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Abstract

Open-set activity recognition remains as a challenging problem because of com-

plex activity diversity. In previous works, extensive efforts have been paid to

construct a negative set or set an optimal threshold for the target set. In this

paper, a model based on Generative Adversarial Network (GAN), called ‘Open-

GAN’ is proposed to address the open-set recognition without manual interven-

tion during the training process. The generator produces fake target samples,

which serve as an automatic negative set, and the discriminator is redesigned to

output multiple categories together with an ‘unknown’ class. We evaluate the

effectiveness of the proposed method on measured micro-Doppler radar dataset

and the MOtion CAPture (MOCAP) database from Carnegie Mellon University

(CMU). The comparison results with several state-of-the-art methods indicate

that OpenGAN provides a promising open-set solution to human activity recog-

nition even under the circumstance with few known classes. Ablation studies

are also performed, and it is shown that the proposed architecture outperforms

other variants and is robust on both datasets.
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1. Introduction

In the last decades, human activity recognition has aroused general concern

in numerous fields [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] due to the increasing demand

for entertainment, medical monitoring, security, emergency rescue and other ap-

plications. Human activity recognition has relied on visual data for decades and5

develops rapidly with the help of computer vision. Most available studies focus

on analyzing human activities based on image sequences captured by optical

sensors. Confronting severe interference caused by the weather, object shelter

and light condition, optical sensors are unsuitable for recording activities in

the severe environment. Compared with optical sensors, radar has some unique10

properties. It is invariable to the environment and is capable of detecting objects

through the wall. What’s more, radar could operate long-distance detections

regardless of shelters. Radar-based perception has broad application prospects

such as survival search, enemy status perception, and terrorist detection.

Human activity recognition using radar data aims at automatically recogniz-15

ing human motions from radar spectrograms. When radar echoes are modulated

by human activities, there will be micro-Doppler signatures motivated by micro-

movements. Micro-Doppler frequency varies with the velocity of a moving target

so that each movement has its unique micro-Doppler signatures, which can be

used for activity recognition. Conventional Doppler-based activity recognition20

requires well-designed features from micro-Doppler spectrogram to support an

effective training process of classifiers [13, 14]. Substantial efforts have been

dedicated to developing discriminating visual feature descriptors [15], and deep

learning is employed due to its superior ability of automatically learning from

data.25

Deep learning has achieved significant success in the field of image classifi-

cation, object detection and semantic segmentation [16, 17, 18, 19, 20, 21, 22].

Among diverse deep neural networks, GANs attract great attention recently

and have produced abundant accomplishments such as visually realistic images

generation [23], super resolution [24] and style transfer [25]. Typically, a GAN30

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

contains a generator and a discriminator. The generator tries to produce syn-

thetic samples, while the discriminator learns to determine whether a sample is

derived from the generator or the real dataset [26].

Open-set recognition is a relatively new topic at present. Most available

classifiers are for ‘closed-set’ recognition [27, 28, 29], in which the training set35

and testing set contain the same categories [30]. In practice, the world consists

of countless elements, and it is impractical to enumerate all the targets and

label them seriatim. Human activity recognition is confronted with the same

problem, not only are there marvelous types of activities to be classified, but

also the same activity varies when performed by different people. Therefore, a40

more realistic description to the classification of the real world is an ‘open-set

recognition’. A natural idea of solving open-set problems is to construct a neg-

ative dataset so that they can be transformed into closed-set issues. Existing

open-set approaches usually build the negative set by introducing a large scale

dataset that contains the target classes, then the other classes in the dataset,45

namely complementary set of target samples, are utilized as the negative set

to train the open-set classifier. As there have been some published datasets of

optical images, such as ImageNet, the method mentioned above achieves satisfy-

ing performances. However, the lack of large-scale micro-Doppler dataset makes

the method inapplicable to micro-Doppler data. Another idea is to collect the50

negative samples manually, but it is both time-consuming and labor-intensive.

Therefore, the open-set recognition on radar data remains an open problem.

