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Highlights 

 A validation scheme for evaluating MCDM methods is developed. 

 Comparisons among MCDM methods are conducted to show viability of the proposed scheme. 

 Conventional MCDM including PLP, AHP, TOPSIS, VIKOR, and ELECTRE are examples for the test. 

 A synthetic decision-maker with preference generation, alternative settings, and method-oriented parameter 

settings are key factors to evaluate the effectiveness. 

 Absolute rank deviation and Kenall’s tau rank test are suggested to statistically analyze the effectiveness. 

 

ABSTRACT 

Multiple criteria decision-making (MCDM) methods have various practical applications. Decision-makers face 

MCDM problems with conflicting criteria daily. Hence, MCDM methods have been developed to enable 

decision-makers to enhance decision quality. MCDM methods use various calculation approaches to evaluate the 

rank of alternatives. However, little evidence supports the consistency between the alternative chosen by the 

MCDM method and the decision-maker’s intuitive ideal alternative. Therefore, the objective of this study is to 

develop an operational validation scheme to examine and compare the effectiveness of MCDM methods. In the 

validation scheme, control variables include the number of alternatives, number of criteria, data set distributions, 

and nondominated data set options (Pareto efficient frontier or complete data set). We also add three weight 

distributions, namely uniform weights, rank order centroid weights, and rank sum weights, to determine the 

effect of weights on the MCDM methods. We test linear, quadratic, Chebycheff, and prospect utility functions. 

In addition to the compensatory, noncompensatory, and partially compensatory utility functions, we use the 

prospect theory utility function. Mean absolute rank deviation and Kendall’s statistical rank test, are applied to 

examine the effectiveness of the methods. To show the viability, this study illustrates the proposed scheme by an 

evaluation process of numerical comparisons among common MCDM methods including technique for order 

preference by similarity to ideal solution (TOPSIS), VlseKriterijumska Optimizacija I Kompromisno Resenje 

(VIKOR), elimination et choix traduisant la realité (ELECTRE), the piecewise linear prospect (PLP) theory 

method, and Analytic Hierarchy Process (AHP). Moreover, method-oriented parameter settings such as 

normalization methods, distance functions, VIKOR’s v, and ELECTRE’s thresholds are examined. Through the 

aforementioned settings, we compare the MCDM methods’ ranks with the decision-maker’s ranks by using 

assumed preference utility functions. The results reveal that interactive MCDM methods such as PLP and AHP 

outperform the others in terms of rank consistency. However, the performance of the MCDM methods is 

affected by the percentage of existing efficient solutions. More investigations into the applicability of the utility 

functions in various situations are suggested. 

Keywords: Piecewise linear prospect (PLP) theory method; analytic hierarchy process (AHP); technique for 

order preference by similarity to ideal solution (TOPSIS); VlseKriterijumska Optimizacija I Kompromisno 

Resenje (VIKOR); elimination et choix traduisant la realité (ELECTRE) 

 

1 Introduction 

The Industry 4.0 proposal has been driving the fourth technological revolution based on the concepts and 

technologies of cyber-physical systems and the Internet of things for developing the new German economic 

policy [1–3]. Among the key development directions, the more decentralized self-organization and adaptation to 

human needs have triggered developing methodologies, methods of modeling, and data models and exchange 

formats for smarter production [1]. Owing to the changes and decomposition of conventional production 

hierarchy and the broader coverage of responses to strategic objectives and customer preferences from the 

operational-level decisions, more effective multiple criteria decision-making and soft computing techniques and 

their integration are largely demanded for achieving autonomous and automatic decisional intelligence [4–6].  



Although studies have developed numerous novel multiple criteria decision-making (MCDM) methods and 

integrations of existing ones for specific problems, their validation and verifications are mostly within the scope 

of efficiency comparisons, consistency tests, or cross examinations with real cases [7–13]. However, the 

essential questions of how to evaluate the selection of appropriate MCDM methods are not well addressed. In 

particular, identifying the true preferred alternative is the most difficult part of validating MCDM methods. 

Validating MCDM methods through interaction with decision-makers is challenging. Discovering and applying 

suitable metrics help to clarify decision-makers' true preferences. Multiple criteria are particularly difficult to 

evaluate when decision-makers use different units. The normalization and aggregation process influences the 

stability of results and can lead to rank reversals (i.e., adding new alternatives or deleting alternatives may 

change the original ranks [14]), especially with multiple decision-makers. Self-inconsistency or cognitive bias 

during the preference elicitation process causes rank reversals [15,16]. In these cases, the decision quality is 

unsatisfactory and the optimal alternative may not be presented. Furthermore, inappropriate use of MCDM 

methods results in rank reversals. Therefore, understanding the influence of cognitive bias on various MCDM 

methods and debiasing on the basis of statistical rank tests are important. 

