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A B S T R A C T

As the determination of criteria weights is important for multiple criteria decision making, a number of attempts
have been made to assign weights to criteria. However, whether criterion weight assignment is fair to each
criterion and to each alternative is rarely taken into account. To address this issue, in this paper, we propose a
fair framework in the context of the evidential reasoning approach, which is a type of multiple criteria utility
function method. In the fair framework, two strategies are prepared for a decision maker to choose, which are
the superior strategy and the inferior strategy. To achieve the objective in line with the selected strategy, two
levels of fairness including the fairness among criteria and the fairness among alternatives are defined based on
the performances of alternatives on each criterion. By following the two levels of fairness defined, two opti-
mization models are constructed successively to generate possible sets of fair criterion weights. With a view to
making all possible sets of fair criterion weights treated in generating a solution, they are incorporated into
another optimization model constructed to generate the minimum and maximum expected utilities of each
alternative, by which the solution is made with a decision rule preferred by the decision maker. A supplier
evaluation problem is analyzed to demonstrate the applicability and validity of the fair framework.

1. Introduction

In real life people usually take into account a number of factors
when making decisions. Different factors may conflict with each other
and people have to balance conflicting factors in their choice of action,
such as cost and quality of products. When one of the factors is un-
derstood as the term “criterion”, action as alternative, and one person
as a decision maker, such a situation is regarded as the context of
multiple criteria decision making (MCDM). In MCDM, all criteria must
be measurable, be capable of measuring different aspects of the pro-
blem considered, and distinguish between alternatives. As evaluating
one alternative on multiple criteria is easier than evaluating the alter-
native in a comprehensive way, MCDM is beneficial for a decision
maker to make a choice of alternatives when multiple criteria decision
methods are used. The use of multiple criteria decision methods can
help a decision maker relieve the cognitive overload caused by the large
volume of information needed to be combined to create solutions to
complex issues (Brownlow & Watson, 1987).

To conduct MCDM, many different types of multiple criteria deci-
sion methods have been proposed, including multiple criteria utility
function (MCUF) methods (Butler, Jia, & Dyer, 1997; Butler, Morrice, &
Mullarkey, 2001; Keeney & Raiffa, 1993; Wakker, Jansen, &

Stiggelbout, 2004), multiple criteria value function methods (Belton
and Stewart, 2002; Chin, Fu, & Wang, 2015; Fischer, 1995; Fu & Xu,
2016; Fu, Xu, & Yang, 2016; Keeney, 2002; Lan, Chen, Ning, & Wang,
2015; Sari, 2017; Yan, Zhang, & Li, 2017; Zhang, Wang, Li, & Chen,
2017), distance based methods such as the extensions of TOPSIS
method (Baykasoğlu & Gölcük, 2015; Wang, Liu, Li, & Niu, 2016) and
VIKOR method (Madjid, Reza, Francisco, & Elahe, 2016; Qin, Liu, &
Pedrycz, 2015), and outranking methods such as PROMETHEE methods
(Chen, 2014a; Miłosz & Krzysztof, 2016) and ELECTRE methods (Chen,
2014b; Corrente, Greco, & Słowiński, 2016). Although there are dif-
ferent principles in different types of multiple criteria decision methods
for using individual performances of each alternative on each criterion
to generate solutions, criterion weights are always taken into account in
the process of generating solutions. The weight of a criterion generally
reflects the impact of the performance of the criterion on the overall
performance (Butler et al., 2001). The weights of all criteria can ac-
complish the weighted trade-off between the performances of alter-
native on each criterion, which means that different sets of criterion
weights may usually result in different solutions to the same decision
problem considered. As a result, determining criterion weights is a key
step of multiple criteria decision methods.

To address the determination of criterion weights in MCDM, a large
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amount of research has been conducted in literature. When a decision
maker is capable of providing subjective preferences for criterion
weight assignment, many methods have been proposed to use the
subjective preferences to determine criterion weights. Representative
methods include point allocation method (Doyle, Green, & Bottomley,
1997; Roberts & Goodwin, 2002), direct rating method (Bottomley &
Doyle, 2001; Roberts & Goodwin, 2002), eigenvector method (Saaty,
1977; Takeda, Cogger, & Yu, 1987), Delphi method (Hwang & Yoon,
1981), linear programming model (Horowitz & Zappe, 1995), and goal
programming model (Shirland, Jesse, Thompson, & Iacovou, 2003). If
there is flexibility in criterion weights in nature and a decision maker
cannot provide reliable or credible subjective preferences for criterion
weights, the performances of alternatives assessed on each criterion are
used to objectively determine criterion weights. In the method of
handling such a situation, criterion weights reflect the amount of in-
formation or discriminating power contained in criteria or the con-
tribution of performances of alternatives on each criterion to some
special goal, such as high solution reliability (Fu & Xu, 2016). Re-
presentative methods include entropy method (Chen & Li, 2010, 2011;
Deng, Yeh, & Willis, 2000; He, Guo, Jin, & Ren, 2016), standard de-
viation (SD) method (Deng et al., 2000), correlation coefficient and
standard deviation integrated (CCSD) method (Wang & Luo, 2010),
criteria importance through intercriteria correlation (CRITIC) method
(Diakoulaki, Mavrotas, & Papayannakis, 1995), deviation maximization
method (Şahin & Liu, 2016; Wang, 1998), and multiple objective pro-
gramming model (Choo & Wedley, 1985). In a compromised situation
where a decision maker can only provide incomplete information about
criterion weights, such information is generally considered as con-
straints to be incorporated into the methods of using performances of
alternatives on each criterion to objectively determine criterion weights
(Chin et al., 2015; Fan, Ma, & Zhang, 2002; Fu & Wang, 2015; Fu & Xu,
2016; Ma, Fan, & Huang, 1999; Pei, 2013; Rao, Patel, & Parnichkun,
2011; Wang & Parkan, 2006).

To address a real decision problem, using subjective preferences of a
decision maker for criterion weight assignment is beneficial for gen-
erating criterion weights that are satisfactory to the decision maker.
Different methods of assigning criterion weights by using subjective
preferences, however, may elicit different criterion weights. There is no
single method that can guarantee more accurate criterion weights than
others (Barron & Barrett, 1996; Deng et al., 2000; Diakoulaki et al.,
1995). This brings the decision maker into difficulty in choosing an
appropriate method. When subjective preferences of the decision maker
are fully or partially unavailable, the amount of information or dis-
criminating power contained in criteria is generally used to objectively
determine criterion weights. Although Fu and Xu (2016) proposed to
objectively determine criterion weights by measuring and using the
contribution of performances of alternatives on each criterion to high
solution reliability, there are few similar studies of depending on some
special goal to carry out criterion weight assignment objectively. In
particular, under this condition, how to assign weights to criteria with a
view to guaranteeing that the weights are fair to each criterion and to
each alternative is rarely taken into account in existing studies.

In this paper, we investigate the assignment of weights to criteria to
achieve two levels of fairness including the fairness among criteria and
the fairness among alternatives as defined in Section 3.2. A fair fra-
mework in the context of the evidential reasoning (ER) approach which
is a type of MAUF method (Fu, Yang, & Yang, 2015; Wang, Yang, Xu, &
Chin, 2006; Yang, 2001; Yang, Wang, Xu, & Chin, 2006), is proposed to
make solutions to MCDM problems by treating all possible criterion
weights that are generated by following the two levels of fairness. In the
fair framework, a decision maker is allowed to choose one from two
strategies including the superior strategy and the inferior strategy. After
the choice, the fairness among criteria and the fairness among alter-
natives are defined to achieve the objective in line with the selected
strategy. By following the fairness among criteria defined, an optimi-
zation model is constructed to generate a set of fair criterion weights for

each alternative to help the alternative attain the objective in line with
the selected strategy to the maximum extent. Based on the set of fair
criterion weights for each alternative, the other optimization model is
constructed by following the fairness among alternatives to generate
possible sets of fair criterion weights. To treat all possible sets of fair
criterion weights, another optimization model is constructed to de-
termine the minimum and maximum expected utilities of each alter-
native, in which the ER algorithm (Wang, Yang, & Xu, 2006) is used to
combine individual assessments of alternatives on each criterion to
generate the overall assessments of alternatives. A decision rule con-
sistent with the preferences of the decision maker is then used to gen-
erate a solution to the decision problem considered based on the re-
sulting expected utilities of each alternative.

The rest of the present paper is organized as follows. Section 2
presents the ER distributed modeling framework for MCDM problems.
Section 3 introduces the fair framework. In Section 4, a supplier eva-
luation problem is investigated to demonstrate the applicability and
validity of the fair framework, which is strengthened by comparing the
fair framework with five existing methods. Section 5 provides a further
analysis of the applicability of the fair framework by simulation ex-
periments. Finally, this paper is concluded in Section 6.

2. ER distributed modeling framework for MCDM problems

Suppose a MCDM problem includes M alternatives denoted by al
(l=1,… ,M) and L criteria denoted by ei (i=1,… , L). Relative
weights of the L criteria are denoted by w=(w1,w2,… ,wL) such that
0≤wi≤ 1 and ∑ =

=
w 1i

L
i1 .

Suppose Ω={H1,H2,… ,HN} denotes a set of grades and the uti-
lities of grades u(Hn) (n=1,… ,N) satisfy the constraint 0= u
(H1) < u(H2) < … < u(HN)= 1 in the ER context. The M alter-
natives are assessed at the L criteria by using Hn (n=1,… ,N). Let
βn,i(al) denote the belief degree assigned to grade Hn when a decision
maker assesses alternative al on criterion ei. Then the assessment can be
profiled by a belief distribution B(ei(al))= {(Hn, βn,i(al)), n=1,… ,N;
(Ω, βΩ,i(al))}, where βn,i(al)≥ 0, ∑ =

β a( )n
N

n i l1 , ≤ 1, and

βΩ,i(al)= 1−∑ =
β a( )n

N
n i l1 , represents the degree of global ignorance

(Fu & Wang, 2015; Xu, 2012; Yang & Xu, 2013). If βΩ,i(al)= 0, the
assessment is complete; otherwise, it is incomplete. When belief dis-
tribution of each alternative on each criterion is given, a belief decision
matrix SL×M is formed. Note that because the degree of global ignor-
ance could be assigned to any grades, its impact needs to be analyzed in
MCDM.