In this paper, we propose an open-set recognition network, which is called

‘OpenGAN’, based on the scheme of GAN. During the training phase, the fake

samples from the generator are used as the negative set, while the labeled target55

samples on multiple classes compose the target set. After alternative training,

the output vectors from the discriminator are mapped to probabilities on each

known or unknown class by the softmax function. The well-trained discrimina-

tor is employed as the open-set classifier in the testing phase. OpenGAN is an

integration of a one-class classifier and an open-set classifier, which could not60

only distinguish target samples from negative samples but also recognize the
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category of each target sample at the same time. Experimental results on mea-

surement dataset and CMU MOCAP dataset demonstrate that the proposed

framework is superior to several state-of-the-art one-class classifiers and open-

set recognition methods. Moreover, to learn more effective features, the network65

adopts the dense connection architecture. We evaluate the performances of dif-

ferent architectures in Section 6, and the results prove that the network with one

sub-layer in a dense block outperforms plain CNN in most cases and is better

than the architectures with more sub-layers.

The proposed open-set recognition method has several advantages over the70

previous algorithms. Firstly, the negative net in our work is constructed auto-

matically, leaving out the artificial selection process. Secondly, as the number of

negative samples in this framework keeps increasing, the negative set is dynami-

cally updated during the training process. This could prevent the discriminator

from over-fitting, which easily occurs on artificial negative set. Thirdly, neg-75

ative sets in the previous works are far from target sets, so the boundary of

target samples is easy to acquire. In this work, however, the distribution of

synthesized samples from the generator is highly similar to the target samples,

so the discriminator trained with this these samples could achieve better dis-

criminability than other classifiers. Finally, as OpenGAN follows the alternative80

training principle in the GAN, the discriminator is trained more sufficiently after

multiple iterations.

The remainder of this paper is organized as follows. A brief review of related

works and basic concepts are provided in Section 2. Section 3 presents some

preliminaries for open-set problems, including the description of datasets and85

the evaluation protocols. In Section4, we elucidate the proposed OpenGAN

architecture in detail. The experiment results and comparisons are presented

in Section 5. In Section 6, we display some ablation studies of the proposed

method and state a conclusion in Section 7.
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2. Related works90

This section provides an overview of literature in the areas related to our

work, including Doppler-based human activity recognition, open-set recognition

and some research on GAN.

2.1. Human Activity Recognition

Considerable achievements about activity recognition have been published95

using natural images, which are captured by optical cameras [31, 6]. The stud-

ies were promoted by the introducing of depth sensors. Some new consumer

technologies, such as Kinect [32, 33, 34] (a low-cost RGB-D camera invented

by Microsoft for its X-Box gaming platform), provided researchers with an easy

access to depth information, so that more attention has been paid to activity100

recognition tasks [35, 36, 37, 38, 1, 7, 3]. As these kinds of sensors have some

drawbacks mentioned in Section 1, radar-based methods are considered as a

promising solution to this area.

‘Doppler effect’ (or ‘Doppler shift’) is caused by a constant moving target,

for the duration, micro-motions (such as vibration and rotation) of any parts of105

a target will bring about micro-Doppler effect. Micro-motions of hands, arms,

head, torso, legs, and feet introduce unique micro-Doppler signatures of each ac-

tivity, which can be distinguished from others. The signature can be represented

by spectrograms for visualization, which are generated by taking Short Time

Fourier Transform (STFT) on echo signals. There have been a group of studies110

utilizing micro-Doppler signature for activity classification. Earlier studies fo-

cused on exploring active handcrafted features from radar spectrograms [39, 40],

e.g., in [14], Y. Kim and H. Ling extracted six micro-Doppler features (torso

Doppler frequency, total bandwidth (BW) of the Doppler signal, the offset of

the total Doppler, etc.) from the resulting spectrograms, they then proposed an115

artificial neural network (ANN) to classify activities of a human subject using

these features. In [39] they trained a support vector machine (SVM) to classify

the activities with the same kinds of features and achieved an accuracy of more
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than 90%. Dustin P. Fairchild and Ram M. Narayanan used the empirical mode

decomposition to get a unique feature vector from the human micro-Doppler120

signals and classify the activities with an SVM [13]. Recently, CNN has drawn

great attention because of its remarkable performances in various tasks, this is

mainly due to its non-linear mapping of images and superior ability to extract

latent features. [28, 29, 41] applied CNN to the micro-Doppler spectrograms

to classify human activities. These works are all based on closed training and125

testing set, which are not able to recognize unknown activities from target ones.

