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Much effort is currently being placed into developing new blood tests for cancer diagnosis in the hope of moving
cancer diagnosis earlier and by less invasive means than current techniques, e.g., biopsy. Current methods are ex-
pected to diagnose and begin treatment of cancer within 62 days of patient presentation, though due to high vol-
ume and pressures within the NHS in the UK any technique that can reduce time to diagnosis would allow
reduction in the time to treat for patients. The use of vibrational spectroscopy, notably infrared (IR) spectroscopy,
has been under investigation for many years with varying success. This technique holds promise as is would com-

Keywords: N . - .
ATR-FTIR spectroscopy bine a generally well accepted test (a blood test) with analysis that is reagent free and cheap to run. It has been
Biofluids demonstrated that, when asked simple clinical questions (i.e., cancer vs. no cancer), results from spectroscopic

studies are promising. However, in order to become a clinically useful tool, it is important that the test differen-
tiates a variety of cancer types from healthy patients. This study has analysed plasma samples with attenuated
total reflection Fourier-transform IR spectroscopy (ATR-FTIR), to establish if the technique is able to distinguish
normal from primary or metastatic brain tumours. We have shown that when asked specific questions, i.e., high-
grade glioma vs. low-grade glioma, the results show a significantly high accuracy (100%). Crucially, when com-
bined with meningiomas and metastatic lesions, the accuracy remains high (88-100%) with only minimal over-
lap between the two metastatic adenocarcinoma groups. Therefore in a clinical setting, this novel technique
demonstrates potential benefit when used in conjuction with existing diagnostic methods.

© 2018 Elsevier B.V. All rights reserved.
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this accounts for up to a quarter of brain tumours [4]. Currently, a com-
bination of radiological imaging and histology is used to detect the pri-
mary origin of a brain tumour. When metastatic, pathologists can apply
immunohistochemical stains to formalin-fixed paraffin-embedded

1. Introduction

Blood testing for cancer diagnostics is a popular ideal. It uses an ac-
ceptable patient test, i.e., a blood test, which is minimally-invasive and

machine analysed, can be run on a mass scale, and can target specific
markers circulating in the blood. Whilst some cancers can be identified
by the use of biomarkers, there are currently no such markers for pri-
mary or metastatic brain tumours, nor are any biomarkers yet involved
in a mass-screening programme [1]. Brain tumours, both primary and
metastatic, often present with a range of non-specific symptoms. The di-
agnostic process involves a combination of history taking, examination
and radiology to determine the presence of a tumour and its possible or-
igin [2]. There are specific radiological appearances that can help differ-
entiate between primary and metastatic brain tumours; however, these
rules do not always hold true [3]. A brain tumour may also be the first
presentation of a metastatic cancer from elsewhere within the body;
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(FFPE) tissue, within which a combination of positive and negative
stains can help determine a primary site of origin.

Over recent years the potential of vibrational spectroscopy has been
touted as an ‘inexpensive, high throughput and reagent-free’ cancer di-
agnostic tool. In vivo studies have shown great promise using both tissue
and blood component analysis with detection of cancer vs. non-cancer
in many pilot studies showing promising results [5,6]. When consider-
ing biofluids, predominantly serum has been analysed for brain cancer,
using attenuated total reflection Fourier-transform infrared (ATR-FTIR)
spectroscopy, with varying sample methods used [7]. This is due to the
erythrocyte component in whole blood providing a strong interfering
spectroscopic signal, likely masking the underlying changes seen in can-
cer vs. non-cancer patients [8]. The main limitations of these studies
focus around different methods of sample preparation and analysis.
No universal method of spectral analysis has yet been agreed. Butler
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et al. attempted to outline suggested methods of applying and analysing
spectroscopic techniques on a variety of tissues, though it is unclear
how widely accepted this has been [9].

Some studies have also compared the use of plasma or serum, with
similar results. FTIR or Raman spectroscopy methods with biofluids
have been used with a wide range of cancers; from head and neck
(75% classification accuracy), bladder cancer (up to 80% accuracy), ovar-
ian and endometrial cancer (96% and 81% respectively) and brain tu-
mours (93% high-grade, 96% low-grade) [8,10-16]. Spectral differences
between gastric cancer patients vs. normal controls, leukaemia vs. nor-
mal controls and lung cancer vs. normal controls have all been demon-
strated by a Chinese group [17-21]. These studies all demonstrate
different points within the spectra of normal vs. malignant that exhibit
specific changes. Whilst sensitivities and specificities have been high
within the majority of these studies, they have all asked specific ques-
tions of the data, e.g.,, cancer type vs. normal control, gliomas vs.
meningioma.