In short, this study aims to develop a validation scheme that can be commonly used to compare effectiveness of 

various MCDM methods. To show the viability of the proposed validation scheme, this study illustrate the 

evaluation and comparisons among common MCDM methods. In the validation scheme, the impact of control 

variables, such as the existence of efficient solutions, normalization methods, aggregation methods, and degree 

of interaction with decision-makers, on the MCDM validity is also investigated. 

The remainder of this paper is organized as follows. Section 2 presents a review of the literature on MCDM 

methods. Section 3 develops a validation scheme for examining effective of MCDM methods. Section 4 

illustrates the proposed validation schedule with comparisons among common MCDM methods and discusses 

the implications. Section 5 concludes with discussions on future research directions. 

 

2 Literature review on multiple criteria decision-making (MCDM) methods 

MCDM has enabled the development of many tools and solutions for problems including choice, sorting, 

ranking, description, elimination, and design. According to Kӧksalan et al. [17], Stewart et al. [18], and Ishizaka 

and Nemery [19], over 15,000 articles and books have been published regarding conventional MCDM methods 

including multiattribute utility theory, utilitiés additive [20], goal programming (GP), analytic hierarchy 

process/analytic network process (AHP/ANP) [8,9], technique for order preference by similarity to ideal solution 

(TOPSIS), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), data envelopment analysis 

(DEA), elimination et choix traduisant la realité (ELECTRE), preference ranking organization method for 

enrichment evaluation (PROMETHEE), measuring attractiveness by a categorical-based evaluation technique, 

piecewise linear prospect (PLP) theory method [21], and evolutionary multiobjective optimization (EMO). The 

applications of MCDM methods are pervasive and include critical success factors [22,23], supply chain 

evaluation and analysis [24], quality cost models [25], inventory classification and evaluation [26–32], vendor 

evaluation [4,6], process management [33], order allocation [5], scheduling [34–37], resource allocation [38,39], 

technology strategy [40], product development [41], flow control [42], disaster and emergency management [43], 

and location analysis [44]. In short, MCDM methods convincingly solve semistructured problems for making 

smarter decisions. However, the validity of the MCDM methods determines the effectiveness of solutions. A 

careless choice of the method leads to unfavorable results.  

MCDM methods have various categories. The decision context categorizes the MCDM methods into multiple-

attribute decision-making (MADM) and multiple-objective decision-making (MODM) [45]. MADM focuses on 

evaluation problems when the number of alternatives is finite. Through a systematic evaluation process for the 

relative importance of attributes and relative scores of alternatives on attributes, MADM can assist decision-

makers in ranking alternatives and finding the most preferred alternative. MODM focuses on planning where 

objectives, constraints, and decision variables are predetermined to generate the feasible region and then to find 



the most preferred solution(s) based on decision-makers’ preferences. Weighted goal programming is applicable 

when the weights among all objectives can be determined before the solution process, whereas preemptive goal 

programming is suitable when the objective weights are not known but the order of objectives can be identified. 

Finally, when the objective preferences are not identifiable, multiobjective programming can be used for 

generating the set of efficient solutions.  

MCDM methods can also be categorized into priori, interactive, and posteriori methods based on the timing of 

eliciting criteria weights [46,47]. Priori methods presume existing weights before solutions, interactive methods 

elicit weights through solution process, and posteriori methods find the efficient solution set, i.e. nondominated 

data set options or Pareto efficient frontier, prior to final evaluation and ranking. Therefore, a compromise is 

necessary when selecting methods. Priori methods require decision-makers to give criteria weights without 

knowing the complete solution sets; the cost of interactions with the decision-maker is usually very high, 

particularly for critical decisions; and the efficient solution set is usually computationally expensive to determine. 

In addition, Ishizaka and Nemery [19] classified MCDM tools according to the level of interaction. Well-known 

methods such as AHP/ANP, TOPSIS, and VIKOR belong to the American school, which employs compensatory 

criteria to enable decision-makers to aggregate weights and scores into a single objective for ranking. ELECTRE 

and PROMETHEE belong to the French school, which focuses on noncompensatory criteria and considers the 

situation when alternatives may not be sortable and only an outranking relation can be found. However, these 

MCDM method classifications are descriptive. A framework for answering questions about the effectiveness of 

methods has not been established. 