2.2. Open-set recognition

Open-set recognition is considered as intractable because training set is usu-

ally unable to involve the entire knowledge of the testing set [42, 43]. W. Scheirer

et al. introduced a 1-vs-Set Machine, which sculpts a decision space from the130

marginal distances of a 1-class or binary SVM with a linear kernel, making a pre-

liminary investigation to address the open-set recognition problem [30]. Then

in [44], they proposed a model called Compact Abating Probability (CAP) and

combined CAP with the statistical Extreme Value Theory (EVT) to formu-

late a novel technique called the Weibull-calibrated SVM (W-SVM), which was135

shown to improve the result of recognition. Abhijit Bendale and Terrance Boult

extended Nearest Class Mean type algorithms (NCM) [45], to a Nearest Non-

Outlier (NNO) algorithm that could balance open space risk and accuracy [44].

The combination of deep network and open-set recognition was presented in [46],

a new model layer called OpenMax was introduced. In the OpenMax layer, the140

Meta-Recognition score from the penultimate layer (defined as ‘activation vec-

tor’) was used to reject samples far from known inputs. This model demands

pre-trained deep neural network model on ImageNet, which makes it unfeasible

for other tasks. In general, the performances of these methods strongly relies on

threshold values so it may lack robustness when encounters novelties. What’s145

more, all the open-set algorithms are evaluated on natural image datasets such

as ImageNet and Caltech, open-set recognition for human activities, especially

on micro-Doppler spectrograms, has not been available so far.
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2.3. Generative adversarial network

After being proposed in 2014 [26], GAN is becoming an emerging research150

area and has been used for a variety of applications [47]. Radford et al. [23]

proposed a CNN-based GAN architecture called DCGAN, which successfully

implement unsupervised representation learning. Arjovsky et al. [48] optimized

the traditional GAN training with an alternative cost function to get rid of mode

collapse in GAN and improve the stability of learning. The function was derived155

from the earth mover distance, and it is constrained to Lipschitz functions.

There are some conditional GANs that could take advantage of class conditions

for better generation of multi-modal data [49] and some interesting applications

of GANs arose quickly [50, 51, 52, 25]. Most of the works make efforts to present

meaningful and semantic synthetic images from the generator, managing to160

generate more visually lifelike samples. The discriminator, however, has been

undervalued. The potential of the discriminator of deciding ‘real’ or ‘fake’ is

utilized in our work to address the open-set activity recognition problem and for

the first time, GAN is introduced into the recognition of micro-Doppler radar

spectrograms.165

3. Preliminaries

3.1. Data description

In this paper, two datasets are employed to evaluate our open-set recognition

strategy. One is the measurement dataset collected by real experiments, the

other is the public MOCAP dataset.170

Measurement database. Measurement human activity data are collected

with an ultra-wideband (UWB) radar module named PulsON 440 (P440). The

radar operates between 3.1 and 4.8 GHz with two directional antennas.

The experiments are operated in an indoor environment, and the radar is

placed at 1.2-meter height, in order to match the human’s centers of gravity.175

Four subjects perform seven kinds of activities towards the radar in line-of-sight
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direction. Seven referred activities are listed as follows: (a) boxing while stand-

ing in place, (b) crawling on the ground, (c) creeping, (d) jumping forward, (e)

running, (f) standing (with slight movements) and (g) walking. The measuring

process for ‘boxing’ is illustrated in Fig. 1(a). Each activity is performed two180

to four times, and the measurement range is between 1.2 meters and 5.4 meters.

The duration of each scenario is about seven seconds. The data are collected

over a sampling frequency of 16 GHz, the pulse recurrence frequency (PRF) of

Doppler radar is 368 Hz, and the coherent pulse interval (CPI) is 0.2s. Subse-

quently, we apply STFT with 1024 points on the complex echo data to obtain185

corresponding spectrograms. One-second slow time window with an overlap of

0.9 is employed to the measured data. After these processing, each activity

obtains more than 900 images, which are resized to 120×120. Then we choose

400 images as the training set and 100 images as the testing set for each class.

