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System-based probabilistic
optimization of fluid viscous dampers
equipped in cable-stayed bridges

Jian Zhong1 , Zhangliang Hu1, Wancheng Yuan2 and Liang Chen1

Abstract
This study presents a methodology to evaluate the optimal parameters of fluid viscous damper for cable-stayed bridges using the
system-level fragility assessment approach. Instead of investigating the impact of different isolation devices on the component’s vulner-
ability separately, this study focuses on evaluating the optimal parameters of fluid viscous damper to achieve the best overall perfor-
mance of cable-stayed bridge as a system. Numerical model of a cable-stayed bridge with the most common configuration in China is
established using OpenSEES that can account for their nonlinear response and uncertainty treatment. A joint probabilistic seismic
demand model and Monte Carlo simulation are employed to obtain the system fragility of cable-stayed bridges by accounting for the
contribution of multicomponents to the global damage state. The system-level fragility curves and component fragility curves are com-
pared before and after the application of fluid viscous damper with different parameters. The results indicate that a given parameter of
the fluid viscous damper may have a negative impact on some components, yet lead to a better performance of the bridge as a system.
Thus, in order to obtain comprehensive knowledge of bridge performance and derive the accurate optimal parameters of fluid viscous
damper, it is necessary to consider the fragility based on bridge system.

Keywords
cable-stayed bridges, fluid viscous damper, optimal design, probabilistic seismic demand model system-level fragility

Introduction

In recent decades, cable-stayed bridges have been
widely constructed around the world because of their
aesthetics, efficient use of construction materials, and
fast construction period. Many studies focused on the
dynamic characteristics of cable-stayed bridges sub-
jected to earthquake (Bruneau, 1992; Ren and Obata,
1999; Wilson and Gravelle, 1991). These studies
showed that the seismic demand of towers would expe-
rience a significant increase in terms of bending
moment and shear forces when restraining the bridge
deck completely at tower locations. When there are no
additional restraints in the longitudinal direction,
larger deck displacement would occur during earth-
quake, resulting in pounding and unseating (Aiken and
Kelly, 1992), which is not desirable for performance-
based earthquake engineering. Therefore, there is an
agreement among many researchers that mitigation
devices should be equipped to allow some sort of deck
movement, which would lead to the balance of the
force and displacement demand of the cable-stayed
bridges (Sharabash and Andrawes, 2009). Many
researchers have conducted work on the isolation

devices to reduce the overall seismic response of cable-
stayed bridges (Ali and Abdel-Ghaffar, 1994;
Sharabash and Andrawes, 2009; Zhang et al., 2009;
Zhu and Qiu, 2014); however, these studies are deter-
mined methods, which could not account for the earth-
quake uncertainties, because of the unpredictable
nature of seismic events (Zhang and Huo, 2009).

In order to consider the uncertainties of earthquake
and structure information, it is a widely used approach
to develop probabilistic model in the form of fragility
curves (Basoz et al., 1999; Choi et al., 2004; Hwang
et al., 2001; Nielson, 2005; Padgett and DesRoches,
2008; Pan et al., 2007; Ramanathan, 2012; Shinozuka
et al., 2000a, 2000b). Fragility function is quite useful
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for comparing and selecting mitigation strategies.
Casciati et al. (2008) evaluated the seismic vulnerabil-
ity of components (bending moment, shearing force,
deck displacement, cable strain, etc.) of a cable-stayed
bridge with passive hysteretic devices in terms of dam-
age exceedance probability. Barnawi and Dyke (2014)
developed component (deck displacement, overturning
moment, deck shear, etc.) fragility curves of a bench-
mark cable-stayed bridge equipped with response
modification systems. These studies evaluated the
effectiveness of the mitigation devices using compo-
nent fragility separately, rather than the system fragi-
lity of the overall bridge performance. For example,
some kind of isolation devices might decrease the fra-
gility of bending moment, but would increase the fragi-
lity of deck displacement. Hence, a comprehensive
evaluation of seismic isolation on bridges should be
based on system-level fragility instead of on the
component level. It is still worth noting that the
above-mentioned studies did not emphasize on select-
ing optimum mitigation devices to achieve the best
performance of cable-stayed bridges.

