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Abstract

In this paper, Lie symmetry analysis is performed on the parabolic Monge-Ampère
equation usuyy + ryuyuyy − θu2

y = 0 arising from the optimal investment theory. Lie
symmetry and optimal system of this equation are derived. In particular, based on
optimal system, symmetry reductions and invariant solutions are obtained.
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1. Introduction

In recent years, there are many researches use Lie symmetry analysis to partial
differential equations (PDEs) which arising from physics, chemistry , economics
and other fields [1–7]. The investigation of exact analytical solutions of PDEs play
an important role for a long time. Lie symmetry analysis is one of the most ef-
fective methods for finding the exact analytical solutions of differential equations,
and many authors used this method to find the analytical solutions of PDEs [8–
12]. Lie symmetry analysis method was originally developed in the 19th century
by the Norwegian mathematician Sophus Lie and developed in differential equa-
tions since Bluman and Cole proposed similarity theory for differential equations
in 1970s [3, 7].

Over the last forty years, there was a considerable development in PDEs which
arise in mathematical finance [13–19]. It was worth pointing out that Bordag and
Chmakova’s pioneering paper studied the evaluation of an option hedge-cost un-
der relaxation of the price-taking assumption by Lie symmetry analysis method.
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In particular, they found some analytical solutions to a nonlinear Black-Scholes
equation which incorporates the feedback-effect of a large trader in case of market
illiquidity and showed that the typical solution would have a payoffwhich approx-
imates a strangle, then used these solutions to test numerical schemes for solving
a nonlinear Black-Scholes equation [16].

In this paper, we consider the following parabolic Monge-Ampère equation in
the optimal investment theory [17]:

usuyy + ryuyuyy − θu2
y = 0, (1.1)

where r, θ > 0 are constants. Existence of solutions to initial value problem for
this equation were showed in [18].

The rest of the paper is organized as follows. In Section 2, we recall the model
Eq.(1.1) arise from optimal investment of mathematical finance theory. In Section
3, vector fields and optimal system are given by employing Lie symmetry analysis
method. In Section 4, the similarity variables and analytical solutions of Eq.(1.1)
are obtained by using optimal system. Finally, conclusions are presented at the
end of the paper.

2. The model arise from optimal investment of mathematical finance theory

In this section, we recall the model equation presented in [17].
There are n+ 1 assets continuously traded. The 0-th asset is bond, and the last

n are stocks. The price process of the i-th asset is denoted by Pi(t) and they satisfy
the following system:


dP0(t) = r(t)P0(t)dt,
dPi(t) = bi(t)dt + Pi(t)

∑d
j=1 σi jdW j(t), 1 ≤ i ≤ n, Pi(0) = pi, 0 ≤ i ≤ n,

(2.1)

where r(t), bi(t) and σi j(t) are the interest rate, the appreciation rate, and the
volatility, respectively. W(t) = (W1(t),W2(t), ...,Wn(t)) is a d-dimensional stan-
dard Brownian motion. Denote b(t) = (b1(t), b2(t), ..., bn(t)), σ(t) = (σi j(t))n×d

.
Let an investor have an initial wealth y ∈ R and invest this amount in the mar-

ket described above and the wealth process Y(t) satisfies the stochastic differential
equation (SDE) as follows:


dY(t) = {r(t)Y(t) + ⟨b(t) − r(t)1⃗, π(t)⟩}dt + ⟨π(t), σ(t)dW(t)⟩, t ∈ [0,T ],
Y(0) = y,
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(2.2)

where (π(·),N(·)) ∈ ∏[0,T ] × N[0,T ]. For this particular investor has his own
attitude to the risk versus the gain at the final time T , which is described by a
strictly increasing and concave utility function g : R → R. The investor would
like to maximize the payoff functional J(π(t)) = E[g(Y(t))] by choosing a suitable
strategy (π(·),N(·)) ∈ ∏[0,T ] × N[0,T ]. This is so-called self-financing optimal
investment problems:

For given initial endowment y ∈ R, find a portfolio π̄(·) ∈∏[0,T ], such that

J(π̄) = sup
π̄(·)∈∏[0,t]

J(π(·)). (2.3)

Any π(·) ∈ Π[0,T ] satisfies (2.3) is called an optimal portfolio and the correspond-
ing wealth Y(·) is again called an optimal wealth process.