Fig. 1(b) shows the typical sample spectrograms of ‘boxing’. The vertical190

axis of a spectrogram is radial velocity, while the horizontal axis represents time.

Pixels in spectrograms indicate the intensities of human backscattering echoes,

which implicitly depict the micro-motions of the human body.

MOCAP database. We also evaluate the proposed approach on the MO-

CAP database from CMU. It consists of 2605 experiment trials in six main195

categories (namely, human interaction, interaction with the environment, loco-

motion, physical activities and sports, situations and scenarios, and test activi-

ties) and 23 subcategories. The subject wears a jumpsuit with 41 markers fixed

on it, and a Vicon motion capture system with twelve infrared MX-40 cameras is

used to capture movements of the skeleton. Fig. 1(c) depicts the data collection200

process of MOCAP database.

To generate micro-Doppler spectrograms from MOCAP data, we employ the

ellipsoid-based human backscattering model in [53].The model used 31 joints to

describe a human body, and every two adjacent joints define a body segment.

The segment is estimated as an ellipsoid, whose centroid is considered as a205

moving point scatterer. For each scatterer, the radar echo can be simulated by

a Sinc function whose width is inversely proportional to the bandwidth of the
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(a) (b)

(c) (d)

Figure 1: Data collection processes of ‘boxing’ and corresponding spectrograms. (a) Mea-

surement data collection. (b)Measurement spectrogram. (c) MOCAP data collection. (d)

MOCAP spectrogram.

radar system. Then the whole body echo is obtained by coherently summing

echoes from multiple scatters. Fig. 2 illustrates the ellipsoid-based human

motion model.210

We set the frequency band of simulated UWB module as 3-5 GHz, and the

PRF is 600 Hz. The CPI is 0.1s. Other post-processing processes are following

the same protocol as the measurement data including the dataset partition. The

generated spectrogram is shown in Fig. 1(d). For each activity, there are 400

spectrograms in the training set and 100 in the testing set.215
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(a)

(b)

Figure 2: The ellipsoid-based human motion model. (a) Joints on the human body. (b)

Ellipsoid-based backscattering model.

3.2. Evaluation protocol

3.2.1. Openness

The open-set recognition problems have various grades, which are related

to the number of target classes in the training and testing set. Following the

research in [30], we use a universal index called ‘openness’ to measure the grade220

of an open-set problem. ‘Openness’ is defined as:

Openness = 1−
√

2×NTA

NTG +NTE
(1)

where NTA is the number of training classes, NTG is the number of target

classes, and NTE denotes the number of testing classes. ‘Openness=0’ represents

a closed-set classification (i.e., the commonest classification task), in which the

testing set contains the same classes as the training set. If the testing set225

is fixed, increasing the number of target classes or decreasing the number of

training classes will enlarge the value of openness, which indicates a more ‘open’

problem. It is notable that in previous works, target classes and training classes

may be different since some classifiers require negative training classes. But

for the activity recognition task in this work, the training and target classes230

remain the same as no negative samples are introduced for training. So, when
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the testing set keeps constant, the openness depends on the number of target

activities.

3.2.2. F-measure

For measuring the performance of open-set algorithms, we adopt the com-235

monly used open-set criterion called ‘F-measure’ [30]. The F-measure is the

harmonic mean of precision and recall, which are:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

Figure 3: Confusion matrix of open-set problem. T: True; P: Positive; F: False; N: Negative.

Here, TP denotes correctly classified positive samples among all the pre-

dicted positive samples (which is slightly different from the one in binary clas-240

sification problems), and FP includes both misclassified positive samples and

miss predicted ones (shown in Fig. 3). So that F-measure evolves into:

F -measure = 2× precision× recall
precision+ recall

(4)

The range of F-measure is [0, 1] and a higher value indicates a more discrimi-

native open-set classifier.
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Figure 4: Sub-block structure.