This article will use the system fragility function
method to investigate the efficiency of isolation device
and derive the optimal parameters to achieve the best
overall performance of cable-stayed bridges. A long-
span cable-stayed bridge with the most common con-
figuration in China is chosen and a numerical model is
built using OpenSEES (McKenna and Fenves, 2010)
that can account for their nonlinear response and the
uncertainties in the ground motion and structural
properties. This article will mainly focus on the viscous
damper, which is a widely used mitigation device
equipped in cable-stayed bridges. Fragility curves of
bridges at system level are derived from the multi-
dimensional damage model considering the correla-
tions between the components of cable-stayed bridge.
The fragility at system level of cable-stayed bridge
equipped with different viscous dampers is compared.
Finally the optimal parameters are derived.

Methodology for optimal design of viscous
damper

This study describes the methodology of the optimization
and sensitivity analysis of fluid viscous damper (FVD)
based on system-level fragility functions. The flow chart
is illustrated in Figure 1 and described as follows.

Step 1: establish probabilistic seismic demand model
and capacity model

The fragility can be simply defined as the conditional
probability that the seismic demand (D) placed upon

the structure exceeds its capacity (C) for a given IM
level, as shown in the following equation

Fragility=P½D.CjIM � ð1Þ

The demand model (SD) is conventionally defined
as a linear regression model in a log-transformed space
(Cornell et al., 2002), obtained from the simulations

SD = aIMb ð2Þ

where a and b are regression coefficients. Practically,
the fragility function can be expressed assuming that
both the demand and capacity follow lognormal
distributions

P½D ø CjIM �=F
ln(SD)� ln(SC)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where SD and bD|IM are the median value and disper-
sion, respectively, of the demand as a function of an
IM; SC and bC are the median value and dispersion,
respectively, of the structural capacity; and F(�) is the
cumulative distribution function of the standard nor-
mal distribution. The dispersion of the demand model
can be expressed as

bDjIM =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
½ln(di)� ln(SD)�2

(n� 2)

s
ð4Þ

where di is the ith realization of the demands obtained
from simulations and n is the number of simulations.

Limit state models reflect multiple levels of struc-
tural functionality associated with observed damage.
As mentioned before, each limit state model follows a
distribution with two parameters, SC and bC.

Step 2: correlation coefficient matrix calculation and
system-level fragility deriving

The general assessment of seismic vulnerability for the
bridge system as a whole must be made by combining
the effects of various bridge components (Nielson and
DesRoches, 2007). The multi-dimensional integral
defining the seismic risk and involved in optimization
cannot be calculated, or even accurately approximated,
analytically. Therefore, joint probabilistic seismic
demand model (JPSDM) and Monte Carlo sampling
(MCS) are employed to obtain the system-level fragi-
lity by the stochastic analysis. JPSDM is developed in
a log-transformed state by considering the correlation
between transformed demands of various bridge com-
ponents. MCS is performed in which N random sam-
ples are generated from both the JPSDM and limit
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state model. Each sampling demand is evaluated in the
sampling failure domain and tracked by an indicator
function (IF). The indicator function of n components
is presented in equation (5)

IF =
1

0

�
if (x1, x2, :::, xn) 2 F1, 2, :::, n

if (x1, x2, :::, xn) 62 F1, 2, :::, n
ð5Þ

where (x1, x2, ..., xn) is the sampling of the n compo-
nents demand and, F1,2,...,n is the multi-dimensional
failure domain defined by the limit state of various
components. At a given IM, the probability of being
in the failure domain is estimated as

P½FrsystemjIM = a�=
PN

i= 1 IFi

N
ð6Þ

By performing the MCS from a wide range of IMs,
the entire curve of the system fragility can be obtained.

Step 3: optimization and sensitivity analysis based
on system-level fragility functions

The system fragility curves are the object function.
Conduct the system-level fragility analysis for each
cable-stayed bridge equipped with different viscous
dampers. Compare the fragility function for each case
and derive the minimal system fragility function, and
the corresponding viscous damper parameters are the
optimal one. The advantage of this approach is the
ability to evaluate the impact of retrofit on multiple
vulnerable components as well as the bridge’s overall
seismic performance.