In the ER approach, the individual assessments B(ei(al))
(i=1,… , L) together with criterion weights are combined to generate
the overall assessment B(y(al))= {(Hn, βn(al)), n=1,… ,N;
(Ω, βΩ(al))}, where βΩ(al) represents the degree of aggregated global
ignorance. Based on the overall assessment, the utilities of grades u(Hn)
(n=1,… ,N) are used to produce the minimum and maximum ex-
pected utilities of alternative al, i.e.,
u−(al)=∑ =

β a u H( )· ( )n
N

n l n2 +(β1(al)+ βΩ(al))·u(H1) and u+(al)=
∑ =

− β a u H( )· ( )n
N

n l n1
1 +(βN(al)+ βΩ(al))·u(HN) with 0≤ u−(al)≤ 1 and

0≤ u+(al)≤ 1. The expected utilities are then used to compare alter-
natives with the help of a decision rule consistent with the preferences
of the decision maker.

3. Fair framework

In MCDM, criterion weights play an important role in characterizing
how the performance on each criterion affects the overall performance
in comparison with other criteria, i.e., making trade-offs among all
criteria (Butler et al., 1997). On the assumption that there is flexibility
in criterion weight assignment, we present the fair framework for
making solutions to MCDM problems in the ER context.
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3.1. Illustration of the fair framework

To make clear the idea of the fair framework, we give its profile in
Fig. 1. In the following we demonstrate the fair framework in ac-
cordance with Fig. 1.

Fig. 1 shows that there are two levels of fairness in the framework,
which are the fairness among criteria and the fairness among alter-
natives. Two strategies are available in the framework, one of which is
the superior strategy and the other is the inferior strategy. When one
strategy is adopted by a decision maker, the integrated fair criterion
weights of each alternative are generated by following the first level of
fairness, which are then used to produce all possible sets of criterion
weights fair to each alternative by following the second level of fair-
ness. From the possible sets of criterion weights, the minimum and
maximum expected utilities of each alternative are obtained and used
to make solutions with the help of a decision rule consistent with the
preferences of the decision maker.

3.2. Determination of possible fair criterion weights

In accordance with the profile of the fair framework shown in Fig. 1,
we introduce how to determine possible sets of fair criterion weights
when the superior or inferior strategy is adopted by a decision maker.
As a common basis, the minimum and maximum expected utilities of
each alternative on each criterion are firstly presented.

Similar to the fact that the aggregated assessment B(y(al)) can be
combined with the utilities of grades u(Hn) (n=1,… ,N) to generate
the minimum and maximum expected utilities of alternative al, the
minimum and maximum expected utilities of alternative al on criterion
ei can be calculated as

∑= + +−

=

u e a β a u H β a β a u H( ( )) ( )· ( ) ( ( ) ( ))· ( ) andi l
n

N

n i l n i l i l
2

, 1, Ω, 1
(1)

∑= + ++

=

−

u e a β a u H β a β a u H( ( )) ( )· ( ) ( ( ) ( ))· ( ).i l
n

N

n i l n N i l i l N
1

1

, , Ω,
(2)

Here, u−(ei(al)) and u+(ei(al)) are also limited to [0, 1], similar to u−(al)
and u+(al). Based on [u−(ei(al)), u+(ei(al))], we firstly discuss the gen-
eration of possible sets of fair criterion weights by following the two
levels of fairness on the assumption that the superior strategy is adopted
by a decision maker.

Definition 1. Suppose that the minimum and maximum expected
utilities of alternatives al and am on each criterion,
[u−(ei(al)), u+(ei(al))] and [u−(ei(am)), u+(ei(am))] (i=1,… , L) are

obtained. To accomplish the objective to maximize the degree to
which alternative al is superior to am, the fairness among criteria is
defined as the fair contribution of the difference between the expected
utilities of the two alternatives on each criterion to the objective.

Following the fairness among criteria shown in Definition 1, we
calculate a set of fair superior criterion weights between alternatives al
and am denoted by w a( )i lm from [u−(ei(al)), u+(ei(al))] and
[u−(ei(am)), u+(ei(am))], which is

=
− − −

∑ − − −
= …

− +

=
− +

w a u e a u e a
u e a u e a

i L( ) ( ( ( )) ( ( )) ( 1))/2
( ( ( )) ( ( )) ( 1))/2

, 1, , .i lm
i l i m

j
L

j l j m1 (3)

Here, (u−(ei(al))− u+(ei(am))− (−1))/2 is a normalization of
u−(ei(al))− u+(ei(am)) because 0≤ u−(ei(al))≤ 1 and
0≤ u+(ei(am))≤ 1. With the consideration of generating
[u−(ei(al)), u+(ei(al))] and [u−(ei(am)), u+(ei(am))], the obtainment of
w a( )i lm requires O((N+1)·L) computations. Through using Eq. (3) for
any other alternatives different from alternative al, (M− 1) sets of fair
superior criterion weights by following the fairness among criteria can
be obtained. This means that alternative al is compared with the other
(M− 1) alternatives on each criterion and the number of comparisons
between alternatives is (M− 1)·L. When M alternatives are considered,
the total number of comparisons between alternatives is M·(M− 1)·L.

Choosing the quantity −−

≠

+u a u a( ) max{ ( )}l
m l

m as an indicator to judge

to what extent alternative al is superior to all others, we construct the
following optimization model to find an integrated set of fair superior
criterion weights from the convex combinations of the (M− 1) sets of
fair superior criterion weights w a( )i lm (m≠ l).

= − = …−

≠

+F a u a u a l MMAX ( ) ( ) max{ ( )} ( 1, , )l l
m l

m (4)

∑= = …
= ≠

∗w a θ w a i Ls.t. ( ) · ( ), 1, , ,i l
m m l

M

m
l

i lm
1, (5)

=
− − −

∑ − − −

− +

=
− +

w a u e a u e a
u e a u e a

( ) ( ( ( )) ( ( )) ( 1))/2
( ( ( )) ( ( )) ( 1))/2

,i lm
i l i m

j
L

j l j m1 (6)

⩽ ⩽ ≠
∗θ m l0 1, ,m

l
(7)

∑ =
= ≠

∗θ 1.
m m l

M

m
l

1, (8)

In this model, ∗θm
l (m≠ l) represents decision variables used to accom-

plish the convex combination of w a( )i lm . Note that the process of gen-
erating the aggregated assessments B(y(al)) (l=1,… ,M) from

Fig. 1. Profile of the fair framework.
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individual assessments B(ei(al)) (i=1,… , L) and w a( )i l by using the ER
algorithm (Wang et al., 2006) is implicitly included in the model, which
is intended for calculating [u−(al), u+(al)] (l=1,… ,M) and then
forming the objective of the model. Implementing the ER algorithm
requires O(L·N+2(N+2)) computations, as presented in (Wang et al.,
2006), so the complexity of maximizing F a( )l is O
(((N+1)·L·(M− 1)+ (M− 1))·L+(L·N+2(N+2)+N)·M). As is
shown in Eq. (5), w a( )i l is constructed from w a( )i lm (m≠ l). The cal-
culation of w a( )i lm (i=1,… , L, m≠ l) requires (M− 1)·L times of
comparisons between alternatives. As a result, the number of compar-
isons between alternatives involved in the model is (M− 1)·L. For the
optimization models associated withM alternatives, the total number of
comparisons between alternatives is M·(M− 1)·L.

From finding solutions to the model, the optimal F a( )l denoted by
∗F a( )l may be generated with many sets of ∗θm

l . This indicates that the
solutions to the model may not be unique. To cover all possible sets of
optimal ∗θm

l , the post-optimal solution space of the model is defined as
F a( )l ≥ −∗F a ε( )l where ε is a very small positive number such as 0.001
to compensate computational error incurred in generating ∗F a( )l .

Definition 2. Suppose that the integrated set of fair superior criterion
weights for alternative al (l=1,… ,M) denoted by
w a( )l =(w a( ),l1 … , w a( )i l ,… , w a( )L l ) is obtained from solving the
optimization model shown in Eqs. (4)–(8). Assume that the
convex combination of w a( )l is denoted by
w =(w ,1 … , wi,… , wL)= (∑ =

∗θ w a· ( ),l
M

l l1 1 … ,∑ =

∗θ w a· ( )l
M

l i l1 ,… , -
∑ =

∗θ w a· ( )l
M

l L l1 ). Then, the fairness among alternatives is defined as the
fair contribution of w a( )l to w .

By following the fairness among alternatives shown in Definition 2
to calculate wi from w a( )i l (l=1,… ,M), each alternative is compared
with the other (M− 1) alternatives on each criterion. As a result, the
number of comparisons between alternatives is M·(M− 1)·L. In ac-
cordance with the fairness among alternatives, the distance between
w a( )l and w is required to be nearly equal to each other. For this
purpose, the Euclidean distance between w a( )l and w is calculated as

∑= − = …
=

d w w a w w a l M( , ( )) ( ( )) , 1, , .l i

L
i i l1

2
(9)

Then, following the principle of maximum entropy we construct an
optimization model to carry out the fairness among alternatives shown
in Definition 2 within the intersection of post-optimal solution spaces
F a( )l ≥ −∗F a ε( )l (l=1,… ,M).