There is then the limit of what question does ATR-FTIR need to an-
swer. Within clinical medicine detection of a specific cancer is beneficial
if suspected based on clinical suspicion. However, more frequently as
symptoms are vague, a tool would be required to detect one from a
number of primary cancers to provide early diagnostic utility. However,
the majority of laboratory studies have focused on one cancer type and
detecting its presence. It has been proposed that spectroscopy, more
specifically, FTIR spectroscopy, could be used as a stand-alone tool for
diagnostics or within screening [20]. However, when either a healthy
person (i.e., one without knowingly having the disease being tested
for) presents for screening, or an unhealthy patient (i.e., a person with
a collection of symptoms not specifically demonstrating a defined un-
derlying illness) with a non-specific history presents, the ability of a
spectroscopic blood test to detect a cancer and its tissue origin from a
range of options remains to be tested. Studies demonstrating detection
of low-grade malignancies are also lacking; within brain tumours, the
differentiation of low- and high-grade gliomas has been demonstrated
to good effect [14]. Hands et al., have also compared primary to metasta-
tic tumours; however, this classed all brain tumours together vs. all
types of metastasis [14]. On tissue, Krafft et al. have attempted to differ-
entiate primary site from metastasis with limited effect. This study dem-
onstrated that it was possible to separate by tumour type; however,
adenocarcinomas for example, from two different primary sites gave
markedly similar results [21]. Therefore in order to be clinically effective
and aid other current diagnostic tools by adding value (i.e., providing in-
formation by less invasive means or more quickly than current testing),
any new test must be able to detect cancer, with high accuracy, and aim
to localise the cancer from a range of primary sites, as is currently pos-
sible following biopsy with the use of immunohistochemistry.

The changes found within ATR-FTIR studies of peripheral blood
components between cancer and non-cancer states are not yet clearly
understood. Changes are seen at several wavelengths, e.g., Apolipopro-
tein A1 within endometrial cancer [15] and several reports of changes
in vibrations from C—O, C=0 and C—H bonds associated with lipids
and proteins within patients with brain metastases [14]. It has also
been shown to be possible to detect epidermal growth factor receptor
(EGFR) mutation status from peripheral blood of lung cancer patients
[22]. This may be due to circulating tumour cells within the blood or
in the case of ATR-FTIR spectroscopy-detected protein changes within
the peripheral blood. These changes are likely caused by the release of
enzymes and cytokines from the tumour as it grows.

Worldwide, neurological disorders account for >20% of disease bur-
den and are frequently seen in General Practitioner (GP) clinics [23].1f a
typical secondary care neurology clinic is used as an example, patients
are referred via their GP due to underlying symptoms such as head-
aches. From the history, examination and any relevant investigations
the clinician determines the underlying cause. MacDonald et al. looked
at an unselected population from GP services in London who had been
referred to tertiary neurology services. This was to understand the

range of underlying diagnoses. They found non-tumour related pathol-
ogy made up the vast majority of these presentations [24]. Similar re-
sults have been reported elsewhere, including a Nigerian study [23].
Hence any new investigative tool would need a high accuracy in picking
out individual patients with a brain tumour against a backdrop of many
confounding factors.

Therefore this study was performed to determine the accuracy of
ATR-FTIR spectroscopy in detecting biochemical signatures of a range
of primary and metastatic brain tumours from blood plasma when
analysed in the same grouping. This approach aims to investigate
whether ATR-FTIR spectroscopy is a useful tool to detect tumours
within blood plasma when asked to differentiate on a wider-scale
more akin to a typical clinical setting. Tumours were selected to encom-
pass primary brain tumours and metastasis that commonly occur
within the brain. Lung adenocarcinoma and malignant melanoma
cause brain metastasis frequently, with lung adenocarcinoma resulting
in the majority of brain metastasis [25-27]. Colorectal adenocarcinoma
was chosen to compare two adenocarcinomas with often similar mor-
phology but slightly different immunohistochemical profiles to deter-
mine if ATR-FTIR spectroscopy would be able to differentiate two
adenocarcinomas of different primary origins. To the authors' knowl-
edge this is the first paper to compare multiple tumour types using
ATR-FTIR spectroscopy on plasma.