Figure 1. Flow chart for methodology of optimization and sensitivity analysis of FVD based on system-level fragility functions.
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Case study

Input ground motions

This study selects the suite of ground motions used in
Shafieezadeh et al. (2012), which comprises 80 ground
motions extracted from the PEER Strong Motion
Database and 20 ground motions pertinent to Los
Angeles selected from the SAC project database. The
80 PEER ground motions have an even selection of
recorded time-histories from four bins that include
combinations of low and high moment magnitudes as
well as large and small epicentral distances.

Bridge description and numerical model

This study selects Polonggou Bridge, which is the most
common type of cable-stayed bridge constructed in
China. It has three spans; the main span and side span
are 430 and 156 m, respectively. The 17 stay cables are
arranged in a fan configuration. The detailed geometry
of the cable-stayed bridge is shown in Figure 2.

Using the OpenSEES analysis platform (McKenna
and Fenves, 2010), which is an open-source colla-
borative software framework for simulating the seis-
mic response of structural and geotechnical systems,
a detailed nonlinear three-dimensional model is cre-
ated for the subject bridge. The superstructure is
expected to remain linear and is thus modeled using

elastic beam-column elements. A distributed plasticity
fiber model is used to represent sections of pylons to
account for the axial force-moment interaction and
material nonlinearity. Foundations of the pylons are
modeled using six spring elements (Zhong et al.,
2016). The response of each cable is simulated using a
nonlinear tension-only element, which is modeled as a
large-displacement truss element using the Ernst
method or modified elastic modulus method as a
result of the easy usage and the capability to account
for the sag effect (Pang et al., 2014). The initial
stress of the cable is also considered in the model
(Figure 3(d)). The abutment element comprising pas-
sive, active, and transverse actions is modeled by the
stiffness of the passive resistance of the backfill soil
(Figure 3(a)) and the stiffness of the piles (Figure
3(b)) (Choi et al., 2004; Nielson, 2005; Padgett and
DesRoches, 2008). The pounding effect (Figure 3(e))
between the superstructure and abutment is modeled
using the contact element approach developed by
Muthukumar and DesRoches (2006), which includes
hysteretic energy loss. The longitudinal response of
the pot bearing (Figure 3(c)) is simulated using a non-
linear bilinear element, while the transverse response
of the bearing is assumed to be constrained. Further
details on the assumptions and analytical models
themselves can be found elsewhere (Zhong et al.,
2016, 2017).

Figure 2. Configuration of Polonggou cable-stayed bridge (unit: cm).

(a) (b) (c) (d) (e)

Figure 3. Force-deformation relations of various components: (a) abutment passive, (b) abutment active, (c) pot bearing, (d) cables,
and (e) pounding.
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Engineering demand parameters

Demands placed on critical components are taken into
account for the vulnerability assessment of bridges. In
this study, peak demands of components are adopted
as engineering demand parameters (EDPs), and the
critical components are the pylons, bearings, abut-
ments, and the relative displacement of abutment and
deck, as listed in Table 1.

Probabilistic seismic demand model

Selecting an optimal IM for seismic fragility assess-
ment is not a trivial matter and has been focused on in
numerous studies (Padgett et al., 2008, Shafieezadeh
et al., 2012). In some of the pioneering works, various
IMs were selected as optimal IM, including Modified
Mercalli Intensity Scale (ATC, 1985), peak ground
acceleration (PGA) (FEMA 1997), peak ground dis-
placement (PGD), spectral acceleration at a period of
1 s (Ramanathan, 2012), and vector-based IMs (Baker
and Cornell, 2005; Luco and Cornell, 2007). However,
for long-period structures, especially for long-span
cable-stayed bridges, peak ground velocity (PGV) was
demonstrated to be the optimal IM (Zhong et al.,
2016). Therefore, PGV is chosen as the intensive mea-
sure in this study. The linear fit parameters and the
dispersion in the log-log space are shown in Table 2.

