immune response in murine colon cancer

models.14,18-20 Therefore, the aim of the present study is to

investigate whether MTX-treated murine colon cancer cells

can be used as a tumor vaccine to increase tumor-infiltrating

lymphocytes and thus impact the growth of CRLM.
Materials and methods

Cell culture

Themurine colorectal carcinoma cell line, CT26, was obtained

from the American Type Culture Collection (ATCC, Manassas,

VA), tested for mycoplasma, and utilized at low passage

numbers. Cells were cultivated with RPMI 1640 culture me-

dium supplemented with 10% fetal bovine serum, 2 mM

glutamine, 1 mM sodium pyruvate, 10 mM HEPES, and 1%

penicillin/streptomycin in 37�C incubator containing 5% CO2.

All cell culture reagents were purchased from Invitrogen

(Grand Island, NY) and cells were passaged at 1 to 10 dilutions

on confluence.
Cell cycle analysis and CRT expression

CT26 cells were seeded in a 6-well plate at 3� 105 cells per well

and treated with 1 mMMTX (Cayman Chemical Company, Ann

Arbor, MI) or 1:1000 DMSO as vehicle control for 24 h. Cells

were harvested with 0.05% trypsin and fixed with 80% ethanol

on ice for 30 min and then incubated with 1 mL of DNA

staining solution (1 mg/mL DAPI, 0.1% NP-40 in phosphate

buffered saline [PBS], all from Sigma Aldrich, St. Louis, MO) at

room temperature for 30 min followed by flow cytometry

analysis.

To detect cell surface expression of CRT, cells were sus-

pended in 100 mL PBS containing 3% FBS without fixation and

incubated with fluorochrome-conjugated rabbit anti-CRT

antibody (1:250, from Abcam, Cambridge, MA) at 4�C for

30 min. The cells were washed and incubated subsequently

with a 1:500 dilution of Fluro-488 labeled goat anti-rabbit IgG

(Thermo Scientific, Waltham, MA) for 30 min. The stained

cells were analyzed using a CyAn ADP analyzer (Beckman

Coulter, Brea, CA). Events were collected and analyzed using

FlowJo software (Tree Star Incorporated, Ashland, OR).

In vivo studies

Female, 6- to 12-wk-old CT26 cell Balb/c mice, weighing 18-

20g, were obtained from Charles River Labs (Wilmington, MA).

All mouse experiments were approved by the Institutional

Animal Care and Use Committee at the University of Illinois at

Chicago and performed in the animal facility as per the

approved protocol. Five animals were utilized per group based

on a biological difference in tumor formation of at least 30% at

an alpha of 0.05 and power of 80%.

Vaccination with MTX-treated colon cancer cells and
generation of CRLM

CT26 cells were treated with 1 mM of MTX or DMSO (1:1000) as

vehicle control for 24 h. The cells were then washed and

resuspended in PBS. Mice were randomized to separate cages

assigned to receive MTX-treated or control cells subcutane-

ously into the right flank (1� 106 in 100 mL PBS) on days 0 and 7.

On day 14, each mouse underwent intrasplenic wild-type

CT26 cell injection to form reliable CRLM as we have previ-

ously reported in this well-established model.21,22 In this

model, 1 � 106 CT26 cells are introduced into an isolated and

divided hemispleen that is excised after injection, leaving half

of the untreated spleen for immunologic studies.

Preparation of spleen mononuclear cells and tumor single-
cell suspension

Micewere euthanized on day 28. Spleen tissuewas placed into

a cell strainer and gently homogenized using a syringe

plunger. Cellswere pelleted and red blood cells lysedwithACK

lysis buffer.

After being weighed and photographed, liver tumors were

manually dissected andminced, and incubated in 10 mL RPMI

containing 5% FBS, collagenase IV (1 mg/mL, Sigma), with

DNase I (50 mg/mL, Sigma) at 37�C for 30 min, and strained to

obtain a single-cell suspension.
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Immune cell phenotyping

Isolated cells from murine spleen and CRLM were incubated

with anti-CD3 APC, anti-CD4 PE, anti-CD8 PE-cy7, anti-CD69

PE-cy5, anti-DX5 PE-cy7 (Natural Killer [NK] cell marker), and

anti-CD45 FITC. Single-cell suspension was analyzed with a

CyAn ADP analyzer (Beckman Coulter, Brea, CA). Events were

analyzed using FlowJo software (Tree Star Incorporated,

Ashland, OR).
Statistical analysis

Data are presented as mean and standard error of the mean.

Differences between groups were calculated using the two-

tailed unpaired t-test. Significance was considered for P-

values <0.05.
Results

MTX treatment of colon cancer cells inhibits cell cycle
progression in vitro

Cell cycle progression of CT26 colon cancer cells treatedwith 1

mM of MTX for 24 h were compared with vehicle-treated cells.