2. Methods

Plasma from 50 patients comprising normal, i.e., no known brain tu-
mour (n = 10), glioma high-grade (n = 5) or low-grade (n = 5), me-
ningioma (n = 10) and brain metastasis patients, a mix of lung
adenocarcinoma (n = 7), colorectal adenocarcinoma (n = 7) and ma-
lignant melanoma (n = 6) patients were obtained from the Brain Tu-
mour North West tissue bank (BTNW). This was under ethical
approval number (RTB - ethics NRES14/EE/1270). These were stored
at —80 °C and defrosted prior to use. From the samples, 50 |IL of plasma
was pipetted onto a glass slide wrapped in aluminium foil. This has pre-
viously been shown to be as effective as slides such as CaF,-coated win-
dows [28].

The slides were left to dry overnight prior to spectral acquisition.
ATR-FTIR spectra were collected using a Bruker TENSOR 27 FTIR spec-
trometer with Helios ATR attachment containing a diamond crystal in-
ternal reflective element and a 45° incidence angle of IR beam. In the
ATR module, the light goes through the sample in a reflectance mode
and, after successive reflections between the sample and the ATR crystal,
an evanescent wave is generated contained the attenuated IR signal of
the sample [29,30]. For each case 32 scans with 8 cm™! spectral resolu-
tion were taken at 10 randomly selected points. A new background spec-
trum was collected prior to each new sample, followed by cleaning of the
crystal with distilled water. The sampling aperture was 250 pm x 250 pm
and the mirror velocity was 2.2 Hz.

Computational analysis was then performed within a Matlab environ-
ment using IRootlab toolkit as a user interface [31]. Spectra were then
pre-processed by cropping the region of interest (1850-800 cm™!),
followed by polynomial baseline correction and vector normalisation.
Following this, principal component analysis-linear discriminant analysis
(PCA-LDA) was performed to determine differences between the groups,
along with PCA-linear discriminant classifier (PCA-LDC) to calculate the
classification accuracy of each group. In addition, support vector ma-
chines (SVM) was employed for class differentiation using a radial basis
function kernel. All PCA-LDC and SVM parameters (gamma value and
number of support vectors) were optimized using leave-one-out cross-
validation. Sub-dataset generation specification algorithm was employed
for assigning 10% of the samples as external test dataset. The number of
principal components was determined according to the maximum ex-
plained variance and lowest root mean square error of cross-validation.
Statistical significance was then determined using a one-way ANOVA
within PRISM (GraphPad Software) statistical analysis software.
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Fig. 1. A) Mean pre-processed spectra with standard-deviation for all groups analysed;
B) mean pre-processed spectra for all groups analysed with tentative assignment of
main bands [29,32]. Key: N, normal; LG, low-grade; HG, high-grade; Men, meningioma;
MM, melanoma metastasis; CA, colorectal adenocarcinoma metastasis; LA, lung
adenocarcinoma metastasis. Band assignment: v, symmetric stretching; v,s, asymmetric
stretching; 6, deformation; blue: DNA/RNA absorptions; red: protein absorptions; green:
lipids absorptions. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

3. Results

From the 50 cases 500 spectra (i.e., 10 spectra per sample) were
obtained. Following pre-processing (see Fig. 1 for mean spectra), a
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Table 1

Confusion table containing the accuracy for PCA-LDC and
SVM models for distinguishing control (N), low-grade (LG)
and high-grade (HG) gliomas.

PCA-LDC SVM

(accuracy = 90%) (accuracy = 100%)

N LG HG N LG HG
N 89% 11% 0% 100% 0% 0%
LG 16% 84% 0% 0% 100% 0%

HG 0% 2% 98% 0% 0% 100%

PCA-LDA was performed to identify if the groups (or categories)
are significantly different based upon their spectra, along with
PCA-LDC to generate confusion matrices to look at the accuracy of
the spectra in detecting each tumour type. Spectra appeared visibly
different within the 1100-1000 cm ™' range.

Analysis was then performed initially looking at normal vs. each tu-
mour group and then combining all groups together to determine if
they could be differentiated accurately from each other, as would
occur in a typical clinical setting.

Fig. 2 shows normal compared to low-grade and high-grade gliomas.
It shows how well the spectra are separated based upon them being
classed as normal or high-grade, particularly with SVM, with a100% ac-
curacy (Table 1).