Components classification and limit states definition

This study partially employs existing models or defini-
tions of limit states used in previous studies. The limit
states for the abutments follow the work of
Ramanathan (2012). The design displacement of the
pot bearing is 6300 mm. Thus, two limit states are
defined for the pot bearing; LS1 is 300 mm and LS2 is
600 mm. Limit states for the abutment seat is inti-
mately linked to the unseating of superstructure. This
study uses the moderate (LS2) and extensive (LS3)
limit states for the abutment seat determined per the
definition of Avsxar et al. (2011), which is illustrated in
Table 3. The LS3 and LS4 of the abutment and bear-
ing are not defined because these components are
regarded as accessory components and thus contribute
only to the slight and moderate damage of cable-
stayed bridges.

The column is the most critical component of
bridges when performing the fragility analysis of
bridges. Several previous studies (Nielson and
DesRoches, 2007; Pan et al., 2007; Ramanathan, 2012;
Zhang and Huo, 2009) defined different limit states for
columns and achieved different conclusions. However,
the limit states are related to the geometry of the sec-
tion, material, and volumetric percentage of the con-
fining steel, and axial compression ratio of the section.
Thus, numerical simulation is employed to derive the

Table 1. Demand parameters of different bridge components considered.

Engineering demand parameters Abbreviation Unit

Longitudinal curvature ductility in the Section 1 Pylon 1 mu-P1S1 –
Longitudinal curvature ductility in the Section 2 Pylon 1 mu-P1S2 –
Longitudinal curvature ductility in the Section 1 Pylon 2 mu-P2S1 –
Longitudinal curvature ductility in the Section 2 Pylon 2 mu-P2S2 –
Abutment passive displacement dAP mm
Abutment active displacement dAA mm
Pot bearing displacement at Pylon 1 dPB mm
Relative displacement of abutment and deck dAD mm

Table 2. Demand models and regression parameters.

EDP b b z

mu-p1s1 0.896 0.310 0.346
mu-p1s2 0.754 0.230 0.305
mu-p2s1 1.539 0.830 0.539
mu-p2s2 1.348 1.210 0.898
dAP 1.296 0.570 0.440
dAA 0.728 0.500 0.687
dPB 1.012 0.480 0.474
dAD 1.011 0.450 0.445

EDP: engineering demand parameter.
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limit states of the pylon sections. First, a fiber section
is created using OpenSEES (McKenna and Fenves,
2010), as shown in Figure 4, and a pushover analysis is
then performed to obtain the moment-curvature curve
of the sections. The normalized values of the curvature
with respect to u1 are listed in Table 3.

Component and system-level fragility curves

Using the probabilistic seismic demand model
(PSDM) and the limit states in the framework of equa-
tion (3), fragility curves for each of bridge components
are easily calculated and plotted in Figure 5. The pot
bearing (dPB) appears to be the most vulnerable com-
ponent at the slight damage state, followed by the
abutments (dAP and dAA). For the moderate damage
state, the pot bearing (dPB) is still the most vulnerable
component, but followed by section 1 of pylon 2 (mu-

p2s1). However, section 1 of pylon 2 (mu-p2s1) are the
most vulnerable components at the extensive damage
state and complete damage state, respectively. For all
the damage states, pylon 2 is more vulnerable than
pylon 1. This is associated with the fact that pylon 1 is
longer and more flexible than pylon 2, and thus pylon
2 experiences larger seismic demands than pylon 1.

X = (X1, X2, ..., X12) represents the vector of
demands, placed on the EDPs of the cable-stayed

bridge, and Y = ln(X) is the vector of demands in the
log-transformed space. JPSDM is then formulated in
the log-transformed space by assembling the vector of
means mY (PGV = pgv) and the covariance matrix sY .
The correlation coefficient matrix of the demand of 8
EDPs is listed in Table 4. MCS is used to compare rea-
lizations of the demand and capacity of components to
calculate the failure probability of the system using
equation (6). Finally, a system fragility curve can be
determined as a lognormal cumulative distribution
function with two parameters (median and dispersion)
by performing a regression analysis, which is shown in
Figure 5.