MTX treatment resulted in a sub-G1 peak consistent with in-

duction of apoptosis. Treated cells also were characterized by

growth arrest characterized by inhibition of G1 cell cycle

progression and increased G2/M cell fractions (Fig. 1A).
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MTX induces cells surface expression of CRT

CRT translocation to cell surface has beenwell documented as

a hallmark of ICD.20 MTX treatment caused a significant

increase in dynamic exposure of CRT on the cell surface in

treated cells compared with control treated cells (Fig. 1B).
In vivo vaccination with MTX-treated colon cancer cells
inhibits liver metastatic tumor growth

MTX-treated or control CT26 cells were injected subcutane-

ously into the flank of mice followed by establishment of

CRLM. Aggressive metastases encompassing more than 50%

of the liver formed in 100% of control animals. CRLM tumor

burden was markedly decreased in animals vaccinated with

MTX-treated as opposed to wtCT26 cells (1.8 g versus 4.6 g,

P < 0.05) (Fig. 2)
Vaccination with MTX-treated CT26 cells increases splenic
T cells

By immunofluorescence staining and flow cytometry analysis,

a much higher fraction of total CD3 cells in spleens fromMTX-

treated CT26 tumor cell vaccinatedmice were identified when

compared with that from control mice (7.9% versus 20.3%,

P ¼ 0.01). Both CD4þ (5.9% versus 13.9%, P ¼ 0.01) and CD8þ
(2.4% versus 6.6%, P ¼ 0.02) T cell populations were similarly

increased. NK cell populations were similar (3.2% versus 6.4%,
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Fig. 2 e Vaccination with MTX-treated CT26 cells inhibits tumor growth of CRLM. CRLM were significantly decreased in

animals vaccinated with MTX-treated CT26 cells compared with control treated cells resuspended in PBS. Liver weights

reflected large differences in tumor burden (left panel) that were evident on gross examination (representative explanted

livers, right panel). *P < 0.05. (Color version of figure is available online.)
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P¼ 0.11) in MTX-treated tumor cell vaccinatedmice relative to

that of control vaccinated mice (Fig. 3).

Vaccination with MTX-treated CT26 cells increases
intratumoral lymphocyte infiltration and T cell activation in
metastatic tumors

Evaluation of isolated CRLM revealed that the total leukocyte

fraction (CD45 þ cells) was significantly increased in MTX-

treated colon cancer cell vaccinated mice than in control

vaccinated mice (11.4% versus 38.9%, P < 0.05) (Fig. 4A). CD3þ
cells in theMTX-treated CT26 cell groupwere 16.8% compared

with 23.6% in the non-MTXetreated vaccination group

(P¼ 0.09) and demonstrated an increase in the T cell activation

marker CD69 (5.8% versus 9.6%, P ¼ 0.002). The NK population

was significantly increased in the MTX-treated vaccine group

(2.5% versus 16.4%, P < 0.05) (Fig. 4B).
Discussion

It is well established that increased infiltration and activation

of lymphocytes into primary and metastatic colon cancer is

associated with improved patient outcomes, and we have

previously demonstrated that strategies to increase tumor-

infiltrating lymphocytes in the tumor microenvironment can

result in antitumor immune responses and tumor regression

of CRLM.10,21,23-26 Currently available checkpoint blockade

immunotherapies that have generated antitumor immune

responses in many tumor histologies have had limited effi-

cacy in most gastrointestinal tumors and specifically on

CRLM.4,6 Therefore, new strategies to enhance lymphocyte

proliferation and activation in this disease are needed. One

approach to incite an antitumor immune response in colon

cancer is through generation of ICD.15 We show herein that
treatment of murine colorectal cancer cells with MTX gener-

ates cell cycle arrest accompanied by dynamic increases in

cell surface expression of CRT, consistent with prior reports of

ICD in this tumor histology. Moreover, vaccination of animals

with MTX-treated colon cancer cells, as compared with

vaccination with wild-type tumor cells, resulted in marked

decrease in CRLM growth and significant increases in tumor-

infiltrating lymphocytes.

The cell cycle of CT26 cells was blocked at the G2/M phase,

consistent with previous studies and most likely secondary

MTX-induced DNA damage.27,28 Furthermore, previous re-

ports have demonstrated that MTX treatment can induce

multiple hallmarks of ICD including CRT translocation, ATP

secretion and HMGB1 release,19,20,29 and we also detected

increased expression of CRT at the cell surface after MTX

treatment, confirming that the tumor cells treated with MTX

have the potential of enhancing antitumor immunity.