∑= −
∑ ∑= = =

G d w w a
d w w a

d w w a
d w w a

MAX ( , ( ))
( , ( ))

·ln ( , ( ))
( , ( ))l

M
l

m
M

m

l

m
M

m1 1 1 (10)

∑= − = …
=

d w w a w w a l Ms.t. ( , ( )) ( ( )) , 1, , ,l i

L
i i l1

2
(11)

⩽ ⩽ ≠
∗θ m l0 1, ,m

l
(12)

∑ =
= ≠

∗θ 1,
m m l

M

m
l

1, (13)

⩽ ⩽ = …
∗θ l M0 1, 1, , ,l (14)

∑ =
=

∗θ 1,
l

M

l
1 (15)

⩾ − = …∗F a F a ε l M( ) ( ) , 1, , .l l (16)

In the above model, ∗θl is also decision variable in addition to ∗θm
l . Note that

Eqs. (4)–(6) are not explicitly included in the model to avoid repetition.
Based on the complexity of implementing the ER algorithm and the com-
plexity of maximizing F a( )l , the complexity of maximizing G is O
((((N+1)·L·(M− 1)+ (M− 1))·L+(L·N+2(N+2)+N)·M)·M+ L·M-
+2·M). Both the calculation of d w w a( , ( ))l (l=1,… ,M) and the

calculation of F a( )l (l=1,… ,M) depend on w a( )i l . This means that each
alternative is compared with the other (M− 1) alternatives on each cri-
terion and the number of comparisons between alternatives isM·(M− 1)·L.

Similar to the post-optimal solution space F a( )l ≥ −∗F a ε( )l , to
cover all possible sets of optimal ∗θm

l and ∗θl , the post-optimal solution
space G ≥ −∗G ε is defined to compensate computational error incurred
in generating ∗G . The set of optimal criterion weights denoted by

̂w =( ̂w ,1 … , ̂wi,… , ̂wL) corresponding to the optimal ∗θm
l and ∗θl is

called the set of fair superior criterion weights achieving both the
fairness among criteria shown in Definition 1 and the fairness among
alternatives shown in Definition 2. All possible sets of fair superior
criterion weights are covered by the post-optimal solution spaces
F a( )l ≥ −∗F a ε( )l and G ≥ −∗G ε.

Different from what has been discussed above, in the following we
focus on the generation of possible sets of fair criterion weights on the
assumption that the inferior strategy is adopted by a decision maker.

Definition 3. Suppose that the minimum and maximum expected
utilities of alternatives al and am on each criterion,
[u−(ei(al)), u+(ei(al))] and [u−(ei(am)), u+(ei(am))] (i=1,… , L) are
obtained. To accomplish the objective to maximize the degree to
which alternative al is inferior to am, the fairness among criteria is
defined as the fair contribution of the difference between the expected
utilities of the two alternatives on each criterion to the objective.

Following the fairness among criteria shown in Definition 3, we
calculate a set of fair inferior criterion weights between alternatives al
and am, w a( )i lm as

=
− − −

∑ − − −
= …

− +

=
− +

w a u e a u e a
u e a u e a

i L( ) ( ( ( )) ( ( )) ( 1))/2
( ( ( )) ( ( )) ( 1))/2

, 1, , .i lm
i m i l

j
L

j m j l1 (17)

The obtainment of w a( )i lm also requires O((N+1)·L) computations.
The number of comparisons between alternatives is still (M− 1)·L.
When M alternatives are considered, the total number of comparisons
between alternatives is M·(M− 1)·L.

Similar to the situation where the superior strategy is adopted, we
construct the following optimization model to find an integrated set of
fair inferior criterion weights from the convex combinations of the
(M− 1) sets of fair inferior criterion weights w a( )i lm (m≠ l) calculated
by using Eq. (17).

= − = …
≠

− +F a u a u a l MMAX ( ) min{ ( )} ( ) ( 1, , )l
m l

m l (18)

∑= = …
= ≠

∗w a θ w a i Ls.t. ( ) · ( ), 1, , ,i l
m m l

M

m
l

i lm
1, (19)

=
− − −

∑ − − −

− +

=
− +

w a u e a u e a
u e a u e a

( ) ( ( ( )) ( ( )) ( 1))/2
( ( ( )) ( ( )) ( 1))/2

,i lm
i m i l

j
L

j m j l1 (20)

⩽ ⩽ ≠∗θ m l0 1, ,m
l (21)

∑ =
= ≠

∗θ 1.
m m l

M

m
l

1, (22)

The complexity of maximizing F a( )l is also O
(((N+1)·L·(M− 1)+ (M− 1))·L+(L·N+2(N+2)+N)·M). Similar
to the optimization model shown in Eqs. (4)–(8), the number of com-
parisons between alternatives involved in this model is (M− 1)·L. The
total number of comparisons between alternatives involved in the
models associated with M alternatives is M·(M− 1)·L.

Definition 4. Suppose that the integrated set of fair inferior criterion
weights for alternative al (l=1,… ,M) denoted by
w a( )l =(w a( )l1 ,… , w a( )i l ,… , w a( )L l ) is obtained from solving the
optimization model in Eqs. (18)–(22). Assume that the
convex combination of w a( )l is denoted by
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w =(w1,… , wi,… , wL)= (∑ =
∗θ w a· ( )l

M
l l1 1 ,… ,∑ =

∗θ w a· ( )l
M

l i l1 ,… , -
∑ =

∗θ w a· ( )l
M

l L l1 ). Then, the fairness among alternatives is defined as the
fair contribution of w a( )l to w.

Similar to Definition 2, each alternative is compared with the other
(M− 1) alternatives on each criterion and the number of comparisons
between alternatives is M·(M− 1)·L. Within the intersection of post-
optimal solution spaces F a( )l ≥ −∗F a ε( )l (l=1,… ,M), we construct
the following optimization model to achieve the fairness among alter-
natives shown in Definition 4.

∑= −
∑ ∑= = =

G d w w a
d w w a

d w w a
d w w a

MAX ( , ( ))
( , ( ))

·ln ( , ( ))
( , ( ))l

M
l

m
M

m

l

m
M

m1 1 1 (23)

∑= − = …
=

d w w a w w a l Ms.t. ( , ( )) ( ( )) , 1, , ,l i

L
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The complexity of maximizing G is also O
((((N+1)·L·(M− 1)+ (M− 1))·L+(L·N+2(N+2)+N)·M)·M
+ L·M+2·M). Similar to the optimization model shown in Eqs.
(10)–(16), each alternative is compared with the other (M− 1) alter-
natives on each criterion in this model and the number of comparisons
between alternatives is M·(M− 1)·L. All possible sets of fair inferior
criterion weights denoted by w=(w1 ,… , wi ,… , wL ) are covered by
the post-optimal solution spaces F a( )l ≥ −∗F a ε( )l and G ≥ −∗G ε. Next,
we discuss how to generate solutions to MCDM problems.

3.3. Generation of solution

With the consideration of all possible sets of fair superior or inferior
criterion weights, the minimum and maximum expected utilities of
each alternative are determined and used to generate solutions with the
help of a decision rule consistent with the preferences of a decision
maker.

On the assumption that the superior strategy is adopted by a deci-
sion maker, within the post-optimal solution spaces F a( )l ≥ −∗F a ε( )l
and G ≥ −∗G ε, we construct the following optimization model to de-
termine the minimum and maximum expected utilities of each alter-
native.

−u aMIN ( )l (30)

⩽ ⩽ ≠
∗θ m ls.t. 0 1, ,m

l
(31)

∑ =
= ≠

∗θ 1,
m m l

M
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l

1, (32)

⩽ ⩽ = …
∗θ l M0 1, 1, , ,l (33)

∑ =
=

∗θ 1,
l

M

l
1 (34)

⩾ − = …∗F a F a ε l M( ) ( ) , 1, , ,l l (35)

⩾ −∗G G ε. (36)

Solving this model generates the optimal −u a( )l . When the objective
of this model is changed to “MAX +u a( )l ”, the optimal +u a( )l can be

obtained. Due to the similarity between the model shown in Eqs.
(30)–(36) and the model shown in Eqs. (10)–(16) and the fact that

−u a( )l is calculated in the latter, the complexity of minimizing −u a( )l is
the same as the complexity of maximizing G , which is O
((((N+1)·L·(M− 1)+ (M− 1))·L+(L·N+2(N+2)+N)·M)·M+ L·-
M+2·M). Because the calculation of F a( )l (l=1,… ,M) and the cal-
culation of G depend on w a( )i l , the number of comparisons between
alternatives in this model is still M·(M− 1)·L. If the inferior strategy is
adopted by the decision maker, the optimal [ −u a( )l , +u a( )l ]
(l=1,… ,M) can be similarly obtained within the post-optimal solu-
tion spaces F a( )l ≥ −∗F a ε( )l and G ≥ −∗G ε. The relevant optimization
model is omitted to avoid repetition.

Until now, three main steps are involved in the process of gen-
erating the optimal [ −u a( ),l

+u a( )l ] from a belief decision matrix when
the superior strategy is adopted. The first step is to solve the optimi-
zation model shown in Eqs. (4)–(8) to obtain the optimal F a( )l
(l=1,… ,M), the second is to solve the optimization model shown in
Eqs. (10)–(16) to obtain the optimal G , and the third is to solve the
optimization model shown in Eqs. (30)–(36) to obtain the optimal
[ −u a( ),l

+u a( )l ] (l=1,… ,M). There are M·(M− 1)·L times of compar-
isons between alternatives in each step. As a whole, the number of
comparisons between alternatives in the process of generating the op-
timal [ −u a( ),l

+u a( )l ] is 3M·(M− 1)·L. Similarly, there are 3M·(M− 1)·L
times of comparisons between alternatives in the process of generating
the optimal [ −u a( )l , +u a( )l ].