MCDM methods are used to solve semistructured decision problems that fall between structured problems, 

which can be automated, and unstructured problems such as love. Semistructured problems have decision rules, 

but decision-makers must reveal their own preferences to make the judgment because of noncompensatory 

multiple criteria. Most MCDM methods were developed as normative models, in which basic assumptions are 

the foundations of prescriptive decisions. Other descriptive MCDM models help decision-makers to make 

practical decisions. During the provision of recommendations to decision-makers in real-world problems to 

enable them determine an optimal solution, normative and descriptive aspects (i.e. how human beings make 

decisions and what decisions they should make [48]) must be considered. Specifically, when MCDM methods 

are being compared, their assumptions must be challenged and exceptions addressed. As Saaty and Tran [7] 

highlighted,  

Validity is the goal in decision-making, not consistency, which can be successively improved by 

manipulating the judgments as the answer gets farther and farther from reality. 

An effective MCDM method should be able to suggest the most favorable alternative that meets with the 

decision-maker’s preferences. 

Because MCDM decision problems are highly complex, decision-makers may not be able to determine the 

optimal solution. Subsequently, the result of the normative model could become the representative of the best 

alternative. For example, TPOSIS and VIKOR possess special computing characteristics that implicitly assume 

that decision-makers prefer compromise solutions [10] and compute the distance to the ideal point or the 

reference point for the judgment. Such an assumption may not be apparent to MCDM users who believe the 

results beyond doubt. Opricovic and Tzeng [11] compared well-known normative MCDM models including 

TOPSIS, VIKOR, ELECTRE, and PROMETHEE and discussed issues of reliability including stability and 

sensitivity. However, the results focused on the discussions of the best alternatives for a specific problem. The 

question as to which method is more appropriate in general remained unanswered. They suggested  

The validation procedures have to be developed, and application feasibility should be explored. The 

conceptual and operational validation of the application of a method in real world problems is 

needed. Researchers are challenged to provide a guide for choosing the method that is both 

theoretically well founded and practically operational to solve actual problems. 

By contrast, interactive methods such as AHP and PLP require interaction with decision-makers and have high 

implementation costs. Whether interactive methods are generally more suitable than TOPSIS or VIKOR has yet 



to be determined. Thus, developing a validation scheme for testing the effectiveness of MCDM methods is 

crucial. 

3 A validation scheme for testing the effectiveness of multiple criteria decision-making methods 

 

We develop a validation scheme for testing the effectiveness of MCDM methods (Fig. 1). The independent 

variable of interest is the MCDM method in use, which means that the aim is to test whether the effectiveness of 

various MCDM methods differs significantly under different scenarios. Control variables are alternative settings, 

parameter settings, and preference generation. With a specific setting of alternatives and preferences, a synthetic 

decision-maker can make a decision and rank alternatives automatically. The synthetic decision-maker is the 

innovative design in this study which enables the simulation of the interactions following the interactive methods 

so as we are able to compare various MCDM across the priori, interactive, and posteriori categories. Because the 

lack of universal utility functions, the preference generations based on various utility functions from existing 

studies help develop synthetic decision-makers. On the other hand, the effectiveness metrics, absolute rank 

deviation and Kendall’s tau coefficient [49, 50] for rank test are applied. 

This study developed the validation scheme for evaluating MCDM methods on the basis of the comparison 

template outlined by Lahdelma et al. [12], which considers only efficiency metrics. In addition to method 

comparison, synthetic data are generated according to three types of variable: alternative generations, preference 

generations, and the parametric settings of methods. Alternative generations include the number of alternatives, 

number of criteria, alternative distributions, and the existence of efficient solutions. The value of an alternative 

on criterion j is denoted by xj. The alternative generation distributions include sphere (1), simplex (2), and 

concave (3) distributions. The variable, existence of efficient solutions, is determined according to the 

percentage of synthetically generated efficient solutions. If all the alternatives are efficient, the data set is called 

true (nondom = TRUE); otherwise, it is called false and contains inefficient (dominated) solutions (nondom = 

FALSE). To control the alternative generation distributions, we set the false existence of efficient solutions 

parameter to 0.2 to indicate 20% efficiency and 80% inefficiency of the generated alternatives. Thus, if 10 

alternatives are generated, 2 of them are guaranteed to be efficient. The detailed pseudo codes of alternative 

generation with sufficient solutions filtering were specified in a previous study [12]. The alternative distributions 

are illustrated in Fig. 2. 