In order to use the dynamic programming, we need to consider the optimal
investment problem on the time interval [s,T ] with s ∈ [0,T ],i.e,


dY(t) = {r(t)Y(t) + ⟨b(t) − r(t)1⃗, π(t)⟩}dt + ⟨π(t), σ(t)dW(t)⟩, t ∈ [s, T ],
Y(s) = y.

(2.4)

Define J(s, y; π(·)) = Eg(Y(T ; s, y, π(·))), and


V(s, y) = supπ̄(·)∈∏[s,t] J(s, y; π(·)), (s, y) ∈ [0,T ) × R,
V(T, y) = g(y), y ∈ R,

(2.5)

where Y(·; s, y, π(·)) is the solution of (2.4), V(s,y) is called the value function of
self-financing optimal investment problem.

Next, introducing the Hamilton for self-financing optimal investment problem

℘(s, y, p,G, π) ≡ p[r(s)y + ⟨b(s) − r(s)1⃗, π⟩] + 1

2G|σT (s)π|2,
∀(s, y, p,G, π) ∈ [0,T ] × R × R × R × R,

(2.6)

and


H(s, y, p,G) = supπ∈Rn ℘(s, y, p,G, π),
∀(s, y, p,G) ∈ [0,T ] × R × R × R.

(2.7)

Then we have the Hamilton-Jacobi-Bellman equation associated with self-financing
optimal investment problems

us(s, y) + H(s, y, uy(s, y), uyy(s, y)) = 0, (2.8)
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for all (s, y) ∈ [0, T ) × R, such that

(s, y, uy(s, y), uyy(s, y)) ∈ D(H), (2.9)

where D(H) = {(s, y, p,G)|H(s, y, p,G) < ∞}.
Now we consider a simple case: n = d = 1, and all the functions r, b, σ are

constants with σ > 0, b − r > 0. Then from (2.8) we get

us + ryuy −
(b − r)u2

y

2σuyy
= 0, (2.10)

or equivalently

usuyy + ryuyuyy − θu2
y = 0, (2.11)

where θ = b−r
σ

.

3. Lie symmetry

In this section, we shall perform Lie symmetry analysis for Eq.(1.1). The
method of determining Lie symmetry for a partial differential equation is standard
which is described in [1–7].

First of all, let us consider a one-parameter group of infinitesimal transforma-
tion:

s̃ = s + ϵξ(s, y, u) + O(ϵ2),

ỹ = y + ϵτ(s, y, u) + O(ϵ2),

ũ = u + ϵϕ(s, y, u) + O(ϵ2),

(3.1)

where ϵ ≪ 1 is a group parameter. The vector field associated with the above
group of transformations can be written as

V = τ(s, y, u)
∂

∂s
+ ξ(s, y, u)

∂

∂y
+ ϕ(s, y, u)

∂

∂u
. (3.2)

Thus, the second prolongation Pr(2)V is

Pr(2)V = V + ϕs ∂

∂us
+ ϕy ∂

∂uy
+ ϕyy ∂

∂uyy
, (3.3)
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where

ϕs = Ds(ϕ) − usDs(τ) − uyDs(ξ),
ϕy = Dy(ϕ) − usDy(τ) − uyDy(ξ),
ϕyy = Dy(ϕy) − usyDy(τ) − uyyDy(ξ),

and Ds and Dy denote the total derivative operator with respect to s and y.
Applying the second prolongation Pr(2)V to Eq.(1.1), we find that the coeffi-

cient functions τ(s, y, u), ξ(s, y, u) and ϕ(s, y, u) must satisfy the following invari-
ant condition:

Pr(2)V(∆)|∆=0 = ξruyuyy +ϕ
suyy +ϕ

yryuyy − 2θϕyuy +ϕ
yyus +ϕ

yyryuy = 0, (3.4)

where ∆ = usuyy + ryuyuyy − θu2
y = 0. Then we obtain an over determined system

of equations as follows:

ξu = ξyy = 0,
ξs = −r(yξy − ξ),
τs = τu = τy,

ϕs = ϕy = ϕuu.