Based on the optimal [ −u a( ),l
+u a( )l ] or [ −u a( )l , +u a( )l ], a decision

rule consistent with the preferences of the decision maker can be used
to generate solutions. For example, if the minimax regret rule (Wang
et al., 2006) is preferred by the decision maker, [ −u a( )l , +u a( )l ] will be
used to generate solutions. This is because there is great similarity be-
tween the comparison among alternatives in their worst scenarios by
using the minimax regret rule and the process of generating the set of
fair inferior criterion weights. In this situation, the maximum loss of
[ −u a( )l , +u a( )l ] is calculated first, and then the alternative with smaller
maximum loss will be preferred. On the other hand, maximin decision
rule, maximax decision rule, and Hurwicz rule may also be used to rank
alternatives. What decision rule should be applied depends on the de-
cision maker's preferences and behaviors.

As maximin and maximax decision rules are two special cases of
Hurwicz rule, we discuss how to use Hurwicz rule to generate solutions
given [ −u a( ),l

+u a( )l ] or [ −u a( )l , +u a( )l ]. Optimism degree γ is needed for
the application of Hurwicz rule. The decision maker is considered op-
timistic when 0.5≤ γ≤ 1 and pessimistic when 0≤ γ≤ 0.5. It is not
difficult to find the correlation between the optimism of the decision
maker and the superior strategy and the correlation between the pes-
simism of the decision maker and the inferior strategy. If such corre-
lation is accepted, [ −u a( )l , +u a( )l ] will be used together with γ to
compare alternatives when 0≤ γ≤ 0.5 and [ −u a( ),l

+u a( )l ] will be used
together with γ to compare alternatives when 0.5≤ γ≤ 1. Although
this is feasible in theory, it is not easy in practice because it may be a
burden on the decision maker to provide a precise optimism degree. To
handle this situation, when the pessimism is preferred by the decision
maker for the decision problem considered, [ −u a( )l , +u a( )l ] together
with all values of γ limited to [0, 0.5] will be used to compare alter-
natives; while [ −u a( ),l

+u a( )l ] together with all values of γ limited to
[0.5, 1] will be used to compare alternatives when the optimism is
preferred by the decision maker. In detail, suppose that

∫= + −

= + −

= +

− + + −

+ −

+ −

( )
E u a u a γ u a γ u a dγ

u a γ u a

u a u a

([ ( ), ( )]) · ( ) (1 )· ( )

· ( ) · ( )

0.125· ( ) 0.375· ( ) and

l l l l

γ
l

γ
l

l l

0
0.5

2 2
0

0.52 2

(37)

C. Fu et al. Computers & Industrial Engineering 124 (2018) 379–392

383



∫= + −

= + −

= +

− + + −

+ −

+ −

( )
E u a u a γ u a γ u a dγ

u a γ u a

u a u a

([ ( ), ( )]) · ( ) (1 )· ( )

· ( ) · ( )

0.375· ( ) 0.125· ( )

l l l l

γ
l

γ
l

l l

0.5
1

2 2
0.5

12 2

(38)

represent the integrated utilities of alternative al when the inferior and
superior strategies are adopted, respectively. Then, E([ −u a( )l , +u a( )l ]) is
used to compare alternatives when the decision maker is pessimistic
about the decision problem under consideration, while E([ −u a( ),l

+u a( )l ]) is used to compare alternatives when the decision maker is
optimistic about the decision problem.

3.4. Process of the fair framework

Considering what has been discussed in Sections 3.2 and 3.3, we
develop the process of the fair framework, which is shown in Fig. 2.

Fig. 2 shows that there are three hierarchies in the fair framework,
which are basis, fairness, and decision hierarchies. In the basis hier-
archy, individual assessments of each alternative are collected from a
decision maker and the expected utilities of each alternative on each
criterion are calculated as the foundations of the fair framework. More
importantly, the superior or inferior strategy is selected by the decision
maker to decide what solution will be generated. In the fairness hier-
archy, all possible sets of fair criterion weights following the selected
strategy are produced. Finally, the possible sets of fair criterion weights
are used to generate a solution in the decision hierarchy.

Evaluating alternatives on each criterion is very important for
generating a satisfactory solution to a MCDM problem. If the individual

assessments of alternatives provided cannot characterize the real and
complete preferences of the decision maker, the decision result gener-
ated by using the assessments will not be satisfactory to the decision
maker. Based on the provided individual assessments of alternatives,
their minimum and maximum expected utilities on each criterion are
calculated by using Eqs. (1) and (2).

In general, the purpose of MCDM is to generate what a decision
maker anticipates. For this purpose, the interaction between the deci-
sion maker and a MCDM method or model is important and necessary.
If such interaction is not allowed or not implemented in an effective
way, the decision result generated may not be accepted by the decision
maker. In the fair framework, the superior strategy and the inferior
strategy are available to the decision maker. It is the first step to pro-
duce all possible sets of fair criterion weights and further generate a
solution. When the decision maker selects the superior or inferior
strategy in accordance with his or her own preferences for a decision
problem, the obtained possible sets of fair criterion weights and the
generated solution can be considered to be consistent with the pre-
ferences of the decision maker. Along with the change in the pre-
ferences of the decision maker as to the problem, a different strategy
may be selected by the decision maker, which may result in a different
solution to the problem. This will be verified by the supplier evaluation
problem in Section 4. Selecting the superior strategy means that the
decision maker is willing to take into account the best scenarios of each
alternative and thus pay more attention to gain. In other words, the
decision maker prefers to an alternative that can create more profits
although the failings of the alternative may cause a large amount of
loss. On the contrary, the decision maker prefers to take into account
the worst scenarios of each alternative and thus pay more attention to

Fig. 2. Process of the fair framework.
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loss when he or she selects the inferior strategy. These analyses indicate
that the choice of the superior or inferior strategy provides the thor-
ough interaction between the fair framework and a decision maker and
guarantees that the solution generated is consistent with the pre-
ferences of the decision maker.

When the superior strategy is adopted by the decision maker, the
two levels of fairness shown in Definitions 1 and 2 are followed to
obtain possible sets of fair criterion weights. On the contrary, the de-
cision maker follows the two levels of fairness shown in Definitions 3
and 4 to obtain possible sets of fair criterion weights. Definitions 1 and
3 guarantee that each criterion is fairly treated to contribute to the
objective determined by the strategy taken in. It is assured from
Definitions 2 and 4 that each alternative is fairly treated to contribute to
the objective determined by the selected strategy.

Within the feasible region formed by all possible sets of fair criterion
weights following the selected strategy, the optimal expected utilities of
each alternative are obtained and used to rank alternatives. Because the
expected utilities are intervals instead of precise values, the decision
maker is encouraged to select a decision rule in accordance with his or
her preferences to compare alternatives by using their expected uti-
lities. The choice of decision rules provides the interaction between the
fair framework and the decision maker and contributes to the genera-
tion of a solution consistent with the preferences of the decision maker.
In general, the selected decision rule or the specified parameters asso-
ciated with the rule should be consistent with the selected strategy, as
demonstrated in Section 3.3. Or else, there is incompatibility between
the choices of the decision maker in different hierarchies of the fair
framework and it cannot be guaranteed that the decision made in this
situation is what the decision maker anticipates. In addition, when
Hurwicz rule is selected by the decision maker, using Eq. (37) or Eq.
(38) to compare alternatives can relieve the burden on the decision
maker to specify a precise optimism degree.

As a whole, the proposed fair framework shown in Fig. 2 supports
the evaluation of each alternative in accordance with the real and
complete preferences of a decision maker, provides the interaction
between the framework and the decision maker, and examines the
compatibility between the choices of the decision maker in different
hierarchies of the framework. This facilitates generating what the de-
cision maker anticipates.

The above analyses show that the interaction between the decision
maker and the fair framework is allowed. This does not, however, in-
dicate that the fair framework can be considered as an interactive
MCDM method completely. The similarity between the fair framework
and an interactive MCDM method is that the decision maker is en-
couraged to provide preferences for parameters and alternatives when
facing a decision problem. It is preferred that the minimum number of
preferences are required from the decision maker to relieve his or her
burden (Almeida, Almeida, Costa, & Almeida-Filho, 2016; Özpeynirci,
Özpeynirci, & Kaya, 2017), which is another common point of the fair
framework and an interactive MCDM method. More importantly, it is
common for the fair framework and an interactive MCDM method to
generate what the decision maker anticipates. Although so, there are
some differences between the fair framework and an interactive MCDM
method. Interactive MCDM methods usually depend on iterative in-
teractions to achieve the preferences of the decision maker for the
parameters (Almeida et al., 2016) and the pairwise comparisons be-
tween alternatives (Özpeynirci et al., 2017) in the process of MCDM.
The iterative process ends when the decision maker cannot give addi-
tional preferences (Almeida et al., 2016). Differently, in the fair fra-
mework the decision maker directly evaluates each alternative on each
criterion, selects the superior or inferior strategy, chooses a decision
rule, and specifies possible parameters associated with the decision
rule. Meanwhile, the decision maker is required to guarantee the
compatibility between the selected strategy and the chosen decision
rule with the specified parameters. An iterative process is not required
for these in the fair framework.

Note that although the proposed fair framework is based on the ER
approach, it provides an exploration of determining criterion weights in
MCDM by considering fair contributions of criteria and alternatives to
the solution generated. Such an idea can be applied in other situations
where individual assessments in MCDM are profiled by other expres-
sions, such as interval numbers (Wu, Xu, Xu, & Chen, 2016), in-
tuitionistic fuzzy numbers (Wang & Chen, 2017), hesitant fuzzy lin-
guistic numbers (Zhang, Ju, & Liu, 2017), and type-2 fuzzy numbers
(Chen, 2014a; Qin et al., 2015). The key challenge of applying the fair
framework in these situations is how to calculate the difference be-
tween individual assessments profiled by the above expressions and
how to combine individual assessments to generate the collective as-
sessment.