The murine colon cancer liver metastasis model is well

established in our lab and is considered a reproducible and

clinically relevant metastatic tumor model that mimics

many aspects of the human course of disease.21,22,30,31 We

found that all control mice harbored a large tumor burden of

isolated CRLM, whereas there was significantly less tumor

in the experimental group. We also sought to link the tumor

inhibition with the host’s immune function. Based on the

finding of increased numbers of T cells in the spleen of MTX-

treated vaccinated mice, we postulate that the vaccination

may enhance the systemic immune response specifically

against colon cancer tumor cells, although additional

coculture and cytotoxicity assays will be necessary to

definitively make this determination. In this model, vacci-

nation occurs 2 wk before metastatic tumor initiation. This

functioned to elicit an adaptive immune response before

implantation of metastases, and also to insure that any

identified antitumor immune response was not
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Fig. 3 e Characterization of splenic leukocytes. Mouse spleen cells were isolated from animals after vaccination and

establishment of CRLM, labeled with fluorescence conjugated antibodies, and subjected to flow cytometry analysis. Upper

panel: Representative flow cytometry profiles of splenic T cell and NK cell subsets. Lower panel: Total CD3D, CD4D, and

CD8D T cells were increased in spleens from MTX-treated cell vaccinations (n [ 5 per group, *P £ 0.05, **P £ 0.01). (Color
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overwhelmed by excessive tumor burden before antitumor

immunity could be established.

The liver is generally considered to have a unique envi-

ronment dominated by immune suppressive function,32,33

which may favor tumor growth in situ. Interactions between

the host environment and the tumor determine tumor cell

behavior, levels of growth factors and nutrients, and tumor

angiogenesis.34 Our data revealed increased tumor-infiltrating

leukocytes within the CRLM in response to vaccination only

with MTX-treated colon cancer cells. Furthermore, the lym-

phocytes were found to be activated. Thus, there was an as-

sociation between increased lymphocyte trafficking to the
tumor and clinical response. It is also worth noting that NK

cell populations increased in tumor tissues, thus MTX-

induced cell death may generate not only an adaptive im-

mune response, but also an innate immune response in this

murine metastatic colon cancer model.35,36

MTX was initially approved to treat acute myeloid leuke-

mia,37 and it has been also used to treat a limited number of

cancer types including breast cancer and prostate cancer.38,39

Concerns over its possible oncogenic effect in multiple scle-

rosis have been raised, however, the current results, along

with others,19,20,29 highlight the potential application of MTX

in colon cancer treatment. To our knowledge, this is the first
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report to examine the immune-stimulatory effects of MTX-

treated CT26 cells in CRLM. The concept of stimulating ICD

as a strategy to increase antitumor immune responses have

led to MTX, along with other ICD-inducing chemotherapeu-

tics, to be studied in multiple phase I and II clinical trials.40

The current experiments serve as a proof of principle that

MTX-induced cell death in colon cancer primaries may prime

the patient with a protective immune response against sys-

temic disease. This is reflected both in an increase in the

splenic lymphocyte population and in the tumor microenvi-

ronment. Certainly, additional studies will need to be per-

formed to further evaluate the extent of ICD generated with

this strategy, the exact phenotype of the tumor-infiltrating

lymphocytes, and the role of regulatory cells and suppres-

sive influences in the microenvironment, circulation, and

bonemarrow. A potential strategy tomimic these findings in a

clinical relevant fashionmay involve direct-tumor injection of

MTX as an in vivo vaccination. Clearly, further study and

validation of the current findings in additional human cell

lines and colon tumors will be required.

There are additional limitations to the study. A potential

disadvantage of the vaccination strategy is generation of a

nonspecific immune response. ICD effects are measured

through surrogate biomarker responses14,41,42 or through

evaluation of lymphocyte surface markers and functional

assays12,43,44 for antitumor effects. These approaches are not

completely predictive, nor do they provide an in vivo assess-

ment of a tumor-specific immune response.41,42 For this

reason, we evaluated tumor burden as a clinically relevant

endpoint, although certainly additional studies with synge-

neic but irrelevant tumors as additional negative control

groups are warranted. Furthermore, other colon cancer cell

lines will be useful to test in this model, although they would

need to be in another strain or species as the only established

syngeneic Balb/c colon cancer cell line is CT26 and the impact
of MTX treatment on antitumor immunity requires an

immunocompetent model.45,46 Furthermore, the splenic in-

jection model is a reproducible, efficient, and consistent

model that is clinically relevant to determine the antitumor

immune responses in a syngeneic murine model, although it

is limited in that it does not represent the entire metastatic

process. Thus, it is possible that neoantigens could be

exposed, or that additional mechanisms of immunoediting

occur during the process of spontaneous metastases. These

would need to be studied in longitudinal spontaneous meta-

static models or clinical trials. In addition, this model was

established in female Balb/c mice, and thus gender effects

were not determined in this study.

Despite these limitations, it is provocative that an MTX-

treated colon cancer cell vaccine was associated with

increased immune cell proliferation in the spleen and T cell

activation within CRLM leading to significant decreases in

metastatic tumor burden, warranting further evaluation in a

disease with limited immunotherapy treatment options.
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