This differentiation between the three groups is statistically sig-
nificant using a one-way ANOVA, as shown in Table S1 [see Supple-
mentary Information (SI)]. Using the SVM method as the primary
example, similar results are seen throughout, with minimal overlap
seen within the two metastatic adenocarcinoma groups (Figs. 3-5
and Tables 2-4). Given the morphological and immunohistochemi-
cal similarities between these two tumours this is to be expected.
The PCA-LDC results, demonstrate high accuracy, which drops as
the clinical question becomes increasingly complex (i.e., by adding
in different tumour types).

When examining the PCA-LDC, the classification accuracy drops fur-
ther if the metastasis category is split by primary tumour location, with
only the detection of high-grade glioma maintaining >90% (Fig. 5).
However, the use of SVM maintains accuracy approaching 100% for al-
most all groups. The overlap between meningioma and normal is diffi-
cult to explain without including patient factors within the algorithm,
which is beyond the scope of this paper (Fig. 5, Table 4).
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Fig. 2. Discriminant function (DF) plot for PCA-LDC (A) and SVM (B) models. N stands for normal, LG for low-grade glioma, and HG for high-grade glioma samples. PCA-LDC performed

with 10 principal components and SVM performed using 48 support vectors.
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Fig. 3. Discriminant function (DF) plot for PCA-LDC and SVM models. (A) PCA-LDA and (B) SVM for normal (N) vs. meningioma (Men); (C) PCA-LDA and (D) SVM for normal (N) vs.
metastasis (Met); (E) PCA-LDA and (F) SVM for normal (N) vs. different metastatic groups, colorectal adenocarcinoma (CA), lung adenocarcinoma (LA) and melanoma (MM). PCA-LDC
performed with 10 principal components in (A)-(F), and SVM performed using 31 (A), 29 (D) and 140 (F) support vectors.

Receiver operating characteristic (ROC) curves agree with the re-
sults in Tables 1-4, as can been seen in supplementary information
Figs. S2-S7 (see SI).

4. Discussion

With an ageing population, complex clinical presentations of cancer
are becoming more frequent, with up to a quarter of all new brain tu-
mour diagnoses representing metastases [4]. Therefore, this study was
designed to mimic a clinical setting with a variety of primary and meta-
static brain tumours. The aim was to determine if ATR-FTIR spectroscopy
would be able to detect a brain tumour from peripheral blood and if so
determine type. If this were to prove possible, the potential of ATR-
FTIR in a frontline clinical setting as part of an initial workup of the

patient may be demonstrable, as has previously been proposed [20].
The metastatic brain tumours were chosen based on both propensity
for cranial spread and to provide tumours, which are morphologically
similar (lung and colorectal adenocarcinomas) and a contrast (metasta-
tic melanoma) to enable testing of ATR-FTIR spectroscopy to differenti-
ate metastatic tumours by their primary origin [25-27]. Our results
demonstrate that ATR-FTIR spectroscopy is able to detect patients with
primary or metastatic brain tumours using plasma samples from periph-
eral blood. The SVM method of analysis, has demonstrated accuracy
from 88 to 100% with minimal overlap between the two metastatic ad-
enocarcinoma groups primarily, with ROC curves demonstrating speci-
ficity and p < 0.001. Given the similar morphological features of the
two adenocarcinoma groups this was expected. Accuracy decreases
slightly as the clinical question progresses from cancer vs. no cancer to
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Fig. 4. Discriminant function (DF) plot for (A) PCA-LDC and (B) SVM models. N stands for normal, LG for low-grade glioma, HG for high-grade glioma, Men for meningioma, and Met for
metastasis samples. PCA-LDC performed with 10 principal components and SVM performed using 245 support vectors.

which type of brain tumour and then primary metastatic location. With
the differences seen within the spectra (Fig. 1), this when combined
with the classification accuracy, demonstrates the potential of ATR-
FTIR spectroscopy to be built into clinical practise as a primary diagnos-
tic step.

Previous studies performed by both this group and others have dem-
onstrated that spectroscopic techniques can differentiate normal from
cancer cases within biofluids alone. Owens et al. found a 93% accuracy
when determining ovarian cancer patients from negative cases using
plasma alone [11]. Gajjar et al. demonstrated similar findings when
also comparing normal to ovarian and endometrial cancer patients [5].
Moving to bladder cancer, Ollesch et al. were also able to separate nor-
mal from bladder cancer patients [8]. Within brain tumours, Hands et al.
have also shown the capabilities of ATR-FTIR spectroscopy with plasma,
demonstrating classification of high- and low-grade glial tumours with
accuracies of over 90%. These dip slightly when comparing to metastatic
tumours [13,14]. Therefore our results, demonstrate comparable accu-
racies when compared across the published literature. They also take
forward most of the studies above by combining different tumour
types, both primary and metastatic.