4. OpenGAN model245

4.1. Network architecture

The generator and discriminator in OpenGAN are composed of two main

parts: (1) dense blocks for feature extraction and combination of multi-level

features, (2) transition layers to connect two blocks. The parameters of the

network are empirically determined.250

Dense block. OpenGAN employs the dense block architecture instead

of traditional CNN architecture for both generator and discriminator, which

is inspired by [19]. For convenience, we introduce ‘sub-block ’ to explain the

block more clearly. A sub-block is the combination of two convolutional layers

and a concatenation layer, connecting the feature flow from preceding layers.255

Each convolutional layer is followed by Batch Normalization (BN) [54] and a

Rectified Linear Units (ReLU) [55] (for the generator) or a Leaky ReLU (for

the discriminator). Fig. 4 illustrates sub-block structure schematically. After

exploration experiments, we apply one sub-block to the dense blocks in our

experiments as it reveals better performance.260

Transition layer. A transition layer is a stack of layers between two dense

blocks. In the generator, the transition layer includes a convolutional layer and

a de-convolutional layer. In the discriminator, the transition layer is similar to

DenseNet with a convolutional layer and an average pooling layer.

Parameter details. For all experiments in our work, OpenGAN has three265

dense blocks in the generator and discriminator respectively.

The generator first produces a 1×1×100 small spatial extent tensor, then
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a de-convolution with 64 outputs is performed on this tensor. The stacked

feature maps will be extended to 128 channels by a 1×1 convolutional layer in

the dense block, and a 3×3 convolution with 1 padding will subsequently be270

employed to keep the output size fixed. Between two adjacent dense blocks, a

1×1 convolutional layer and a 2×2 de-convolution layer constitute the transition

layer, aiming to double the size of feature maps and expand the size of feature

maps gradually. After three dense blocks, the feature maps will be scaled to

32×32 with 512 channels Finally, a 1×1 convolution layer with 3 output channels275

integrates them into a 32×32 synthetic sample.

The processing in discriminator is basically same as the generator, except

that the de-convolution in transition layer is replaced by 2×2 average pooling

to operate downsampling. At the end of the third dense block, the feature maps

are scaled to a column vector and the linear mapping in the last layer transfers280

the vector to an n+1 dimension vector, in which n refers to the number of

target classes. Then the vector is processed by softmax mapping, and the cost

is calculated by Mean Square Error (MSE) loss. Finally, the values in the vector

refer to the input sample’s probabilities on target categories and unknown class.

Fig. 5 and Fig. 6 illustrate the architectures of the generator and discriminator285

respectively, and the parameters of the network are shown in Table 1 in detail.

4.2. Adversarial training

During the training process, generator and discriminator operate the same

as in typical GAN networks. The generator produces synthetic samples that are

highly similar to the target samples as the automatic negative set. Then the290

synthetic samples and target samples are alternately input to the discriminator,

enhancing the discernibility of it. At the end of each iteration, the weights

of generator and discriminator are stored separately. After training, only the

discriminator model is used in the testing phase as an open-set classifier. For

movement detection task, each testing sample fed into the discriminator will295

get a binary judgment of ‘target or not’, while for activity recognition task, the

judgment would be ‘unknown’ or the class of testing sample.
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Table 1: Detailed parameters of each layer in OpenGAN. For each convolutional layer, the

stride is 1. For each deconvolutional and average pooling layer, the stride is 2.

Model Generator Discriminator

Input Layer 4×4 deconv 1×1 conv

Dense Block 1×1 conv 1×1 conv

(1) 3×3 conv, Padding=1 3×3 conv, Padding=1

Transition Layer 1×1 conv 1×1 conv

(1) 2×2 deconv 2×2 Pooling

Dense Block 1×1 conv 1×1 conv

(2) 3×3 conv, Padding=1 3×3 conv, Padding=1

Transition Layer 1×1 conv 1×1 conv

(2) 2×2 deconv 2×2 Pooling

Dense Block 1×1 conv 1×1 conv

(3) 3×3 conv, Padding=1 3×3 conv, Padding=1

Transition Layer 1×1 conv 1×1 conv

(3) 2×2 deconv 2×2 Pooling

Output Layer 1×1 conv Linear

The objective function in our model is defined as follows:

E
x̂∼G(z)

(D (x̂))− E
x∼real

(D (x)) + λE
[
(||∇tD(t)||2 − 1)

2
]

(5)

where λ is 10 and α is a random value ranges from 1
batchsize to 1 and t refers to:

t = αx+ (1− α) x̂ (6)