 

 

{𝑥 ∈ ℝ𝑛|𝑥 ≥ 0 ∧ ∑ 𝑥𝑗
2 ≤ 1𝑗 } (1) 

{𝑥 ∈ ℝ𝑛|𝑥 ≥ 0 ∧ ∑ 𝑥𝑗 ≤ 1𝑗 } (2) 

{𝑥 ∈ ℝ𝑛|𝑥 ≥ 0 ∧ ∑ √𝑥𝑗 ≤ 1𝑗 } (3) 

 

The preference generations combine two factors, namely weight distributions (wj) and utility functions (ui). 

Weight distributions show the distributions of the relative importance of various criteria. Conventional weight 

distributions are adopted including namely uniform weights (4), rank order centroid (ROC) weights (5) [51], and 

rank sum (RS) weights (6). The different weight settings simulate decision-makers’ preferences over various 

criteria. For example, uniform weights simulate consistent weights among criteria, the ROC expresses significant 

differences between high and low weights, and RS shows linearly decreasing weights (Fig. 3). 
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Four common utility functions are tested, namely linear utility (7), Chebycheff utility (8), quadratic utility (9) 

[12], and prospect utility (10) [15]. Prospect utility considers the reference point and decision-maker's risk 

preference. We test the max, min, and median reference points and risk preference settings of P = 0.5, 1.0, and 

2.0. The min/max/median mean that the reference point is taken based on the min/max/median values of criteria. 

The risk preference setting is equal to the ratio P = 𝑤𝑗
−/𝑤𝑗

+, and the settings of P = 0.5, 1.0, and 2.0 indicate 

risk-seeking, risk-neutrality, and risk-aversion, respectively. 

 

𝑢𝑖 = ∑ 𝑤𝑗𝑥𝑖𝑗
𝑛
𝑗=1  (7) 
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To illustrate the proposed validation scheme, common MCDM methods such as TOPSIS, VIKOR, ELECTRE, 

PLP, and AHP are compared. The method-oriented parametric settings of methods comprise normalization 

methods, aggregation methods, distance functions, and the VIKOR parameter v. We test three levels for the 

VIKOR parameter v, namely 0.25, 0.5, and 0.75, to investigate the trade-offs between group maximal utility and 

individual mini-max regret. We sort the 𝑄𝑖 of VIKOR in ascending order to rank alternatives. In PLP, the utility 

functions are applied for pairwise comparisons. To obtain all alternative ranks, we iteratively implement PLP by 

selecting the optimal alternative in each iteration and withdrawing it in order to generate the alternative set for 

the following iteration until no alternatives remain. 

 

4 Results and discussions 

Following the experiment design, we consider three types of alternative distribution, four types of utility 

function, and 36 settings. Combined with the six MCDM methods, namely PLP (P), AHP (A), TOPSIS (T), 

VIKOR (V), revised TOPSIS (Tr), and ELECTRE II (Eii), and 30 replications for each method, a total of 77,760 

instances are available for statistical analysis. For each instance, we use the mean absolute rank difference 

between the utility function-based true rank and the rank suggested by the method and settings. As expected, 

Table 1 shows that the difference increases with the number of criteria. The existence of efficient solutions is 

vital. With more efficient solutions, alternatives that meet with decision-makers' ranks (i.e., ranks using utility 

functions) are more difficult to rank. Therefore, when a solution set contains many competing alternatives, 

decision-makers must carefully select the appropriate MCDM method. The comparison reveals that the PLP 

outperforms the other methods followed by the AHP, whereas the VIKOR and ELECTRE II are the two most 

underperforming methods in terms of total mean absolute rank deviation (Table 2). PLP and AHP are interactive 

models that can elicit decision-makers' preferences and rank alternatives accordingly. 