Our study, has however, not included confounding patient factors
within the analysis. The number or location of the brain tumours is un-
known, nor with the metastatic patients the burden of metastatic dis-
ease. When patients initially present to a medical professional, it is
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unlikely they will have had all investigations completed and a known
diagnosis, therefore for this initial study, it was felt to add other con-
founding factors into the algorithm would prove too complex and un-
likely to yield usable results. Brain tumours account for a small
number of diagnosed tumours per annum (11,432/359,960 in 2015) in
comparison to extracranial tumours therefore it was felt limiting this
study by size and location of brain tumours would be unlikely to be of
benefit [33,34].

To take this technique further forward and validate the results seen
above clinically, it would be crucial to test a wide range of non-cancer
disorders to ensure this would not affect the results. Current clinical tri-
als for use of ATR-FTIR spectroscopy currently underway should be able
to determine if within a clinical setting this technique can maintain the
accuracies seen within this study. It would also be interesting to test
cancer patients without brain metastases to see if this impacted the re-
sults and how this could be differentiated.

This study has shown that ATR-FTIR spectroscopy could play a role in
plasma testing for both primary and extrinsic brain tumours. The advan-
tages of ATR-FTIR spectroscopy in a clinical setting would be the relative
low-cost of instrumentation; the fact that the technique is non-analyst
dependent, thus not biased according to the analyst training; non-
destructive, thus the sample could be reused for further analysis; and
easily translated to automation, by using computer-based technologies.
In addition, the use of ATR-FTIR spectroscopy clinically may be able to
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Fig. 5. Discriminant function (DF) plot for (A) PCA-LDC and (B) SVM models. N stands for normal, LG for low-grade glioma, HG for high-grade glioma, Men for meningioma, MM for
melanoma metastasis, CA for colorectal adenocarcinoma metastasis, and LA for lung adenocarcinoma metastasis. PCA-LDC performed with 10 principal components and SVM

performed using 293 support vectors.
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Confusion table containing the accuracy for PCA-LDC and SVM models for distinguishing control (N), meningioma
(Men), metastasis (Met), colorectal adenocarcinoma (CA), lung adenocarcinoma (LA), and melanoma (MM).

PCA-LDC SVM PCA-LDC SVM

(accuracy =87%) (accuracy = 95%) (accuracy =94%) (accuracy = 100%)

N Men N Men N Met N Met
N 89% 11% 91% 9% N 96% 4% 100% 0%
Men 14%  86% 0%  100% Met 8% 92% 0% 100%

PCA-LDC SVM
(accuracy = 63%) (accuracy =97%)

N CA LA MM N CA LA MM
N 98% 1% 1% 0% 100% 0% 0% 0%
CA 19% | 38% 22% 21% 0% 88% 12% 0%
LA 0%  16% 63% 21% 0% 0% 100% 0%
MM 3% 28% 15% | 54% 0% 0% 0% 100%

speed up the diagnostic process, though robust clinical studies would be
required to eliminate any of the current diagnostic steps within the pa-
tient pathway.

As limitation, for such chemometric methods and instrumental tech-
niques to be translated into a clinical setting, all possible experimental
and computation configurations should be analysed, where all possible
circumstances must be taken into consideration before clinical imple-
mentation. Evaluation of further biochemical factors and test with larger
datasets are necessary before translation. This paper shows the poten-
tial usefulness of ATR-FTIR spectroscopy allied with chemometric
methods as a biofluid screening tool, which remains to be further
investigated.

5. Conclusions
This study demonstrates that ATR-FTIR spectroscopy is able to differ-

entiate brain tumour types from blood plasma with accuracies of up to
100%. Further work is required to determine if this technique can

Table 3

discriminate tumours from complex non cancer related disorders in
order to all clinical medicine to harness the use of ATR-FTIR spectros-
copy within the clincal pathway, hopefully decreasing time taken from
clinical presentation to diagnosis.
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Confusion table containing the accuracy for PCA-LDC and SVM models for distinguishing normal (N), low-grade
glioma (LG), high-grade glioma (HG), meningioma (Men), and metastasis (Met).