Optimization of FVD based on system fragility
function

Polonggou cable-stayed bridge is located in the border
of Sichuan and Tibet of China, which is prone to expe-
rience large earthquake. Viscous fluid dampers,
deemed as passive energy dissipation devices for seis-
mic protection of structures, are equipped in the cable-
stayed bridge which possess lower damper, as shown
in Figure 6.

Experimental testing has shown that a suitable
mathematical model for describing the behavior of

Table 3. Limit state models for various EDPs.

EDPs LS1 LS2 LS3 LS4

SC bC SC bC SC bC SC bC

mu-p1s1 1.00 0.35 1.33 0.35 4.52 0.35 24.8 0.35
mu-p1s2 1.00 0.35 – – 1.37 0.35 6.27 0.35
mu-p2s1 1.00 0.35 1.33 0.35 4.52 0.35 24.8 0.35
mu-p2s2 1.00 0.35 – – 1.37 0.35 6.27 0.35
dAP 48.8 0.35 170.8 0.35 – – – –
dAA 46.5 0.35 155.0 0.35 – – – –
dPB 300 0.10 600 0.10 – – –
dAD – – 1980 0.10 2625 0.10 – –

EDPs: engineering demand parameters.

Figure 4. Fiber section of sections 1 and 2.
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viscous fluid dampers is given by the following non-
linear force–velocity relation

fD =CDj _ujasgn( _u) ð7Þ

where fD is the force developed by the damper; u is dis-
placement across the damper; a is a real positive

exponent whose value is determined by the piston head
orifice design; CD denotes the damping coefficient with
units of force per velocity raised to the power a; sgn(�)
is the signum function; and the over dot indicates dif-
ferentiation with respect to time, t. The exponent a

typically has a value usually ranging from about 0.2 to
0.4 for cable-stayed bridges, 0.3 is selected in this study

Figure 5. Component and system fragility curves for the cable-stayed bridge: (a) slight damage, (b) moderate damage, (c) extensive
damage, and (d) complete damage.

Table 4. Correlation coefficients between transformed demands.

mu-P1S1 mu-P1S2 mu-P2S1 mu-P2S2 dAP dAA dPB dAD

mu-P1S1 1.000 0.722 0.589 0.471 0.656 0.327 0.665 0.698
mu-P1S2 0.722 1.000 0.347 0.512 0.766 0.136 0.841 0.842
mu-P2S1 0.589 0.347 1.000 0.179 0.370 0.380 0.436 0.468
mu-P2S2 0.471 0.512 0.179 1.000 0.438 0.203 0.539 0.535
dAP 0.656 0.766 0.370 0.438 1.000 0.194 0.759 0.764
dAA 0.327 0.136 0.380 0.203 0.194 1.000 0.045 0.049
dPB 0.665 0.841 0.436 0.539 0.759 0.045 1.000 0.992
dAD 0.698 0.842 0.468 0.535 0.764 0.049 0.992 1.000
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for a, and investigates the optimal CD for Polonggou
cable-stayed bridge (Figure 7).

Parametric study and optimization of dampers are
performed with the exponent a as 0.3 and the damping
coefficient of the viscous dampers CD varying from
1.0 3 103 to 10 3 103.

The component fragility curves are compared before
and after the application of FVD with different para-
meters, as illustrated in Figure 8. The results indicate
that increasing the additional damper of the cable-stayed
bridge could reduce displacement of the bridge, resulting
in reducing the probability of damage of displacement
related EDPs (the bearing, the abutment, the unseating,
etc.) for a given intensity measure. So the optimal CD is
1.0 3 104 in terms of the bearing abutment and unseat-
ing performance. Changing the CD from 1.0 3 103 to
1.0 3 104 would increase the seismic force of the
bridge, but the bending moment would not increase
until CD is larger than 3.0 3 103 and 1.0 3 104 for
pylon 1 and pylon 2, respectively. The optimal CD is
3.0 3 104 or 8.0 3 104 if we focus only on the vulner-
ability based on pylon 1 or pylon 2. The trends are evi-
dent and are shown clearly in Figure 9 which depicts the
median value of fragility curves of mu-P1S1, mu-P2S1, and

dPB. Note that higher median PGV in Figure 9 indicates
less vulnerability of the given component.