 

 



When P = 1.0 for the prospect utility function, the results coincide with the results of the linear utility 

function because their utility functions become identical in this case. In fact, the risk-neutral prospect utility 

function is equivalent to the linear utility function. The linear utility function case conforms most easily. The 

assumption of utility linearity in the conventional MCDM models is the root causes of this result. Therefore, 

MCDM methods can be developed on the basis of more appropriate utility functions resulting from advanced 

descriptive models. Notably, PLP and AHP result in zero difference in the linear utility case. PLP is a more 

efficient pairwise comparison if the goal is to determine the optimal alternative, because it iteratively reduces the 

alternative set after each pairwise comparison. AHP is a comprehensive pairwise comparison in which all 

alternatives are compared. However, if the full ranking of all alternatives is the goal, then AHP is a more 

intuitive method to adopt. With the prospect utility function, all methods perform less effectively when the 

decision-maker’s preference is not risk-neutral. In particular, the risk-aversion utility function leads to more 

inconsistent ranks than the synthetic decision-maker’s judgment does. This warns that existing MCDM methods 

do not incorporate with the decision-makers’ risk preferences. 

Table 3 shows that Kendall’s rank test demonstrates a similar result. Specifically, with a quadratic utility 

function, AHP generates a statistically significant reverse rank, (i.e., Kendall’s tau equals one and the p-value is 

extremely small). In addition, with a linear or Chebycheff utility function, AHP produces the same rank. The 

result shows that PLP and AHP outperform other methods with more consistent ranks conforming to synthetic 

decision-makers’ ranks. In summary, although PLP and AHP outperform other methods, different decision-

makers’ utility functions influence the effectiveness of the methods applied. More studies should measure the 

true utility function of decision-makers under various situations rather than place excessive emphasis on the 

development of new methods without carefully measuring their effectiveness. 

The results illustrate the process of examining common MCDM methods through the proposed validation 

scheme. Unlike existing studies which focus more on efficiency comparisons, consistency tests, or cross 

examinations with real cases, the proposed scheme helps researchers and practitioners to select appropriate 

MCDM methods, particularly when priori, interactive, and posteriori ones are all feasible to choose. The 

proposed scheme provides more scientific basis of effectiveness evaluation among MCDM methods in addition 

to conventional descriptive comparisons and guidance [52]. The proposed validation scheme also responds to the 

argument in Saaty [53] saying no indication of approval or disapproval to descriptive methods and no way of 

disproving normative or prescriptive “what ought to be” methods. For Industry 4.0, the effectiveness is the key 

for MCDM methods to be applied to smart production practice. The proposed scheme will help enlarge the use 

of MCDM methods to broader industry practice as performance of these methods become measurable and 

trustworthy. 

 

5 Conclusion 

This study develops an operational validation scheme. The scheme is illustrated by examining and comparing 

conventional MCDM methods, namely PLP, AHP TOPSIS, revised TOPSIS, VIKOR, and ELECTRE II, with 

mean absolute rank deviation and Kendall’s tau serving as effectiveness metrics. The results show the 

effectiveness that the ranks of interactive methods are the closest to synthetic decision-makers' ranks. With more 

efficient solutions, decision-makers should more carefully select the appropriate MCDM method, because on the 

efficient solution frontier, preferred and not preferred alternatives are difficult to differentiate. Most existing 

methods assume linear utility functions. MCDM methods can be developed on the basis of appropriate utility 

functions resulting from advanced descriptive models. Finally, other than comparing existing methods, the 

proposed validation scheme can also serve as a template for examining newly developed methods.  

Because numerous novel MCDM methods have been developed, discussing all of them is nearly 

impractical. Instead, this study examines basic MCDM methods with various extensions to investigate the 

fundamental problems of validation. However, this study neglects many key elements. Further study should 

discuss the effects of aggregation settings and the normalization of approaches as summarized and discussed in 



[54,55]. Extensions of this study should also be done toward validation of group decision-making and integration 

of methods as many novel methods have been developed [44,56,57]. 
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Fig. 1 A validation scheme for testing the effectiveness of multiple criteria decision-making methods. 

 



 

Fig. 2 Alternative generation distribution illustration. 

 

 

Fig. 3 Weight generation illustration. 



 

Table 1 Experiment results. 

Criteria d 
nondom= FALSE 

 
nondom= TRUE 

 Avg. 
Uniform ROC RS Avg. Uniform ROC RS Avg. 

n=2 

SPHERE 1.14 1.10 1.20 1.15 1.64 1.27 1.46 1.46 1.30 

SIMPLEX 1.12 1.04 1.04 1.07 1.99 1.20 1.43 1.54 1.30 

CONCAVE 1.20 1.05 1.11 1.12 1.95 1.19 1.38 1.51 1.31 

n=2 avg. 1.15 1.07 1.11 1.11 1.86 1.22 1.43 1.50 1.31 

n=4 

SPHERE 1.38 1.27 1.37 1.34 1.70 1.43 1.57 1.57 1.45 

SIMPLEX 1.25 1.15 1.27 1.22 1.96 1.42 1.68 1.69 1.46 

CONCAVE 1.21 1.22 1.20 1.21 1.82 1.27 1.46 1.52 1.36 

n=4 avg. 1.28 1.21 1.28 1.26 1.83 1.37 1.57 1.59 1.42 

Avg. 1.21 1.14 1.20 1.18 1.84 1.30 1.50 1.55 1.36 

 

Table 2 Comparisons of methods and utility functions using absolute rank deviation. 