PCA-LDC

(accuracy = 65%)

SVM

(accuracy =97%)

N HG LG Men Met N HG LG Men  Met
N 75% 0% 8% 10% 7% 91% 0% 0% 9% 0%
HG 10% 90% 0% 0% 0% 0% 100% 0% 0% 0%
LG 30% 1% 41%  10% 18% 0% 0% 100% 0% 0%
Men 4% 0% 3% 63%  30% 0% 0% 0% 100% 0%
Met 4% 0% 15%  23% [ 58% 0% 0% 5% 0% 95%
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Table 4

Confusion table containing the accuracy for PCA-LDC and SVM models for distinguishing control (N), low-grade glioma (LG),
high-grade glioma (HG), meningioma (Men), and melanoma metastasis (MM ), colorectal adenocarcinoma metastasis (CA),

and lung adenocarcinoma metastasis (LA).

PCA-LDC

(accuracy = 54%)

SVM

(accuracy = 97%)

95

N LG HG Men MM CA LA N LG HG Men MM CA LA
N 8% 6% 0% 0% 9% 0% 0% 91% 0% 0% 9% 0% 0% 0%
LG 25% [61% 4% 0% 10% 0% 0% 0%  100% 0% 0% 0% 0% 0%
HG 8% 0% 92% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Men 4% 0% 0% 43% 36% 3% 14% 0% 0% 0% 100% 0% 0% 0%
MM 0% 0% 0% 35% [22% 13% 30% 0% 0% 0% 0% 100% 0% 0%
CA 0% 3% 0% 5% 28% 50% 14% 0% 0% 0% 0% 0% 88% 12%
LA 18% 2% 0% 13% 29% 14% 24% 0% 0% 0% 0% 0% 0% | 100%
Appendix A. Supplementary Data stratified serum diagnostics via attenuated total refection Fourier-transform infra-
red spectroscopy, J. Neuro-Oncol. 127 (2016) 463-472.
. . . . [15] G. Owens, K. Gajjar, ]. Trevisan, S.W. Fogarty, S.E. Taylor, B. Da Gama-Rose,
Supplementary data to this article can be found online at https://doi. P.L. Martin-Hirsch, F.L. Martin, Vibrational biospectroscopy coupled
org/10.101 6/j.saa.201 8.07.078. with multivariate analysis extracts potentially diagnostic features in
blood plasma/serum of ovarian cancer patients, ]. Biophotonics 7 (2014)
200-209.
References [16] K.M.G. Lima, K.B. Gajjar, P.L. Martin-Hirsch, F.L. Martin, Segregation of ovarian cancer
stage exploiting spectral biomarkers derived from blood plasma or serum analysis:

[1] W.D. Hazelton, E.G. Luebeck, Biomarker-based early Cancer Detection: is it Achiev- ATR-FTIR spectroscopy coupled with variable selection methods, Biotechnol. Prog.
able? Sci. Transl. Med. 3 (2011) 109-114. 31 (2015) 832-839.

[2] Cancer Research UK, Brain tumours, tests to diagnose, https://www. [17] D.Sheng, Y. Wu, X. Wang, D. Huang, X. Chen, X. Liu, Comparison of serum from gas-
cancerresearchuk.org/about-cancer/brain-tumours/getting-diagnosedtests-diag- tric cancer patients and from healthy persons using FTIR spectroscopy, Spectrochim.
nose, Accessed date: July 2018. Acta A Mol. Biomol. Spectrosc. 116 (2013) 365-369.

[3] D.Ellison, S. Love, L. Chimelli, B.N. Harding, ].S. Lowe, H.V. Vinters, S. Brandner, W.H. [18] D. Sheng, X. Liu, W. Li, Y. Wang, X. Chen, X. Wang, Distinction of leukemia patients’
Yong, A Reference Text of CNS Pathology. Neuropathology, 3™ Edition Elsevier and healthy persons' serum using FTIR spectroscopy, Spectrochim. Acta A Mol.
Mosby, 2013. Biomol. Spectrosc. 101 (2013) 228-232.

[4] L. Bekaert, E. Emery, G. Levallet, E. Lechapt-Zalcman, Histopathologic diagnosis of [19] X.Wang, X. Shen, D. Sheng, X. Chen, X. Liu, FTIR spectroscopic comparison of serum
brain metastasis: current trends in management and future considerations, Brain from lung cancer patients and healthy persons, Spectrochim. Acta A Mol. Biomol.
Tumor Pathol. 34 (2017) 8-19. Spectrosc. 122 (2014) 193-197.