(3.5)

Solving above Eqs.(3.5), one can get

ξ = C1y +C2,

τ = C3,

ϕ = C4u +C5,

where C1,C2,C3,C4 and C5 are arbitrary constants. Hence the Lie algebra of
infinitesimal symmetries of Eq.(1.1) is spanned by the following vector fields:

V1 = y
∂

∂y
,

V2 = ers ∂

∂y
,

V3 =
∂

∂s
,

V4 = u
∂

∂u
,

V5 =
∂

∂u
.
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Then, all of the infinitesimal generators of Eq.(1.1) can be expressed as

V = C1V1 +C2V2 +C3V3 +C4V4 +C5V5. (3.6)

The commutation relations of Lie algebra determined by V1,V2,V3,V4,V5, are
shown in Table 1. It is obvious that {V1,V2,V3,V4,V5} is commute under the Lie
bracket.

Table 1: The commutation table of Lie algebra

[Vi,V j] V1 V2 V3 V4 V5

V1 0 −V2 0 0 0
V2 V2 0 −rV2 0 0
V3 0 rV2 0 0 0
V4 0 0 0 0 −V5

V5 0 0 0 V5 0

To get symmetry groups, we should solve the following ordinary differential
equations with initial problems:


ds̃
dϵ = ξ(s̃, ỹ, ũ),
s̃|ϵ=0 = s,


dỹ
dϵ = τ(s̃, ỹ, ũ),
ỹ|ϵ=0 = y,


dũ
dϵ = ϕ(s̃, ỹ, ũ),
ũ|ϵ=0 = u,

then we obtain one-parameter symmetry groups gi : (s, y, u) → (s̃, ỹ, ũ) of above
corresponding the infinitesimal generators Vi(i = 1, 2, 3, 4, 5) are given as follows:

g1 : (s, y, u)→ (s, yeϵ , u),
g2 : (s, y, u)→ (s, y + ϵers, u),
g3 : (s, y, u)→ (s + ϵ, y, u),
g4 : (s, y, u)→ (s, y, ueϵ),
g5 : (s, y, u)→ (s, y, u + ϵ).

Thus the following theorem holds:

Theorem 3.1. If u = f (y, s) is a known solution of Eq.(1.1), then by using the
above groups gi(i = 1, 2, 3, 4, 5), the corresponding new solutions ui(i = 1, 2, 3, 4, 5)
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can be obtained respectively as follows:

u1 = f (ye−ϵ , s),
u2 = f (y − ϵers, s),
u3 = f (y, s − ϵ),
u4 = e−ϵ f (y, s),
u5 = f (y, s) − ϵ.

Using the Table 1 and the following Lie series

Ad(exp(ϵVi))V j = V j − ϵ[Vi,V j]+
ϵ2

2!
[Vi, [Vi,V j]]− ϵ

3

3!
[Vi, [Vi, [Vi,V j]]]+ · · · ,

we obtain the adjoint representation in Table 2.

Table 2: The adjoint representation

Ad(exp(ϵVi))V j V1 V2 V3 V4 V5

V1 V1 eϵV2 V3 V4 V5

V2 V1 − ϵV2 V2 V3 + ϵrV2 V4 V5

V3 V1 (1 − r + reϵ)V2 V3 V4 V5

V4 V1 V2 V3 V4 eϵV5

V5 V1 V2 V3 V4 − ϵV5 V5

Based on the adjoint representation, we have the following theorem:

Theorem 3.2. The optimal system of one-dimensional subalgebras of the Lie al-
gebra spanned by V1,V2,V3,V4,V5 of Eq.(1.1) given by

V1 ± V3,V1 ± V4,V1 ± V3 ± V4,V2 ± V4,V3,V3 ± V4,V5.