The optimal parameters of FVD varied when
focused on different components. Hence, the impor-
tance of characterizing not only the component vulner-
ability but also system-level impact of FVD is
emphasized. The component fragility curves analysis
leads to a need to evaluate the comprehensive insight
of the overall system vulnerability of the cable-stayed
bridge. The system fragility curves are developed by
considering the contribution of multiple vulnerable
components. Increasing the CD from 3.0 3 103 to
8.0 3 103 would have a negative impact on pylon 1
(increasing the fragility of mu-P1S1), yet lead to a better
performance of the cable-stayed bridge as a system
(reducing the system-level fragility). Consideration of
the fragility based only on individual retrofitted com-
ponents, without regard for the system, may lead to
over-estimation or under-estimation of the impact on
the bridge fragility. The importance of developing
system-level retrofitted bridge fragility curves is again
recognized. For example, changing the CD from
8.0 3 103 to 1.0 3 104 would have reduced vulner-
ability of unseating, but would increase the probability
of damage as a bridge system. As shown in Figure 10,
as a system, the Polonggou cable-stayed bridge tends
to be less vulnerable when CD varies from 1.0 3 103

to 8.0 3 103 and turns more vulnerable when the CD

becomes larger than 8.0 3 103. Thus, we can make a
conclusion that the optimal parameter of FVD is
8.0 3 103 to achieve the best performance of
Polonggou cable-stayed bridge subjected to
earthquake.

Conclusion

Seismic retrofit measures tend to focus on individual
component response, less research has been carried out
on the cable-stayed bridge performance as a system,
and the optimal parameters of retrofit devices have not
been addressed in the literature. This study presents a

Figure 6. The Polonggou Bridge during construction and the application of FVD.

Figure 7. The restore curves of FVD.
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methodology to evaluate the optimal parameters of
FVD for cable-stayed bridges using the system-level
fragility function. JPSDM andMonte Carlo simulation

are employed to obtain the system fragility of cable-
stayed bridges by accounting for the contribution of
multi components to the global damage state. Optimal

Figure 8. Moderate fragility curves of components of Polonggou cable-stayed bridge equipped with varied FVD: (a) mu-P1S1,
(b) mu-P2S1, and (c) dPB.

Figure 9. The median value of fragility of each component.

Zhong et al. 9



parameters of FVD are derived by directly evaluating
the system-level fragility curves of the cable-stayed
bridge equipped with these given FVD.

A case study bridge, Polonggou cable-stayed bridge,
retrofit with varied FVD is employed to exemplify the
methodology. Details of the numerical modeling
include nonlinear analysis, the uncertainty treatment,
limit state capacities, contribution of critical compo-
nents to the bridge performance as a system, and so
on. For illustration purposes, component fragility
curves are developed, which indicate that retrofit mea-
sures alters the relative vulnerability of the different
components. The system-level fragility curves as well
as component fragility curves are compared before and
after the application of FVD with different parameters.
The results indicate that a given parameter of the FVD
may have a positive impact on some components, yet
lead to a worse performance of the bridge as a system.
Thus, in order to obtain comprehensive insight of
bridge performance and derive the accurate optimal
parameters of FVD, it is necessary to consider the fra-
gility based on bridge system. The damper exponent a

and coefficient CD are chosen as 0.3 and 8000, respec-
tively, to achieve the best performance of Polonggou
cable-stayed bridge as a system.

This methodology can also be employed to perform
the optimization of other mitigation devices, the lami-
nated rubber bearing (LRB) system, friction bearing
systems, energy dissipation bearing (EDB), shape
memory alloy (SMA), and so on. However, it is time
consuming to determine the ideal design parameters
when the device has more than two characteristic para-
meters since the substantial effort for the large number
of computations. Future work is to propose an efficient
computational framework to determine the best perfor-
mance for isolation devices with multiparameters.
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