3.5. Comparison with the fairness in other methods

The generation of weights fair to support all alternatives is an im-
portant issue in MCDM. Meanwhile, it is also a hot topic in other
methods, such as in data envelopment analysis (DEA) method (Banker,
Charnes, & Cooper, 1984; Charnes, Cooper, & Rhodes, 1978).

Many extensions of DEA focus on finding the weights of inputs and
outputs (or indicators) in favor of all decision-making units (DMUs). To
guarantee the best attainable efficiency of each DMU simultaneously,
Kao and Hung (2005) constructed several optimization models to
minimize the total difference between the best attainable efficiency of
each DMU and its efficiency derived from a set of common weights.
This idea was extended in the situation where the efficiency of each
DMU in multiple periods needs to be evaluated (Kao, 2010). Given a
fixed input, Avellar, Milioni, and Rabello (2007) proposed a DEA model
to distribute the input to all DMUs by satisfying the requirement that all
DMUs are efficient. On the condition that all DMUs are efficient, a set of
common weights associated with inputs and outputs is derived from the
optimization model constructed to maximize the average efficiency of
all DMUs. With the aim of making the efficiency of each DMU close to
its ideal efficiency in a fair way, Cook and Zhu (2007) proposed a
method for determining a set of common weights of inputs and outputs
that minimizes the penalty imposed on the most disadvantaged DMU.
To compare efficient DMUs, Liu and Peng (2008) proposed a method for
determining a set of common weights that is the most favorable for
determining the absolute efficiency of efficient DMUs. With a view to
making a fair comparison among DMUs, Hatefi and Torabi (2010)
proposed a two-step method. The first step is to construct an optimi-
zation model for each DMU to generate a set of best weights with re-
spect to indicators that maximizes its efficiency, and the second is to
construct another optimization model to generate a set of common
weights with respect to indicators that maximizes the efficiency of each
DMU simultaneously. To produce the smallest total difference between
the relative performance of the DMU and that of a virtual DMU com-
posed of the mean of all DMUs, Yang et al. (2017) constructed an op-
timization model to determine a set of common weights associated with
the indicators of DMUs.

The above analyses concerning the fairness in relevant DEA
methods (or models) show that a common objective of all DMUs is
designed to be reached to determine a set of common weights asso-
ciated with inputs and outputs on the condition that each DMU is fairly
treated to be close to its ideal efficiency. Different DMUs are not di-
rectly compared in pairs. This is different from the proposed fair fra-
mework. In the fair framework, pairwise comparison between alter-
natives provides a basis for the obtainment of a set of fair criterion
weights when the superior strategy or the inferior strategy is chosen.
Two levels of fairness are involved in the fair framework, which are the
fairness among criteria and the fairness among alternatives. Pairwise
comparison between alternatives is involved in the two levels of fair-
ness. Meanwhile, the fairness among criteria can effectively avoid ex-
treme weights that are zero-valued or very close to 0. However, extreme
weights are usually not avoided by the extensions of DEA focusing on
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fairness. On the other hand, there is no common objective for all al-
ternatives in the fair framework. In fact, except specific requirements,
in MCDM all alternatives are usually not associated with a common
objective that is expected to be reached.

4. Illustrative example

In this section, a supplier evaluation problem is examined by the fair
framework to demonstrate the determination of fair criterion weights
and the process of finding solutions to MCDM problems. In the problem,
the decision maker from an enterprise of producing railway rolling
stock equipment located in Changzhou is to evaluate five suppliers in
order to find the most appropriate three ones to purchase products such
as transmission systems and their parts, and metal rubber ring. To fa-
cilitate analyzing the supplier evaluation problem, a solution system is
developed in the MATLAB environment.

4.1. Description of the supplier evaluation problem

The rapid development of society and economy in China creates
striking opportunities to prompt the leap-forward development of
transportation. As one of the most important transportation means,
high-speed train makes people’s trip outstandingly convenient. Under
the conditions, producing railway rolling stock equipment has gradu-
ally become an important national strategy in the field of manu-
facturing propelled by “Made in China 2025 Strategy” and the relevant
industry attracted much attention. Similar to other manufacturing in-
dustries, evaluating suppliers is an important task for the industry of
producing railway rolling stock equipment. In particular, it is also a
challenge that enterprises have to face due to the strict requirements of
supplier performance in such an industry.

An enterprise located in Changzhou of Jiangsu Province of China
that mainly produces key parts of high-speed train is a representative
one facing the challenge of evaluating suppliers in accordance with
strict requirements. Five qualified suppliers are identified from those
cooperating with the enterprise. Three suppliers are located in
Changzhou, Zhuzhou, and Shanghai, and the remaining two in
Guangzhou. They provide bearings, transmission systems and their
parts, metal rubber ring, general rubber sealing ring, and scrap steel for
the enterprise. To satisfy the requirements of production capacity of the
enterprise in current situation with the consideration of production
capacity of the five suppliers, the board of directors of the enterprise
intends to select the most appropriate three suppliers through evalu-
ating the five ones. The manager of the purchasing department acts as
the decision maker to take charge of the selection process. Six factors
(or criteria) are identified to evaluate the five suppliers, which include
quality management system, physical quality, after-sales service, price,
delivery performance, and environmental security. Five experts from
the departments of production, quality management, research and de-
velopment, sales, and finance are invited to help the decision maker to
evaluate the five suppliers. The assessment of each supplier on any of
the criteria is assumed not to depend on the assessments on other cri-
teria, so the assessments on criteria can be considered independent of
each other.

Suppose that the five suppliers are represented by Sl (l=1,… , 5),
and the six criteria by ei (i=1,… , 6). The five suppliers are assessed on
each criterion using the following set of grades: Poor (P), Average (A),
Good (G), VeryGood (V), and Excellent (E), i.e.,
Ω={Hn, n=1,… , 5}= {Poor,Average,Good, VeryGood, Excellent}
= {P,A,G, V, E}.

The utility of each grade u(Hn) (n=1,… , 5) is set to be
(0, 0.25, 0.5, 0.75, 1) by using a probability assignment approach
(Winston, 2011). Due to the strict requirements of supplier performance
and the outstanding importance of evaluating suppliers, the decision
maker is not willing to assign weights to criteria by using subjective
methods, but to determine criterion weights by giving fair treatment to

each criterion and further to each alternative. As a result, the fair fra-
mework is applied to determine fair criterion weights and generate a
solution to the supplier evaluation problem. The parameter ε to help
form the post-optimal solution space of variables ∗θm

l and ∗θl (or ∗θm
l and

∗θl ) is specified as 0.001 to compensate the computational error.

4.2. Determination of fair criterion weights

With the assistance of the five experts, the assessments of each of the
five suppliers are generated. As the decision maker is from the pur-
chasing department, he is very familiar with the criteria of price and
delivery performance, familiar with the criterion of after-sales service,
and not familiar with the criteria of quality management system, phy-
sical quality, and environmental security. When taking into account
different types of criteria, the decision maker adopts different ways to
provide the assessments of the five suppliers. Suppose that Bk(ei(al))
(k=1,… , 5) represents the assessments of the five experts denoted by
tk (k=1,… , 5). Facing the unfamiliar criteria, the decision maker de-
cides to directly accept the average of the assessments of the five ex-
perts, i.e., Bk(ei(al))/5 as the assessment B(ei(al)). While facing the fa-
miliar criteria, the decision maker intends to give his assessment
denoted by BD(ei(al)) and then use the weighted combination of
Bk(ei(al))/5 with BD(ei(al)), i.e.,

+ −δ B e a δ B e a· ( ( ))/5 (1 )· ( ( ))i
k

i l i
D

i l (39)

as the assessment B(ei(al)). Note that the parameter δi is set by the
decision maker in accordance with his recognition of criterion ei. When
he is very familiar with criterion ei, he generally sets δi by a value less
than 0.5. While he sets that δi=0.5 for his familiar criterion ei. In
particular, δi can be considered as 1 for his unfamiliar criterion ei. By
following this principle, five experts give their assessments and the
decision maker gives his assessments and δi on the six criteria, as pre-
sented in Table 1. By using the data in Table 1 and Eq. (39), the as-
sessments B(ei(al)) are generated and presented in Table 2. A belief
decision matrix S6×5 is formed.

Based on the data in Table 2, u−(ei(Sl)) (i=1,… , 6, l=1,… , 5)
and u+(ei(Sl)) are calculated by using Eqs. (1) and (2). They are pre-
sented in Table A.1 of Section A.1 in Appendix A of the supplementary
material. As the enterprise must satisfy the strict requirements of pro-
ducing key parts of high-speed train, it is prudent for the decision
maker to take into consideration the worst scenarios of each supplier.
For the consideration, the decision maker decides to select the inferior
strategy for the supplier evaluation problem.

On the condition that the inferior strategy is adopted, fair inferior
criterion weights between any two suppliers are calculated by using Eq.
(17), as presented in Table A.2 of Section A.1. The fairness among
criteria is accomplished. Based on the fair inferior criterion weights in
Table A.2, the optimization model shown in Eqs. (18)–(22) for any
supplier Sl is solved to obtain ∗F S( )l
(l=1,… , 5)= (−0.0999, 0.1437,−0.0616,−0.0639,−0.09). The
post-optimal solution space F S( )l ≥ −∗F S ε( )l is then formed, in which
Sl is guaranteed to be inferior to all the others to the maximum extent.
From solving the optimization model shown in Eqs. (23)–(29) within
the intersection of the spaces F S( )l ≥ −∗F S ε( )l (l=1,… , 5), ∗G is ob-
tained as 1.6051 to form the post-optimal solution space G ≥ −∗G ε and
the set of fair inferior criterion weights achieving both the fairness
among criteria shown in Definition 3 and the fairness among alter-
natives shown in Definition 4 is obtained as (0.1532, 0.1568, 0.148,
0.1969, 0.1287, 0.2164). The integrated set of fair inferior criterion
weights for each supplier is also obtained, as presented in Table 3.