[5] H. Byrne, M. Baranska, G.J. Pupples, N. Stone, B. Wood, K.M. Gough, P. Lasch, P. [20] C.Hughes, M. Baker, Can mid-infrared biomedical spectroscopy of cells, fluids and
Heraud, J. Sule-Suso, G. Sockalingum, Spectropathology for the next generation: tissue aid improvements in cancer survival? A patient paradigm, Analyst 141 (2016)
quo vadis? Analyst 140 (2015) 2066-2073. 467-475.

[6] A.L. Mitchell, K.B. Gajjar, G. Theophilou, F.L. Martin, P.L. Martin-Hirsch, Vibrational [21] C.Krafft, L. Shapoval, S.B. Sobottka, K.D. Geiger, G. Schackert, R. Salzer, Identification
spectroscopy of biofluids for disease screening or diagnosis: translation from the of primary tumors of brain metastases by SIMCA classification of IR spectroscopic
laboratory to a clinical setting, ]. Biophotonics 7 (2014) 153-165. images, Biochim. Biophys. Acta 1758 (2006) 883-891.

[7] C.Hughes, M. Brown, G. Clemens, A. Henderson, G. Monjardez, N.W. Clarke, P. [22] M. Brevet, M.L. Johnson, C.G. Azzoli, M. Ladanyi, Detection of EGFR mutations in
Gardner, Assessing the challenges of Fourier transform infrared spectroscopic anal- plasma DNA from lung cancer patients by mass spectrometry genotyping is predic-
ysis of blood serum, J. Biophotonics 7 (2014) 180-188. tive of tumor EGFR status and response to EGFR inhibitors, Lung Cancer 73 (2011)

[8] K. Gajjar, ]. Trevisan, G. Owens, P.J. Keating, N.J. Wood, H.F. Stringfellow, P.L. Martin- 96-102.

Hirsch, F.L. Martin, Fourier-transform infrared spectroscopy coupled with a classifi- [23] 1.O.Onwuekwe, B. Ezeala-Adikaibe, Prevalence and distribution of Neurological Dis-
cation machine for the analysis of blood plasma or serum: a novel diagnostic ap- ease in a Neurology Clinic in Enugu, Nigeria, Ann. Med. Health. Sci. Res. 1 (2011)
proach for ovarian cancer, Analyst 138 (2013) 3917-3926. 63-67.

[9] H.J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. [24] B.K.MacDonald, O.C. Cockerell, .JW.A.S. Sander, S.D. Shorvon, The incidence and life-
Fullwood, B. Gardener, P.L. Martin-Hirsch, M.J. Walsh, M.R. McAinsh, N. Stone, F.L. time prevalence of neurological disorders in a prospective community-based study
Martin, Using Raman spectroscopy to characterize biological materials, Nat. Protoc. in the UK, Brain 123 (2000) 665-676.

11 (2016) 664-687. [25] F.G. Davis, T.A. Dolecek, B.J. McCarthy, J.L. Villiano, Toward determining the lifetime
[10] K.Gajjar, L.D. Heppenstall, W. Pang, K.M. Ashton, J. Trevisan, L. Patel, V. Llabjani, occurance of metastatic brain tumours estimated from 2007 United States cancer in-
H.F. Stringfellow, P.L. Martin-Hirsch, T. Dawson, F.L. Martin, Diagnostic segrega- cidence data, Neuro-Oncology 14 (2012) 1171-1177.
tion of human brain tumours using Fourier transform infrared and/or Raman [26] Q. Huang, X. Huang, Predictive biochemical-markers for the development of brain
spectroscopy coupled with discriminant analysis, Anal. Methods 5 (2012) metastases from lung cancer: clinical evidence and future directions, Cancer
89-102. Epidemiol. 37 (2013) 703-707.
[11] E.L. Martin, ].G. Kelly, V. Llabjani, P.L. Martin-Hirsch, L. Patel, . Trevisan, N.J. [27] ]J. Renfrow, GJ. Lesser, Molecular subtyping of brain metastases and implications
Fullwood, M.J. Walsh, Distinguishing cell types or populations based on the for therapy, Curr. Treat. Options in Oncol. 14 (2013) 514-527.
computational analysis of their infrared spectra, Nat. Protoc. 5 (2010) [28] L. Cui, HJ. Butler, P.L. Martin-Hirsch, F.L. Martin, Aluminium foil as a potential sub-
1748-1760. strate for ATR-FTIR, transflection FTIR or Raman spectrochemical analysis of biolog-
[12] J. Ollesch, M. Heinze, H.M. Heise, T. Behrens, T. Bruning, K. Gerwert, It's in your ical specimens, Anal. Methods 8 (2016) 481-487.
blood: spectral biomarker candidates for urinary bladder cancer from automated [29] MJ. Baker, ]. Trevisan, P. Bassan, R. Bharagva, HJ. Butler, KM. Dorling, P.R. Fielden,
FTIR spectroscopy, ]. Biophotonics 7 (2014) 210-221. S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B.
[13] JR. Hands, KM. Dorling, P. Abel, K.M. Ashton, A. Brodbelt, C. Davis, T. Dawson, M.D. Obinaju, G.D. Socklingum, J. Sule-Suso, RJ. Strong, M.J. Walsh, B.R. Wood, P.
Jenkinson, RW. Lea, C. Walker, M.J. Baker, Attenuated total reflection Fourier trans- Gardner, F.L. Martin, Using Fourier transform IR spectroscopy to analyze biological
form infrared (ATR-FTIR) spectral discrimination of brain tumour severity from materials, Nat. Protoc. 9 (2014) 1771-1791.
serum samples, ]. Biophotonics 7 (2014) 189-199. [30] F. Zaera, New advances in the use of infrared absorption spectroscopy for the char-
[14] JR.Hands, G. Clemens, R. Stables, K. Ashton, A. Brodbelt, C. Davis, T.P. Dawson, M.D. acterization of heterogeneous catalytic reactions, Chem. Soc. Rev. 43 (2014)