We introduce the gradient penalty [56] in our model to prevent the discriminator300

from fast convergence. When calculating the penalty term gradient in Eq. 5, if

the positive samples or negative samples are used for training solely, the second

derivative will be biased toward on either class and get out-of-balance. This

restrains the optimization process, so the strategy based on gradient penalty

should take both kinds of samples into account (shown in Eq. 6).305
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4.3. Implementation details

We train our model on PyTorch, a recently widely used framework provided

by Facebook. Training spectrograms are scaled to 32×32. The network pa-

rameters are updated with an Adaptive Moment Estimation (Adam) optimizer,

and the mini-batch size is 256. At the early training stage, the discriminator310

convergences faster than the generator. Tto balance the training processes of

these two parts of the network, we set the learning rates for the generator and

the discriminator to 10−2 and 3×10−4 respectively. The momentum term re-

mains as the suggested value of 0.9. All experiments are performed on an Intel

I7-7700k CPU with 8 GB memory. A GeForce GTX 1080Ti GPU with 11 GB315

memory is used for training with CUDA for acceleration.

Figure 5: The architecture of generator in OpenGAN.

Figure 6: The architecture of discriminator in OpenGAN.

5. Experiments and results

In this section, the performances of OpenGAN on human movement ac-

tivity recognition are verified on the measured micro-Doppler radar dataset

and compared with several published algorithms. As these conventional meth-320

ods strongly demand well-selected features, we choose three features for micro-

Doppler spectrograms in this work:
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• Gabor: Following [30], Gabor feature, which has produced impressive re-

sults in computer vision tasks, is first employed in this work.

• Spectrograms Envelopes (SE) [57]: Envelopes are unique features of spec-325

trograms. The maximum, minimum, and central velocities of each time

slice can be applied to indicate the extremities and torso movement char-

acters. The cumulative amplitude distribution of each column in the spec-

trogram is calculated as:

P (v, t) =

v∑
v=vmin

y(v, t)

v=vmax∑
v=vmin

y(v, t)

(7)

where t denotes time, v is the velocity at the time, and y is the cumula-330

tive amplitude of each column. The upper, central and lower envelopes are

extracted by setting the thresholds of P(v, t) being 0.77, 0.5 and 0.28 re-

spectively. The coordinates of the envelopes are concatenated for training,

so each 120×120 spectrogram in this work will produce a 360-dimension

feature vector.335

• Means of Envelopes (ME) [58]: The means of envelopes are based on

the coordinates mentioned above, once the envelopes are obtained, their

average values can be calculated and form a three-dimension feature.

The popular Histogram of Oriented Gradients (HOG) [59] descriptor is not

applied because it shows poor performances in the preliminary exploring exper-340

iments, we assume that this is due to the different properties of radar spectro-

grams and natural images.

5.1. OpenGAN for human movement detection

As can be seen from Fig. 7, human activity may not continue throughout the

measurement scenario, the duration before or after activity will interfere with345

the performance of open-set recognition of human activity. Human activity
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Figure 7: Complete measurement spectrogram. The signatures in the bounding boxes repre-

sent ‘non-movement’.

detection can provide valuable information regarding an individual’s degree of

movement and is useful for monitoring the occurrence of the activity. To this

end, human movement detection is a pre-processing for activity recognition.

(a)
(b)

Figure 8: Illustrations of open-set problem. (a) Human activity detection. (b) Human activity

recognition.

The problem can be concretized as a one-class classification problem, which350

is distinguishing ‘standing’ from other activities (illustrated in Fig. 8(a)). As

Doppler signatures are caused by target movement, the spectrogram of ‘stand-

ing’ has fewer micro-Doppler signatures (such as the trajectories of hands and

feet) than other activities. In broad terms, all the still postures generate slight
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Doppler signatures with a velocity of 0, so it is reasonable to represent ‘non-355

movement’ with standing.