4.3. Generation of the solution to the supplier evaluation problem

Within the intersection of the post-optimal solution spaces
F S( )l ≥ −∗F S ε( )l (l=1,… , 5) and G ≥ −∗G ε, the optimization model
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shown in Eqs. (30)–(36) with the objectives of “MIN −u S( )l ” and “MAX
+u S( )l ” are solved to find the minimum and maximum expected utilities

of the five suppliers, i.e., [ −u S( )l , +u S( )l ]
(l=1,… , 5)= ([0.4949, 0.5879], [0.3763, 0.4655], [0.4472, 0.5528],
[0.4228, 0.5698], [0.4532, 0.5964]). As stated in Section 3.3, there is
the similarity between the comparison among alternatives in their
worst scenarios by using the minimax regret rule and the process of
generating the set of fair inferior criterion weights. For this reason, the
minimax regret rule is chosen to compare alternatives. From [ −u S( )l ,

+u S( )l ], the maximum loss of each supplier is calculated as
(0.1015, 0.2201, 0.1492, 0.1736, 0.1347), which results in a ranking
order of the five suppliers, i.e., S1≻ S5≻ S3≻ S4≻ S2 where the notation
‘≻’ denotes ‘superior to’.

The ranking order of the five suppliers indicates that S1, S5, and S3
are the most appropriate three options with the preferential order of
S1≻ S5≻ S3. This is the solution to the supplier evaluation problem. The

Table 1
Original assessment data from the five experts and the decision maker for the five suppliers where tk denotes the kth expert and DM denotes the decision maker.

Attributes S1 S2 S3 S4 S5

e1
(δ1, 1− δ1)= (1, 0)

t1: {(A, 1)};
t2: {(A, 1)};
t3: {(G, 1)};
t4: {(A, 1)};
t5: {(Ω, 1)}

t1: {(V, 1)};
t2: {(V, 1)};
t3: {(E, 1)};
t4: {(G, 1)};
t5: {(E, 0.5), (Ω, 0.5)}

t1: {(A, 1)};
t2: {(A, 1)};
t3: {(A, 1)};
t4: {(G, 1)};
t5: {(G, 0.5), (Ω, 0.5)}

t1: {(V, 1)};
t2: {(V, 1)};
t3: {(V, 1)};
t4: {(E, 1)};
t5: {(V, 0.5), (Ω, 0.5)}

t1: {(G, 1)};
t2: {(V, 1)};
t3: {(V, 1)};
t4: {(V, 1)};
t5: {(Ω, 1)}

e2
(δ2, 1− δ2)= (1, 0)

t1: {(G, 1)};
t2: {(G, 1)};
t3: {(V, 1)};
t4: {(V, 1)};
t5: {(G, 0.5), (Ω, 0.5)}

t1: {(G, 1)};
t2: {(G, 1)};
t3: {(V, 1)};
t4: {(V, 1)};
t5: {(Ω, 1)}

t1: {(G, 1)};
t2: {(G, 1)};
t3: {(G, 1)};
t4: {(G, 1)};
t5: {(G, 0.5), (Ω, 0.5)}

t1: {(A, 1)};
t2: {(A, 1)};
t3: {(P, 1)};
t4: {(P, 0.5), (A, 0.5)};
t5: {(G, 0.5), (Ω, 0.5)}

t1: {(P, 1)};
t2: {(P, 1)};
t3: {(P, 1)};
t4: {(P, 1)};
t5: {(Ω, 1)}

e3
(δ3, 1− δ3)= (0.5, 0.5)

t1: {(V, 1)};
t2: {(G, 1)};
t3: {(V, 1)};
t4: {(V, 1)};
t5: {(G, 1)};
DM: {(V, 0.2), (E, 0.8)}

t1: {(A, 1)};
t2: {(A, 1)};
t3: {(A, 1)};
t4: {(A, 1)};
t5: {(P, 1)};
DM: {(P, 0.8), (Ω, 0.2)}

t1: {(G, 1)};
t2: {(V, 1)};
t3: {(V, 1)};
t4: {(G, 1)};
t5: {(E, 1)};
DM: {(V, 0.8), (Ω, 0.2)}

t1: {(V, 1)};
t2: {(V, 1)};
t3: {(E, 1)};
t4: {(V, 1)};
t5: {(Ω, 1)};
DM: {(E, 1)}

t1: {(E, 1)};
t2: {(V, 1)};
t3: {(V, 1)};
t4: {(E, 1)};
t5: {(Ω, 1)};
DM: {(V, 0.6), (Ω, 0.4)}

e4
(δ4, 1− δ4)= (0.4, 0.6)

t1: {(G, 1)};
t2: {(V, 1)};
t3: {(Ω, 1)};
t4: {(V, 1)};
t5: {(G, 1)};
DM: {(G, 0.4), (V, 0.6)}

t1: {(A, 1)};
t2: {(P, 1)};
t3: {(A, 1)};
t4: {(P, 1)};
t5: {(A, 1)};
DM: {(P, 0.4), (A, 0.6)}

t1: {(G, 1)};
t2: {(V, 1)};
t3: {(G, 1)};
t4: {(V, 1)};
t5: {(V, 1)};
DM: {(G, 1)}

t1: {(P, 1)};
t2: {(G, 1)};
t3: {(A, 0.5), (Ω, 0.5)};
t4: {(G, 1)};
t5: {(A, 1)};
DM: {(A, 0.6), (Ω, 0.4)}

t1: {(Ω, 1)};
t2: {(G, 1)};
t3: {(Ω, 1)};
t4: {(V, 1)};
t5: {(G, 1)};
DM: {(G, 0.6), (V, 0.4)}

e5
(δ5, 1− δ5)= (0.4, 0.6)

t1: {(V, 1)};
t2: {(V, 1)};
t3: {(E, 1)};
t4: {(E, 1)};
t5: {(E, 1)};
DM: {(V, 0.2), (E, 0.8)}

t1: {(P, 1)};
t2: {(P, 1)};
t3: {(A, 1)};
t4: {(A, 1)};
t5: {(A, 1)};
DM: {(A, 0.7), (Ω, 0.3)}

t1: {(V, 1)};
t2: {(V, 1)};
t3: {(V, 0.5), (Ω, 0.5)};
t4: { (V, 1)};
t5: {(V, 1)};
DM: {(V, 0.8), (Ω, 0.2)}

t1: {(V, 1)};
t2: {(E, 1)};
t3: {(V, 0.5), (Ω, 0.5)};
t4: {(V, 1)};
t5: {(E, 1)};
DM: {(V, 0.7), (Ω, 0.3)}

t1: {(A, 1)};
t2: {(A, 1)};
t3: {(Ω, 1)};
t4: {(G, 0.5), (Ω, 0.5)};
t5: {(G, 1)};
DM: {(A, 0.4), (G, 0.6)}

e6
(δ6, 1− δ6)= (1, 0)

t1: {(P, 1)};
t2: {(P, 1)};
t3: {(A, 1)};
t4: {(A, 1)};
t5: {(P, 0.5), (Ω, 0.5)}

t1: {(G, 1)};
t2: {(G, 1)};
t3: {(G, 1)};
t4: {(V, 1)};
t5: {(G, 0.5), (E, 0.5)}

t1: {(A, 1)};
t2: {(A, 1)};
t3: {(A, 1)};
t4: {(A, 1)};
t5: {(Ω, 1)}

t1: {(A, 1)};
t2: {(A, 1)};
t3: {(A, 1)};
t4: {(A, 1)};
t5: {(A, 0.5), (G, 0.5)}

t1: {(G, 1)};
t2: {(G, 1)};
t3: {(G, 1)};
t4: {(G, 0.5), (V, 0.5)}
t5: {(V, 1)}

Table 2
Assessment data for the five suppliers generated from the data in Table 1.

Attributes S1 S2 S3 S4 S5

e1 {(A, 0.6), (G, 0.2), (Ω, 0.2)} {(G, 0.2), (V, 0.4), (E, 0.3),
(Ω, 0.1)}

{(A, 0.6), (G, 0.3), (Ω, 0.1)} {(V, 0.7), (E, 0.2), (Ω, 0.1)} {(G, 0.2), (V, 0.6), (Ω, 0.2)}

e2 {(G, 0.5), (V, 0.4), (Ω, 0.1)} {(G, 0.4), (V, 0.4), (Ω, 0.2)} {(G, 0.9), (Ω, 0.1)} {(P, 0.3), (A, 0.5), (G, 0.1),
(Ω, 0.1)}

{(P, 0.8), (Ω, 0.2)}

e3 {(G, 0.2), (V, 0.4), (E, 0.4)} {(P, 0.5), (A, 0.4), (Ω, 0.1)} {(G, 0.2), (V, 0.6), (E, 0.1),
(Ω, 0.1)}

{(V, 0.3), (E, 0.6), (Ω, 0.1)} {(V, 0.5), (E, 0.2), (Ω, 0.3)}

e4 {(G, 0.4), (V, 0.52),
(Ω, 0.08)}

{(P, 0.4), (A, 0.6)} {(G, 0.76), (V, 0.24)} {(P, 0.08), (A, 0.48), (G, 0.16),
(Ω, 0.28)}

{(G, 0.52), (V, 0.32),
(Ω, 0.16)}

e5 {(V, 0.28), (E, 0.72)} {(P, 0.16), (A, 0.66), (Ω, 0.18)} {(V, 0.84), (Ω, 0.16)} {(V, 0.62), (E, 0.16), (Ω, 0.22)} {(A, 0.4), (G, 0.48),
(Ω, 0.12)}

e6 {(P, 0.5), (A, 0.4), (Ω, 0.1)} {(G, 0.7), (V, 0.2), (E, 0.1)} {(A, 0.8), (Ω, 0.2)} {(A, 0.9), (G, 0.1)} {(G, 0.7), (V, 0.3)}

Table 3
Integrated set of fair inferior criterion weights for each supplier.