Jenkinson, RW. Lea, C. Walker, M.J. Baker, Brain tumour differentitation: rapid

7624-7663.


https://doi.org/10.1016/j.saa.2018.07.078
https://doi.org/10.1016/j.saa.2018.07.078
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0005
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0005
https://www.cancerresearchuk.org/about-cancer/brain-tumours/getting-diagnosed/tests-diagnose
https://www.cancerresearchuk.org/about-cancer/brain-tumours/getting-diagnosed/tests-diagnose
https://www.cancerresearchuk.org/about-cancer/brain-tumours/getting-diagnosed/tests-diagnose
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0015
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0015
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0015
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0015
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0020
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0020
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0020
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0025
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0025
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0025
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0030
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0030
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0030
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0035
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0035
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0035
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0040
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0040
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0040
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0040
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0045
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0045
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0045
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0045
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0050
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0050
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0050
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0050
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0050
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0055
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0055
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0055
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0055
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0060
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0060
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0060
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0065
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0065
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0065
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0065
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0070
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0070
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0070
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0070
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0075
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0075
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0075
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0075
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0075
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0080
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0080
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0080
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0080
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0085
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0085
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0085
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0090
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0090
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0090
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0095
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0095
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0095
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0100
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0100
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0100
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0105
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0105
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0105
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0110
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0110
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0110
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0110
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0115
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0115
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0115
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0120
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0120
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0120
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0125
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0125
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0125
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0130
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0130
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0130
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0135
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0135
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0140
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0140
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0140
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0145
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0145
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0145
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0145
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0145
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0150
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0150
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0150

96 D. Bury et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 206 (2019) 89-96

[31] J. Trevisan, P.P. Angelov, A.D. Scott, P.L. Carmichael, F.L. Martin, IRootLab: a free and
open-source MATLAB toolbox for vibrational biospectroscopy data analysis, Bioin-
formatics 29 (2013) 1095-1097.

[32] Z.Movasaghi, S. Rehman, I. Rehman, Fourier transform infrared (FTIR) spectroscopy
of biological tissues, Appl. Spectrosc. Rev. 43 (2008) 134-179.

[33] U.K.Cancer Research, Brain and other CNS and intracranial tumour cancer statis-
tics, Available from: https://www.cancerresearchuk.org/health-professional/

cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-
tumours#heading-Two, Accessed date: July 2018.

[34] U.K. Cancer Research, Cancer statistics for the UK, Available from: https://www.
cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk, Accessed
date: July 2018.


http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0155
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0155
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0155
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0160
http://refhub.elsevier.com/S1386-1425(18)30742-X/rf0160
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours#heading-Two
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours#heading-Two
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours#heading-Two
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk

	Spectral classification for diagnosis involving numerous pathologies in a complex clinical setting: A neuro-�oncology example
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	5. Conclusions
	Conflicts of Interest
	Acknowledgements
	Appendix A. Supplementary Data
	References