4. Symmetry reductions and invariant solutions

In this section, making use of optimal system in Theorem 3.2, we will get
derive several types of symmetry reductions and invariant solutions.

Case 1. For the infinitesimal generator V1 + V3 = y ∂
∂y +

∂
∂s , the similarity

variables are ξ = s − ln y, f (ξ) = u, and the group-invariant solution is u = f (ξ).
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Substituting the group-invariant solution into Eq.(1.1), we obtain the following
reduction equation:

(1 + r) f ′ f ′′ − θ f ′2 = 0. (4.1)

Solving above reduction equation, we obtain solution of Eq.(1.1) as follows:

u = c1 + c2e
θ(s−ln y)

1+r . (4.2)

Figure 1: Solution (4.2) with c1 = c2 = r = θ = 1

Case 2. For the infinitesimal generator V1 + V4 = y ∂
∂y + u ∂

∂u , the similarity
variables are ξ = s, f (ξ) = u

y , and the group-invariant solution is u = y f (ξ).
Substituting the group-invariant solution into Eq.(1.1), we obtain the following
reduction equation:

−θ f (s) = 0. (4.3)

Therefore, Eq.(1.1) has a solution u = 0. Obviously, the solution is not meaning-
ful.
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Case 3. For the infinitesimal generator V1 + V3 + V4 = y ∂
∂y +

∂
∂s + u ∂

∂u , the
similarity variables are ξ = s − ln y, f (ξ) = u

y , and the group-invariant solution is
u = y f (ξ). Substituting the group-invariant solution into Eq.(1.1), we obtain the
following reduction equation:

(r − θ − 1) f ′2 + (2θ − r) f f ′ + (1 − r) f ′ f ′′ + r f f ′′ − θ f 2 = 0. (4.4)

Case 4. For the infinitesimal generator V3 =
∂
∂s , the similarity variables are

ξ = y, f (ξ) = u, and the group-invariant solution is u = f (ξ). Substituting the
group-invariant solution into Eq.(1.1), we obtain the following reduction equation:

rξ f ′ f ′′ − θ f ′2 = 0. (4.5)

Solving above reduction equation, we obtain solution of Eq.(1.1) as follows:

u = c1 + c2y
θ+r

r . (4.6)

Figure 2: Solution (4.6) with c1 = c2 = r = θ = 1

Case 5. For the infinitesimal generator V2+V4 = ers ∂
∂y+u ∂

∂u , the similarity vari-
ables are ξ = s, f (ξ) = ue−ye−rs

, and the group-invariant solution is u = eye−rs
f (ξ).
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Substituting the group-invariant solution into Eq.(1.1), we obtain the following
reduction equation:

f f ′ − θ f 2 = 0. (4.7)

Solving above reduction equation, we have f = ceθs. Therefore, Eq.(1.1) has
solution as follows:

u = ceθs+ye−rs
. (4.8)

Figure 3: Solution (4.8) with c = r = θ = 1

Case 6. For the infinitesimal generator V3 + V4 =
∂
∂s + u ∂

∂u , the similarity
variables are ξ = y, f (ξ) = ue−s, and the group-invariant solution is u = es f (ξ).
Substituting the group-invariant solution into Eq.(1.1), we obtain the following
reduction equation:

f f ′′ + rξ f ′ f ′′ − θ f ′2 = 0. (4.9)
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5. Conclusions

In this paper, we study Lie symmetry analysis for a parabolic Monge-Ampère
equation in the optimal investment theory . As a result, infinitesimal generator,
commutation table of Lie algebra and optimal system of this equation are derived.
With the help of optimal systems, symmetry reductions and invariant solutions
are obtained. It is shown that the the value function of self-financing optimal
investment problem is a smooth and monotonically function of initial wealth y.

For n-dimensional case, let r =
√

y2
1 + · · · + y2

n, Eq.(2.8) becomes Eq.(2.11), so
discuss the case n = d = 1 that involve the general case. The solutions which we
obtain can be used to self-financing optimal investment problem and to check on
the accuracy and reliability of numerical algorithm of Hamilton-Jacobi-Bellman
equation (2.8).
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