 P A T Tr V Eii Avg. 

LINEAR 0.00 0.00 0.95 0.94 1.20 1.28 0.91 

QUADRATIC 0.73 5.00 1.76 1.76 1.47 2.00 2.27 

CHEBYCHEFF 0.74 0.00 2.22 2.28 1.77 2.49 1.86 

P=1.0 0.00 0.00 0.95 0.94 1.20 1.28 0.91 

P=0.5 0.64 0.71 1.17 1.17 1.48 1.50 1.21 

max 0.88 0.77 1.28 1.31 1.66 1.65 1.32 

min 0.38 0.64 0.95 0.94 1.20 1.28 1.05 

median 0.65 0.73 1.27 1.26 1.58 1.58 1.25 

P=2.0 1.68 1.64 1.41 1.40 1.44 1.65 1.66 

max 1.75 1.54 1.73 1.71 1.61 1.82 1.83 

min 1.52 1.67 0.95 0.94 1.20 1.28 1.37 

median 1.78 1.70 1.55 1.56 1.51 1.84 1.78 

Avg. 0.70 1.00 1.30 1.29 1.40 1.59 1.36 

 

 

 

  



 

Table 3 Comparisons of methods and utility functions using Kendall’s rank test. 

 P A T Tr V Eii Avg. 

 tau p tau p tau p tau p tau p tau p tau p 

LINEAR 1.00 0.00* 1.00 0.00* 0.76 0.03* 0.76 0.03* 0.68 0.07 0.67 0.06 0.76 0.06 

QUADRATIC 0.81 0.05* -1.00 0.00* 0.50 0.14 0.51 0.14 0.60 0.13 0.44 0.17 0.26 0.13 

CHEBYCHEFF 0.81 0.04* 1.00 0.00* 0.37 0.23 0.35 0.23 0.52 0.15 0.28 0.33 0.46 0.19 

P=1 1.00 0.00* 1.00 0.00* 0.76 0.03* 0.76 0.03* 0.68 0.07 0.67 0.06 0.76 0.06 

P=0.5 0.84 0.02* 0.82 0.03* 0.70 0.05* 0.70 0.06 0.60 0.11 0.60 0.08 0.68 0.07 

max 0.78 0.03* 0.80 0.02* 0.67 0.06 0.66 0.07 0.55 0.14 0.56 0.09 0.65 0.08 

min 0.91 0.00* 0.84 0.03* 0.76 0.03* 0.76 0.03* 0.68 0.07 0.67 0.06 0.72 0.06 

median 0.84 0.02* 0.82 0.03* 0.67 0.07 0.67 0.07 0.57 0.13 0.58 0.10 0.67 0.08 

P=2 0.52 0.15 0.55 0.13 0.63 0.08 0.63 0.09 0.62 0.10 0.56 0.11 0.54 0.13 

max 0.50 0.14 0.58 0.09 0.54 0.13 0.55 0.12 0.56 0.11 0.51 0.15 0.49 0.15 

min 0.57 0.13 0.53 0.15 0.76 0.03* 0.76 0.03* 0.68 0.07 0.67 0.06 0.63 0.10 

median 0.50 0.17 0.53 0.14 0.60 0.10 0.59 0.11 0.60 0.10 0.50 0.13 0.51 0.14 

Avg. 0.81 0.05 0.67 0.04 0.66 0.08 0.66 0.08 0.62 0.10 0.57 0.11 0.62 0.10 

Note 1: Tau is Kendall’s coefficient of concordance. Tau ranges from -1.0 to 1.0 where 1.0 means the resulting ranked 

sequence of a MCDM method is identical to the synthetic decision-maker’s ranked sequence and -1.0 means the reverse 

rank of the synthetic decision-maker’s. 

Note 2: * shows the case when the statistical p-value is not greater than 0.05. 

 