Suppliers w S( )i l (i=1,… , 6)

S1 (0.2632, 0.1563, 0.0923, 0.1243, 0.0611, 0.3029)
S2 (0.1305, 0.0522, 0.2393, 0.235, 0.1732, 0.1697)
S3 (0.262, 0.1625, 0.1312, 0.1222, 0.1138, 0.2083)
S4 (0.1757, 0.2607, 0.0572, 0.1592, 0.0845, 0.2627)
S5 (0.1931, 0.2466, 0.0939, 0.1059, 0.1765, 0.184)
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above analysis shows that S1, S5, and S3 are appropriate to supply
products to the enterprise in current situation. In the future, if the si-
tuation of the enterprise has changed, other suppliers may become the
most appropriate choices for the enterprise.

In the situation where the inferior strategy is adopted, if the cor-
relation between the pessimism and the inferior strategy is accepted by
the decision maker, Hurwicz rule with the optimism degree γ limited to
[0, 0.5] can be applied based on [ −u S( )l , +u S( )l ] to compare alternatives.
To relieve the burden on the decision maker to provide a precise op-
timism degree, it is calculated using Eq. (37) that E([ −u S( )l , +u S( )l ])
(l=1,… , 5)= (0.2591, 0.1993, 0.2368, 0.2298, 0.2445). The new
ranking order of the five suppliers is derived from E([ −u S( )l , +u S( )l ]),
which is S1≻ S5≻ S3≻ S4≻ S2. The ranking order is clearly the same as
the one generated by using the minimax regret rule.

To examine whether the rankings of the five suppliers alter with
different optimism degrees, it is assumed that the optimism degree γ
moves from 0 to 1 with a step of 0.05, then the expected utility of each
supplier, i.e., − +− +γ u S γ u S(1 )· ( ) · ( )l l is calculated and presented in
Table A.3 of Section A.1. For each value of γ, the rankings of the five
suppliers can be obtained from the data in Table A.3. The movement of
the rankings of the five suppliers with the increase in γ is plotted in
Fig. 3. It can be found from Fig. 3 that the rankings of the five suppliers
remain unchanged with the movement of γ from 0 to 0.55, S4 varies
from the fourth to the third when γ increases to 0.6, and S5 varies from
the second to the first when γ increases to 0.85. Given different values
of γ, different ranking orders of the five suppliers may be generated. In
addition, E([ −u S( )l , +u S( )l ]) characterizes the average situation of each
supplier. The ranking order generated by E([ −u S( )l , +u S( )l ]) can be
verified qualitatively by Fig. 3.

4.4. Influence of the superior strategy on solutions

What has been analyzed above is on the condition that the inferior
strategy is adopted. It is an interesting question to find out what will
happen if the superior strategy is adopted. Answering this question
helps to highlight the significant influence of the superior strategy on
solutions to the supplier evaluation problem made by using the fair
framework.

To examine the influence of the superior strategy on solutions to the
supplier evaluation problem, we find the solution to the supplier eva-
luation problem under the conditions where the superior strategy is
adopted and compare it with the solutions generated in Section 4.3. By
using Eq. (3), fair superior criterion weights between any two suppliers
are calculated, as presented in Table A.4 of Section A.2 in Appendix A.

From solving the optimization model shown in Eqs. (4)–(8) for any
supplier Sl on the basis of fair superior criterion weights between any
two suppliers, it is obtained that ∗F S( )l (l=1,… , 5)=
(0.0356,−0.026,−0.1347,−0.0736,−0.0602). Within the intersec-
tion of the spaces F S( )l ≥ −∗F S ε( )l (l=1,… , 5), the optimization
model shown in Eqs. (10)–(16) is solved to obtain ∗G as 1.599 and the
set of fair superior criterion weights achieving both the fairness among
criteria shown in Definition 1 and the fairness among alternatives
shown in Definition 2 as (0.1399, 0.2401, 0.1125, 0.1582,
0.171, 0.1783). The integrated set of fair superior criterion weights for
each supplier is also obtained, as presented in Table 4.

Within the spaces of F S( )l ≥ −∗F S ε( )l (l=1,… , 5) and G ≥ −∗G ε,
the optimization model shown in Eqs. (30)–(36) with the objectives of
“MIN −u S( )l ” and “MAX +u S( )l ” are solved to find the minimum and
maximum expected utilities of the five suppliers, i.e., [ −u S( )l , +u S( )l ]
(l=1,… , 5)= ([0.5288, 0.6196], [0.3869, 0.495], [0.4575, 0.5649],
[0.4068, 0.5461], [0.3924, 0.5311]). Assume that the correlation be-
tween the optimism and the superior strategy is accepted by the deci-
sion maker, Hurwicz rule with the optimism degree γ limited to [0.5, 1]
is applied based on [ −u S( ),l

+u S( )l ] to compare alternatives. By using Eq.
(38), E([ −u S( ),l

+u S( )l ]) (l=1,… , 5) is calculated as
(0.2985, 0.234, 0.269, 0.2556, 0.2482), which results in the ranking
order of the five suppliers, i.e., S1≻ S3≻ S4≻ S5≻ S2. This indicates that
S1, S3, and S4 are the most appropriate three options with the pre-
ferential order of S1≻ S3≻ S4. This solution is clearly different from the
solutions generated by using the minimax regret rule and Hurwicz rule
when the inferior strategy is adopted because S3, S4, and S5 have
changed from the third, fourth, and second best choices to the second,
third, and fourth best choices, respectively. The observation indicates
the significant influence of the superior strategy on the ranking order of
the five suppliers and the solution to the supplier evaluation problem.

Similar to the situation where the inferior strategy is adopted, the
movement of the rankings of the five suppliers with the increase in the
optimism degree γ is conducted to analyze the stability of the ranking
order S1≻ S3≻ S4≻ S5≻ S2. Suppose that the optimism degree γ is in-
creased from 0 to 1 with a step of 0.05. On this assumption, the ex-
pected utility of each supplier, i.e., − +− +γ u S γ u S(1 )· ( ) · ( )l l is calculated
and presented in Table A.5 of Section A.2. From the data in Table A.5,
the movement of the rankings of the five suppliers with the increase in γ
is plotted in Fig. 4, which justifies the ranking order generated by E
([ −u S( )l , +u S( )l ]) in a qualitative way. Through comparing Fig. 4 with
Fig. 3, it can be found that the rankings of the five suppliers associated
with the superior strategy remain unchanged with the increase in γ and
thus are more stable than those associated with the inferior strategy.
This observation is made for the supplier evaluation problem and fur-
ther highlights the influence of the superior and inferior strategies on
the ranking order of the five suppliers.

4.5. Comparison with existing methods

To validate the proposed fair framework, it is compared with five
existing methods for determining criterion weights by addressing the
supplier evaluation problem. The methods to be compared include the
entropy method (Deng et al., 2000), the SD method (Deng et al., 2000),
the CRITIC method (Diakoulaki et al., 1995), the CCSD method (Wang
& Luo, 2010), and the method developed by Chin et al. (2015). The

Fig. 3. Movement of the rankings of the five suppliers with the increase in the
optimism degree from 0 to 1 when the inferior strategy is adopted.

Table 4
Integrated set of fair superior criterion weights for each supplier.

Suppliers w S( )i l (i=1,… , 6)

S1 (0.0828, 0.2075, 0.1866, 0.1803, 0.2548, 0.0881)
S2 (0.1951, 0.2716, 0.0409, 0.1369, 0.0902, 0.2654)
S3 (0.164, 0.156, 0.1697, 0.177, 0.1403, 0.193)
S4 (0.2334, 0.1318, 0.1966, 0.1128, 0.1693, 0.1562)
S5 (0.1635, 0.1348, 0.1385, 0.2026, 0.0986, 0.262)
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former four methods are classical ones, which are extended by Chin
et al. (2015) to handle belief distributions in the ER approach. Mean-
while, Chin et al.’s method is developed based on the ER approach. For
this reason, the five methods are selected to be compared with the fair
framework. Details of the five methods can be found in Chin et al.
(2015), which are omitted here to save space.

To address the supplier evaluation problem with the data shown in
Table 2 and the settings presented in Section 4.1, the five methods are
used to determine five sets of criterion weights, as presented in Table 5.
Based on the five sets of criterion weights, five sets of the overall as-
sessments of each supplier are obtained by using the ER algorithm
(Wang et al., 2006) and then combined with u(Hn) (n=1,… , 5) to
generate the expected utilities of each supplier [u−(Sl), u+(Sl)]
(l=1,… , 5), which are also presented in Table 5. From the resulting
expected utilities of the five suppliers, their integrated utilities are
calculated by using Eqs. (37) and (38) on the assumption that the in-
ferior and superior strategies are adopted. The ranking orders of the five
suppliers are then derived from their integrated utilities. Note that in
Table 5 “S” and “I” in the columns of “Integrated utilities” and “Ranking
order” mean that the superior and inferior strategies are adopted, re-
spectively.