In this context, to tackle human activity detection problem with OpenGAN,

we train the model with the spectrograms of ‘standing’ only, and the test samples

of seven activities are collected as the testing set. Then the proposed model

is compared with several well-performed one-class classifiers. The competing360

algorithms in this task include Support Vector Domain Description (SVDD)

[60], K-Nearest-Neighbor (KNN) [61], K-means [62, 63], Principal Component

Analysis data description (PCA dd) [64], Extreme Learning Machine (ELM)

[65] with Radial Basis Function (RBF) kernel, ELM with polynomial kernel,

and ELM with random kernel. All of them are implemented with MATLAB365

toolbox ‘dd tools’ [66] with experimental optimal parameter settings.

The comparison results are summarized in Fig. 9(a) and Fig. 9(b), it can

be observed that all the comparison methods obtain lower results on MOCAP

database than on measurement database. Among them, KNN achieves better

results than other algorithms. Compared with these, OpenGAN outperforms370

the prior methods under all circumstances both on measurement dataset and

MOCAP dataset, showing great robustness and impressive discriminative power

with F-measures more than 0.97.

5.2. OpenGAN for human activity recognition

Given a set of micro-Doppler spectrograms, the problem of open-set activity375

recognition is to find the activities that we are interested in and the categories

they belong to (illustrated in Fig. 8(b)). In practical terms, it is hard to enumer-

ate all the activities, which remains open-set recognition an unsolved problem.

Fortunately, in most cases we are interested in finite particular activities so that

only the target activities samples need to be collected and used as training data,380

this relieves the open-set problem considerably.

To ensure the extensiveness, we conduct experiments on various openness

values by verifying the number of target activities. For each openness value,

all the configurations of the training set are enumerated and used to validate
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(a)

(b)

Figure 9: F-measures of open-GAN and comparison methods in human activity detection

task. (a) Results on measurement datasets. (b) Results on MOCAP dataset.
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the effectiveness of OpenGAN, then the results are presented in the form of385

mean value. Also, OpenGAN is compared with several state-of-the-art open-set

algorithms, including (1) W-SVM [67], (2) PI -SVM [68], (3) PI -OSVM [68],

(4) 1-class 1-vs-set machine with linear kernel [30], (5) 1-class 1-vs-set machine

with RBF kernel [30] (6) binary 1-vs-set machine with linear kernel [30] (7)

binary 1-vs-set machine with RBF kernel [30]. All the competing algorithms390

are implemented by libsvm-openset package [69].

According to the experimental results shown in Fig. 10 and Fig. 11, the pro-

posed method outperforms competing approaches in terms of F-measure. It can

be observed from the figures that, our model achieves about 0.8 F-measure on a

complete closed-set classification problem (i.e., openness=0), which is superior395

to all the other algorithms with Gabor feature and mean envelope feature, only

W-SVM and PI -OSVM using envelope feature achieve comparable results to our

model. With the increase of openness, F-measures of all the algorithms decline.

Among the competing methods, W-SVM and PI -OSVM tend to perform better

than others, but they are still inferior to OpenGAN. It is worth noting that,400

W-SVM and binary 1-vs-set machine require negative samples for training, so

it is not valid when openness reaches 0.4655, namely only one target activity is

in the training set. However, our model retains the F-measure to about 0.5 in

this situation, which is 12% higher than other algorithms. These observations

imply the effectiveness of OpenGAN in solving open-set problems, even if the405

problem is highly ‘open’, the proposed model is still capable of offering optimal

performance.

To better explain the efficacy of OpenGAN, we visualize the outputs from

the discriminator at different training stages. Each input sample of the discrim-

inator produces a feature vector, then the vectors are reduced to two dimensions410

with t-SNE [70] for visualization. Fig. 12 shows that during the network train-

ing, the mapped target set and negative set gradually become separable. More-

over, samples from the same target class become compact while the distances

between different target classes become farther.

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Openness

F−
M

ea
su

re

 

 

W−SVM
P

I
−SVM

P
I
−OSVM

binary 1−vs−set ,linear
binary 1−vs−set ,RBF
1−class 1−vs−set, linear
1−class 1−vs−set, RBF
ours

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Openness

F−
M

ea
su

re

 

 

W−SVM
P

I
−SVM

P
I
−OSVM

binary 1−vs−set ,linear
binary 1−vs−set ,RBF
1−class 1−vs−set, linear
1−class 1−vs−set, RBF
ours

(b)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Openness

F−
M

ea
su

re

 

 

W−SVM
P

I
−SVM

P
I
−OSVM

binary 1−vs−set ,linear
binary 1−vs−set ,RBF
1−class 1−vs−set, linear
1−class 1−vs−set, RBF
ours

(c)

Figure 10: Comparison results on measurement database. (a) With Gabor feature. (b) With

spectrograms envelopes feature. (c) With means of envelopes feature.
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Figure 11: Comparison results on MOCAP database. (a) With Gabor feature. (b) With

spectrograms envelopes feature. (c) With means of envelopes feature.
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Figure 12: Visualization of the feature vectors output from the discriminator. ‘Jumping’,

‘running’ and ‘walking’ are set as the target set, while other activities are regarded as the

unknown class. (a) After one iteration. (b) After ten iterations. (c) After 100 iterations.

6. Discussion415

To verify the performance of our method versus different hierarchical archi-

tectures, we carry out experiments on both activity detection and recognition

tasks. The current implementation of the algorithm is based on the dense block

with one sub-block in it, to explore the impact of dense connection and hi-

erarchies, we evaluate the performances of a shallower variant without dense420

connection (i.e., a plain CNN) and three deeper variants with two to four sub-

blocks.

Fig. 13 shows the experimental results of activity detection on both datasets.

By comparing the results, we can observe that the introduction of dense block

boosts the performance of network on both datasets. Nevertheless, with the425

number of sub-blocks increasing, the F-measure decreases surprisingly.

The activity recognition results are listed in Table 2 and Table 3. It can be

seen that the proposed architecture generally outperforms other variants. Al-

though plain CNN achieves two comparable results to the proposed network, the

introduction of dense connection is beneficial in most cases. Especially, when430

openness is 0.0465 (five activities as the target set while one activity as the neg-

ative set), the proposed network achieves a 0.2281 improvement on F-measure

than a plain CNN. This demonstrates the effectiveness of dense connection.
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Figure 13: F-measure of human activity detection with different network architectures. ‘0’

refers to a plain CNN network without dense connection.

When the hierarchy gets deeper, just the same as in the detection task, there

is a decline in F-measure. Taking the time efficiency and required memory into435

account, we finally choose the architecture with one sub-block in each dense

block.

7. Conclusion and future work

In this paper, we design a novel model called ‘OpenGAN’ for open-set hu-

man activity detection and recognition. The model is inspired by generative440

adversarial networks and automatically constructs the negative set with syn-

thesized samples from the generator without manual collection. Subsequently,

the discriminator is modified with some reasonable modulations to adapt the

open-set tasks. Both measurement radar dataset and MOCAP dataset are em-

ployed to verify the effectiveness of our model. Extensive experiments show that445

OpenGAN outperforms several comparison algorithms on the open-set human

activity problem. The results suggest the robustness of our method against ex-

isting approaches. Exploration experiments about the network structure are also
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network architectures.

Sub-block

number

Openness

0.4655 0.2929 0.1835 0.1056 0.0465 0.0000

0 0.4012 0.5748 0.6245 0.5695 0.5130 0.6207

1 (Ours) 0.5323 0.5570 0.6320 0.6955 0.7411 0.7461

2 0.4169 0.5200 0.5890 0.6255 0.6640 0.7261

3 0.4369 0.5169 0.5842 0.5877 0.6803 0.7461

4 0.4027 0.5117 0.5841 0.6055 0.3974 0.2857

Table 3: F-measure of human activity recognition on MOCAP dataset with different network

architectures.

Sub-block

number

Openness

0.4655 0.2929 0.1835 0.1056 0.0465 0.0000

0 0.6825 0.6767 0.6270 0.7966 0.7888 0.8095

1 (Ours) 0.7262 0.7237 0.7198 0.7655 0.8011 0.8909

2 0.6474 0.6552 0.6957 0.7137 0.8027 0.8083

3 0.3244 0.6431 0.6846 0.7389 0.7669 0.7780

4 0.6360 0.6455 0.7045 0.7518 0.8055 0.8107
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carried out. The results demonstrate that network with one sub-layer in each

dense block achieves the best performances under most circumstances. Future450

works will include extending the algorithm to other modal data and developing

the model to an end-to-end open-set detection and recognition system.
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