Table 5 shows that criterion weights obtained by using the entropy
method are significantly different from those obtained by using the
methods of SD, CRITIC, and CCSD. Meanwhile, Chin et al.’s method
creates a set of well-balanced criterion weights, as demonstrated in
Chin et al. (2015). Different from the five methods, the fair framework
does not intend to create a unique set of criterion weights but to con-
sider all possible sets of criterion weights that follow the fairness among
criteria and the fairness among alternatives. The two levels of fairness
guarantee the fair contributions of the six criteria and the five suppliers
to the solution made. Extreme criterion weights that are beneficial to
any of the five suppliers are effectively avoided. Or else, some criteria
may contribute almost nothing to the solution, which may not be what
the decision maker anticipates in general. Compared with using one set
of criterion weights to generate a solution, considering all possible sets
of criterion weights following the two levels of fairness to do it seems
more reliable, convinced, and fair.

The difference between the criterion weights derived from the en-
tropy and those derived from the methods of SD, CRITIC, and CCSD
causes the difference between the expected utilities of the five suppliers
associated with the entropy method and those associated with the
methods of SD, CRITIC, and CCSD, as presented in Table 5. Although so,
it is interesting to find that the ranking orders of the five suppliers as-
sociated with the four methods are the same no matter whether the

Fig. 4. Movement of the rankings of the five suppliers with the increase in the
optimism degree from 0 to 1 when the superior strategy is adopted.
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superior strategy or the inferior strategy is adopted. This is because
u−(Sl) > u−(Sm) and u+(Sl) > u+(Sm) (l≠m) always hold for the
expected utilities of any two suppliers associated with the four methods.
It is not the case for the expected utilities of the five suppliers associated
with Chin et al.’s method due to the well-balanced criterion weights
derived from the method. Two different ranking orders of the five
suppliers are generated when the superior and inferior strategies are
adopted, respectively.

When the methods of entropy, SD, CRITIC, and CCSD are used to
determine criterion weights, the most appropriate three suppliers are
S1, S4, and S3 with the preferential order of S1≻ S4≻ S3. The same so-
lution can be obtained when Chin et al.’s method is applied to de-
termine criterion weights and the superior strategy is adopted.
However, a different solution is obtained when the inferior strategy is
adopted, in which the rankings of S3 and S4 alter. On the other hand,
from Sections 4.3 and 4.4 we can find that two different solutions are
obtained by using the fair framework when the superior and inferior
strategies are adopted, respectively. They are S1, S3, S4 with the pre-
ferential order of S1≻ S3≻ S4 and S1, S5, and S3 with the preferential
order of S1≻ S5≻ S3. For the supplier evaluation problem, the decision
maker attempts to take into account the worst scenarios of each sup-
plier because the products and materials provided by the suppliers must
satisfy the strict requirements of producing key parts of high-speed
train. In accordance with the willingness of the decision maker, the
inferior strategy is selected. Under the conditions, the solution gener-
ated by the fair framework, i.e., S1, S5, and S3 with the preferential
order of S1≻ S5≻ S3, is clearly different from those associated with the
five methods. When the superior strategy is adopted, the solution
generated by the fair framework is also different from those associated
with the five methods. The reason why the solution generated by the
fair framework is considered as what the decision maker anticipates is
that the strategy selected by the decision maker is involved in the
process of obtaining all possible sets of criterion weights that follow the
two levels of fairness and generating the expected utilities of the five
suppliers. The selection of strategy to determine fair criterion weights
reflects the interaction between the fair framework and the decision
maker and facilitates making the obtained solution consistent with the
real preferences of the decision maker. Relevant theoretical analysis can
be found in Section 3.4. The willingness of the decision maker, how-
ever, is not considered in the obtainment of criterion weights by using
the five methods.

5. Simulation experiment

In the supplier evaluation problem presented in Section 4, the five
suppliers are evaluated on six criteria. The problem is not a large-scale
one. It is interesting to find out whether the fair framework is applic-
able to the decision problem with a number of alternatives and criteria.
To examine this, 10 combinations of alternatives and criteria are se-
lected, which are presented in Table 6. For each combination, a random
belief decision matrix is generated to do simulation experiments. Both
the superior strategy and the inferior strategy are considered in the
experiments.

The simulation experiments are implemented on a personal com-
puter with processor of Intel Core i7-6700 CPU 3.4 GHz, RAM of 16 GB,
and operating system of 64 Bits Windows 7. The solution system, which
is developed in the MATLAB environment and used to analyze the
supplier evaluation problem in Section 4, is adapted to carry out the
simulation experiments. Solution time for random decision problems
with the ten combinations of alternatives and criteria when the superior
and inferior strategies are adopted is presented in Table 6.

Table 6 shows that solution time has grown rapidly with the in-
crease in the number of alternatives and the number of criteria. It is the
similar case when the superior and inferior strategies are adopted. This
highlights the difficulty in using the fair framework to solve MCDM
problems. If a decision maker does not care solution time very much but

pay more attention to decision results, the fair framework is applicable
for large-scale decision problems. Or else, different high-performance
computing systems such as high-performance computer (e.g., high-end
system and cluster system) and distributed multiprocessor system (e.g.,
cloud computing) can help to achieve the computation results of the fair
framework for large-scale decision problems within acceptable time
frames.

When advanced high-performance computing systems are not
available, there are other feasible ways to efficiently solve large-scale
decision problems by using the fair framework, which are associated
with the characteristics of the problems. For a decision problem with a
large number of alternatives and limited criteria, the problem can be
divided into several subproblems, in which each subproblem should be
comparable to each other as much as possible or almost identical. Each
subproblem is solved by using the fair framework and then the solutions
to all subproblems are combined to generate the solution to the decision
problem by using the fair framework again. For a decision problem with
limited alternatives and a large number of criteria, through clustering
analysis or other techniques a multi-hierarchical criterion tree is con-
structed based on all criteria. Iteratively applying the fair framework on
each hierarchy in accordance with the relationship between criteria on
adjacent hierarchies can generate the solution to the decision problem.
Finally, a combination of the ways to solve the above two types of
decision problems can help to solve a decision problem with a large
number of alternatives and criteria.

6. Conclusions

The weight of a criterion is an important concept in MCDM that
reflects the impact of the individual assessment of the criterion on the
overall assessment. Appropriate or sound criterion weight assignment is
crucial to making rational trade-offs among all criteria in MCDM
methods. To focus on the assignment of weights to criteria, a large
amount of research has been conducted. Although so, whether the
criterion weight assignment is fair to each criterion and to each alter-
native is rarely taken into account in existing studies. To address this
problem, a fair framework in the context of the ER approach was ex-
plored in this paper, which mainly includes two levels of fairness, i.e.,
the fairness among criteria and the fairness among alternatives. In the
fair framework, two strategies were firstly provided for the decision
maker to choose with the consideration of the decision problem, which

Table 6
Solution time of the fair framework for random decision matrices with different
numbers of alternatives and criteria when the superior and inferior strategies
are adopted.

No Number of alternatives Number of criteria Strategy Solution time (s)

1 6 8 Superior 71.34
1 6 8 Inferior 151.97
2 7 9 Superior 279.06
2 7 9 Inferior 223.99
3 8 10 Superior 328.97
3 8 10 Inferior 464.08
4 9 11 Superior 897.42
4 9 11 Inferior 2353.37
5 10 12 Superior 2196.11
5 10 12 Inferior 2924.04
6 11 13 Superior 4280.43
6 11 13 Inferior 6826.5
7 11 14 Superior 6974.17
7 11 14 Inferior 7225.55
8 12 14 Superior 7691.06
8 12 14 Inferior 9234.94
9 13 15 Superior 12744.75
9 13 15 Inferior 21894.01
10 14 16 Superior 32125.64
10 14 16 Inferior 24982.07
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are the superior strategy and the inferior strategy. After the choice, the
fairness among criteria was defined and used to construct an optimi-
zation model to help each alternative achieve the objective in line with
the selected strategy to the maximum extent. Based on the results de-
rived from solving the optimization model, the fairness among alter-
natives was defined and used to construct the other optimization model
to produce fair criterion weights in line with the selected strategy. By
following the idea of treating all possible sets of fair criterion weights in
line with the selected strategy, another optimization model was con-
structed to generate the minimum and maximum expected utilities of
each alternative, which were used to generate a solution to the decision
problem considered by exploring the decision maker’s behaviors or
what decision rule is preferred by the decision maker.

What we investigate in this paper is a new attempt to explore the
determination of criterion weights accomplishing both the fairness
among criteria and the fairness among alternatives, which are not
considered in existing studies on how to determine criterion weights
from a decision matrix. While the concept of fairness is taken into ac-
count in the process of determining criterion weights which are used to
generate a solution, as reported in this paper, a decision maker’s be-
haviors are not integrated with the fairness, which drives more research
to be conducted. In the meantime, how to handle the preferences of the
decision maker for balancing the two levels of fairness is an interesting
issue, which will be investigated in the next step. In addition, many
interesting issues will be found when the idea of following the two le-
vels of fairness is extended to other MCDM methods in which the pre-
ferences of a decision maker are expressed in different ways, as in-
dicated at the end of Section 3.4.

Not only that, it can be perceived that we live in an era of in-
formalization and intelligence. Under the conditions artificial in-
telligence is a trend in most fields, in which decision making field is
obviously included. Many interesting issues will be inspired by applying
artificial intelligence techniques, such as multi-agent system and ma-
chine learning, to uncertain MCDM, including how to quickly find ef-
fective or acceptable solutions to large-scale MCDM problems, how to
learn the preferences of a decision maker for MCDM problems in dif-
ferent situations, and how to coordinate the interactions between the
method and the decision maker in the process of MCDM. Also, the
combination of MCDM and artificial intelligence makes it possible to
extend the application field of MCDM. With the consideration of arti-
ficial intelligence techniques, MCDM can be applied in specific fields in
which individual assessments are not provided by a decision maker
(usually people) but by other sources, such as online data, industrial
equipment, and healthy equipment.
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